
Diogo Santiago Serra

Licenciado em Engenharia Informática

A proof system for lock-free concurrency

Dissertação para obtenção do Grau de Mestre em
Engenharia Informática

Orientador : António Ravara, Professor Auxiliar, FCT/UNL

Fevereiro, 2013

iii

A proof system for lock-free concurrency

Copyright c© Diogo Santiago Serra, Faculdade de Ciências e Tecnologia, Universidade
Nova de Lisboa

A Faculdade de Ciências e Tecnologia e a Universidade Nova de Lisboa têm o direito,
perpétuo e sem limites geográficos, de arquivar e publicar esta dissertação através de ex-
emplares impressos reproduzidos em papel ou de forma digital, ou por qualquer outro
meio conhecido ou que venha a ser inventado, e de a divulgar através de repositórios
científicos e de admitir a sua cópia e distribuição com objectivos educacionais ou de in-
vestigação, não comerciais, desde que seja dado crédito ao autor e editor.

iv

To my grandmother Dária, whose kindness I left unmatched.

vi

Acknowledgements

Firstly I am grateful to my supervisor, António Ravara, for proposing this dissertation’s
topic as it perfectly fits one of my main areas of interest – formally reasoning about con-
current programs. I am equally grateful to António for his availability and unwavering
support even when this dissertation was not going so well.

Secondly I am grateful to Luís Caires, who at a critical stage delimited the scope of
this work and contributed with invaluable insights which allowed me to conclude it. I
am also thankful for his motivation along this period, without which I probably would
have quit.

At OutSystems, where I currently work, I am grateful to António Melo and David
Nunes for being patient about my starting date and allowing me to take some days off so
I could properly finish this document.

I am also thankful to my colleagues Paulo Ferreira, with whom I continuously dis-
cussed some of this thesis’ details, and Filipe Rodrigues, who put up with my ramblings
about its execution.

Finally I am grateful to my family for their support at this time when I am simultane-
ously working and finishing my graduation, which I am currently unable to reciprocate.

vii

viii

Abstract

Software has become widespread, being used and relied upon on nearly every do-
main. Furthermore, as this globalization of software took place and multi-core architec-
tures became the norm, several programs are now expected to run on a given device at
the same time in a timely fashion. Attending this need, concurrent and distributed sys-
tems are a well known way of dealing with performance and scalability of computation.
Although several such systems exist in the devices and services we depend on, it is fre-
quent for those systems to be exploited or go wrong. Because most complex programs
are built in modules and lack a formal specification of what they do, it is hard to prevent
the emerging system from failing or being exploited. Therefore, one of the most sought
after results by software industry is a way of reasoning about programs that prevents
undesired behavior. Formal methods contribute to a rigorous specification, analysis, and
verification of programs, having proven to be quite effective in this regard. Program log-
ics, in particular, are able to verify validity of user-specified formulas and are the solution
we propose to tackle this issue. Regarding concurrent programs, locks are a mechanism
that make reasoning easier by serializing access to shared resources, taming concurrency.
Since lock-free programs offer a better way of taking advantage of concurrency, we are
especially interested in them. In this context, the LL/SC pair of primitives have proven to
be more expressive than their widely used CAS counterpart. The goal of our work is then
to develop a proof system capable of proving correctness of lock-free programs based on
LL/SC primitives. In this dissertation we present a new program logic, based on those
of concurrent separation logic and RGSep, which establishes a solid theoretical basis for
reasoning about such programs.

Keywords: program logics, lock-free programming, load-link/store-conditional

ix

x

Resumo

A disseminação do software fez com que este se tornasse dependentemente utilizado
em vários domínios aplicacionais. Dada a sua globalização e o estabelecimento das arqui-
teturas multi-core, tornou-se expetável que vários programas executem ao mesmo tempo
num dado dispositivo. Visando dar resposta a esta necessidade, os programas concor-
rentes e distribuídos fornecem uma maneira de lidar com o desempenho e escalabilidade
de tais sistemas. Embora estes programas existam nos dispositivos e serviços de que de-
pendemos, é frequente que estes falhem ou sejam manipulados. Assim sendo, uma das
maiores necessidades na informática é uma maneira de garantir a correta execução destes
programas. Métodos formais contribuem para uma rigorosa especificação, análise e ve-
rificação de programas, tendo-se provado bastante eficazes nesta matéria. Em particular,
lógicas para verificação de programas são capazes de verificar a validade de fórmulas
especificadas pelo utilizador, constituindo a solução que propomos para este problema.
Respeitante a programas concorrentes, as locks são um mecanismo que facilita o raciocí-
nio ao serializar o acesso a recursos partilhados, controlando a concorrência. Uma vez
que programas não bloqueantes tiram melhor partido da concorrência, estes são o alvo
da nossa atenção. Neste contexto, as primitivas LL/SC provaram ser uma alternativa
mais expressiva que a mais frequentemente utilizada CAS. O objetivo do nosso trabalho
é então desenvolver um sistema de prova capaz de provar a correção de programas não
bloqueantes baseados nas primitivas LL/SC. Nesta dissertação é apresentada uma nova
lógica, baseada naquelas presentes na lógica de separação concorrente e RGSep, que es-
tabelece uma base teórica sólida para raciocinar sobre tais programas.

Palavras-chave: lógicas para verificação, programação não bloqueante, load-link/store-
conditional

xi

xii

Contents

1 Introduction 1

1.1 Context and motivation . 1

1.2 Problem description . 3

1.3 Proposed solution . 7

1.4 Main contributions . 8

1.5 Outline . 9

2 Related work 11

2.1 Hoare logic . 11

2.2 Separation logic . 17

2.3 Concurrent separation logic . 22

2.4 Rely-guarantee reasoning . 25

2.5 RGSep . 26

3 Proof system for lock-free concurrency 31

3.1 Programs . 31

3.1.1 Program Syntax . 32

3.1.2 Operational Semantics . 33

3.2 Assertions . 38

3.2.1 Assertion Syntax . 38

3.2.2 Validity . 39

3.3 Inference Rules . 42

3.3.1 Rules . 42

3.3.2 Soundness . 47

3.4 Examples . 52

3.4.1 Counter . 52

3.4.2 List . 54

xiii

xiv CONTENTS

4 Conclusion 59
4.1 Summary . 59
4.2 Future Work . 60

List of Figures

2.1 Programming language syntax . 12

2.2 Program states and data . 13

2.3 Expression evaluation functions . 13

2.4 Operational semantic rules . 14

2.5 Assertion language syntax . 15

2.6 Assertion semantics . 15

2.7 Proof rules . 16

2.8 Programming language syntax . 18

2.9 Program states and data . 18

2.10 Operational semantic rules . 19

2.11 Assertion language syntax . 20

2.12 Assertion semantics . 20

2.13 Proof rules . 21

2.14 Programming language syntax . 22

2.15 Operational semantic rules . 23

2.16 Proof rules . 25

2.17 Programming language syntax . 27

2.18 Assertion language syntax . 28

2.19 Assertion semantics . 28

2.20 Proof rules . 29

3.1 Programming language syntax . 32

3.2 Program states and data . 33

3.3 Operational semantics . 34

3.4 Operational semantics (cont.) . 35

3.5 Assigns and reads functions . 37

3.6 Assertion language syntax . 38

3.7 Assertion semantics . 40

xv

xvi LIST OF FIGURES

3.8 Validity . 41
3.9 Proof rules . 43
3.10 Proof rules (cont.) . 44
3.11 Writes and frees functions . 46
3.12 Counter example . 53
3.13 Push example . 54
3.14 Pop example . 56
3.15 Detailed push derivation example . 58
3.16 Detailed pop derivation example . 58

Listings

1.1 Node class . 5
1.2 Enqueue method . 5
1.3 Dequeue method . 5

xvii

xviii LISTINGS

1
Introduction

1.1 Context and motivation

Software has become widespread, being used and relied upon on nearly every do-
main. With current research and development augmenting the amount of problems it
can solve, it is bound to become present in every aspect of our lives. Whether due to per-
formance or organizational requirements, modern software systems are distributed and
communication-centered. Many such systems depend on third-party services, such as
Clouds, making them very modular and dynamic in nature. Devices that provide these
services are themselves highly distributed internally due to the concurrent computation
present in multi-core hardware, which is also a well established technology to improve
performance.

In this environment, an important problem that affects both local and distributed sys-
tems is undesired behavior. Dynamic and modular components of a system must not
compromise the behavior and reliability of a device or service. However, software is not
a reliable artifact by itself as it provides no warranty on its functionality. It is meant to
be executed, and often provides no insight as to what it will do – leading to a huge re-
source investment in understanding software systems and fixing their bugs, as well as
compromising current systems with bugs and exploits which make them vulnerable to
malicious attacks. Ultimately these problems result in protocol incompatibility, wasted
resources and security breaches, which often lead to service unavailability, information
leak and malicious exploitation.

1

1. INTRODUCTION 1.1. Context and motivation

Preventing the above problems is a challenging task that requires a solid methodolog-
ical and infrastructural basis for developing distributed and concurrent software, which
is beginning to be built but is still clearly missing from current core information technolo-
gies. Due to the complexity of such systems, abstractions that are able to precisely model
them play a key role in languages and structures used in their development since as-
surances regarding a software system’s behavior must be provided before it is deployed
in a potentially dangerous environment. Assurances themselves must also be precisely
specified, so that they can be validated by automatic or semi-automatic software tools –
drastically reducing the chance of errors occurring.

Algorithms are the basis underlying computation, being expressed by a well-defined
list of instructions in order to compute a function. Algorithms are at the heart of software,
they define hardware manipulation such as hard-drive and memory access, as well as
distributed computation such as distributed hash-tables and minimum spanning trees.
A computer program, like an algorithm, is a sequence of instructions written to perform
a specified task with a computer. Therefore, we can reason about a program’s correctness
in the same way we reason about an algorithm’s correctness.

Historically, there are mainly three known ways of proving a program’s correctness –
type systems [Chu40], model checking [CES09] and program logics [Hoa69]. Type sys-
tems are used to verify the type safety property, which as stated by Milner ensures “well-
typed programs cannot go wrong”. Although being a very useful property in practice,
we are interested in verifying a user specified property, such as “if at the beginning of
program execution variable N has a positive value, then at the end of program execu-
tion variable R will hold the factorial of the initial value of N ,” which describes what
the program is supposed to do. Therefore, since type checking is targeted at proving one
fixed property for all programs, it is not suited to our goal. Model checking is based on
analyzing the state-space of a system, in order to verify if a given user-specified property
holds. Notice that this is a generic approach – as long as we can model the states of an
arbitrary system, model checking searches the reachable states for any property viola-
tion. However, while a system usually has a finite number of states, the state-space of a
program can be unbounded – a while loop that diverges can generate such a state-space.
Therefore, if we want to have any hope of verifying programs, we need a more specific
approach that takes into account the concrete constructs of the programming language
one wants to verify, as well as the properties the user can reason about. Program logics
provide that kind of syntax directed way of relating language constructs with properties
that hold through their execution. While usually proven correct with respect to the effect
program constructs have on the program state, one can only derive such a relation from
results which are specific to the programming language to be verified. This approach,
pioneered by Floyd and Hoare [Flo67, Hoa69], has recently been the target of a lot of at-
tention by the research community in the area. As long as the underlying logic is sound

2

1. INTRODUCTION 1.2. Problem description

and statements correctly express the desired behavior, we can be sure about software’s
correctness. Therefore, program logics is indeed the adequate formalism for what we are
looking for. One important final remark is that these systems, unless otherwise stated,
only check for partial correctness – as termination of a program is in general an undecid-
able problem, a separate termination proof is required to ensure total correctness.

1.2 Problem description

Until a few years ago, sequential programs were the norm in computing – a program
was a list of instructions which were executed in the order they were written. Further-
more, since program execution was fixed and the effect each program instruction had
was rather straightforward, informally reasoning about sequential programs was also the
norm. However, in an environment where several programs are expected to execute at
any given time, multi-core architectures were developed to improve performance. Given
the multi-core architecture, a setting where several programs can be executed in paral-
lel, the opportunity for a single program to execute several subtasks concurrently arose.
While allowing for more efficient programs, multi-core architectures and concurrent pro-
grams were very specialized solutions, since such architectures were significantly more
expensive than a standard processor and concurrent programming is difficult. Nowa-
days, most domestic computers have multi-core processors and concurrent programs are
becoming the norm in computing.

Concurrent programming although able to obtain more efficient algorithms is quite
harder to reason about, since the execution of two concurrent processes cannot be seen
as the serialization of the first process followed by the second or vice-versa – one has to
account for every possible interleaving of program instructions. Since there are exponen-
tially many interleavings on the size of the program, it becomes hard to guarantee that
any such interleaving will indeed hold an acceptable result. Therefore, mechanisms to
limit the possible interleavings of a concurrent program were developed – atomic com-
mands and locks were created. When having the capability to solely allow for interleav-
ings which serialize the parts of the program that access shared resources, also called the
critical regions of a program, it becomes easier to deal with concurrency – one only has to
ensure critical regions keep shared resources consistent. However, mechanisms such as
atomic constructs and locks see shared resource races as catastrophic and totally disallow
it, serializing their access – shared resources then become a bottleneck, serializing each
possible access even if no harm would arise from it.

To deal with serialization of access to resources in concurrent programs, several progress
conditions were proposed. One progress condition which has become quite popular in
the area is the nonblocking property – processes waiting to access a shared resource do

3

1. INTRODUCTION 1.2. Problem description

not indefinitely hold because of another process accessing the same resource. Further-
more, nonblocking can be divided into three main progress conditions according to the
tightness they impose on the overall process development – wait-freedom, lock-freedom
and obstruction-freedom. Wait-freedom, the strongest sub-property, ensures progress
of all processes while disallowing starvation of any single process – no process can be
delayed forever because of the processor scheduler. Lock-freedom, while still enforc-
ing progress of all processes, drops the starvation requirement – since fair schedulers
are still not a realistic assumption and the cost of every other running process enforcing
starvation-freedom is too high, starvation is usually not an addressed issue. Finally the
weakest nonblocking sub-property, obstruction-freedom, enforces that any single pro-
cess, while executed in isolation at any point, will finish in a finite number of steps.

In this context, we are especially interested in lock-free programs as they impose the
most realistic assumptions on the program executing environment. Besides being a block-
ing mechanism, since any process trying to acquire a locked resource is unable to proceed,
locks greatly reduce the chance for concurrency – as stated above, locks will serialize ac-
cess to shared resources, even if some concurrent interference could be tolerated. Lock-
free algorithms take an optimistic approach, and try to access shared resources in spite
of concurrent interference, backing off in case of inconsistency. As explained in [HS08],
this opportunity for concurrency often increases performance of concurrent algorithms.
However, even in this narrower setting there are still choices to be made, since several
distinct hardware primitives support lock-free programming. The most popular of these
primitives is CAS, which stands for compare and swap, already having a formal proof
system [GCPV09] to prove correctness of programs based on it. Unfortunately, CAS turns
out to be unable to detect several important conflicting updates – as long as the initial
value of the variable being tested is preserved at the end of an update, CAS will be un-
able to detect that update – ultimately resulting in a number of CAS tests equal to the size
of the structure we want to keep consistent.

Following a concrete example covered in [HS08], Listings 1.1, 1.2 and 1.3 present a
Java lock-free queue based on the CAS primitive. Listing 1.1 contains the Node class,
used to store an element of the queue and its successor. Note that because the successor
needs to be atomically compared and swapped in enqueue and dequeue operations, the
next field has to be of type AtomicReference. Although not presented here, the head
and tail fields are also of type AtomicReference since they too require CAS opera-
tions. Listing 1.2 details the enqueue method, which adds an element to the queue. The
optimistic approach is encoded in the while(true) cycle, as it will attempt to execute
as long as it is unsuccessful. Adding an element to the queue firstly loads the value of
the tail into a local variable, and then checks if another value has been added since it
firstly loaded that variable. Then, it finishes upon successfully changing the tail to the
created node without interference, or restarts in face of concurrent modification. Because

4

1. INTRODUCTION 1.2. Problem description

dequeuing – presented in Listing 1.3 – is very similar to enqueuing, its explanation will
be skipped.

Listing 1.1: Node class

1 class Node<T>{

2 public T value;

3 public AtomicReference<Node<T>> next;

4

5 public Node(T value){

6 this.value = value;

7 next = new AtomicReference<Node<T>>(null);

8 }

9 }

Listing 1.2: Enqueue method

1 public void enq(T value){

2 Node<T> node = new Node<T>(value), last, next;

3 while(true){

4 last = tail.get();

5 next = last.next.get();

6 if(last == tail.get()){

7 if(next == null){

8 if(last.next.compareAndSet(last, node)){

9 tail.compareAndSet(last, node);

10 return;

11 }

12 }

13 else tail.compareAndSet(last, next);

14 }

15 }

16 }

Listing 1.3: Dequeue method

1 public T deq() throws EmptyStackException{

2 Node<T> first, last, next;

3 while(true){

4 first = head.get();

5 last = tail.get();

6 next = first.next.get();

7 if(first == head.get()){

8 if(first == last){

9 if(next == null)

10 throw new EmptyStackException();

11 tail.compareAndSet(last, next);

12 }

13 else{

14 T value = next.value;

15 if(head.compareAndSet(first, next))

5

1. INTRODUCTION 1.2. Problem description

16 return value;

17 }

18 }

19 }

20 }

Although this algorithm actually works on Java, as explained in [HS08], that is not
so trivial to check. Furthermore, this program only works correctly because of Java’s
garbage collection policy – which is even harder to tell. Assuming a language with ex-
plicit memory management, like C and C++, it is possible for addresses that are known by
some active process to be disposed of and recycled – often, that is the most efficient way
of managing memory. However, in this scenario, the algorithm stops working correctly.
Imagine that a program which starts with a queue consisting of nodes stored at a and b

starts dequeuing the node at a and gets interrupted at line 15 of Listing 1.2, after freeing a
and having placed a CAS call with addresses a and b to update the head. Then a program
which dequeues a and b, and enqueues two nodes is executed – leaving the tail pointing
to the last enqueued node. If address a is recycled during the first enqueue operation,
the interrupted program will find that head still points to address a, and will change its
successor to be b, overriding the second enqueue operation independently of what value
was enqueued and leaving the queue inconsistent as head and tail are now unlinked.
This is the result of a well-known issue called the ABA1 problem – a primitive checks for
change by solely comparing if an address holds a given value, and cannot distinguish
between no change and changes that reestablish the initial value.

LL/SC, which stand for load-link and store-conditional, are a recent pair of primitives
that allow us to solve this problem – load-link reads the value of a variable, and store-
conditional writes a value into a variable that has remained unchanged since the last
load-link, returning the success status of this write. Because SC checks if a variable loaded
with LL has ever been updated, we hope it is now clear that the LL/SC pair of primitives
are stronger than the CAS primitive – CAS ignores the updates as long as the initial value
is replaced, while SC does not. We also believe that LL/SC more intuitively captures the
optimistic setting than CAS, since there is an analogy between LL and a transaction start,
as well as SC and a transaction commit or rollback.

Finally, we are ready to state the concrete problem to be tackled. Given the difficulty of
reasoning about the correctness of concurrent programs – especially that of nonblocking
programs – our goal is then to develop a formal proof system for lock-free concurrency
based on the LL/SC pair of primitives. More specifically, we developed such a proof sys-
tem for an imperative language with the usual sequential constructs – skip, variable read
and write, conditional branching, looping and sequential composition – shared memory

1http://en.wikipedia.org/wiki/ABA_problem

6

http://en.wikipedia.org/wiki/ABA_problem

1. INTRODUCTION 1.3. Proposed solution

read and write, parallel composition of programs, and the lock-free LL/SC primitives.
Furthermore, our inference rules focus on proving the “local footprint” of a program,
and for this proof to carry over into a wider environment – allowing for a local and mod-
ular way of reasoning about programs.

1.3 Proposed solution

Although no formalism yet exists for the specific kind of program we want to verify, as
will be detailed in the following chapter, several such formalisms already exist for other
settings – including the concurrent setting. Fortunately, the approach used to solve these
other settings is also adequate for our scenario. However, although the approach is the
same, this does not mean its application to the specific set of primitives and properties
we want to have is trivial. The approach, pioneered by Floyd and Hoare [Flo67, Hoa69],
consists of the following components:

Programs A way of modeling the program one wants to verify, as well as the precise
meaning of its constructs.

Program syntax The program syntax is given by the grammar of a preferably min-
imal set of commands, which are able to capture the constructs found on the
programming languages one wishes to verify. In our setting, we need syntac-
tical constructs for skip, variable read and write, conditional branching, loop-
ing, sequential composition, shared memory read and write, parallel compo-
sition, and the lock-free LL/SC primitives;

Operational semantics The operational semantics is a formal interpretation of the
commands present in the programming syntax, which precisely models the
possible states of a program and the transition between program states re-
sulting from the execution of a command. In our setting, we use structural
operational semantics [Plo04] – i.e. syntax oriented and inductive – for each of
the above program constructs.

Assertions A way of expressing the properties one wants reason about, as well as the
precise meaning of each property.

Assertion syntax The statement syntax is given by a grammar of properties one
can write about a program, which establishes what can be proven regarding
programs. In our setting we have classical logic constructs, as well as prop-
erties to reason about shared memory – the empty memory constant and the
points-to and separating conjunction operators, introduced by Reynolds [Rey02].
Furthermore, assertions will distinguish between what holds on two disjoint
pieces of memory – the program’s local resources and the shared environ-
ment’s resources, as in [Vaf07];

7

1. INTRODUCTION 1.4. Main contributions

Assertion semantics The statement semantics establishes when a program state
satisfies a given property. In our setting, we have a mathematical logic predi-
cate that decides whether an assertion holds at a certain program state.

Proof system A way of using assertions to reason about programs.

Validity property The validity property tells us how to use statements to reason
about programs, and when a given specification is either true or false. In our
setting, validity will ensure that the program does not fault (i.e. access unallo-
cated memory), does not have data races (i.e. modify variables some other is
using) and, if executed in any state that satisfies a given precondition, then it
establishes a certain postcondition;

Inference rules Inference rules are a syntax directed way of proving a specifica-
tion’s correctness, which must be derivable from the validity property (i.e.
sound). In our setting, besides having a rule for each program construct, we
also have framing rules which allow us to extend a local proof into a wider
non-interfering environment – accounting for locality and modularity.

Therefore, the solution detailed on this dissertation consists in developing all of the
above – bringing forward an original proof system which takes into account LL/SC prim-
itives. Furthermore, an informal argument on the inference rules’ soundness and sig-
nificant examples of their application are presented, in order to validate that our proof
system is indeed correct and adequate for our environment.

1.4 Main contributions

With this dissertation, providing the previous solution, we bring forward the following
contributions:

Precise account of LL/SC primitives With the development of an operational semantics
which rigorously captures the effect LL/SC primitives have on the program state,
one is better able to reason about their usage on programming languages;

Adaptation of existing formalisms By applying results from other works to a different
scenario – lock-free programs based on LL/SC primitives – we shed some light on
how properties of lock-based systems relate to an optimistic scenario;

New inference rules While some results are already present on previous works, given
no current formalism accounts for LL/SC primitives we need new inference rules
and an underlying framework to address them;

Soundness argument In order to ensure syntactic proofs are indeed correct regarding
their semantic counterparts, we supply a structured argument on their soundness
– also explaining why some limitations still exist. Furthermore, with this argument

8

1. INTRODUCTION 1.5. Outline

we lay out the basis for formal soundness proofs and improvements on the system’s
expressiveness.

1.5 Outline

In this chapter we have just explained the need for a new proof system which ad-
dresses LL/SC primitives and allows reasoning about lock-free programs. Then, based
on existing formalisms for similar problems, a solution targeting this need as well as its
contributions to the area were proposed.

Chapter 2 presents aforementioned formalisms – Hoare logic, separation logic, con-
current separation logic and RGSep – additionally detailing their relevance and concepts
used in this dissertation. These works establish the basis on which our proof system is
built on, and give the reader enough context to follow it.

Chapter 3 contains the bulk of our work, introducing and defining the proof system
we have developed for proving correctness of lock-free programs based on LL/SC prim-
itives. Additionally, an argument on the system’s soundness and examples showcasing
its usage are presented as well.

Chapter 4 gives an overview of this dissertation and, then with more context, goes
through its contributions once again – detailing what we are able to achieve. Concluding,
some features that fall out of the scope of this work as well as limitations of the current
system are pointed out, so it can be improved in the future.

9

1. INTRODUCTION 1.5. Outline

10

2
Related work

Although there did not exist a way of proving the correctness of lock-free programs
based on the LL/SC pair of primitives, such tools were already present for other kinds
of program as a result of previous research on the field of program logics. As mentioned
before, several formalisms which tackle the problem of proving correctness of both se-
quential and concurrent programs with varying degrees of expressiveness already exist.
In this chapter we will detail the relevant works on which our proof system was based
on, and explain how they come into play in the proposed solution. Note that the logics
covered by this chapter will be presented in an incremental fashion, which corresponds
to how their actual development was done – each logic adds some more commands to
the programming language, or allows for more expressiveness regarding the one it was
based upon.

Furthermore, although formal logics for the specific programs we want to prove are
lacking, there already exists a great amount of informal reasoning about lock-free pro-
grams – resulting in a solid basis of the domain being tackled. Therefore, this chapter
will also present existing lock-free concepts as well as the kind of properties we wish to
be able to prove.

2.1 Hoare logic

Introduced by Tony Hoare in 1969, Hoare logic [Hoa69] was one of the pioneering
program logics and the first of its kind – its key contribution being the introduction of a
set of logical rules for formally reasoning about the correctness of a computer program.
Hoare logic spawned a body of work around it, resulting in several formalizations and

11

2. RELATED WORK 2.1. Hoare logic

extensions. This section is based on the work of Glynn Winskel [Win93], which presents
both an operational and denotational semantics for programs, as well as the correctness
of Hoare’s rules. Note that in order to keep definitions of the works presented in this
chapter consistent, the notation slightly differs from the one used in that book.

Hoare logic focuses on proving correctness of sequential programs which only manip-
ulate variables. This kind of program was the norm in the time of its publication, and our
target programming language includes them. Therefore, Hoare logic is relevant to our
work since it deals with an important fragment of the target language.

The programming syntax, presented in Figure 2.1, is expressed using an extended
Backus–Naur form grammar – from now onwards EBNF grammar – and includes the
skip, assignment, sequential composition, conditional branching and loop constructs.
Henceforth the term command will also be used to refer to a program, since both are used
interchangeably in the literature being covered. Additionally, the grammar of boolean
and arithmetic expressions, needed for conditional tests and the right-hand side of as-
signments, is also shown in Figure 2.1. Arithmetic expressions allow for addition, sub-
traction and multiplication of subexpressions, while boolean expressions allow for con-
junction, disjunction and negation of subexpressions, as well as the usual equal to and
lesser or equal to comparisons between arithmetic values. Although several other con-
structs such as do-while commands and greater than comparison may exist in both the
programming language and its expressions, the syntax should be minimal while still al-
lowing for any target program to be modeled using it, as minimality allows for easier
reasoning and shorter correctness proofs. Moreover, such non-minimal commands and
expressions can promptly be obtained as a composition of the presented ones.

C ::= Commands
| skip (skip)
| V := E (assignment)
| C;C (sequential composition)
| if B then C else C (conditional)
| while B do C (while)

V ::= x | y | z | · · · Variables
E ::= V |Z |E + E |E − E |E × E Arithmetic expressions
B ::= true |false |E = E |E ≤ E Boolean expressions

| ¬B |B ∧B |B ∨B

Figure 2.1: Programming language syntax

12

2. RELATED WORK 2.1. Hoare logic

At the core of Hoare logic is a formal account of what programs do. We call such for-
malism the semantics of a programming language, and it can be expressed in several
ways – the most common ones being operational and denotational semantics. Denota-
tional semantics assign meaning to programs recurring to some other well defined for-
malism, through an interpretation function which maps programs to elements belong-
ing to the domain of the target formalism. The evaluation of expressions presented in
Figure 2.3 is an example of a denotational semantics, mapping arithmetic and boolean
expressions into integers and booleans. Operational semantics, instead of mapping pro-
grams into another domain, assigns meaning to programs themselves. More specifically
the works mentioned in this chapter use structural operational semantics [Plo04], which
assign meaning to programs through the behavior of their parts – allowing for a syntax
directed (i.e. structural) and inductive definition. Figure 2.4 is an example of structural
operational semantics, presenting a transition function to detail how a command evolves
into another command.

Value , Z
Store , V → Value
Config , C × Store

Figure 2.2: Program states and data

E : E × Store → Value Arithmetic expression
EJnKs , n (integer)
EJxKs , s(x) (variable)
EJe1 op e2Ks , opA(EJe1Ks, EJe2Ks) (operator)

B : B × Store → {>,⊥} Boolean expression
BJtrueKs , > (true)
BJfalseKs , ⊥ (false)
BJe1 = e2Ks , (EJe1Ks = EJe2Ks) (equals)
BJe1 ≤ e2Ks , (EJe1Ks ≤ EJe2Ks) (lesser or equal)
BJ¬bKs , ¬BJbKs (negation)
BJb1 op b2Ks , opA(BJb1Ks,BJb2Ks) (operator)

Figure 2.3: Expression evaluation functions

In order to assign meaning to a program, one firstly has to model what a program state
is. Notice that programs operate on integer values, and only manipulate variables which
store values – this way values can be modeled as integers and variables as a total func-
tion, assigning a value to each variable. The modeling of program states is presented in
Figure 2.2, and expresses just this. Since a program solely manipulates variables, a given
program store uniquely identifies the correspondent program state and vice-versa. After

13

2. RELATED WORK 2.1. Hoare logic

 : Config→ Config Program transition

EJeKs = v

(x := e, s) (skip, s[x 7→ v])
(assign)

(skip; c, s) (c, s)
(sequential1)

(c1, s) (c′1, s
′)

(c1; c2, s) (c′1; c2, s′)
(sequential2)

BJbKs = >
(if b then c1 else c2, s) (c1, s)

(if–then–elseT)

BJbKs = ⊥
(if b then c1 else c2, s) (c2, s)

(if–then–elseF)

BJbKs = ⊥
(while b do c, s) (skip, s)

(whileF)

BJbKs = >
(while b do c, s) (c;while b do c, s)

(whileT)

Figure 2.4: Operational semantic rules

defining what a program state is, we can then define what the evaluation of an expression
at a given program state is – as presented in Figure 2.3. Note that in order to avoid hav-
ing several similar definitions for binary operator evaluation, we use a single rule where
op can range over any binary operator and opA matches the corresponding algebraic or
logic operator – for example, the binary syntactic + operator matches with the addition
operator over integers. Finally, after defining what a program state is and having a way
of evaluating expressions, we can assign meaning to commands. Configurations, also
presented in Figure 2.2, contain a program and the initial state in which it is to be exe-
cuted. The meaning of a program is then described as a transition function, which takes a
program and a state, and models the execution of a single computational step of the pro-
gram at that state – being thus called small-step semantics – resulting in a new state and
the rest of the program to be executed. Note that unless the program diverges because
of a while loop, iterating the transition function will result in a configuration where no
transition exists, holding the final state of a program execution. Finally, f [x 7→ v] – used
to define the semantics of assign – refers to the result of modifying function f so that x
maps to v.

14

2. RELATED WORK 2.1. Hoare logic

Beyond giving a precise account of program execution, program logics also allow us
to reason about what programs actually do. The way one has to reason about a pro-
gram in Hoare logic is through assertions – that is, a statement of what properties hold
at a given program state. The allowed statements one can make about a program are
presented in Figure 2.5, and include boolean expressions, conjunction and negation of
sub-properties, as well as existential quantification – this last statement being the only
addition to boolean expressions.

P ::= Assertions
| B (boolean expression)
| P ∧ P (conjunction)
| ¬P (negation)
| ∃V P (existential quantification)

Figure 2.5: Assertion language syntax

Just like we have a precise way of telling what a program does, we also have a rigorous
way of deciding when an assertion holds – this is done through the assertion semantics,
presented in Figure 2.6. Once again we recur to an evaluation function, which takes
an assertion and a program state and maps them into a boolean – using the syntax and
semantics of first-order logic – deciding whether the assertion holds in a given state or
not.

P : P × Store → {>,⊥} Assertion
PJbKs , BJbKs) (boolean expression)
PJp1 ∧ p2Ks , PJp1Ks ∧ PJp2Ks (conjunction)
PJ¬pKs , ¬PJpKs (negation)
PJ∃x pKs , ∃v∈Value PJpKs[x7→v] (existential quantification)

Figure 2.6: Assertion semantics

Perhaps more importantly than being able to say something holds in a given program
state, we can also reason about the full execution of a given program – since we are in-
terested in proving properties of a whole algorithm implementation. To reason about
a complete program, Hoare logic provides the user with Hoare triples consisting of a
precondition, a program and a postcondition – where both pre and post conditions are
assertions. The validity of a Hoare triple can then be expressed by the following defini-
tion:

Validity. We say a Hoare triple {p}c{q} holds, and write it as � {p}c{q}, when any
execution of command c that starts in a state satisfying assertion p, and terminates, will

15

2. RELATED WORK 2.1. Hoare logic

result in a program state that satisfies assertion q. Formally, we can define it as follows:

� {p}c{q} , ∀s,s′∈Store

(
PJpKs ∧

[
(c, s) ∗

(
skip, s′

)])
⇒ PJqKs′

Therefore, to reason about a program, one imposes a condition upon the initial state
under which, when executed, the program will result in a final state satisfying a given
property. Note that if a program diverges, this property will vacuously be satisfied – a
program that does not terminate satisfies any Hoare triple. That is why the definition
of validity only ensures partial correctness of programs – total correctness also requires
programs to terminate, dismissing these troublesome situations. The presented works
are only interested in partial correctness, as a separate termination proof can be provided
in cases where total correctness is required.

Although the above suffices to reason about programs, we are interested in automating
correctness proofs in order for usual programmers with no knowledge of the underlying
logic to be able to prove correctness of their code. However, it is easy to see that checking
if a Hoare triple {p}c{q} holds is undecidable – to check that {true}c{false} does not
hold is to solve the halting problem. In order to deal with this problem, and to make
proofs manageable, inference rules presented in Figure 2.7 provide a syntax-directed way
of proving the validity of a Hoare triple. Note that since proving an arbitrary Hoare triple
is undecidable, these rules cannot be complete – that is, able to provide a proof of every
valid Hoare triple.

` {p}skip{p}
(skip)

` {p[e/x]}x := e{p}
(assign)

` {p ∧ b}c1{q} ` {p ∧ ¬b}c2{q}
` {p}if b then c1 else c2{q}

(if–then–else)

` {p ∧ b}c{p}
` {p}while b do c{p ∧ ¬b}

(while)

p⇒ p′ ` {p′}c{q′} q′ ⇒ q

` {p}c{q}
(consequence)

` {p}c1{q′} ` {q′}c2{q}
` {p}c1; c2{q}

(sequential)

Figure 2.7: Proof rules

16

2. RELATED WORK 2.2. Separation logic

Inference rules provide an axiomatic way of proving validity of Hoare triples, by re-
lating commands with assertions that hold through their execution. For example, the
assign rule tells us that if an assertion holds in a state prior to an assignment, then after
the assignment we can substitute the expression appearing on the right-hand side of the
assignment by the variable on its left-hand side. Although this informal explanation of
a particular rule may seem convincing, one must take the care to ensure that whenever
` {p}c{q} holds, then � {p}c{q} also holds – it is often the case that non-trivial side con-
ditions are necessary, therefore a correctness proof is required to ensure that ` {p}c{q}
indeed implies � {p}c{q}. Reciprocal implication would also ensure completeness of the
rules, which as stated before is impossible. Although being important, as we feel it would
not add much to this presentation, we forward the interested reader to the correctness
proof present in the work of Glynn Winskel [Win93].

Concluding, Hoare logic provides developers with a way of proving correctness of
their programs and logicians with an approach to develop similar proof-systems. Cur-
rently there exist several implementations based on this approach, such as
ESC/Java [FLL+02] for Java programs and Spec# [BLS05] for C# programs. As al-
ready stated, this logic deals with the sequential and variable manipulation fragment
– present in most programming languages. However, current programming languages
also have memory manipulation commands – such as memory allocation and pointer
dereference – as well as parallel composition of programs. Therefore, although being a
significant step towards our solution since it provides us with the means to develop a
proof-system, it falls short on dealing with such programs.

2.2 Separation logic

Introduced by John Reynolds in 2002, separation logic [Rey02] is an extension of Hoare
logic targeted at proving correctness of programs that manipulate pointer data structures.
Memory manipulation is present in most programming languages, either directly as in
C or indirectly as in Java, therefore it is desirable to be able to think about primitives
that allow just this. As the programming language we aim at basing our proof-system
upon also supports these primitives, separation logic is directly relevant to the solution
we pretend to develop. Note that all the sections about program logics follow the same
structure used to present Hoare logic, once again providing every element of the solution
we propose for a fragment of the programs we wish to deal with – except for a soundness
proof.

In order to deal with data manipulation primitives, we extend the command language
of Figure 2.1 with four new constructs – allocating, loading, storing and disposing of
memory addresses. The extended syntax is then presented in Figure 2.8, and comple-
ments that of Figure 2.1.

17

2. RELATED WORK 2.2. Separation logic

C ::= . . . Commands
| V := alloc(E, . . . , E) (allocate)
| V := [E] (load)
| [E] := E (store)
| disp(E) (dispose)

Figure 2.8: Programming language syntax

The structural operational semantics in Figure 2.10 gives a precise account of what
these new commands do. Note that because memory now has to be considered, a pro-
gram state is no longer solely given by the assignment it makes of variables. As shown in
Figure 2.9, several new components are needed to model a state – addresses, atoms and
heaps. Since a computer’s memory is bounded and programs use pointer arithmetic, ad-
dresses are modeled as a finite subset of the integers. Atoms are reserved values, which
are not addresses – the most well known case being the nil value. We can then define
a heap to be a mapping between addresses and values stored at those addresses – it is
represented as a partial function, as addresses which are free to be taken do not belong
to the domain of the heap. Program states are then defined as a pair consisting of a store,
recording the values stored in each variable, and a heap that keeps track of the taken ad-
dresses as well as their values. Finally, configurations are either a pair consisting of a
program to be executed and its initial state, or the abort configuration – representing a
fault resulting from an illegal dereference.

Atom ∪ Address ⊆ Z
Atom ∩ Address = ∅
nil ∈ Atom
Heap , Address ⇀ Value
State , Store×Heap
Config , (C × State) ∪ {abort}

Figure 2.9: Program states and data

After defining the domain on which a program will execute, the operational semantics
in Figure 2.10 models the transition function between program configurations – once
again using small-step semantics. The more cautious reader will notice that although the
transition function presented here is an extension of the one presented in Figure 2.4, the
configurations on which they operate are different. For the sake of minimality we will
not present that modification here, but one can simply add a heap to the configuration
of Figure 2.4 and alter the correspondent transition function to directly pass the initial
heap onto the resulting one. Although we believe the rules to be pretty straightforward,
we would like to point out that some program executions may now lead to an abort

18

2. RELATED WORK 2.2. Separation logic

state – resulting from trying to operate on a memory address not present on the heap’s
domain. One last remark that may not be so obvious, is that since memory allocation
is nondeterministic – an alloc operation can allocate any contiguous block of memory
addresses – a program’s execution is also no longer deterministic. Therefore, running the
same program twice in an equal initial state may yield two different final configurations.

Although used extensively on the referenced works, we would like to make clear the
definition of dom(f) and fed – used on Figure 2.4. Expression dom(f) refers to the do-
main of function f , while fed is the result of restricting function f to domain d.

EJe1Ks = v1 ∧ . . . ∧ EJenKs = vn ∧
{a, . . . , a+ n− 1} ⊆ Address \ dom(h)

〈x := alloc(e1, . . . , en), (s, h)〉
〈skip, (s[x 7→ a], h[a 7→ v1, . . . , a+ n− 1 7→ vn])〉

(allocate)

EJeKs = a ∧ a ∈ dom(h)

〈x := [e], (s, h)〉 〈skip, (s[x 7→ h(a)], h)〉
(load)

EJeKs /∈ dom(h)

〈x := [e], (s, h)〉 abort
(loadA)

EJe1Ks = a ∧ a ∈ dom(h) ∧ EJe2Ks = v

〈[e1] := e2, (s, h)〉 〈skip, (s, h[a 7→ v])〉
(store)

EJe1Ks /∈ dom(h)

〈[e1] := e2, (s, h)〉 abort
(storeA)

EJeKs = a ∧ a ∈ dom(h)

〈disp(e), (s, h)〉 〈skip, (s, he(dom(h) \ {a}))〉
(dispose)

EJeKs /∈ dom(h)

〈disp(e), (s, h)〉 abort
(disposeA)

〈c1, (s, h)〉 〈c′1, (s′, h′)〉
〈c1; c2, (s, h)〉 〈c′1; c2, (s′, h′)〉

(sequential2)

〈c1, (s, h)〉 abort

〈c1; c2, (s, h)〉 abort
(sequentialA)

Figure 2.10: Operational semantic rules

Besides being able to model the effect pointer manipulation primitives have on the
program state, the goal of program logics is to reason about those operations as well. In
order to do that, one has to extend the assertion language with constructs that also take
the heap into account. Figure 2.11 introduces the novelties in the assertion language – the

19

2. RELATED WORK 2.2. Separation logic

empty constant and the separation and points to operators.

P ::= . . . Assertions
| emp (empty)
| P ∗ P (separation)
| E 7→ E (points to)

e 7→ − , ∃x e 7→ x ,where x /∈ fv(e) (anonymous)
e 7→ e1, . . . , en , e 7→ e1 ∗ . . . ∗ e+ n− 1 7→ en (multi-valued)

Figure 2.11: Assertion language syntax

The meaning of these new elements in the assertion language is detailed on Figure 2.12.
Formula emp states that the current program heap does not contain any address in its
domain, and separation checks if the current heap can be split into two disjoint sub-
heaps where one satisfies the first statement and the other satisfies the second. Finally, the
points to operator ensures the heap consists only of a given memory cell, which holds an
assigned value. Two other useful constructs are also presented – which can be built using
previous ones – the anonymous and multi-valued versions of the points to operator. Note
that, similarly to the operational semantics, the type of the evaluation function defined in
Figure 2.12 differs from that of Figure 2.6 which it extends. Once again, it is easy to adapt
the definition of Figure 2.6 to a scenario where the additional heap argument is ignored.

P : P × State → {>,⊥} Assertion
PJempK(s,h) , dom(h) = ∅ (empty)
PJp1 ∗ p2K(s,h) , ∃h1,h2 h = h1] h2 ∧ PJp1K(s,h1) ∧ PJp2K(s,h2) (separation)
PJe1 7→ e2K(s,h) , EJe1Ks = a ∧ dom(h) = {a} ∧ h(a) = EJe2Ks (points to)

Figure 2.12: Assertion semantics

After having defined both separation logic’s programs and properties, we are again
ready to reason about a program as a whole. Once more, we recur to the usual {p}c{q}
triples to reason about the correctness of algorithms. Because a program may now fault,
the definition of validity has to be changed in order to deal with such troublesome exe-
cutions. Intuitively, correctness of a program additionally guarantees that any execution
starting in a “good” state will not fault.

Validity. We say a triple {p}c{q} holds, and write it as � {p}c{q}, when any execution of
command c that starts in a state satisfying assertion p does not fault and, if it terminates,

20

2. RELATED WORK 2.2. Separation logic

results in a program state that satisfies assertion q. Formally, we can define it as follows:

� {p}c{q} , ∀σ,σ′∈State PJpKσ ⇒(
〈c, σ〉 6 ∗ abort

)
∧
(
∀σ′ ∈State〈c, σ〉 ∗ 〈skip, σ′〉 ⇒ PJqKσ′

)
Undecidability of checking whether � {p}c{q} holds is an easy result, as separation

logic is an extension of Hoare logic and the definition of validity presented above is
equivalent to the one in Hoare logic when dealing with that specific fragment – as a pro-
gram that does not access the heap never faults. Because the main goal of proof systems
is to provide a syntax oriented way of proving correctness of programs, separation logic
also provides inference rules for this purpose. These rules are presented in Figure 2.13,
and we would like to highlight the frame rule. Being able to solely focus on the addresses
a specific program uses is a desirable property – called local reasoning. Local reasoning is
important as it limits the scope of what is to be proven as much as possible, while also al-
lowing for modular proofs. At the heart of local reasoning is the frame rule, allowing for a
local proof to be extended with an arbitrary statement about a non-interfering heap. Note
that every other rule only talks about the relevant addresses – both in the pre and post
conditions. Locality is then a property which we believe is key to keeping proofs man-
ageable, and aimed at maintaining in our work. Adding one final remark about proof
rules, we would like to explain the meaning of the writes function. While functions like
fv and dom are well known – representing the free variables of a logical formula and the
domain of a function – the meaning of the writes function is not standard, and informally
represents the set of all left-hand sides of assignments which are variables. Although the
writes function can easily be defined, it shall be omitted in this chapter for the sake of
brevity.

` {emp}x := alloc(e1, . . . , en){x 7→ e1, . . . , en}
(allocate)

` {p[e′/x] ∧ e 7→ e′}x := [e]{p ∧ e 7→ e′}
(load)

` {e1 7→ −}[e1] := e2{e1 7→ e2}
(store)

` {e 7→ −}disp(e){emp}
(dispose)

` {p}c{q} fv(f) ∩writes(c) = ∅
` {p ∗ f}c{q ∗ f}

(frame)

Figure 2.13: Proof rules

Concluding, separation logic provides a formal account of programs that manipulate
pointer data structures, as well as a way of proving their correctness. In order to do this,

21

2. RELATED WORK 2.3. Concurrent separation logic

program states had to be augmented with a heap – keeping track of memory addresses.
Accordingly, assertions and validity were also extended to this scenario. Perhaps more
importantly, separation logic allows for local reasoning, enabling us to solely focus on the
“footprint” of a program. As previously stated, locality is a solid step towards making
program logics realistic in practice – therefore, we aimed at preserving it. Although cov-
ering the data manipulation primitives we pretend to have on our target programming
language, separation logic only allows for sequential composition of programs – falling
short on providing a mechanism to deal with concurrency.

2.3 Concurrent separation logic

Introduced by Peter O’Hearn and formalized by Stephen Brookes in 2007, concurrent
separation logic [O’H07, Bro07] is an extension of separation logic which aims at prov-
ing correctness of concurrent programs that manipulate shared pointer data structures.
As previously explained concurrency is an actual form of computing supported by most
current programming languages, which we also aim at providing a means of reason-
ing about. Therefore, because concurrent separation logic allows for concurrent com-
position of programs, it is directly related to our work. Since the original definition by
Brookes [Bro07] uses a trace semantics – which is significantly different from the struc-
tural operational semantics present in most works – in this section we will follow one
of the latest research papers on the topic by Viktor Vafeiadis [Vaf11], with the goal of
unifying forthcoming developments.

C ::= . . . Commands
| C ‖ C (parallel)
| resource R in C (resource)
| with R when B do C (with)
| within R do C (within)

Figure 2.14: Programming language syntax

The programming syntax, presented in Figure 2.14, adds three new constructs to the
programming language presented in the previous section, and an auxiliary construct
needed to define the operational semantics – parallel composition, resource creation, re-
source acquisition and resource ownership. Previously, using sequential composition
only the left side of a command could execute, however – as can be seen in Figure 2.15 –
parallel composition allows for any of the subprograms to execute, generating all possi-
ble interleavings. Therefore, despite only adding a few new constructs, program execu-
tion may result in exponentially larger number of program states. In order to have some
control over these concurrent traces, resources are added to restrict those interleavings.

22

2. RELATED WORK 2.3. Concurrent separation logic

〈c1, σ〉 〈c′1, σ′〉 ∧ locked(c′1) ∩ locked(c2) = ∅
〈c1 ‖ c2, σ〉 〈c′1 ‖ c2, σ′〉

(parallel1)

〈c2, σ〉 〈c′2, σ′〉 ∧ locked(c1) ∩ locked(c′2) = ∅
〈c1 ‖ c2, σ〉 〈c1 ‖ c′2, σ′〉

(parallel2)

〈skip ‖ skip, σ〉 〈skip, σ〉
(parallel3)

〈c1, σ〉 abort

〈c1 ‖ c2, σ〉 abort
(parallelA1)

〈c2, σ〉 abort

〈c1 ‖ c2, σ〉 abort
(parallelA2)

[
accesses(c1, s) ∩writes(c2, s)

]
∪
[
accesses(c2, s) ∩writes(c1, s)

]
6= ∅

〈c1 ‖ c2, (s, h)〉 abort
(parallelr)

〈c, σ〉 〈c′, σ′〉
〈resource r in c, σ〉 〈resource r in c′, σ′〉

(resource1)

〈resource r in skip, σ〉 〈skip, σ〉
(resource2)

〈c, σ〉 abort

〈resource r in c, σ〉 abort
(resourceA)

BJbKs = >
〈with r when b do c, (s, h)〉 〈within r do c, (s, h)〉

(with)

〈c, σ〉 〈c′, σ′〉
〈within r do c, σ〉 〈within r do c′, σ′〉

(within1)

〈within r do skip, σ〉 〈skip, σ〉
(within2)

〈c, σ〉 abort

〈within r do c, σ〉 abort
(withinA)

Figure 2.15: Operational semantic rules

A resource is referenced by its name, and can either be owned by a program inside a
within construct or available to be acquired through the with command when a given
condition is met. Additionally, because we are interested in preventing programs which
have data races – where one program would modify a variable or memory address some

23

2. RELATED WORK 2.3. Concurrent separation logic

other is using, or vice-versa – a rule to handle such situations is added. The more cau-
tious reader will note that the functions locked, accesses and writes are not defined in this
document. Informally, they respectively refer to the set of resources a program owns, and
the sets of variables and memory addresses a program uses and assigns – their definition
being given in the work of Vafeiadis [Vaf11].

Note that since states have the same components, assertions remain unchanged – we
already have a way of reasoning about stores and heaps. However, because several con-
current programs may now modify the same data structures, one should be able to ex-
press what holds on this shared state as well. Therefore, concurrent separation logic
extends Hoare triples with a fourth argument – an invariant which describes what holds
on the shared state. Validity of a quadruple is then defined as follows:

Validity. A quadruple Γ � {p}c{q} is true when any execution of command c starting in
a state satisfying assertion p does not fault nor have data races, maintains shared resource
invariant Γ and if it terminates results in a state which satisfies assertion q. Formally, it
can be given by the following inductive definition:

Γ � {p}c{q} , ∀n∈N∀s∈Store∀h∈Heap PJpK(s,h) ⇒ safen(c, s, h,Γ, q)

safe0(c, s, h,Γ, q) , >
safen+1(c, s, h,Γ, q) , (c = skip)⇒ PJqK(s,h) ∧
∀hF∈Heap 〈c, (s, h] hF)〉 6 abort∧
accesses(c, s) ⊆ dom(h)∧
∀c′∈C∀hΓ,hF ,h′∈Heap∀s′∈Store PJ~r∈locked(c′)\locked(c) Γ(r)K(s,hΓ) ∧
〈c, (s, h] hΓ] hF)〉 〈c′, (s′, h′)〉 ⇒
∃h′′,h′Γ∈Heap h

′ = h′′] h′Γ] hF ∧ PJ~r∈locked(c)\locked(c′) Γ(r)K(s′,h′Γ) ∧
safen(c′, s′, h′′,Γ, q)

Although the above definition may seem quite complex, that is because it encompasses
the frame property as well. On the inductive step it is mandatory that program c, when
extended with a heap satisfying the shared invariant and a frame which remains unal-
tered during execution, does not fault and results in a state preserving the invariant and
keeping the frame unchanged. Again, for the sake of brevity, we omit the definition of
Γ and ~ and forward the more interested reader to the work of Vafeiadis [Vaf11]. Infor-
mally, Γ is a set of resource names and assertions describing what holds on each piece of
the heap protected by those resources, and ~ stands for the separation of every assertion
in a set.

Finally, syntax oriented inference rules are presented in Figure 2.16. Note that although
extending previous inference rules, the ones presented in this section have one additional

24

2. RELATED WORK 2.4. Rely-guarantee reasoning

argument – the shared resource invariant. Like other similar cases, older rules can eas-
ily be adapted to deal with this extra argument – leaving invariant Γ unchanged. The
resource rule states that a program which respects an invariant including property f
associated to resource name r, when put inside a resource construct for r and extended
with a heap satisfying f will finish with an additional heap – possibly different – satisfy-
ing f . Conversely, the with rule states that a program starting when a given condition is
met and with an additional heap satisfying f , if when finished reestablishes f then it can
be put inside a with construct for any given resource name associated to f . Besides that,
we would like to point out the side condition of the parallel composition rule. In order
to reason about concurrent programs, the use each thread makes of the shared state must
be pairwise disjoint – indeed, a severe restriction.

Γ ` {p1}c1{q1} Γ ` {p2}c2{q2}
Γ ` {p1 ∗ p2}c1 ‖ c2{q1 ∗ q2}

(parallel)

if fv(Γ, p1, c1, q1) ∩writes(c2) = ∅
and fv(Γ, p2, c2, q2) ∩writes(c1) = ∅

Γ, r : f ` {p}c{q}
Γ ` {p ∗ f}resource r in c{q ∗ f}

(resource)

Γ ` {(p ∗ f) ∧ b}c{q ∗ f}
Γ, r : f ` {p}with r when b do c{q}

(with)

Figure 2.16: Proof rules

Concluding, concurrent separation logic allows us to reason about concurrent pro-
grams with shared pointer data structures. At its core is parallel composition of pro-
grams and resource creation and acquisition, sufficient to cover most lock-based systems.
Furthermore, validity is now extended to account for invariants about the shared state.
Although being a significant improvement towards dealing with concurrent programs,
the parallel rule provided in concurrent separation logic solely lets us reason about pro-
grams without interference. Therefore, since most concurrent programs take advantage
of interference, this program logic falls short on proving correctness of many existing
algorithms.

2.4 Rely-guarantee reasoning

Introduced by Cliff Jones in 1981, rely-guarantee reasoning [CJ07] allows for proving
correctness of “racy” programs. Because many concurrent programs take advantage of
interference among themselves, this proof system greatly increases the amount of pro-
grams that can be proven using program logics. However, since rely-guarantee is based
on the Vienna development method (VDM [Jon90]) – a different formal method for the

25

2. RELATED WORK 2.5. RGSep

development of computer-based systems – we will not detail its formal definitions, which
are briefly explained in this section.

As it deals with concurrency, the constructs present in the programming language of
rely-guarantee are almost equal to those presented in the previous section. However,
rely-guarantee does not allow for heap manipulation – only operating on the store. Fur-
thermore, properties are replaced by binary predicates which depend on the previous
state

↼
σ before program execution and the current state σ resulting from it. Regarding op-

erational semantics, one important modification is that expression evaluation stops being
atomic – as a result, expressions like x+x and 2×xmay not yield the same result because
of interference.

Rely and guarantee are additional arguments on the specification of a program, which
encode the extent to which the environment can interfere with the local program, and
what changes a program is allowed to perform on the shared state. In order to reason
about interference, rely-guarantee introduces the notion of stability. Informally, stability
asserts that a formula must resist interference from a “well behaved” environment – one
respecting the rely condition. Using stability, it is now possible for properties to be pre-
served in a concurrent environment which is not disjoint from the local one – allowing for
proof rules which do not forbid races. Therefore, the main contribution of rely-guarantee
is the addition of new elements which allow inference rules to prove correctness of con-
current programs that interfere with each other.

Concluding, rely-guarantee reasoning introduces two new relations to a program spec-
ification and breaks atomic evaluation of expressions into several steps, allowing for
more interleavings. Based on a new notion of stability, it is then possible for inference
rules to address concurrent programs which interfere with each other. This is important
because, as mentioned before, most concurrent programs take advantage of interference.
However, since rely-guarantee does not allow for memory manipulation and lacks the
presence of a frame rule – making local reasoning impossible – a way of addressing these
requirements is still needed.

2.5 RGSep

Resulting from Viktor Vafeiadis’ thesis in 2007, RGSep [Vaf07] aims at combining the in-
terference reasoning present in rely-guarantee with shared pointer data structures present
in concurrent separation logic. The end result is a formalism which subsumes the pre-
vious ones it extends, effectively combining the best of both works. Since lock-free pro-
grams are heavily based on cooperation – a targeted form of interference – we are es-
pecially interested in this aspect of the logic. Because we believe a full formalization of
RGSep falls out of the scope of this document, we will only highlight its key definitions

26

2. RELATED WORK 2.5. RGSep

and redirect the interested reader to the aforementioned reference for a more detailed
read on the topic.

One key difference RGSep has regarding concurrent separation logic is that the first
allows us to reason about change in the shared state – while the latter can only express
invariants. Since this is now possible, and rely-guarantee conditions are enough to re-
strict access to the shared state, RGSep no longer needs resources to reason about inter-
ference – one could simply add the separation of every resource invariant to the pre and
post conditions and use the identity relationship on the rely and guarantee conditions of
programs. Therefore, as can be seen in Figure 2.17, programming language constructs to
manipulate resources are replaced by a single command to atomically execute a program.

C ::= . . . Commands
| C ‖ C (parallel)
| atomic C (atomic)

Figure 2.17: Programming language syntax

Additionally, the previous transition function is refined to r

λ

, where λ can be either
a program step p or an environment execution e, and r is a rely condition – a relation
between initial and final heap which every environment transition must respect so rea-
soning about interference is possible. Furthermore, configurations are now a disjoint pair
of states, representing the local and shared states. Program steps remain as presented be-
fore, ignoring the environment’s state except on atomic execution of programs – which
may now acquire the shared state for itself. Therefore, we focus on the following opera-
tional semantics’ rule which models an environment action:

(s, s′) ∈ r ∧ dom(l) ∩ dom(s′) = ∅
〈c, (l, s)〉 r

e
〈c, (l, s′)〉

(environment)

This rule states that if an environment’s step is allowed by the rely condition, then it
can be performed at any time during a program’s execution – resulting in a new shared
state. Note that although the rely condition is promptly used to disallow environment
transitions which do not respect it, the guarantee – a relation between initial and final
heap which the program itself must respect so other concurrent programs can use as a
rely to reason about interference – will only be enforced when validity of a specification
is checked.

Because we explicitly have a shared state component in program configurations, as-
sertions can now make use of them. Figure 2.18 presents the assertion syntax, the only
difference being the addition of boxed statements which talk about the shared state. Note

27

2. RELATED WORK 2.5. RGSep

that because it is not possible to nest boxed statements, the previous assertions from sep-
aration logic are referred as Psl – as well as any other expression with that subscript.

P ::= Assertions
| Psl (local)
| Psl (shared)
| P ∗ P (separation)
| P ∧ P (conjunction)
| ¬P (negation)

Figure 2.18: Assertion language syntax

Accordingly, the assertion evaluation function also has to account for this new shared
state. As can be seen in Figure 2.19, former separation logic assertions are checked against
the local heap while environment statements are matched against the shared state. Note
that these latter ones require the local state to be empty.

P : P × State× State → {>,⊥} Assertion
PJ psl K(l,s) , PslJpslKl (local)
PJ psl K(l,s) , dom(l) = ∅ ∧ PslJpslKs (shared)
PJp1 ∗ p2K(l,s) , ∃l1,l2∈State l = l1] l2 ∧ PJp1K(l1,s) ∧ PJp2K(l2,s) (separation)
PJp1 ∧ p2K(l,s) , PJp1K(l,s) ∧ PJp2K(l,s) (conjunction)
PJ¬pK(l,s) , ¬PJpK(l,s) (negation)

Figure 2.19: Assertion semantics

Validity. Because of the addition of rely and guarantee conditions in order to reason
about correctness of programs, validity now has to account for them as well. Formula
� c sat (p, r, g, q) – where r and g are the rely and guarantee relations – holds whenever
any execution of program c starting in a state satisfying assertion p and an environment
respecting r will only make changes to the shared state that ensure g and, if it termi-
nates, results in a program state that satisfies assertion q. Formally, it can be given by the
following inductive definition:

28

2. RELATED WORK 2.5. RGSep

� c sat (p, r, g, q) , ∀l,s∈State PJpK(l,s) ⇒
∀l′,s′∈State 〈c, (l, s)〉

r
 ∗〈skip, (l′, s′)〉 ⇒ PJqK(l′,s′) ∧

∀n∈N 〈c, (l, s), r〉guaranteesn g

〈c, (l, s), r〉guarantees0 g , >
〈c, (l, s), r〉guaranteesn+1 g , ∃θ∈Config 〈c, (l, s)〉

r

λ
θ ⇒

∃c′∈C∃l′,s′∈State θ = 〈c′, (l′, s′)〉 ∧
〈c′, (l′, s′)〉guaranteesn g ∧
(λ = p)⇒ (s, s′) ∈ g

Inference rules that have changed are presented in Figure 2.20. As intended, the paral-
lel rule now allows composition of programs which may share part of the state – because
separation only requires that local state be disjoint – although the whole construct is loos-
ened to guarantee the changes made by both programs. Atomic execution of programs
requires precision – an additional property on both pre and post conditions that ensures
there are no two different heaps satisfying a given formula, which is useful for uniquely
identifying sub-heaps – and the corresponding rule states that a program may use the
shared state as long as the change to the resulting heap is allowed by the guarantee.

` c1 sat (p1, r, g1, q1) ` c2 sat (p2, r, g2, q2)

` c1 ‖ c2 sat (p1 ∗ p2, r, g1 ∪ g2, q1 ∗ q2)
(parallel)

p, q precise ` c sat (p ∗ p′,∅,∅, q ∗ q′) (p, q) ⊆ g
` atomic c sat (p ∗ f ∗ p′,∅, g, q ∗ f ∗ q′)

(atomic)

Figure 2.20: Proof rules

Concluding, RGSep combines the expressiveness of rely-guarantee reasoning with con-
current separation logic, resulting in a formalism which subsumes the two – its main ad-
vantage over rely-guarantee being a set of efficient rules which allow for local reasoning.
Although being the best known way of reasoning about lock-based concurrent systems,
as our goal is to prove correctness of lock-free programs, this proof system does not ad-
dress the problem we’re trying to tackle. The main contribution of RGSep to our work
is then the adaptation of rely-guarantee reasoning to local rules, and the introduction of
assertions which are capable of expressing what holds on the shared state.

29

2. RELATED WORK 2.5. RGSep

30

3
Proof system for lock-free

concurrency

In the previous chapter, several formalisms with different levels of expressiveness for
reasoning about programs were presented. Hoare-logic pioneered program logics, sep-
aration logic extended it to deal with memory addresses, concurrent separation logic
introduced parallel composition and shared resources, rely-guarantee reasoning allowed
for dealing with interference and RGSep combined these last two to model change and
relax side conditions while allowing for local proofs.

Similarly, we define a program logic with the goal of proving correctness of lock-free
programs based on LL/SC primitives. As we hope the reader agrees, the end result is a
proof system which clearly captures the essence of LL/SC through the usage of already
existing and well known concepts.

3.1 Programs

Firstly, we present the syntax and operational semantics of the programming language
we consider herein. Given we are interested in imperative programs which manipulate
shared pointer data structures, constructs present in separation logic will be maintained.
Although also being interested in concurrent programs, since both concurrent separation
logic and RGSep use lock mechanisms to restrict access to the shared state, only parallel
composition is preserved to deal with concurrency. Finally, as the goal is to model LL/SC
primitives, new constructs are added to the language.

31

3. PROOF SYSTEM FOR LOCK-FREE CONCURRENCY 3.1. Programs

3.1.1 Program Syntax

Again, to specify which programs are part of our target programming language, an
EBNF grammar is presented in Figure 3.1. Commands generated by Cb are the building
blocks of our language, and include the usual store and heap manipulation constructs as
well as two new ones to deal with concurrency – the LL/SC primitives. Cs encompasses
the usual imperative sequential commands such as choice, looping and sequential com-
position. In order to allow for concurrency, parallel composition of previous commands
is created with Cc .

Cb ::= Basic Commands
| skip (skip)
| V := E (assignment)
| V := alloc(E, . . . , E) (allocate)
| V := [V] (load)
| V := LL(V) (load-link)
| [V] := V (store)
| V := SC(V, V) (store-conditional)
| disp(V) (dispose)

Cs ::= Sequential Commands
| Cb (basic command)
| if B then Cs else Cs (conditional)
| while B do Cs (while)
| Cs;Cs (sequential composition)

Cc ::= Concurrent Commands
| Cs (sequential command)
| Cc ‖ Cs (parallel composition)

V ::= x | y | z | · · · Variables
E ::= V |Z |E + E |E − E |E × E Arithmetic expressions
B ::= true |false |E = E |E ≤ E Boolean expressions

| ¬B |B ∧B |B ∨B

Figure 3.1: Programming language syntax

We would like to point out, as the more cautious reader probably has already noticed,
that this grammar slightly differs from the ones presented previously. One of the key
principles needed to keep this kind of work manageable is minimality – without it, defin-
ing all of the following would be significantly more complex with little added benefit.
Since we envisioned variables to be the required resources to access the shared state,

32

3. PROOF SYSTEM FOR LOCK-FREE CONCURRENCY 3.1. Programs

most expressions have been replaced by variables to help unify forthcoming develop-
ments. Although it might take longer to encode programs, because arbitrary expressions
are allowed on the right-hand side of variable assignment and memory address allo-
cation, this does not limit the expressiveness of the language. Additionally, as will be
detailed ahead, only top-level parallel composition is allowed – briefly, since truly local
information is needed to model LL/SC, it makes definitions that manipulate this new
component much simpler.

On a final note, with the program syntax presented in Figure 3.1 the developer has
a way to encode his programs in the proof system being described. The way to model
LL/SC primitives is pretty straightforward, as a new construct is added for each of these
primitives.

3.1.2 Operational Semantics

Similarly to previous works, a structural operational semantics is used to model pro-
gram execution – presented in Figures 3.3 and 3.4. Figure 3.2 introduces the additional
components needed to define this operational semantics – threaded commands that rep-
resent programs running at a thread with a given identifier, and configurations to be
manipulated by the transition function in order to model program execution.

In order to execute LL/SC, since some concurrent programs might have an updated
view of an address’ content while others might not, a way of knowing which memory
addresses have not changed since a program last load-linked them is needed. Although
assertion semantics in RGSep uses an additional parameter in order to separate shared
memory from local memory, because lock-free programs do away with this separation of
resources and allow for truly concurrent accesses, that is not enough to solve this prob-
lem. Because threads are a well known concept in concurrent programming, used to
separate concurrent programs but not system resources, we find them to be a good anal-
ogy to our scenario. Addressing the requirement presented above, a component that
maps threads into a set of memory locations which remained unchanged since the last
load-link is added to program configurations. Although there are several equally good
ways to encode that information, we opted for this one as it fits forthcoming definitions
better – on validity, we are interested in specifying which memory addresses a thread can
start and end with an updated view of.

Ct ::= Threaded Command
| Cc@ThreadId (Single thread)
| Ct ‖ Cc@ThreadId (Multiple threads)

Config , Ct ×
[
ThreadId ⇀ P (Address)

]
×
(
Store×Heap

)
∪ {abort}

Figure 3.2: Program states and data

33

3. PROOF SYSTEM FOR LOCK-FREE CONCURRENCY 3.1. Programs

 : Config× Config Program transition

s(y) = a ∧ a ∈ dom(h) ∧ l(i) = li

〈[x := LL(y)]@i, l, (s, h)〉
〈skip@i, l[i 7→ li ∪ {a}], (s[x 7→ h(a)], h)〉

(load-link)

s(y) /∈ dom(h)

〈[x := LL(y)]@i, l, (s, h)〉 abort
(load-linkA)

s(z) = a ∧ a ∈ dom(h) ∧ a ∈ l(i)
〈[x := SC(y, z)]@i, l, (s, h)〉
〈skip@i, l ↓ a, (s[x 7→ 1], h[a 7→ s(y)])〉

(store-conditionalT)

s(z) = a ∧ a ∈ dom(h) ∧ a /∈ l(i)
〈[x := SC(y, z)]@i, l, (s, h)〉 〈skip@i, l, (s[x 7→ 0], h)〉

(store-conditionalF)

s(z) /∈ dom(h)

〈[x := SC(y, z)]@i, l, (s, h)〉 abort
(store-conditionalA)

EJe1Ks = v1 ∧ . . . ∧ EJenKs = vn ∧
{a, . . . , a+ n− 1} ⊆ Address \ dom(h)

〈[x := alloc(e1, . . . , en)]@i, l, (s, h)〉
〈skip@i, l, (s[x 7→ a], h[a 7→ v1, . . . , a+ n− 1 7→ vn])〉

(allocate)

〈(x := e)@i, l, (s, h)〉 〈skip@i, l, (s[x 7→ EJeKs], h)〉
(assign)

s(y) = a ∧ a ∈ dom(h)

〈(x := [y])@i, l, (s, h)〉 〈skip@i, l, (s[x 7→ h(a)], h)〉
(load)

s(y) /∈ dom(h)

〈(x := [y])@i, l, (s, h)〉 abort
(loadA)

s(x) = a ∧ a ∈ dom(h)

〈([x] := y)@i, l, (s, h)〉 〈skip@i, l ↓ a, (s, h[a 7→ s(y)])〉
(store)

s(x) /∈ dom(h)

〈([x] := y)@i, l, (s, h)〉 abort
(storeA)

s(x) = a ∧ a ∈ dom(h)

〈disp(x)@i, l, (s, h)〉 〈skip@i, l ↓ a, (s, he(dom(h) \ {a}))〉
(free)

Figure 3.3: Operational semantics

34

3. PROOF SYSTEM FOR LOCK-FREE CONCURRENCY 3.1. Programs

s(x) /∈ dom(h)

〈disp(x)@i, l, (s, h)〉 abort
(freeA)

BJbKs = >
〈(if b then c1 else c2)@i, l, (s, h)〉 〈c1@i, l, (s, h)〉

(if–then–elseT)

BJbKs = ⊥
〈(if b then c1 else c2)@i, l, (s, h)〉 〈c2@i, l, (s, h)〉

(if–then–elseF)

〈(while b do c)@i, l, σ〉
〈(if b then c ;while b do c else skip)@i, l, σ〉

(while)

〈c1@i, l, σ〉 〈c′1@i, l′, σ′〉
〈(c1; c2)@i, l, σ〉 〈(c′1; c2)@i, l′, σ′〉

(sequential1)

〈(skip; c2)@i, l, σ〉 〈c2@i, l, σ〉
(sequential2)

〈c1@i, l, σ〉 abort

〈(c1; c2)@i, l, σ〉 abort
(sequentialA)

i′ ∈ ThreadId \ dom(l)

〈(c1 ‖ c2)@i, l, σ〉 〈c1@i ‖ c2@i′, l[i′ 7→ ∅], σ〉
(fork)

〈t1, l, σ〉 〈t′1, l′, σ′〉
〈t1 ‖ t2, l, σ〉 〈t′1 ‖ t2, l′, σ′〉

(parallel1)

〈t2, l, σ〉 〈t′2, l′, σ′〉
〈t1 ‖ t2, l, σ〉 〈t1 ‖ t′2, l′, σ′〉

(parallel2)

〈t1, l, σ〉 abort

〈t1 ‖ t2, l, σ〉 abort
(parallel1A)

〈t2, l, σ〉 abort

〈t1 ‖ t2, l, σ〉 abort
(parallel2A)

assigns(t1) ∩
[
assigns(t2) ∪ reads(t2)

]
6= ∅∨

assigns(t2) ∩
[
assigns(t1) ∪ reads(t1)

]
6= ∅

〈t1 ‖ t2, l, σ〉 abort
(parallel race)

〈skip@i ‖ skip@i′, l, σ〉 〈skip@i, le(dom(l) \ {i′}), σ〉
(join)

Figure 3.4: Operational semantics (cont.)

35

3. PROOF SYSTEM FOR LOCK-FREE CONCURRENCY 3.1. Programs

Giving a precise account of program execution, Figures 3.3 and 3.4 detail the opera-
tional semantics’ transition function. Since only two new base constructs were added
to the language, it is expectable for most rules to be similar to their concurrent sepa-
ration logic counterparts – besides accounting for the additional components added to
configurations, that is indeed so. The main differences regarding usual constructs are
that commands which change the heap must now invalidate any thread’s vision of mod-
ified addresses, and parallel composition must create a new thread with its own set of
up-to-date heap locations and merge threads when they finish executing. Additionally,
since the goal is to have a way of reasoning about heap data races with the LL/SC primi-
tives, a program no longer aborts when a thread writes into a location which some other
is accessing – this kind of situation does not pose a problem to program execution and
should only be handled when reasoning about it.

Targeting LL and SC, five new transitions are present. The first transition rule for
LL command (load-link) states that a thread which load-links a given variable into some
other will assign the store value of the latter to the memory content of the location given
by the former – adding that location into the set of addresses which the thread has an up-
to-date view of. The first two transitions for SC (store-conditionalT and store-conditionalF)
state that a thread which conditionally stores y into memory address z and saves the
result in x will succeed and set the content of memory address given by z to the store
value of y – removing that location from every thread’s up-to-date set of addresses – as
well as assigning the store value of x to 1, or fail and solely assign the store value of x to 0
if the thread does not have an up-to-date view of location z. Remaining rules (load-linkA
and store-conditionalA) simply state that either a LL or SC involving a memory address
which is not allocated will make the program abort.

As before, the definition of some auxiliary operators is in order. While f [x 7→ v],
dom(f) and e were presented on the previous chapter, a few new ones are needed here.
Function cdom(f) refers to the codomain of function f , and l ↓ a to the result of remov-
ing location a from every set of up-to-date memory addresses each thread has – kept in l.
Although the first is well-known – and as such we will skip its definition – the second is
a custom operator which fits our particular needs and can be defined as follows:

↓ :
([

ThreadId ⇀ P (Address)
]
× Address

)
→
[
ThreadId ⇀ P (Address)

]
l ↓ a , {t 7→ (lt \ {a}) | t 7→ lt ∈ l}

Because we still care about store data races, since no mechanism exists in our pro-
gramming language to reason about them, some syntax-directed operators are also needed.
Such is the case of assigns(ct) and reads(ct) functions – detailed in Figure 3.5 – which in-
formally refer to the set of variables a thread at a given execution step can respectively
assign or read. Note that these differ from writes(c) and fv(c) firstly because their type
is different, but more importantly because the latter account for the execution of a whole

36

3. PROOF SYSTEM FOR LOCK-FREE CONCURRENCY 3.1. Programs

program instead of a single step.

assigns : Ct → V

assigns(skip@i) , ∅
assigns((x := e)@i) , {x}
assigns([x := alloc(e1, . . . , en)]@i) , {x}
assigns((x := [y])@i) , {x}
assigns([x := LL(y)]@i) , {x}
assigns(([x] := e)@i) , ∅
assigns([x := SC(y, z)]@i) , {x}
assigns(disp(x)@i) , ∅
assigns((if b then c1 else c2)@i) , ∅
assigns((while b do c)@i) , ∅
assigns((c1; c2)@i) , assigns(c1)

assigns((c1 ‖ c2)@i) , ∅
assigns(t1 ‖ t2) , assigns(t1) ∪ assigns(t2)

reads : Ct → V

reads(skip@i) , ∅
reads((x := e)@i) , fv(e)

reads([x := alloc(e1, . . . , en)]@i) , fv(e1) ∪ . . . ∪ fv(en)

reads((x := [y])@i) , {y}
reads([x := LL(y)]@i) , {y}
reads(([x] := e)@i) , {x} ∪ fv(e)

reads([x := SC(y, z)]@i) , {y, z}
reads(disp(x)@i) , {x}
reads((if b then c1 else c2)@i) , fv(b)

reads((while b do c)@i) , fv(b)

reads((c1; c2)@i) , reads(c1)

reads((c1 ‖ c2)@i) , ∅
reads(t1 ‖ t2) , reads(t1) ∪ reads(t2)

Figure 3.5: Assigns and reads functions

Equipped with the above operational semantics, it is now possible to have a precise
account of what programs do. Concretely, given an initial configuration we can compute
the states a command might lead to – by iterating the transition function. Although this
was already possible for the subset of our language that did not deal with LL/SC, the
new components described in this section were needed in order to deal with programs
which use such primitives.

37

3. PROOF SYSTEM FOR LOCK-FREE CONCURRENCY 3.2. Assertions

3.2 Assertions

After having a formal way of describing program execution, the next step in defining
a proof system is to create a way of reasoning about those executions. Assertions are
one of the usual components when reasoning about programs, stating a property about
program states which might – or might not – hold on a particular state.

Since our proof systems deals with programs which manipulate store and heap data,
it should be no surprise that the following developments are based on those of separa-
tion logic. However, because of the optimistic nature of lock-free primitives LL/SC and
since we do not have a separate kind of resources those commands manipulate, neither
concurrent separation logic nor RGSep are directly applicable here.

3.2.1 Assertion Syntax

Figure 3.6 presents the grammar of assertions, needed in order to write properties.
Firstly a production rule for separation logic assertions is presented, meaning any sepa-
ration logic property is available for reasoning about programs in our proof system. Fol-
lowing it comes a rule for generating the new properties we support, the main addition
being shared assertions – written within a box and preceded by a superscript variable.
Informally, shared assertions state that if a memory address given by a variable stays up-
to-date then a given property about its value holds. Note that because it is only possible
to create shared assertions with separation logic properties, it is not possible to nest them
– which is intended, due to the meaning of such assertions.

Psl ::= Separation Logic Assertions
| B (boolean expression)
| Psl ∧ Psl (conjunction)
| ¬Psl (negation)
| emp (empty)
| Psl ∗ Psl (local separation)
| E1 7→ E2 (points to)
| ∃V Psl (existential quantification)

e 7→ − , ∃x e 7→ x ,where x /∈ fv(e) (anonymous)
e 7→ e1, . . . , en , e 7→ e1 ∗ . . . ∗ e+ n− 1 7→ en (multi-valued)

P ::= Assertions
| Psl (local assertion)
| V Psl (shared assertion)
| P ∗ P (separation)
| ∃V P (existential quantification)

Figure 3.6: Assertion language syntax

38

3. PROOF SYSTEM FOR LOCK-FREE CONCURRENCY 3.2. Assertions

Before moving on to assertion semantics, one last syntactic definition is needed in or-
der to reason about programs. Going back to concurrent separation logic, there was a
component in assertions which dealt with the shared part of the heap – the resource con-
text Γ. In a similar fashion, we will use resource contexts to manage interference and
have a way of reasoning about shared data. Our resource contexts are then given by the
following definition:

Resource ⊂ P(Psl)

{} ∈ Resource
Γ ∈ Resource⇒ Γ] {∃v x 7→ v ∗ p} ∈ Resource

res : Resource→ V

res({}) , ∅
res(Γ] {∃v x 7→ v ∗ p}) , res(Γ) ∪ {x}

Firstly, note that resource contexts are sets of assertions – each one stating what holds
on a part of the heap “controlled” by a given variable. Secondly, because each member
of a resource context is an assertion, what holds on the shared state is clear and needs no
additional definitions – we only need to specify which part of the state those properties
refer to.

Given the above assertion syntax, it is now possible to write properties about what
holds on a given state of program execution. Assertions from separation logic are kept in
order to have a way of reasoning about both store and heap data, and resource contexts
from concurrent separation logic are adapted to our scenario where variables control the
access to shared resources. Additionally, boxed assertions were added to express the
optimistic nature of LL/SC lock-free primitives – stating that if a given memory address
has not been changed, then a property holds.

3.2.2 Validity

Having a way of writing properties, we now focus on their meaning and reasoning
about execution of whole programs – instead of a single program state. Figure 3.7, ex-
tending those of Figures 2.6 and 2.12 here renamed to Psl, presents the semantics of asser-
tions, as well as of resource contexts. Before focusing on concrete properties, let us first
go through the arguments needed to use the P predicate – which defines when a given
assertion holds. Firstly a set of up-to-date shared memory locations is needed in order to
check whether properties associated to those addresses should still be true. Secondly, a
function which maps variables into the heap partition they control is provided in order
to know where to match shared assertions against. Lastly, as usual, both store and local
heap are used to reason about data exclusively manipulated by a thread – although the
store is actually shared, disjoint usage will be required in order to prevent races.

39

3. PROOF SYSTEM FOR LOCK-FREE CONCURRENCY 3.2. Assertions

P : P ×P (Address)× (V ⇀ Heap)× State→ {>,⊥}
PJpslK(δ,hΓ,s,hl) , PslJpslK(s,hl)

PJx psl K(δ,hΓ,s,hl) , hl = ∅ ∧ hΓ = h′Γ] {x 7→ hx} ∧
(
s(x) ∈ δ ⇒ PslJpslK(s,hx)

)
PJp1 ∗ p2K(δ,hΓ,s,hl) , hl = hl1] hl2 ∧ hΓ = hΓ1] hΓ2 ∧ PJp1K(δ,hΓ1

,s,hl2) ∧ PJp2K(δ,hΓ2
,s,hl2)

PJ∃x pK(δ,hΓ,s,hl) , ∃v PJpK(δ,hΓ,s[x7→v],hl)

R : Resource× (V ⇀ Heap)× Store→ {>,⊥}
RJ{}K(h,s) , h = ∅
RJΓ] {∃v x 7→ v ∗ p}K(h,s) , h = hΓ] {x 7→ hx} ∧ RJΓK(hΓ,s) ∧ PSLJ∃vx 7→ v ∗ pK(s,hx)

Figure 3.7: Assertion semantics

Moving into assertion evaluation, as in RGSep, separation logic properties are han-
dled as they were originally defined and matched against the store and local heap. In a
similar fashion top level existential quantification also behaves as previously, verifying
if any store value which makes the property true exists for the given variable. Shared
assertions force the local heap to be empty – so that the heap associated to properties
that are local cannot be extended by this new construct which only deals with shared re-
sources – check if a heap associated to the superscript variable exists and, if the memory
address given by that variable is up-to-date, verify whether the property holds on that
heap. Separation, redefined to handle boxed assertions, now also splits shared heaps in
addition to the local one – preserving compositionality.

Before going into resource contexts, one detail the more careful reader will have no-
ticed is that the grammar presented above is ambiguous – both separation and existential
quantification of local statements can be generated by either P or Psl. However, ambi-
guity is not a problem here because P and Psl agree on those statements. On evaluating
separation, since shared heaps are not accessed, we can ignore the first split which is
made – resulting on the original definition. As for existential quantification, since the
predicate is matched against a store with the variable associated to an existentially quan-
tified value and Psl evaluated on that store and local heap, the result is also the same.

Resource contexts, also covered by Figure 3.7, are sets of properties with a particular
structure used to state what holds on the shared part of the heap. Unlike shared asser-
tions, which may not hold if an address has been changed by some other thread, resource
contexts are invariants which state what always holds on the shared state and all threads
must abide to. Additionally, since we enforce an empty heap when evaluating the empty
context, the whole shared heap must be accounted for – unlike shared assertions, which
allow us to skip specifying what holds on parts of the shared state we are not interested
in at the moment and are given by the resource context. Finally, the inductive step simply
checks that a property holds on the shared heap partition controlled by a given variable.

40

3. PROOF SYSTEM FOR LOCK-FREE CONCURRENCY 3.2. Assertions

Previous developments concerned themselves with single program states, or arbitrary
resource contexts. Since our goal is to reason about execution of whole programs, such
definitions – by themselves – still do not provide us with enough means to do it. In order
to put all these pieces together Figure 3.8 introduces validity – a way of checking whether
the program meets a given specification.

Γ � δ1{p}c{q}δ2 if and only if for all l, i, li, s, h = hs] hl andhΓ ∈ partitions(hs)

wheneverRJΓK(hΓ,s),PJpK(li,hΓ,s,hl) and li ⊆ evalE(δ1, s) then
not 〈c@i, l[i 7→ li], (s, h)〉 ∗ abort and
if 〈c@i, l[i 7→ li], (s, h)〉 ∗ 〈skip@i, l′, (s′, h′)〉 then there existsh′s, h′l andh′Γ

such thath′ = h′s] h′l, h′Γ ∈ partitions(h′s) and
RJΓK(h′Γ,s

′),PJqK(l′(i),h′Γ,s
′,h′l)

and l′(i) ⊆ evalE(δ2, s
′)

partitions : Heap→ P(V ⇀ Heap)

partitions(h) , {hΓ ∈ V ⇀ Heap |disjoint(cdom(hΓ)) ∧ h =
⋃

cdom(hΓ)}

disjoint : P(Heap)→ {>,⊥}
disjoint(h) , ∀s1∈h ∀s2∈h s1 6= s2 ⇒ dom(s1) ∩ dom(s2) = ∅

evalE :
[
P(E)× Store

]
→ P(Value)

evalE(δ, s) , {EJeKs | e ∈ δ}

Figure 3.8: Validity

Again, let us start by going through the arguments of predicate � – used to denote
validity of a specification. A specification then has a resource context Γ stating what al-
ways holds on the shared part of the heap, an initial set of variables δ1 that the program
has previous load-linked and a precondition assertion p stating what holds at the begin-
ning of program execution, a program c to be verified, a postcondition assertion q that
the program will establish upon completing and a final set δ2 of variables load-linked by
the end of program execution.

Stepping into the definition itself – inspired by that of Vafeiadis [Vaf11] – it states that
if the program starts with a set of up-to-date addresses contained in the set of previously
load-linked variables, with a given store and heap which can be split in such a way that
part of the heap satisfies the resource context and shared assertions while another satis-
fies the local properties of the precondition, then the program does not fault and ends
in a configuration whose heap can also be split as previously – only now targeting the
postcondition – and whose set of up-to-date addresses are contained in the set of final
load-linked variables.

41

3. PROOF SYSTEM FOR LOCK-FREE CONCURRENCY 3.3. Inference Rules

Concluding, the goal of being able to reason about lock-free programs based on LL/SC
is fulfilled with the definition of validity. Note how both properties and resource con-
texts grasp the essence of aforementioned primitives – shared statements capture the op-
timistic nature of lock-free algorithms, allowing us to reason about threads based on the
premise that a given address has not changed, while resource invariants establish what
always holds on a heap partition and all threads must preserve.

3.3 Inference Rules

Despite having a semantic way of reasoning about the programs we are interested
in, proving correctness of specifications exclusively using first-order logic would be ex-
tremely time costly. In order to keep proofs manageable, similarly to other related works
our inference rules provide a syntax directed way of constructing them.

Again, although most of the following developments are based on those of concurrent
separation logic and RGSep since we share a great part of the programming language and
assertion syntax, our rules additionally have to address shared assertions used to reason
about optimistic concurrency introduced by LL/SC primitives.

3.3.1 Rules

Inference rules, presented in Figures 3.9 and 3.10, define predicate ` which denotes
syntactic validity of a specification. Like semantic validity, it takes a resource context Γ,
a set of previously load-linked variables δ, a precondition assertion p, a program c to be
verified, a postcondition assertion q and a final set of load-linked variables δ′.

Although we will not detail every single rule, since most of them are a straightfor-
ward adaptation of rules presented before to handle our resource contexts and sets of
load-linked variables, it should be noted that all rules disallow assignment into variables
which are used in the resource context – such unconditional assignments could result on
data races. Another noteworthy property all rules for basic commands except for skip
have is that they use minimal heaps and sets of initial and final load-linked variables – it
makes for simpler rules, which can be adapted to any valid heap and set of load-linked
variables through composition of frame rules. This last property is usually called locality
and is especially useful because it allows us to solely focus on the heap portion a program
has impact on – the so-called memory footprint – and then extend it to any larger heap.

42

3. PROOF SYSTEM FOR LOCK-FREE CONCURRENCY 3.3. Inference Rules

Γ ` δ{p}skip {p}δ
(skip)

Γ ` δ{p[e/x]} x := e {p}δ
(assign)

if x /∈ fv(Γ)

Γ] {∃v x 7→ v ∗ f} ` δ{p} c {q}δ′

Γ ` δ{p ∗ ∃v x 7→ v ∗ f} c {q ∗ ∃v x 7→ v ∗ f}δ′
(shared resource)

if x /∈ δ′

Γ ` {}{p[e/x] ∧ y 7→ e}x := [y]{p ∧ y 7→ e}{}
(local load)

if x 6= y and x /∈ fv(Γ, e)

Γ ` {z}{z p[e/x] ∧ y 7→ e }x := [y]{z p ∧ y 7→ e }{z}
(shared load)

if x 6= y and x /∈ fv(Γ, e)

Γ] {∃v y 7→ v ∗ f} ` {}{emp} x := LL(y) { y f [x/v] }{y}
(load-link)

if x 6= y and x /∈ fv(Γ, f)

Γ ` {}{x 7→ −}[x] := y{x 7→ y}{}
(store)

p′ ∗ q′ ⇒ f [y/v]

Γ] {∃v z 7→ v ∗ f} `
{z}{p ∗ p′ ∗ z q ∗ q′ } x := SC(y, z) {(x = 1 ∧ p ∗ q) ∨ (x = 0 ∧ p ∗ p′)}{}

(store-conditional)

if x 6= z and x /∈ fv(Γ, f)

Γ ` {}{emp}x := alloc(e1, . . . , en){x 7→ e1, . . . , en}{}
(allocate)

if x /∈ fv(Γ)

Γ ` {}{∃v x 7→ v}disp(x){emp}{}
(dispose)

Γ ` {x}{x p } c {x q }{x}

Γ ` {x}{ x p ∗ f } c {x q ∗ f }{x}
(shared expand)

if fv(f) ∩writes(c) = ∅

Γ ` δ{p} c {q}δ′

Γ `
(
δ ∪ {x}

)
{p ∗ x f } c {q ∗ x f }

(
δ′ ∪ {x}

) (shared frame)

if x ∈ res(Γ) \
[
δ ∪ fv(c)

]
and fv(f) ∩writes(c) = ∅

Figure 3.9: Proof rules

43

3. PROOF SYSTEM FOR LOCK-FREE CONCURRENCY 3.3. Inference Rules

Γ ` δ{p} c {q}δ′

Γ ` δ{p ∗ f} c {q ∗ f}δ′
(local frame)

if fv(f) ∩writes(c) = ∅

Γ ` δ{p} c {q}δ′

Γ] Γ′ ` δ{p} c {q}δ′
(resource frame)

if fv(Γ′) ∩writes(c) = ∅

Γ ` {}{p1} c1 {q1}{} Γ ` {}{p2} c2 {q2}{}
Γ ` {}{p1 ∗ p2} c1 ‖ c2 {q1 ∗ q2}{}

(parallel)

if fv(p1, q1, c1) ∩writes(c2) = fv(p2, q2, c2) ∩writes(c1) = ∅
and frees(c1) = frees(c2) = ∅

Γ ` δ{p ∧ b} c1 {q}δ′ Γ ` δ{p ∧ ¬b}c2{q}δ′

Γ ` δ{p}if b then c1 else c2 {q}δ′
(if–then–else)

Γ ` δ{p ∧ b} c {p}δ
Γ ` δ{p}while b do c {p ∧ ¬b}δ

(while)

p⇒ p′ Γ ` δ{p′} c {q′}δ′ q′ ⇒ q

Γ ` δ{p} c {q}δ′
(consequence)

Γ ` δ{p} c1 {q′}δ′′ Γ ` δ′′{q′} c2 {q}δ′

Γ ` δ{p} c1; c2 {q}δ′
(sequential)

Γ ` δ{p} c {q}δ′

Γ ` δ{∃v p} c {∃v q}δ′
(existential)

if v /∈ fv(c)

Figure 3.10: Proof rules (cont.)

Detailing inference rules, let us start by the ones which alter resource context Γ. In
order to share a local piece of heap, the shared resource rule states that if the new invariant
is initially established on the local portion of the heap and all sub-programs maintain and
have no local property that depends on it by the end of program execution, then both the
postcondition and invariant still hold locally at that point – note that if there still are local
properties based on an outdated load-link, this might not be the case. Although most
proofs done in a given resource context hold on any larger one, the resource frame rule
gives a precise account of when this can happen and easily allows for it – as long as the
program does not modify any of the variables mentioned on the new resource context, it
can be added to the existing one.

Briefly going over rules existing in previous formalisms, skip stays the same – now
relaying the set of load-linked variables as well – while assign is extended with a new

44

3. PROOF SYSTEM FOR LOCK-FREE CONCURRENCY 3.3. Inference Rules

side condition that prevents modifying variables used in the resource context – such as-
signments could result on a data race. Regarding heap commands, local load has an addi-
tional side condition preventing shared data races as well, while store remains as before
– note that since both these rules only target the local heap, they use empty sets of ini-
tial and final load-linked variables. Similarly, allocate cannot save the location into one
of the resource’s variables and dispose stays unchanged – both also using empty sets of
load-linked variables. Addressing other previous commands, if-then-else, while, sequential
composition, logical consequence, existential quantification and local frame remain the same
– now accounting for the additional sets of load-linked variables. Although the rule for
parallel composition is very similar to that of concurrent separation logic and RGSep, an
additional side condition preventing programs from freeing memory is needed in order
for the whole proof system to be sound – in the following subsection, this apparently too
strong of a restriction will be justified.

Finally, we describe rules which make use of the new elements in our proof system’s
specifications – shared assertions and sets of load-linked variables. Starting with load-link,
its rule requires a resource context which contains a memory heap managed by the right-
hand side address, as well as an empty heap and set of initially load-linked variables.
Then it states the given address has been load-linked and program execution ends with
a shared assertion for the resource invariant, which holds as long as that address stays
up-to-date – where the existentially quantified value the invariant describes has been
replaced by the left-hand side of the assignment, so it can be locally manipulated by the
program. In order to allow for several programs to read from a shared address, which
does not pose a heap data race, the shared load rule allows for a program to reason about
shared assertions as though they were local. This is safe to do as long as the address
is not freed, because conditional reasoning done in the context of a load-linked variable
is discarded if the corresponding store-conditional fails. Moving into store-conditional,
its rule requires a resource context which has a mapping for the target address. Then it
states that if both shared and local heap can be split in such a way that putting together
a partition from each one results in a heap satisfying the invariant, either the address has
not been changed and store-conditional succeeds – transferring part of the shared heap
into the local state and vice-versa – or it fails, keeping both heaps intact. Note that since
an update will have occurred either way, the shared assertion is always discarded.

Regarding compositionality, shared frame states that an additional shared assertion
can be added to both pre and postcondition as long as the program has previously load-
linked its control variable, which the resource context must have a mapping for, and does
not mention it. Lastly, shared expand provides for a frame rule targeting shared assertions,
stating that if a given assertion held as long as its control variable remained up-to-date,
and the program did not change it nor any of its variables, then that assertion still holds.

Figure 3.11 presents auxiliary syntactic definitions needed in side conditions. Function
writes computes the set of variables a program may modify throughout its execution,

45

3. PROOF SYSTEM FOR LOCK-FREE CONCURRENCY 3.3. Inference Rules

writes(skip) , ∅
writes(x := e) , {x}
writes(x := alloc(e1, . . . , en)) , {x}
writes(x := [y]) , {x}
writes(x := LL(y)) , {x}
writes([x] := e) , ∅
writes(x := SC(y, z)) , {x}
writes(disp(x)) , ∅
writes(if b then c1 else c2) , writes(c1) ∪writes(c2)

writes(while b do c) , writes(c)

writes(c1; c2) , writes(c1) ∪writes(c2)

writes(c1 ‖ c2) , writes(c1) ∪writes(c2)

frees(skip) , ∅
frees(x := e) , ∅
frees(x := alloc(e1, . . . , en)) , ∅
frees(x := [y]) , ∅
frees(x := LL(y)) , ∅
frees([x] := e) , ∅
frees(x := SC(y, z)) , ∅
frees(disp(x)) , {x}
frees(if b then c1 else c2) , frees(c1) ∪ frees(c2)

frees(while b do c) , frees(c)

frees(c1; c2) , frees(c1) ∪ frees(c2)

frees(c1 ‖ c2) , frees(c1) ∪ frees(c2)

Figure 3.11: Writes and frees functions

while frees stands for the one a program may deallocate. Note that these functions dif-
fer from the ones used in operational semantics, because those only compute the set of
variables regarding a computational step and not the whole program execution.

Using the above inference rules, it is now possible to syntactically prove that a program
meets a given specification. Furthermore, these rules allow us to solely focus on the local
changes done by subprograms and obtain a proof for the whole program by composing
them.

Concluding, we hope the reader agrees these rules capture the optimistic nature of
LL/SC primitives through the usage of shared assertions which are created upon load-
linking a given address and either kept in case the matching SC succeeds or discarded
should it fail. Former constructs from concurrent separation logic blend well with these
new shared assertions, which were inspired by those of RGSep, hopefully resulting in an
easily understandable proof system to people familiar with such formalisms. Although
sets of load-linked variables might seem like an unpolished loose end, the decision of
including them on specifications was a deliberate one. Those sets enforce programs to

46

3. PROOF SYSTEM FOR LOCK-FREE CONCURRENCY 3.3. Inference Rules

be well-formed regarding load-link and store-conditional and allow for simpler rules by
avoiding more complex side-conditions, since there is at most one open load-link for each
control variable, so we decided to keep them.

Although inference rules were built incrementally through an iterative process of re-
fining them to allow proving programs with increasingly harder interference to reason
about, and are able to prove most of the examples present in concurrent separation logic,
it should be noted that some restrictions were inherited from the same logic. Namely,
because resources must be disjoint, with this system it is currently not possible to reason
about programs which need two load-linked variables in order to ensure that an address
accessible by either variable remains consistent – such as a node in a doubly linked list,
which can be accessed by either head or tail. Additionally, as was briefly mentioned on
the explanation of shared load and can be seen in the side condition for parallel composi-
tion, due to aliasing of store variables and shared memory reads, parallel programs are
not allowed to deallocate memory – properties proven with these rules would still hold
without that side condition, but the program could now abort and violate validity.

3.3.2 Soundness

Given inference rules present a syntactic directed alternative of proving validity of
specifications, care must be taken to ensure they indeed agree with semantic validity –
as seen before, side conditions are necessary to deal with aliasing, data races or some
other property required for that agreement to hold. Therefore, although no formal proof
of soundness is provided in this document, a brief argument explaining why rules are
sound will be given for each one.

As previously, completeness – that is, being able to construct a proof of every seman-
tically valid specification using inference rules – is not possible due to undecidability
of checking whether some statements are valid. Recall that to prove a judgment like
Γ � δ{true} c {false}δ′ is to solve the halting problem.

skip Let the program start in an arbitrary resource context Γ and state satisfying asser-
tion p, having previously load-linked variables δ, then skip will not change the
set of load-linked variables δ nor local assertions occurring in p. Regarding shared
assertions, then either their control address remained up-to-date and the assertion
still holds, or they were modified – being outdated regarding the thread’s local view
– in which case the shared assertion vacuously holds. Finally, because skip does
not change any variables nor access the heap, it does not raise data races or abort
either.

assign Like skip, assign does not change the set of load-linked variables δ, simply relay-
ing it. Although the heap is not accessed either, therefore never aborting, care must
be taken since the store’s mapping for variable x may now change. Because x can-
not be a shared variable occurring in resource context Γ, and parallel composition

47

3. PROOF SYSTEM FOR LOCK-FREE CONCURRENCY 3.3. Inference Rules

does not allow for concurrent programs to change each other’s local variables, then
data races are not a problem either. Regarding local and shared assertions, given
they did not mention variable x, it is safe to replace an arbitrary expression which
will be assigned to the store value x maps into by x itself.

shared resource Unlike previous rules, this one has a premise which we can use to obtain
additional information. Knowing that the specification is valid when a piece of local
heap is moved into resource context Γ, then it is certain program c does not alter
variable x and preserves shared invariant f controlled by that variable. Now, given
that program c does not modify x nor invalidate f , it is safe to relay them from
the precondition into the postcondition. Again, since program c did not have data
races nor abort on the same store and heap, it is safe to say it will not do so. One
important last remark, since shared and local heaps are always disjoint, is that a
shared assertion cannot exist for address x because a local one already exists for
that same address – hence the side condition stating there cannot be an open load-
link for variable x.

local load Similarly to assign, since local load modifies the store, x is not allowed to be
a shared variable occurring in resource context Γ – preventing data-races. Given
no variables were load-linked, and none are, sets of load-linked variables remain
empty. Since the rule only deals with local assertions, given no addresses are load-
linked, we need not worry about shared assertions. Regarding memory faults,
since the precondition states address y must be present, program execution does
not abort. Finally, like assign, it is safe to replace an arbitrary expression which will
be assigned to the store value x maps into by x itself – note that because variable x
is modified while y and expression e remain unchanged in both pre and postcondi-
tion, x must differ from y and cannot occur in e.

shared load This rule complements local load, in the sense that it only deals with a shared
assertion – not mentioning the local heap. Again, to guarantee data races do not
take place, variable x cannot occur in resource context Γ. Since base rules deal with
the smallest heap possible, shared load starts with a single load-linked variable z and
shared assertion stating what holds on address y, and behaves like local load inside
that assertion. However, two additional conditions must be met because address
y is inside a shared assertion. Firstly the assertion must hold if address z remains
up-to-date, and secondly program execution cannot abort. The former is easy to
check because z has not been load-linked, so the thread’s local view of that address
remains unchanged. However, since concurrent programs can access shared heap
location y, the latter is not so trivial. Therefore, since the system is currently unable
to stop a program from deallocating memory some other is still accessing or check
if a given shared address has been deallocated, to ensure program execution does
not abort parallel composition of programs has the harsh side-condition stating that

48

3. PROOF SYSTEM FOR LOCK-FREE CONCURRENCY 3.3. Inference Rules

neither subprogram can deallocate memory. Note that this is true even regarding
local heap, since memory is transfered from and to the shared state with no trac-
ing information. Concluding, given that our inference rules do not allow memory
location y to be removed, program execution does not abort.

load-link Let the program start with an empty set of load-linked variables and a re-
source context which states that invariant f always holds at address y. Again, to
guarantee data races do not take place, variable x cannot occur in resource context
Γ or expression f and must differ from y. Since y has been load-linked, it will then
be the sole variable load-linked upon termination. Because address y belongs to
the shared heap, and programs can only deallocate local memory, load-link does not
abort. Finally, since invariant f at address y always holds and refers to the same
heap as long as y is not updated, the post condition’s shared assertion states exactly
what holds by the end of program execution – where variable v, representing the
currently present value at address y which was now read into x, is replaced by this
latter variable.

store Let the program start with a local heap in which address x is allocated, and having
no currently load-linked variables. Then, since it modifies no variables, store will
not raise data races and, given local address x is allocated, will not abort. Finally,
because address y has been updated to the value stored in y and is not shared, it
will contain that value by the end of program execution.

store-conditional Let the program start with a single load-linked variable z, a resource
context which states invariant f always holds at address y, and both a local asser-
tion which separates p from p′ as well as a shared assertion for variable z which
separates q from q′. Again, to guarantee data races do not take place, variable x
cannot occur in resource context Γ or expression f and must differ from z. Simi-
larly to load-link, because address y belongs to the shared heap and programs can
only deallocate local memory, store-conditional does not abort. Moving into asser-
tions, having these four separate heaps at our disposal and knowing that putting
together the two satisfying p′ and q′ we obtain a heap satisfying invariant f where
variable y fills the role of value v stored at address z, then either the thread’s view
of that address is outdated and store-conditional fails, or it is up-to-date and store
conditional successfully transfers local heap satisfying p′ into the shared state and
shared heap satisfying q into the local state, resulting in a shared heap controlled by
address z satisfying invariant f and a local heap which can be split such a way that
one piece satisfies p while the other satisfies q. Finally, since it is either outdated or
has now been updated, address z is removed from the set of potentially up-to-date
load-linked variables as well as its shared assertion.

allocate Let the program start with an empty heap and set of potentially up-to-date load-
linked variables. Firstly, in order to avoid data races, the allocated memory address

49

3. PROOF SYSTEM FOR LOCK-FREE CONCURRENCY 3.3. Inference Rules

cannot be stored in a shared variable occurring in resource context Γ. Since allo-
cate does not access existing heap locations, it does not abort nor change sets of
load-linked addresses. Finally, the new location is stored in variable x which now
points to a contiguous memory block with all given expressions, as stated in the
postcondition.

dispose Since it does not modify any of the store’s variables, dispose does not raise data
races. Because the precondition states address x is local and must be allocated, pro-
gram execution does not change the set of load-linked addresses nor abort either.
Finally, as the only existing address was now deallocated, dispose will end with an
empty heap as stated in the postcondition.

shared expand Let the program start with a single assertion for its only load-linked vari-
able x stating that shared heap controlled by address x can be split in two pieces
such that one satisfies assertion p while the other satisfies f . Then either address
x is outdated regarding the thread’s view, vacuously satisfying the postcondition,
or it is up-to-date. Given address x is up-to-date, we know the precondition’s as-
sertion still currently holds at that address. Additionally, we know the program
does not modify any variable occurring in f , as required by the side condition, nor
access any of its heap addresses, once the rule’s premise enforces all of its memory
operations to be within the heap given by p. Then, since program c transforms a
heap satisfying p into one satisfying q and it is safe to relay f , the postcondition
holds. Finally, because the program remained the same and did not abort nor have
data races, maintaining the initial and final set of load-linked variables, all these
properties are directly inherited by the rule’s premise.

shared frame As in the previous rule, given its premise shared frame does not abort nor
have data races and does not access variables or addresses that might alter asser-
tion f . Then, having previously load-linked x, either that address is outdated, in
which case the postcondition’s additional shared assertion vacuously holds, or it is
up-to-date and the postcondition’s additional shared assertion is relayed from the
precondition. Finally, in order for specifications to be well-formed, variable x must
control some shared heap present in resource context Γ so it can belong to the set of
load-linked addresses, and cannot be present in that set nor accessed by program c

so the new shared assertion is not a duplicate and remains valid.

local frame Similarly, given its premise, local frame does not abort nor have data races
and does not access variables or addresses that might alter assertion f . Finally,
since it is local and remains unaltered by program execution, assertion f as well as
sets of load-linked variables can be safely relayed from the precondition into the
postcondition.

resource frame Given that program c already meets the premise’s specification, its shared
resources are completely contained in resource context Γ. Therefore, resource frame

50

3. PROOF SYSTEM FOR LOCK-FREE CONCURRENCY 3.3. Inference Rules

is sound since it only adds an assertion which the program does not have impact
on into the resource context.

parallel Let the program start with a local heap which can be split into two pieces where
one satisfies assertion p1 and another satisfies p2. From the premises, we know giv-
ing local heaps satisfying p1 and p2 to programs c1 and c2 will transform them into
heaps satisfying q1 and q2. Then, because both programs manipulate disjoint local
heaps and do not modify each other’s variables, parallel composition of programs
c1 and c2 starting with local heaps satisfying p1 and p2 will result in disjoint heaps
satisfying q1 and q2, as stated in the postcondition. As both programs manipulate
disjoint local heaps and do not modify each other’s stores, no data-races exist on
the local state. Since they only access shared data described by resource context Γ,
and given the premises are valid do not have data races on that resource context,
no data-races exist on the shared state either. Finally, because programs do not fault
with the given resource context and local heap, and no shared addresses are freed
as enforced by the side condition, parallel composition does not abort.

if–then–else Let the program start with resource context Γ, initial set of load-linked ad-
dresses δ and local state satisfying assertion p. Then, given either branch does not
have data races nor abort and finishes in a state satisfying assertion q, having load-
linked variables delta′, the if-then-else construct also does so.

while Let the program start with resource context Γ, initial set of load-linked addresses
δ and local state satisfying assertion p. Then, given that executing the body of while
does not raise data races nor abort and both assertion p as well as set of load-linked
variables δ are reestablished, its whole execution does not have data races nor abort
either and will preserve those two components. Additionally, since validity only
holds if the cycle stops, assertion b will not hold – as stated in the postcondition.

consequence Given the rule’s premise, we know program c starting with resource con-
text Γ, initial set of load-linked addresses δ and local state satisfying assertion p′will
not raise data races nor abort and end with a set of variables δ′, having established
assertion q′. Then, as in previous formalisms it is safe to weaken precondition p to
match p′ as well as to extract a weaker postcondition q from q′, established by the
program.

sequential Let program c1 start with assertion p and previously load-linked addresses
δ, then as stated in the premise it will establish assertion q′ and have load-linked
addresses δ′′. Similarly, program c2 will start with assertion q′ and load-linked ad-
dresses δ′′ and end with postcondition q as well as load-linked addresses δ′. Since
both premises use invariant Γ and guarantee programs do not have data races nor
abort, sequential composition can safely start with assertion p and set of load-linked
addresses δ, relay the final components from c1 into the initial ones of c2, and end
with postcondition q and set of load-linked addresses δ′.

51

3. PROOF SYSTEM FOR LOCK-FREE CONCURRENCY 3.4. Examples

existential Let program c start in resource context Γ, with assertion p where variable v
has been existentially quantified, having previously load-linked addresses δ. Then
either variable v does not occur in assertion p, or it does occur in p but we know
that assertion holds for some value mapped into by v – either way, precondition p
holds. Given that program c starting with assertion p and load-linked variables δ
does not alter the value of v nor have data races or abort, and terminates in a state
satisfying q having load-linked variables δ′, then either v does not occur in q or it
was unaltered and is safe to existentially quantify – the same mapping used in the
initial store will also be applicable. Either way, postcondition q holds.

Concluding, although being informal, the arguments presented in this section lay out
a solid foundation for developing a soundness proof. Perhaps more importantly, they
explain why side conditions such as disallowing concurrent memory deallocation are
needed in order for syntactic and semantic validity to match.

3.4 Examples

Although also being important for showcasing the usage of inference rules, examples
played a major role in building our proof system. As briefly mentioned before, several
iterations were needed to raise the expressiveness of specifications and inference rules
before examples presented in this section could be proven correct.

Therefore, the goal of this section is twofold. Firstly, specifications and inference rules
are exemplified, allowing the reader to fully grasp how they work in practice. Secondly,
through the presentation of examples with increasing interference requirements, changes
that needed to be made in order for those examples to be proven correct are described –
guiding the reader through the development process.

3.4.1 Counter

Starting out, we begin with a simple example presented in Figure 3.12 which incre-
ments a shared variable. In this example, program execution is put inside a resource
context which states the address given by variable counter always contains a positive
value. Then, we want to prove that concurrently incrementing address counter does not
result in it ending with a negative value.

Going into detail, let the program start with an empty set of previously load-linked
variables and having no local memory allocated. Since the resource context remains unal-
tered, and in most cases a command’s postcondition and final set of load-linked variables
are the precondition and initial set of load-linked variables of the command following it,
only one of those pairs is shown between a sequential composition. However, on sit-
uations where one or more steps need to be applied for pairs to match corresponding

52

3. PROOF SYSTEM FOR LOCK-FREE CONCURRENCY 3.4. Examples

{∃v counter 7→ v ∧ v ≥ 0} `
{}{emp}
{}{emp}
while res1 6= 1 do
{}{emp}
val1 := LL(counter);
{counter}{ counter val1 ≥ 0) }
{counter}{ counter val1 + 1 ≥ 0) }
val1 := val1 + 1;

{counter}{ counter val1 ≥ 0) }
res1 := SC(val1, counter)
{}{(res1 = 0 ∧ emp) ∨ (res1 = 1 ∧ emp)}
{}{emp}

{}{emp}
‖
{}{emp}
while res2 6= 1 do
{}{emp}
val2 := LL(counter);
{counter}{ counter val2 ≥ 0) }
{counter}{ counter val2 + 1 ≥ 0) }
val2 := val2 + 1;

{counter}{ counter val2 ≥ 0) }
res2 := SC(val2, counter)
{}{(res2 = 0 ∧ emp) ∨ (res2 = 1 ∧ emp)}
{}{emp}

{}{emp}
{}{emp}

{∃v counter 7→ v ∧ v ≥ 0} ` {}{emp} increment(val1) ‖ increment(val2) {emp}{}
∅ ` {}{∃v counter 7→ v ∧ v ≥ 0} increment(val1) ‖ increment(val2) {∃v counter 7→ v ∧ v ≥ 0}{}

Figure 3.12: Counter example

rules, both assertions and sets of load-linked addresses are shown in order to improve
readability.

Each program optimistically tries to increase shared address counter, retrying until
successfully doing so. Firstly, address counter is load-linked into local variable val, which
as ensured by the invariant will hold a positive value. Then this local variable is increased
by one, remaining positive, and conditionally stored into address counter – which is al-
lowed by the resource context, since it again meets that address’ invariant. Finally, the
success status is saved into local variable res and tested in the loop’s condition.

Given these programs do not access each other’s variables nor unsafely modify shared

53

3. PROOF SYSTEM FOR LOCK-FREE CONCURRENCY 3.4. Examples

addresses, and do not deallocate memory, the rule for parallel composition states they will
indeed keep shared address counter positive.

Although being quite simple, this example illustrates several patterns used in most
LL/SC based programs. Note that because they are optimistic, programs usually loop un-
til successfully writing into the target address. Additionally, to avoid data races, shared
addresses are load-linked into local variables that are safe from interference and used for
constructing the new value which will be conditionally stored.

Regarding expressiveness, this example corresponds to the first iteration of the proof
system, where only reasoning about a single memory address is required and no distinc-
tion needs to be made on store-conditional’s result.

3.4.2 List

Lists of data are a broadly used and well-understood data structure, also being ex-
tensively used as examples in works where dynamic memory allocation is addressed.
Furthermore, since they require dealing with interference on more than one address, lists
constitute the remainder of our examples and discussions.

list(i) , (i = nil ∧ emp) ∨ (i 6= nil ∧ ∃j i 7→ j ∗ list(j))

As can be seen above a list is either the nil value, in which case the heap must be
empty, or a value corresponding to the location of an existing memory address pointing
to the rest of the list.

{∃v head 7→ v ∗ list(v)} `
{}{emp}
node := alloc(nil);
{}{∃v node 7→ v}
res := 0;
{}{(res = 0 ∧ ∃v node 7→ v) ∨ (res = 1 ∧ emp)}
while res 6= 1 do
{}{∃v node 7→ v}
first := LL(head);

{head}{∃v node 7→ v ∗ head list(first) }
[node] := first
{head}{node 7→ first ∗ head list(first) }
res := SC(node, head)
{}{(res = 0 ∧ node 7→ first) ∨ (res = 1 ∧ emp)}
{}{(res = 0 ∧ ∃v node 7→ v) ∨ (res = 1 ∧ emp)}

{}{emp}

Figure 3.13: Push example

54

3. PROOF SYSTEM FOR LOCK-FREE CONCURRENCY 3.4. Examples

Following previous conventions, Figure 3.13 presents a program which adds a memory
address to a given list. The specification states program execution is done in a resource
context which ensures address head contains a list, starts with an empty heap and no
load-linked variables, finishing that way as well.

Firstly a new memory address is allocated, and its location stored in local variable
node. As before the program loops until successfully inserting the new node, which is
done by load-linking shared variable head containing the list’s first location into local
variable first, making the allocated node point to that location and finally attempting to
store it into the shared state. Note that, as previously stated, for the sake of readability
some proof steps are omitted. In order to detail those proofs, and show compositionality
of rules, some missing steps are displayed on Figure 3.15.

One new requirement needed to prove correctness of list insertion is for invariants to
be more broad than a single address – now the shared invariant is an arbitrary separate
heap holding a list. Additionally, store-conditional’s result must be taken into account.
Depending on whether store-conditional is successful, either the newly allocated node
was transfered into the shared heap or stayed local – needed for knowing it is still allo-
cated inside the while body, and is not locally available upon finishing.

Another operation which is frequently done on lists is element removal. Figure 3.14
details a program which removes the first element from a given list. Again, program
execution is done on a resource context ensuring address head contains a list, begins with
no load-linked variables and an empty heap, ending that way too.

As previously, the program loops until successfully removing an element from the
list or maintaining it empty. The loop’s invariant states that either last store-conditional
operation was unsuccessful, in which case the local heap must be empty, or it was suc-
cessful. In this last case either the list did not contain any elements, maintaining the local
heap empty, or it had at least one element which was transfered from the shared heap
into the local one.

Inside the while loop, shared list stored at address head is load-linked into local vari-
able first. Then, depending on whether it is empty, the program either tries to store the list
itself or its second node. In this scenario, it is clear why memory cannot be concurrently
deallocated – if another program had removed the first node in between, program execu-
tion would abort upon trying to obtain its second one. Finally, after concluding the loop,
either no node was removed and there is nothing to do, or the now local first element is
deallocated – in either case resulting on an empty heap and no load-linked variables.

Although it might look like this example requires as much expressiveness as element
insertion, there are two additional requirements for the above proof to be possible. Firstly,
in order to obtain the second node, concurrent reading of shared addresses is required
– resulting in the need for shared load rule. Secondly, because memory can be transfered

55

3. PROOF SYSTEM FOR LOCK-FREE CONCURRENCY 3.4. Examples

{∃v head 7→ v ∗ list(v)} `

{∅}{emp}
res := 0;
{}{emp ∧ res = 0}
{}{(res = 0 ∧ emp) ∨ (res = 1 ∧ (first = nil⇒ emp) ∧ (first 6= nil⇒ ∃v first 7→ v))}
while res 6= 1 do
{}{emp}
first := LL(head);

{head}{head list(first) }
if first 6= nil then

{head}{head list(first) ∧ first 6= nil}
{head}{head ∃j first 7→ j ∗ list(j) }
second := [first]
{head}{head first 7→ second ∗ list(second) }
{head}{head ((first = nil⇒ emp) ∧ (first 6= nil⇒ ∃v first 7→ v)) ∗ list(second) }
else

{head}{head list(first) ∧ first = nil}
second := first
{head}{head list(second) ∧ first = nil}
{head}{head ((first = nil⇒ emp) ∧ (first 6= nil⇒ ∃v first 7→ v)) ∗ list(second) }

;

{head}{head ((first = nil⇒ emp) ∧ (first 6= nil⇒ ∃v first 7→ v)) ∗ list(second) }
res := SC(second, head)
{}{(res = 0⇒ emp) ∧ (res = 1⇒ ((first = nil⇒ emp) ∧ (first 6= nil⇒ ∃v first 7→ v)))}

;
{}{(first = nil⇒ emp) ∧ (first 6= nil⇒ ∃v first 7→ v)}
if first 6= nil then
{}{∃v first 7→ v}
disp(first)
{}{emp}

else
{}{emp}
skip
{}{emp}

{}{emp}

Figure 3.14: Pop example

from and to the shared state, care must be taken so that programs cannot deallocate ad-
dresses others are concurrently reading – hence the harsh side condition on parallel rule.

As before, with the goal of simplifying proofs, some of the example’s intermediate

56

3. PROOF SYSTEM FOR LOCK-FREE CONCURRENCY 3.4. Examples

steps are omitted. However, to ensure we did not oversimplify and are indeed construct-
ing proofs allowed by rules – as well as showcase their locality and compositionality –
Figure 3.16 presents several of those steps.

Figure 3.15 presents steps necessary to ensure variable first can be read from a shared
assertion into local memory address node, by composing rules store for making that ad-
dress point to variable first, and shared frame for separating it with the previously existing
assertion stating first is a shared list obtained from head.

Lastly Figure 3.16 details steps required to concurrently read shared address first,
containing the list’s next element, into variable second. Since a shared address is being
read, the proof starts with shared load. Then consequence is used to remove tautology
j = j from the precondition, followed by shared expand to concatenate the list stored in
variable j. Finishing the proof existential is used to existentially quantify variable j, which
is not accessed by program execution, followed by consequence to push it inside the shared
assertion.

Reviewing what was presented up until now, we’ve seen our rules are capable of ex-
pressing invariants that state what holds on arbitrarily large memory heaps, of distin-
guishing between successful and failed store-conditional operations, and dealing with
programs that concurrently read shared locations. Additionally they do this in a local,
modular and syntax-directed way which allows for easily composing proofs.

57

3. PROOF SYSTEM FOR LOCK-FREE CONCURRENCY 3.4. Examples

{∃
v

he
ad
7→

v
∗
l
i
s
t

(v
)}
`
{}
{∃

v
no

de
7→
v
}[

no
de

]
:=

fir
st
{n

od
e
7→

fir
st
}{
}

{∃
v

he
ad
7→

v
∗
l
i
s
t

(v
)}
`
{h

ea
d}
{∃

v
no

de
7→

v
∗

he
ad
l
i
s
t

(fi
rs

t)
}[

no
de

]
:=

fir
st
{n

od
e
7→

fir
st
∗

he
ad
l
i
s
t

(fi
rs

t)
}{

he
ad
}

Fi
gu

re
3.

15
:D

et
ai

le
d

pu
sh

de
ri

va
ti

on
ex

am
pl

e

{∃
v

he
ad
7→

v
∗
l
i
s
t

(v
)}
`
{h

ea
d}
{h

ea
d

j=
j∧

fir
st
7→

j}
se

co
nd

:=
[fi

rs
t]
{h

ea
d

j=
se

co
nd
∧

fir
st
7→

j}
{h

ea
d}

{∃
v

he
ad
7→

v
∗
l
i
s
t

(v
)}
`
{h

ea
d}
{h

ea
d

fir
st
7→

j}
se

co
nd

:=
[fi

rs
t]
{h

ea
d

j=
se

co
nd
∧

fir
st
7→

j}
{h

ea
d}

{∃
v

he
ad
7→

v
∗
l
i
s
t

(v
)}
`
{h

ea
d}
{h

ea
d

fir
st
7→

j∗
lis

t(
j)
}s

ec
on

d
:=

[fi
rs

t]
{h

ea
d

j=
se

co
nd
∧

fir
st
7→

j∗
lis

t(
j)
}{

he
ad
}

{∃
v

he
ad
7→

v
∗
l
i
s
t

(v
)}
`
{h

ea
d}
{∃

jhe
ad

fir
st
7→

j∗
lis

t(
j)
}s

ec
on

d
:=

[fi
rs

t]
{∃

jhe
ad

j=
se

co
nd
∧

fir
st
7→

j∗
lis

t(
j)
}{

he
ad
}

{∃
v

he
ad
7→

v
∗
l
i
s
t

(v
)}
`
{h

ea
d}
{h

ea
d
∃ j

fir
st
7→

j∗
lis

t(
j)
}s

ec
on

d
:=

[fi
rs

t]
{h

ea
d

fir
st
7→

se
co

nd
∗

lis
t(

se
co

nd
)
}{

he
ad
}

Fi
gu

re
3.

16
:D

et
ai

le
d

po
p

de
ri

va
ti

on
ex

am
pl

e

58

4
Conclusion

4.1 Summary

In this dissertation we have tackled the definition of a proof system for proving correct-
ness of programs based on LL/SC primitives. As we have seen, such a system is valuable
because otherwise programs’ correctness depend on informal arguments which are hard
to understand and might be wrong.

Firstly, we start out by looking at existing formalisms and pointing out their core
components as well as why they are unable to address this problem. Then we conclude
that although being unable to completely solve it, their components are only a small step
away and already give us all the necessary tools for doing so.

Detailing our proof system we begin by its program syntax, which merely allows
writing programs one wants to verify since the goal is to use current languages. After
being able to write programs, we present an operational semantics describing their ex-
ecution. Given that truly local information is needed for the first time – for knowing
whether a thread has an up-to-date view of an address – a new component is added to
program configurations.

Then assertions are introduced, in order to reason about program execution. Asser-
tions stating what holds on the shared state are added to the syntax, and resources from
concurrent separation are adapted to our scenario where addresses now control access to
shared data structures. Validity, which describes assertion semantics, is modified to ac-
count for these additional components present in program configurations and assertions.
Furthermore, it enforces programs to be well-behaved and allows reasoning about initial
and final sets of load-linked variables.

59

4. CONCLUSION 4.2. Future Work

After having a way to evaluate specifications, inference rules provide an easier syntax-
directed alternative of proving validity other than using first-order logic. Additionally,
these rules clearly capture the optimistic nature of LL/SC primitives and allow for local
and modular proofs – enabling one to solely focus on composing proofs of variables and
addresses modified by subprograms.

Since they provide an alternative to semantic validity, care must be taken so programs
proven correct using inference rules indeed are so. Although we do not provide a formal
soundness proof, an informal argument is provided – given it is an important topic which
helps better understand rules and their side conditions. Despite not being formal, this
argument is structured and covers all components of validity – leaving small room for
error and being close to a formal proof.

Lastly we present a few examples, showing how the proof system works in practice.
These examples have different expressiveness requirements and lead the system’s devel-
opment process, effectively guiding the user through it. Although some limitations still
exist, the reasoning needed to prove these examples correct is already nontrivial.

Concluding, our work then brings forward a logic for reasoning about lock-free pro-
grams based on LL/SC. More concretely a formal semantics that models their execution,
a language and corresponding semantics for stating properties about program execution,
as well as a syntax-directed way of constructing correctness proofs of those specifications.
Afterwards, despite not being formal, an argument explaining the system’s soundness is
presented. Finally, some examples showing its usage are presented.

Although it only scratched the surface and did not concern itself with termination,
fairness, deadlock-freedom, or other well-known issues which can arise in lock-free pro-
grams, this proof system shows how existing formalisms can be adapted to deal with
such programs while preserving desirable properties like locality and modularity.

If nothing else, it presents an example of how the arduous and error-prone process
of reasoning about lock-free programs can be accomplished formally, in a structured and
modular way.

4.2 Future Work

Generalize variables to expressions Because only dealing with variable names on mem-
ory addresses eases reasoning about aliasing, given they are unique, most of our
proof system is based on them. However, since using arbitrary expressions as a
way to specify memory addresses sometimes make programs more concise, this
generalization would accelerate encoding programs into our proof system as well
as simplify proofs.

Allow concurrent memory deallocation As memory can be exchanged between local
and shared state, with no information about which locations might still get accessed

60

4. CONCLUSION

concurrently, our proof system disallows concurrent memory deallocation. Due to
this side condition, we are currently unable to prove many realistic lock-free pro-
grams. Given memory can only be transfered using store-conditional, one could add
another component which kept track of those locations and only disallow deallo-
cating them.

Allow reasoning about change on the shared state Currently, as in concurrent separa-
tion logic, we are only able to reason about shared state invariants. However, one
would frequently also like to state the effect a program has on that state as well – e.g.
verify that incrementing a shared counter makes it have a greater value than before.
In a similar fashion to RGSep interference could be modeled using additional rely-
guarantee components, allowing for invariants to be replaced by assertions that are
preserved by the environment – which are capable of reasoning about change in
spite of interference.

Refine resource granularity Another limitation regarding the shared state is that pro-
grams which require two or more of its addresses to keep a data structure consis-
tent, such as a doubly linked list, cannot currently be proven. Since this limitation
also exists on concurrent separation logic, and RGSep only reasons about programs
which lock all resources, at the time we have no starting point on how to tackle it.

Formalize the soundness proof Although an informal argument on the system’s sound-
ness is provided, which we tried our best to follow a standard approach and cover
every detail, a more rigorous proof aimed at formalizing this argument (even if
done on paper) would present a great improvement. Additionally, if it was verified
by tools such as Isabelle1 or Coq2, such a proof would finally put a nail in the
coffin regarding this issue.

Develop an implementation Given it is aimed at proving correctness of real programs,
to ease its usage and integration on the development process this theoretical proof
system could be implemented as a tool to check correctness of programs written in
a concrete programing language – such as ESC/Java [FLL+02] for Java programs
or Spec# [BLS05] for C# programs.

1http://www.cl.cam.ac.uk/research/hvg/Isabelle/
2http://coq.inria.fr/

61

http://www.cl.cam.ac.uk/research/hvg/Isabelle/
http://coq.inria.fr/

4. CONCLUSION

62

Bibliography

[BLS05] M. Barnett, K. Leino, and W. Schulte. The spec# programming system: An
overview. Construction and Analysis of Safe, Secure, and Interoperable Smart De-
vices, pages 49–69, 2005.

[Bro07] S. Brookes. A semantics for concurrent separation logic. Theoretical Computer
Science, 375(1-3):227–270, 2007.

[CES09] E.M. Clarke, E.A. Emerson, and J. Sifakis. Model checking: algorithmic veri-
fication and debugging. Communications of the ACM, 52(11):74–84, 2009.

[Chu40] A. Church. A formulation of the simple theory of types. The Journal of Symbolic
Logic, 5(2):56–68, 1940.

[CJ07] J.W. Coleman and C.B. Jones. A structural proof of the soundness of re-
ly/guarantee rules. Journal of Logic and Computation, 17(4):807–841, 2007.

[FLL+02] C. Flanagan, K.R.M. Leino, M. Lillibridge, G. Nelson, J.B. Saxe, and R. Stata.
Extended static checking for java. In Proceedings of the 2002 ACM SIGPLAN
Conference on Programming Language Design and Implementation (PLDI’02), vol-
ume 37, pages 234–245. ACM, 2002.

[Flo67] R.W. Floyd. Assigning meanings to programs. Mathematical Aspects of Com-
puter Science, 19:19–31, 1967.

[GCPV09] A. Gotsman, B. Cook, M. Parkinson, and V. Vafeiadis. Proving that non-
blocking algorithms don’t block. In Proceedings of the 36th ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages (POPL’09), vol-
ume 44, pages 16–28. ACM, 2009.

[Hoa69] C. A. R. Hoare. An axiomatic basis for computer programming. Communica-
tions of the ACM, 12(10):576–580, October 1969.

[HS08] Maurice Herlihy and Nir Shavit. The art of multiprocessor programming. Morgan
Kaufmann, February 2008.

63

BIBLIOGRAPHY

[Jon90] C.B. Jones. Systematic software development using VDM, volume 2. Prentice
Hall, 1990.

[O’H07] P.W. O’Hearn. Resources, concurrency, and local reasoning. Theoretical Com-
puter Science, 375(1-3):271–307, 2007.

[Plo04] G. Plotkin. The origins of structural operational semantics. Journal of Logic and
Algebraic Programming, 60-61(0):3–15, 2004.

[Rey02] J.C. Reynolds. Separation logic: A logic for shared mutable data structures. In
Proceedings of the 17th IEEE Symposium on Logic in Computer Science (LICS’02),
pages 55–74. IEEE Computer Society, 2002.

[Vaf07] V. Vafeiadis. Modular fine-grained concurrency verification. PhD thesis, PhD
thesis, University of Cambridge, UK, 2007.

[Vaf11] V. Vafeiadis. Concurrent separation logic and operational semantics. Electronic
Notes in Theoretical Computer Science, 276:335–351, 2011.

[Win93] Glynn Winskel. The Formal Semantics of Programming Languages: An Introduc-
tion. MIT Press, February 1993.

64

	Introduction
	Context and motivation
	Problem description
	Proposed solution
	Main contributions
	Outline

	Related work
	Hoare logic
	Separation logic
	Concurrent separation logic
	Rely-guarantee reasoning
	RGSep

	Proof system for lock-free concurrency
	Programs
	Program Syntax
	Operational Semantics

	Assertions
	Assertion Syntax
	Validity

	Inference Rules
	Rules
	Soundness

	Examples
	Counter
	List

	Conclusion
	Summary
	Future Work

