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Abstract. 

To solve the problem of indexing collections with diverse text documents, image documents, or 
documents with both text and images, one needs to develop a model that supports heterogeneous types 
of documents. In this paper, we show how information theory supplies us with the tools necessary to 
develop a unique model for text, image, and text/image retrieval. In our approach, for each possible 
query keyword we estimate a maximum entropy model based on exclusively continuous features that were 
pre-processed. The unique continuous feature-space of text and visual data is constructed by using a 
minimum description length criterion to find the optimal feature-space representation (optimal from an 
information theory point of view). We evaluate our approach in three experiments: only text retrieval, 
only image retrieval, and text combined with image retrieval. 

1 Introduction 
Demand for techniques that handle both text and image based documents is increasing with the wide 

spread of search applications. It is impossible to conceive nowadays a world without systems that allow us 

to search for specific news articles, scientific papers, or information in general. Users want more: they 

want to submit the same query to search for text documents, visual documents, or documents with both 

media, e.g., photographs with captions, video shots (key-frames and speech). To achieve this, a new breed 

of information retrieval models is required: one that seamlessly integrates heterogeneous data. Thus, in 

this thesis we assume that in any given collection D  of N  multimedia documents  

 { }1 2, , ..., Nd d d=D , (1) 

each document is characterized by a vector 

 ( ), , ,j j j j
T V Wd d d d=  (2) 

composed by a feature vector Td  describing the text part of the document, a feature vector Vd  

describing the visual part of the document, and a keyword vector Wd  describing the semantics of the 

document. Text based features such as bag-of-word, part-of-speech and named entities, and low-level 
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visual features such as texture, colour and shape are widely studied, and several algorithms exist to extract 

these types of low-level feature vectors. Keyword features representing multimedia information have a 

less consensual solution because of the ambiguity and subjectivity of the information that they try to 

describe – the semantic content of a multimedia document. The semantic description of multimedia 

information, the feature vector Wd , is the core topic of this thesis. To describe the semantics of 

multimedia information we define the set  

 { }1,..., Lw w=W  (3) 

as a vocabulary of L  keywords. These keywords are linguistic representations of abstract or concrete 

concepts that we want to detect in multimedia documents. The feature vector Wd  is formally defined as 

 ( ),1 ,2 ,, , ...,j j j j
W W W W Ld d d d=  (4) 

where each component ,
j
W td  is a score indicating the confidence that keyword tw  is present in that 

particular document. The concepts may not be explicitly present in multimedia information, methods are 

required to compute the likelihood that the keyword is actually present in the multimedia document. 

Equation (2) shows us the other information that we have about documents: text and visual feature. 

Thus, to compute the components of the keyword vector j
Wd  we shall use text and visual feature data. 

This leads us to the definition of each component of the keyword vector as 

 ( ), 1 | ,j j j j
W t t T Vd p y d d= = , (5) 

where the random variable { }1, 0j
ty =  indicates the presence/not-presence of keyword tw  on 

document jd  given its text feature vector j
Td  and visual feature vector j

Vd . This enables the semantic 

indexing of multimedia content which allows users to submit the same query to search for text documents, visual 

documents, or documents with both media, e.g., photographs with captions, video shots (key-frames and speech). Equation 

(2) integrates heterogeneous representations of a multimedia document (text, image and semantic) and 

Equation (5) will make multimedia information searchable with the same type of queries for all type of 

media. 

In this paper we address the problem of estimating a statistical model for Equation (5). We shall 
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propose a statistical framework that can simultaneously model text-only documents, image-only 

documents, and documents with both text and images. 

 

 

 

 

2 An Information-Theoretic Framework 

Our first objective is to compute the components of keyword feature vectors Wd  representing the 

semantics of multimedia documents. For this we will estimate and select a model tβ ∈ Θ , from a set Θ  

of candidate models, that best represents the keyword tw  in terms of text data and visual data. We omit 

model tβ  of keyword tw  from Equation (5) for notational simplicity. The expression can now be written 

as: 

 ( ), 1 | , ,j j j j
W t t T V td p y d d β= =  (6) 

The statistical model tβ ∈ Θ  can assume many forms (e.g., nearest neighbour, neural networks, linear 

models, support vector machines) according to the family of algorithms and to the complexity of the 

specific algorithm within a particular family of algorithms. The choice of the family of algorithms is done 

by examining the requirements that multimedia information retrieval applications face in a real world 

scenario: 

 Arbitrary addition and removal of keywords 

 Easy update of existing keyword models with new training data 

 Seamless integration of heterogeneous types of data 

 Computationally efficient indexing of multimedia information 

 Good retrieval effectiveness 
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The first two requirements concern an important practical aspect in large-scale multimedia indexes – 

the integrity of the index when keyword models are modified. When a keyword model is modified (added, 

removed or updated) the index can be affected in two ways: if keyword models are dependent then the 

entire index becomes obsolete; if keyword models are independent then only the part of the index 

concerning that keyword becomes obsolete. This leads to a solution where keyword models are 

independent so that a modification in one keyword model will have a minor influence on the indexes. 

Thus, presence of keywords shall be represented by Bernoulli random variables 

 ( )~ Bernoullit ty p , (7) 

where tp  is the probability of keyword tw . 

The remaining three requirements can be difficult to accommodate in a unique model: support of 

multi-modal information, be able to quickly index new multimedia content and to achieve a good 

accuracy. When modelling multi-modal keywords, one has to deal with both dense feature spaces and 

sparse features spaces. On one hand visual feature data can be very dense making its modelling difficult 

due to the irregular frontiers caused by concept cross-interference. Expanding the original feature space 

into higher-dimensional ones results in a sparser feature space where the modelling of the data can be 

made easier. On the other hand, text feature spaces are typically too sparse making its modelling difficult 

because there is not enough support data to estimate the details of concept models. In these situations we 

have to compress the feature space into a lower dimensional space where data is compressed into a more 

dense space. These transformations of the original feature space into a space where the data is optimally 

distributed is represented as 

 ( ) ( ) ( )( )T VF , F , Fj j j j
T V T Vd d d d= , (8) 

where ( )TF j
Td  correspond to the text data transformation and ( )VF j

Vd  correspond to the visual 

data transformation. This renders the final expression for the components of keyword feature vectors as 

 ( )( ), 1 | F , ,j j j j
W t t T V td p y d d β= = . (9) 

The transformation of multimedia document features only need to be computed once for all keyword 

models, in other words, the transformation is independent of the keyword models. The interesting 
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implication of this fact is that it can reduce the indexing computational complexity: because the 

transformation generates a high-dimensional space, one can limit the keyword model search space Θ  to 

the family of linear models which have a very low computational complexity in the classification phase 

(but not necessarily in the learning phase). Besides the low computational complexity, linear models offer 

other interesting advantages: support of high-dimensional data (easy integration of heterogeneous data), 

naturally embedded background knowledge in the form of priors (ideal for keyword model update) and 

good accuracy (retrieval effectiveness). 

In the remainder of Chapter 4 I will present and propose ( )TF Td  and ( )VF Vd  the transformations 

of visual and text data. Chapter 5 presents several linear models tβ  to represent keywords. 

3 Related Work 
In text retrieval the search process is triggered by a text query that can be compared directly to the 

corpus of the documents in the collection. Since we want to offer a common query interface for both text 

and images we need to define a common vocabulary of keywords to query all possible types of 

documents. Therefore the present work is related to text categorization, image annotation and 

multimodal content annotation. We will now look at these three areas with a view to seamlessly integrate 

text and image data on the same framework. 

Text categorization models pre-process data by removing stop-words and rare words, stemming, and 

finally term-weighting. Due to the high-dimensional feature space of text data most text categorization 

algorithms are linear models such as naïve Bayes [28], maximum entropy [30], Support Vector Machines 

[19], regularized linear models [46], and Linear Least Squares Fit [42]. Joachims [19] applies SVMs directly 

to the text terms. Text is ideal for applying SVMs without the need of a kernel function because data is 

already sparse and high-dimensional. Linear models fitted by least squares such as the one by Yang et. al 

[42] offer good precision, and in particular regularized linear methods, such as the one we propose and 

the one by Zhang and Oles [46], perform similarly to SVMs, with the advantage of yielding a probability 

density model. The maximum entropy classification model proposed by Nigam [30] defines a set of 

features that are dependent on the class being evaluated while we use a unique set of features for all 

keywords. The proposed maximum entropy framework has the same characteristics and performance of 
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linear models (logistic regression, least squares) with the crucial advantage that while these approaches 

have no automatic mechanism to select a vocabulary size we use the minimum description length 

principle to select its optimal size. 

Yang [41], and Yang and Liu [43] have compared a number of text classification algorithms and 

reported their performances on different text collections. Their results indicate that k-Nearest Neighbour, 

SVMs, and LLSF are the best classifiers. Note that nearest neighbour approaches have certain 

characteristics (see [14]) that make them computationally too complex to handle large-scale indexing. 

The simplest image annotation models deploy a traditional multi-class supervised learning model and 

learn the class-conditional probability density distribution of each keyword w  given its training data x . 

Bayes law is used to model ( )|p x w , the features data density distribution of a given keyword. Several 

techniques to model ( )|p x w  with different types of probability density distributions have been 

proposed: Yavlinsky et al. [45] deployed a nonparametric distribution; Carneiro and Vasconcelos [7] a 

semi-parametric density estimation; Westerveld and de Vries [39] a finite-mixture of Gaussians; while 

Vailaya et al. [38] apply a vector quantization technique. Density based approaches are among the most 

successful ones. However, density distributions are not adequate for text because the density models do 

not get enough support from such sparse data. 

Other types of approaches are based on a translation model between keywords and images (global, 

tiles or regions). Inspired by automatic text translation research, Duygulu et al. [10] developed a method 

of annotating images with words. First, regions are created using a segmentation algorithm like 

normalised cuts. For each region, features are computed and then blobs are generated by clustering the 

image features for these regions across an image collection. The problem is then formulated as learning 

the correspondence between the discrete vocabulary of blobs and the image keywords. Following the 

same translation approach [11, 16, 21] have developed a series of translation models that use different 

models for keywords (multinomial/binomial) and images representations (hard clustered regions, soft 

clustered regions, tiles). 

Hierarchical models have also been used in image annotation such as Barnard and Forsyth’s [3] 

generative hierarchical aspect model inspired by a hierarchical clustering/aspect model. The data are 

assumed to be generated by a fixed hierarchy of nodes with the leaves of the hierarchy corresponding to 
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soft clusters. Blei and Jordan [6] propose the correspondence latent Dirichlet allocation model; a Bayesian 

model for capturing the relations between regions, words and latent variables. The exploitation of 

hierarchical structures (either of the data or of the parameters) increases the number of parameters 

(model complexity) to be estimated with the same amount of training data. 

Maximum entropy models have also been applied to image annotation [2, 17] and object recognition 

[22]. All these three approaches have specific features for each class (keywords in our case) which 

increases the complexity of the system. It is curious to note the large difference in precision results 

between [17] and [2], we believe that it is related to the lack of regularization and to a differing number of 

features. These approaches were not as successful as density estimation based models as maximum 

entropy works best in a high-dimensional sparse feature spaces. The proposed maximum entropy 

framework tackles this problem by expanding the feature space in a similar spirit to Hoffman’s 

probabilistic Latent Semantic Indexing [15]. 

These single-modality based approaches are far from our initial goal but by analysing them we can see 

which family of models can be used to simultaneously model text, image, and multi-modal content. Each 

modality captures different aspects of that same reality, thus carrying valuable information about each 

keyword of the vocabulary. The simplest approach to multi-modal analysis is to design a classifier per 

modality and combine the output of these classifiers. Westerveld, et al. [40] combine the visual model and 

the text model under the assumption that they are independent, thus the probabilities are simply 

multiplied. Naphade and Huang [29] model visual features with Gaussian Mixtures Models (GMM), audio 

features with Hidden Markov Models (HMM) and combine them in a Bayesian network. 

In multimedia documents the different modalities contain co-occurring patterns that are 

synchronised/related in a given way because they represent the same reality. Synchronization/relation and 

the strategy to combine the multi-modal patterns is a key point of the Semantic pathfinder system 

proposed by Snoek et al. [36, 37]. Their system uses a unique feature vector that concatenates a rich set of 

visual features, text features from different sources (ASR, OCR), and audio features. Three types of 

classifiers are available: logistic regression (which without regularization is known to over-fit [8]), Fisher 

linear discriminant, and SVMs (offering the best accuracy). The fusion of the different modalities is 

possible to be done at different levels and it is chosen by cross-validation for each concept. The extremely 
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high computational complexity required to compute the visual features and to iteratively select the best 

classifier, the best type of fusion, and the SVMs parameter optimization are serious drawbacks of this 

system. IBM’s Marvel system [1] has a similar architecture with different learning algorithms to analyse 

the semantics of multimedia content. These two approaches offer the best performance on the 

TRECVID2005 conference. Both approaches combine the high-dimensional sparse text features and the 

low-dimensional dense features on the same feature vector. This might represent a problem for the 

optimization procedure because the information present on each dimension can be very different. Ideally 

each dimension should contain the same amount of information and the data density/sparseness should 

be similar across the entire feature space. The first step of our framework aims at finding this optimal 

trade-off point by compressing the text feature space dimension and by expanding the visual feature 

space dimension. 

4 Optimal Data Representation 

The transformations ( )TF Td  and ( )VF Vd  change the representation of the original text and visual 

feature spaces. As mentioned, transformations ( )TF Td  and ( )VF Vd  will adopt specific strategies 

adequate to the characteristics of each type of data. However, in both cases there is the problem of 

selecting the optimal transformation from the large number of possible transformations and their varying 

complexities. In practice, the selection of the optimal transformation is equivalent to old questions like 

“how many text features?” and “how many visual clusters?” that are usually addressed by some heuristic method. 

In this section I shall formally address this problem. 

The proposed feature space transformations are inspired by information theory: the space 

transformation F  can be seen as a codebook composed by a set of T VM M M= +
 codewords 

representing the data space. Given the codebook of a feature space one is able to represent all samples of 

that feature space as a linear combination of keywords from that codebook. Information theory [9] 

provides us with a set of information measures that not only assess the amount of information that one 

single source of data contains, but also the amount of information that two (or more) sources of data 

have in common. Thus, we employ the minimum description length criterion [33], to infer the optimal 
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complexity TM  and VM  of each feature space transformation ( )TF Td  and ( )VF Vd . Note that I use 

the word “optimal” from an information theory point of view. The treatment of the model selection 

problem presented in this section is based on [14] and [25]. 

4.1 Assessing the Data Representation Error 
The process of changing the original feature-space representation into the new representation with a 

given candidate transformation F̂  has an associated error. If we represent F̂  as the estimated 

transformation, and G  as the lossless transformation that we are trying to estimate, we can compute the 

mean-squared deviation between the estimated model and the desired response as the error 

 
( ) ( ) ( )( )

( ) ( )( ) ( ) ( )

2

2 22

ˆErr E F

ˆ ˆ ˆE F F E F .e

d G d d

d G d E d dσ

⎡ ⎤= −⎢ ⎥
⎣ ⎦

⎡ ⎤ ⎡ ⎡ ⎤ ⎤= + − + −⎣ ⎦ ⎣ ⎣ ⎦ ⎦

D  (10) 

The first term is the variance of the modelled process and cannot be avoided. The second term 

measures the difference between the true mean of the process and the estimated mean. The third term is 

the variance of the estimated model around its mean. The above expression can be written as: 

 ( ) ( )( ) ( )( )2 2 ˆ ˆErr Bias F Variance Fed d dσ= + +D  (11) 

The more complex we make the candidate transformation F̂  the lower the bias but higher the 

variance. Equation (11) expresses the transformation bias-variance tradeoff: simple transformations can 

only represent the training data’s coarse details (high bias) causing a high prediction error (low variance) 

because the transformation ignores important aspects of the data structure; complex transformations can 

represent training data structures in great detail (lower bias) but the prediction error increases (in variance) 

because the transformation do not generalise to other data.  

The optimal transformation is the one that achieves the best generalization error on the new unseen 

samples. There are two types of methods to select the transformation that has the best generalization 

error: empirical methods use validation data different from the train data to assess the model 

generalization error on the test data, e.g., cross-validation and bootstrap; criteria based methods provide 

an estimate of the model generalization error on the test data based on the error on the training data and 

the complexity the model, e.g., Bayesian Information Criterion. The minimum description length criterion 
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is in the later group, and I chose it as the model selection criterion for feature space transformation. 

4.2 The MDL Principle 
Model selection is a widely studied subject, see [14], and the minimum description length (MDL) 

criterion is among the most common criteria of model selection. Rooted in information theory, the MDL 

principle was initially thought as a method to find the minimum number of bits required to transmit a 

particular message msg . To transmit this message a codebook cbk  such as Huffman coding can be used 

to compress the message. Thus, the total number of bits required to transmit the message is 

 ( ) ( ) ( )DL , DL | DLmsg cbk msg cbk cbk= + , (12) 

corresponding to the description length of the message msg  encoded with the codebook cbk  plus 

the description length of the codebook cbk . The MDL principle says that the optimal trade-off between 

these two quantities is achieved with the codebook mincbk  that minimizes the above expression. The 

minimum description length is written as 

 ( ) ( ) ( )min minMDL DL | DLmsg msg cbk cbk= + , (13) 

where mincbk  is the optimal codebook that allows the message msg  to be transmitted with the 

minimum number of bits. 

The relation between the MDL criterion and the problem of model selection is straightforward: it 

assesses the trade-off between the data likelihood (the message) under a given model (the codebook) and 

the complexity of that model. In the problem we are addressing, the data D  will be transformed into a 

new feature-space by a transformation F̂ . Hence, Equation (12) is written as the sum of the likelihood of 

the data D  on the new feature space and the complexity of the feature-space transformation F̂ . 

Formally, we have 

 ( ) ( )ˆ ˆDL F log | F log
2i i

d

npars
, p d N

∈

= − + ⋅∑
D

D , (14) 

where npars  is the number of parameters of the transformation F̂ , and N  is the number of samples 

in the training dataset. Hence, the MDL criterion is designed “to achieve the best compromise between likelihood 

and … complexity relative to the sample size”, [4]. Finally, the optimal feature-space transformation is the one 
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that minimizes Equation (14), which results in 

 ( )
F̂

ˆF arg min DL F,= D . (15) 

The MDL criterion provides an estimate of the model error on the test data. Note that it is not an 

absolute estimate – it is only relative among candidate models. To evaluate the set Θ  of candidate models 

and to better assess the characteristics of each model relatively to others we can compute the posterior 

probability of each model, 

 ( )
( )

( )

n
1

DL F
2

1
DL F

2
1

F |
i

n

i

e
P

e

−

−Θ

=

=

∑
D . (16) 

The minimum description length approach is formally identical to the Bayesian Information Criterion 

but is motivated from a Bayesian perspective, see [25]. 

4.3 Dense Spaces Transformations 
Some of the input feature spaces (depending on its media type) can be very dense making its 

modelling difficult due to cross-interference between classes. Expanding the original feature space into 

higher-dimensional ones results in a sparser feature space where the modelling of the data can be easier. 

This technique is applied by many related methods such as kernels. The discussion section of the next 

chapter will discuss these relationships. 

The low-level visual features that I use are dense and low-dimensional: hence, keyword data may 

overlap thereby increasing the cross-interference. This means that not only the discrimination between 

keywords is difficult but also the estimation of a density model is less effective due to keyword data 

overlapping. One solution is to expand the original feature space into a higher-dimensional feature space 

where keywords data overlap is minimal. Thus, we define FV  as the transformation that increases the 

number of dimensions of a dense space with m  dimensions into an optimal space with Vk  dimensions 

 ( )
( )

( )

,1 ,1 ,

V ,1 ,

,1 ,,

f ,...,

F ,..., ,

f , ...,
V

V V V m

V V m V

V V mV k

d d

d d k m

d d

⎡ ⎤
⎢ ⎥
⎢ ⎥

= ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

. (17) 

In other words, for an input feature space with m  dimensions the transformation ( ),1 ,F ,...,V V V md d  
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generates a Vk  dimensional feature space with Vk m , where each dimension i  of the new feature 

space corresponds to the function ( ), ,1 ,f ,...,V i V V md d . The optimal number of such functions will be 

selected by the MDL principle and the method to estimate the functions is defined next. 

4.3.1 Visual Features Pre-Processing 

The feature processing step normalises the features and creates smaller-dimensional subspaces from 

the original feature-spaces. The low-level visual features that we use in our implementation are: 

 Marginal HSV distribution moments: this 12 dimensional colour feature captures the 4 central 

moments of each colour component distribution. I use 3 subspaces corresponding to the 3 

colour components with 4 dimensions each subspace. 

 Gabor texture: this 16 dimensional texture feature captures the frequency response (mean and 

variance) of a bank of filters at different scales and orientations. I use 8 subspaces corresponding 

to each filter response of 2 dimensions each. 

 Tamura texture: this 3 dimensional texture feature is composed of the of image’s coarseness, 

contrast and directionality. 

I tiled the images in 3 by 3 parts before extracting the low-level features. This has two advantages: it 

adds some locality information and it greatly increases the amount of data used to learn the generic 

codebook. 

4.3.2 Visual Transformation: Hierarchical EM 

The original visual feature vector ( ),1 ,,...,V V V md d d=  is composed of several low-level visual 

features with a total of m  dimensions. These m  dimensions span the J  visual feature types (e.g., 

marginal HSV colour moments, Gabor filters and Tamura), i.e. the sum of the number of dimensions of 

each one of the J  visual feature space equals m . This implies that each visual feature type j  is 

transformed individually by the corresponding ( )V, ,F j V jd  and the output is concatenated into the vector 
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 ( )
( )

( )

,1 ,1

V

, ,

F

F

F

V V

V

V j V j

d

d

d

⎡ ⎤
⎢ ⎥
⎢ ⎥= ⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

, (18) 

where the dimensionality of the final VF  transformation is the sum of the dimensionality of each 

individual visual feature space transformation V,F j , i.e., 

 ,1 , ,... ...V V V j V Jk k k k= + + + + . (19) 

The form of visual feature space transformations V,F j  is based on Gaussian mixture density models. 

The components of a GMM capture the different modes of the problem’s data. I propose to use each 

component as a dimension of the optimal feature space where modes are split and well separated thereby 

creating a feature space where keywords can be modelled with a simple and low cost algorithm. 

The transformations are defined under the assumption that subspaces are independent. This allows us 

to process each visual feature subspace j  individually and model it as a Gaussian mixture model (GMM) 

 ( ) ( ) ( )
,

2
, , ,

1

| | ,
V jk

V V j m j V m j m j
m

p d p d p dθ α μ σ
=

= = ∑ , (20) 

where Vd  is the low-level feature vector, jθ  represents the set of parameters of the model of the j

visual feature subspace: the number ,V jk  of Gaussians components, the complete set of model 

parameters with means ,m jμ , covariances 2
,m jσ , and component priors ,m jα . The component priors have 

the convexity constraint 1, ,,..., 0
Vj k jα α ≥  and ,

,1
1V jk

m jm
α

=
=∑ . Thus, for each visual feature space j , 

we have the Gaussian mixture model with ,V jk  components which now defines the transformation, 

 ( )
( )

( )
,

2
1, 1, 1,

V,

2
, , ,

| ,

F

| ,
V j V V

j V j j

j V

k j V k j k j

p d

d

p d

α μ σ

α μ σ

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

, (21) 

where each dimension corresponds to a component of the mixture model. The critical question that 

arises from the above expression is that one does not know the optimal complexity of the GMM in 

advance. The complexity is equivalent to the number of parameters, which in our case is proportional to 
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the number of mixture components ,V jk : 

 
( )

, , ,

dim dim 1
dim

2
j j

j V j j V j V jnpars k k k
⋅ +

= + ⋅ + , (22) 

where dimj  is the dimensionality of the visual subspace j . Note the relation between this equation 

and Equation (14). To address the problem of finding the ideal complexity we implemented a hierarchical 

EM algorithm that starts with a large number of components and progressively creates different GMM 

models with a decreasing number of components. For example, if it starts with 10 random components 

the EM will fit those 10 GMM components, store that model, deletes the weakest component and restarts 

the fitting with the previously 9 fitted components that will compensate the deleted component. The 

process is repeated until one component remains. In the end the algorithm generated 10 mixtures that are 

then assessed with the MDL criterion and the best one is selected. The implemented hierarchical EM 

adopts several other strategies that we will describe next. 

4.3.2.1 Detailed Hierarchical EM 

The hierarchical EM algorithm was implemented in C++ and it is based on the one proposed by 

Figueiredo and Jain [12]: it follows the component-wise EM algorithm with embedded component 

elimination.. The mixture fitting algorithm presents a series of strategies that avoids some of the EM 

algorithm’s drawbacks: sensitivity to initialization, possible convergence to the boundary of the parameter 

space and the estimation of different feature importance. 

The algorithm starts with a number of components that is much larger than the real number and 

gradually eliminates the components that start to get few support data (singularities). This avoids the 

initialization problem of EM since the algorithm only produce mixtures with components that have 

enough support data. Component stability is checked by assessing its determinant (close to singularity) 

and its prior (few support data). If one of these two conditions is not met, we delete the component and 

continue with the remaining ones. This strategy can cause a problem when the initial number of 

components is too large: no component receives enough initial support causing the deletion of all 

components. To avoid this situation, component parameters are updated sequentially and not 

simultaneously as in standard EM. That is: first update component 1 parameters ( )2
1 1,μ σ , then 
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recompute all posteriors, update component 2 parameters ( )2
2 2,μ σ , recompute all posteriors, and so on. 

After finding a good fit for a GMM with k  components, the algorithm deletes the weakest 

component and restarts itself with 1k −  Gaussians and repeats the process until a minimum number of 

components is reached. Each fitted GMM is stored and in the end the set of fitted models describe the 

feature subspace at different levels of granularities. 

The hierarchical EM algorithm for Gaussian mixture models addresses the objective of finding the 

optimal feature space by (1) creating transformations with different complexities and (2) splitting data 

modes into different space dimensions, hence enabling the application of low-cost keyword modelling 

algorithms. 

4.3.3 Experiments 

Experiments assessed the behaviour of the hierarchical EM algorithm on a real world photographic 

image collection. The collection is a 4,500 images subset of the widely used Corel CDs Stock Photos. 

More details regarding this collection are provided in Chapter 2. The visual features used in these 

experiments are the Gabor texture features, the Tamura texture features and the marginal HSV colour 

moments as described in Section 4.4.1. 

The evolution of the model likelihood and complexity with a decreasing number of components are 

the two most important characteristics of the hierarchical EM that I wish to study. The algorithm is 

applied to individual visual feature subspaces. Each GMM model starts with , 200V jk =  Gaussians, and 

the algorithm fits models with a decreasing number of components until a minimum number of 

Gaussians of 1. 

One of the assumptions of the minimum description length principle is that the number of samples is 

infinite. Thus, to increase the accuracy of the MDL criterion we created 3 by 3 tiles of the training images. 

This increased the number of training samples by a factor of 9, which greatly improves the quality of the 

produced GMMs because of the existence of more data to support the model parameters. 

4.3.4 Results and Discussion 

An advantage of the chosen algorithm to find the optimal transformation is its natural ability to 

generate a series of transformations with different levels of complexities. This allows assessing different 
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GMMs with respect to the trade-off between decreasing levels of granularity and their fit to the data 

likelihood.  

 
Figure 1. Model selection for the Gabor filters features (Corel5000). 

Figure 1 illustrates the output of a GMM model fitting to the output of one Gabor filter. The 

minimum description length curve (blue line) shows the trade-off between the models complexity (green 

line) and the models likelihood (red line). Note that we are actually plotting –log-likelihood for better 

visualization and comparison. The models likelihood curve is quite stable for models with a large number 

of components (above 40). On the other extreme of the curve one can see that models with fewer than 

40 components the likelihood start to exhibit a poorer performance. The small glitches in the likelihood 

curve are the result of component deletion from a particularly good fit (more noticeable between 10 and 

20 components). This effect is more visible when a component has been deleted from a model with a low 

number of components because the remaining ones are not enough to cover the data that was supporting 

the deleted one. The model complexity curve shows the penalty increasing linearly with the number of 

components according to Equation (22).  

The most important curve of this graph is the minimum description length curve. At the beginning it 

closely follows the likelihood curve because the complexity cost is low. As the model complexity increases 

the model likelihood also becomes better but no longer at the same rate as initially (less than 10 

components). This causes the model penalty to take a bigger part in the MDL formula, and after 20 
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components the MDL criterion indicates that those models are not better than previous ones. Thus, 

according to the MDL criterion the optimal transformation for this Gabor filter is the model with 18 

components. 

 
Figure 2. Model selection for the Tamura features (Corel5000). 

The selection of the transformation of the Tamura visual texture features is illustrated in Figure 2. The 

behaviour is the same as for the Gabor features with the only difference that the change from the 

descending part of the MDL curve to the ascending part is not so pronounced. This indicates that the 

optimal model, , 39V jk = , is not so distinct from the neighbouring models with ,V jk  between 30 and 

50. 

Finally, Figure 3 illustrates the optimal transformation selection experiments for a colour channel of 

the marginal HSV colour moments histograms. The behaviour is again similar to the previous ones and 

the optimal model, , 12V jk = , is quite distinct from the surrounding neighbours. Note that the 

likelihood curve glitches are again present in this feature space which is an indication that the GMMs are 

well fitted to the data with a low number of components and that a deletion of a component leaves 

uncovered data causing the likelihood jitter. 
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Figure 3. Model selection for the marginal moments of HSV colour histogram 

features (Corel5000). 

4.4 Sparse Spaces Transformations 
Text features are high-dimensional sparse data, which pose some difficulties to parametric generative 

models because each parameter receives little data support. In discriminative models one observes over-

fitting effects because the data representation might be too optimistic by leaving out a lot of the 

underlying data structure information. High-dimensional sparse data must be compressed into a lower 

dimensional space to ease the application of generative models. This optimal data representation is 

achieved with a transformation function defined as  

 ( )
( )

( )

,1 ,1 ,

T ,1 ,

,1 ,,

f , ...,

F ,..., ,

f , ...,
T

T T T n

T T n T

T T nT k

d d

d d k n

d d

⎡ ⎤
⎢ ⎥
⎢ ⎥

= ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

, (23) 

where n  is the number of dimensions of the original sparse space, and Tk  is the number of 

dimensions of the resulting optimal feature space.  

In other words, the sparse spaces transformation ( )T ,1 ,F ,...,T T nd d  receives as input a feature space 

with n  dimensions and generates a Tk  dimensional feature space, where each dimension i  of the new 

optimal feature space corresponds to the function ( ), ,1 ,f ,...,T i T T nd d . The optimal number of such 

functions will be selected by the MDL principle, and the method to estimate the functions is defined next. 
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4.4.1 Text Feature Pre-Processing 

The text part of a document is represented by the feature vector ( ),1 ,, ...,T T T nd d d=  obtained from 

the text corpus of each document by applying several standard text processing techniques [41]: stop 

words are first removed to eliminate redundant information, and rare words are also removed to avoid 

over-fitting [19]. After this, the Porter stemmer [32] reduces words to their morphological root, which we 

call term. Finally, we discard the term sequence information and use a bag-of-words approach. 

These text pre-processing techniques result in a feature vector ( ),1 ,, ...,T T T nd d d= , where each ,T id  

is the number of occurrences of term it  in document d . 

4.4.2 Text Codebook by Feature Selection 

To reduce the number of dimensions in a sparse feature space we rank terms 1,..., nt t  by their 

importance to the modelling task and select the most important ones. The information gain criterion 

ranks the text terms by their importance, and the number of text terms is selected by the minimum 

description length. The criterion to rank the terms is the average mutual information technique, also 

referred to as information gain [41], expressed as 

 ( ) ( )
1

1
IG MU ,

L

i j i
j

t y t
L =

= ∑ , (24) 

where it  is term i , and jy  indicates the presence of keyword jw . The information gain criterion is 

the average of the mutual information between each term and all keywords. Thus, one can see it as the 

mutual information between a term it  and the keyword vocabulary. 

The mutual information criterion assess the common entropy between a keyword entropy ( )jH y  

and the keyword entropy given a term it , ( )|j iH y t . Formally the mutual information criterion is 

defined as 

 ( ) ( ) ( )
( ) ( ){ } ,

,
,

0;1 ,

,
MU , , log

j T i

j T i
j i j T i

y d j T i

p y d
y t p y d

p y p d=

= ∑ ∑ , (25) 

where ,T id  is the number of occurrences of term it  in document d . Yang and Pedersen [44] and 
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Forman [13] have shown experimentally that this is one of the best criteria for feature selection. A 

document d  is then represented by Tk  text terms as the mixture 

 
( ) ( ) ,

1 1

|
T Tk k

T i
i i i

i i

d
p d p t d

d
α α

= =

= =∑ ∑ , (26) 

where ,T id  is number of occurrences of term it  in document d . The parameters of the above 

mixture are the priors iα  of corresponding to term it . This results in a total number of parameters 

 Tnpars k= . (27) 

A list of models is constructed by progressively adding terms to each model according to the order 

established by the information gain criterion. In this particular case of sparse text features the complexity 

of the transformation is equivalent to the number Tk  of text terms. The application of the MDL criterion 

in Equation (14) is now straightforward. 

Finally, terms are weighted by their inverse document frequency, resulting in the feature space 

transformation function 

 ( ) ( )
( )( ), ,

,

f log
DF

T i T T r i
T r i

N
d d

d

⎛ ⎞⎟⎜ ⎟⎜ ⎟= − ⋅ ⎜ ⎟⎜ ⎟⎜ ⎟⎟⎜⎝ ⎠
, (28) 

where N  is the number of documents in the collection, ( ),DF T id  is the number of documents 

containing the term it , and ( )r i  is a permutation function that returns the i th text term of the 

information gain rank. 

4.4.3 Experiments 

Experiments assessed the behaviour of the information gain criterion on the Reuters news collection 

described in Chapter 2. The text corpus was processed as described in Section 4.5.1 to obtain the text 

terms, and models are constructed by adding terms to the model according to the information gain rank. 

4.4.4 Results and Discussion 

The evolution of the model likelihood and complexity with an increasing number of terms is again the 

most important characteristic that we wish to study. Figure 4 illustrates the model likelihood (red line) 
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versus the model complexity (green line) and the minimum description length criterion as a measure of 

their trade-off. Note that the graph is actually showing the –log-likelihood for easier visualization and 

comparison. 

Figure 4 illustrates the improving likelihood as new terms are added to the feature space. The curve 

smoothness observed in this graph is due to the scale of the x-axis (100 times greater than in the images 

case) and to the fact that neighbouring terms have similar information value. 

The problem of selecting the dimensionality of the optimal feature space is again answered by the 

minimum description length criterion that selects a feature space with 972 dimensions. It is interesting to 

notice that the MDL selects a low dimensionality reflecting a model with lower complexity than others 

with better likelihood but higher complexity. Note that if we had more samples (in this dataset the 

number of samples is limited to 7,770) we would be able to select a more complex model (remember that 

the MDL criterion assumes an infinite number of samples). 

 
Figure 4. Model selection for the bag-of-word features (Reuters). 

Moreover, information gain is a feature selection method that ranks terms by their discriminative 

characteristics and does not actually try to faithfully replicate the data characteristics. This is in contrast 

with the hierarchical EM method used for the dense feature spaces that is a pure generative approach. 

Hence, when adding new terms to the optimal feature space, we are directly affecting the classification 

performance. 
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5 Keyword Models  
Modelling keywords in terms of multimedia information is the main objective of the first part of this 

thesis. Keywords are present in multimedia documents according to complex patterns that reflect their 

dependence and correlations. Different probability distributions can be applied to capture this 

information, also Bayesian networks can be used to define complex distributions that try to represent 

complex keyword interactions. This thesis opted to assume nothing about keyword interactions, and we 

define keywords as Bernoulli random variables with 

 ( ) ( )1 1 0 tw
t tp y p y= = − = =

D

D
, (29) 

where ty  is a particular keyword, D  is the size of the training collection and 
tw

D  is the number 

of documents in the training collection containing keyword tw . In the previous chapter we proposed a 

probabilistic framework 

 ( )( ) { }| F , , 0,1t t tp y d yβ = , (30) 

where ( )F d  is a visual and text data transformation that creates a unique multi-modal feature space, 

and a keyword tw  is represented in that feature space by a model tβ . We will ignore the feature type and 

use a plain vector to represent the low-level features of a document as 

 ( ) ( ) ( )( ) ( )T V 1F F , F , ...,j j j
T V Md d d f f= = . (31) 

One of the goals of the proposed ( )F d  transformation is the creation of an optimal feature space, 

where simple and scalable keyword models tβ  can be used. This chapter will propose the application of 

linear models to address this particular problem. The setting is a typical supervised learning problem, 

where documents are labelled with the keywords that are present in that document. Thus, we define  

 ( )1 , ..., ,j j j
Ly y y=  (32) 

as the binary vector of keyword annotations of document j , where each j
ty  indicates the presence of 

keyword tw  in document j  if 1j
ty = . Note that a perfect classifier would have ( ) 0Wy d− =  on a 



 

23 

new document. The annotations vector jy  is used to estimate keyword models and to test the 

effectiveness of the computed models. 

5.1 Keyword Baseline Models 
The first linear models that we shall present in this section are simple but effective models that can be 

applied in the multi-modal feature space [26]. The advantage of both Rocchio classifier and naïve Bayes 

classifier is that they can be computed analytically. 

5.1.1 Rocchio Classifier 

Rocchio classifier was initially proposed as a relevance feedback algorithm to compute a query vector 

from a small set of positive and negative examples [34]. It can also be used for categorization tasks, e.g., 

[18]: a keyword tw  is represented as a vector tβ  in the multi-modal space, and the closer a document is 

to this vector the higher is the similarity between the document and the keyword. A keyword vector tβ  is 

computed as the average of the vectors of both relevant documents { }
tw

D and non-relevant documents 

{ }
tw

D\D , 

 

( )
( )

( )
( )

F F1 1
F F

w wt tt t

t
d dw w

d d

d d
β

∈ ∈

= −∑ ∑
D D\DD D\D

. (33) 

For retrieval scenarios, documents are ranked according to their proximity to the keyword vector. The 

cosine similarity measure has already proven to perform quite well in high-dimensional spaces: 

 

( )( ) ( )
( ) ( ) ( )

,1

2 2
,1 1

F
cos ,F

F

T
t i it i

t
M Mt

t i ii i

fd
d

d f

ββ
β

β β

=

= =

⋅
= ⋅ =

⋅

∑
∑ ∑

 (34) 

The Rocchio classifier is a simple classifier that has been widely used in the area of text information 

retrieval and, as we have shown, can also be applied to semantic-multimedia information retrieval. 

Moreover, this classifier is particularly useful for online learning scenarios and other interactive 

applications where the models need to be updated on-the-fly or the number of training examples are 

limited. 
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5.1.2 Naïve Bayes Model 

The naïve Bayes classifier assumes independence between feature dimensions and is the result of the 

direct application of Bayes’s law to classification tasks: 

 
( ) ( ) ( )

( )
11 ,..., | 1

1 | t M t
t

p y p d f f y
p y d

p d

= = =
= =  (35) 

The assumption that features if  are independent of each other in a document can be modelled by 

several different independent probability distributions. A distribution is chosen according to some 

constraints that we put on the independence assumptions. For example, if we assume that features if  can 

be modelled as the simple presence or absence in a document then we consider a binomial distribution. If 

we assume that features if  can be modelled as a discrete value to indicate the presence confidence in a 

document then we consider a multinomial distribution, see [28]. The binomial distribution over features 

if  would be too limiting; the multinomial distribution over features if  offers greater granularity to 

represent a feature value. 

One can compute the log-odds and classify a document with the keywords that have a value greater 

than zero: 

 

( )
( )

( )
( )

( ) ( )
( )1

1 | 1 | 1
log log | log

0 | 00 |

M
j t i t

i
it i tj

p w d p y p f y
M p f d

p y p f yp w d =

= = =
= +

= == ∑  (36) 

Formulating naïve Bayes in log-odds space has two advantages: it shows that naïve Bayes is a linear 

model and avoids decision thresholds in multi-categorization problems. In this case the keyword models 

become 

 

( )
( ),

| 1
log , 1,...,

| 0
i t

t i
i t

p f y
i M

p f y
β

=
= =

=
. (37)

 

5.2 Keywords as Logistic Regression Models 
Logistic regression is a statistical learning technique that has been applied to a great variety of fields, 

e.g., natural language processing [5], text classification [30], and image annotation [17]. In this section we 

employ a binomial logistic model to represent keywords in the multi-modal feature space. The expression 

of the binomial logistic regression is 
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 ( )( )
( )( )

1
1 | F ,

1 exp Ft t
t

p y d
d

β
β

= =
+ ⋅

 (38) 

The logistic regression model is also a linear model, which makes it a scalable and efficient solution for 

modelling keywords. The theory of Generalized Linear Models shows how to derive the logistic 

regression expression from a point of view of pure linear models and without making use of the log-odds 

as we did here. I shall develop this later in this chapter. 

5.2.1 Regularization 

As discussed by Nigan, Lafferty and McCallum [30] and Chen and Rosenfeld [8], logistic regression 

may suffer from over-fitting. This is usually because features are high-dimensional and sparse meaning 

that the regression coefficients can easily push the model density towards some particular training data 

points. Zhang and Oles [46] have also presented a study on the effect of different types of regularization 

on logistic regression. Their results indicate that with the adequate cost function (regularization), precision 

results are comparable to SVMs with the advantage of rendering a probabilistic density model. 

An efficient and well known method of tackling over-fitting is to set a prior on the regression 

coefficients. As suggested by Nigan, Lafferty and McCallum [30] and Chen and Rosenfeld [8] I use a 

Gaussian prior ξN  for the regression coefficients,  

 ( )2
* ~ ,ξ ξ ξβ μ σN  (39) 

with mean 0ξμ =
 and 2

ξσ  variance. The Gaussian prior imposes a cost on models *β  with large norms 

thus preventing optimization procedures from creating models that depend too much on a single feature 

space dimension. When introducing the Gaussian prior in the keyword model expression we obtain 

 ( ) ( ) ( )2 21 | , , 1 | , |t t t t tp y d p y d pξ ξβ σ β β σ= = = , (40) 

which we will now use in the maximum likelihood estimation. We will drop the variance 2
ξσ  of the 

Gaussian prior in our notation. 

5.2.2 Maximum Likelihood Estimation 

The log-likelihood function computes the sum of the log of the errors of each document in the 

collection D : 
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 ( ) ( )( ) ( )( )| log | F ,j j
t t t t

j

l p y d pβ β β
∈

= ∑
D

D  (41) 

For each keyword model the likelihood function tells us how well the model and those parameters 

represent the data. The model is estimated by finding the minimum of the likelihood function by taking 

the regression coefficients as variables: 

 ( )min |t l
β

β β= D  (42) 

For models where the solution can be found analytically, the computation of the regression 

coefficients is straightforward. In cases, where the analytical solution is not available typical numerical 

optimization algorithms are adequate. 

The regression coefficients need to be found by a numerical optimization algorithm that iteratively 

approaches a solution corresponding to a local minimum of the log-likelihood function. To find the 

minimum of the log-likelihood function ( )l β  with respect to β , I use the Newton-Raphson algorithm: 

 
( ) ( )12 old old

new old
T

l lβ β
β β

ββ β

−⎛ ⎞ ⎛ ⎞∂ ∂⎟ ⎟⎜ ⎜⎟ ⎟⎜ ⎜⎟ ⎟= − ⎜ ⎜⎟ ⎟⎜ ⎜⎟ ⎟∂∂ ∂⎜ ⎜⎟ ⎟⎝ ⎠ ⎝ ⎠
 (43) 

The first-order derivative matrix is a vector with M  elements corresponding to the dimension of the 

space resulting from the application of ( )F d  to the original data. The second-order derivative, the 

Hessian matrix, is a square-matrix with M M×  components. The Hessian matrix imposes a high 

computational complexity (both in time and space) on the parameter estimation algorithm. In multimedia 

information retrieval we use feature spaces with thousands of dimensions, meaning that the processing of 

the Hessian matrix is computationally too costly. For these reasons, we must use algorithms that are more 

suitable for such a large-scale problem. 

5.2.3 Large-Scale Model Computation 

When applying the Newton-Raphson algorithm to high-dimensional data the Hessian matrix often 

cannot be computed at a reasonable cost because it is too large and dense. Large scale Quasi-Newton 

methods are an adequate solution for our problem: instead of storing and computing the full Hessian 

matrix, these methods store a few vectors that represent approximations implicitly made in previous 

iterations of the algorithm. The L-BFGS algorithm (limited-memory Broyden-Fletcher-Goldfarb-Shanno) 
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is one of such algorithms, see [23] for details: “The main idea of this method is to use curvature information from 

only the most recent iterations to construct the Hessian approximation. Curvature information from earlier iterations, which 

is less likely to be relevant to the actual behaviour of the Hessian at the current iteration, is discarded in the interest of saving 

storage.” 

The L-BFGS algorithm iteratively evaluates the log-likelihood function and its gradient, and updates 

the regression coefficients and the Hessian approximation. For the binomial logistic regression the log-

likelihood function is 

 

( ) ( ) ( )( )( )( ) 2

2

F log 1 exp F ,

1
,

2

j

j j j
t t t t t

d

l y d d

ξ

β β β λβ

λ
σ

∈

= − + −

=

∑
D

 (44) 

where for each example jd  the variable j
ty  is 1 if the example contains the keyword tw and 0 

otherwise. ( )F jd  is the nonlinear space transformation of the document features. To minimize the log-

likelihood we need to use the gradient information to find the tβ  where the log-likelihood gradient is 

zero, i.e., 

 
( ) ( ) ( )( )( )0 F 1 | , F

j

t j j j j
t t t t

t d

l
d y p y d

β
β λβ

β ∈

∂
= = − = −

∂ ∑
D

. (45) 

These two last equations are the binomial logistic regression functions that the L-BFGS algorithm 

evaluates on each iteration to compute the tβ regression coefficients. 

We use the FORTRAN implementation provided by Liu and Nocedal [24] to estimate the parameters 

of both linear logistic models and log-linear models. It has been shown that L-BFGS is the best 

optimization procedure for both maximum entropy [27] and conditional random fields models [35]. For 

more details on the limited-memory BFGS algorithm see [31]. 

6 Evaluation 
The presented algorithms were evaluated with a retrieval setting on the Reuters-21578 collection, on a 

subset of the Corel Stock Photo CDs [10] and on a subset of the TRECVID2006 development data. 
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6.1 Collections 
The three collections used in this evaluation are described in more detail in Chapter 2. 

6.1.1 Reuters-21578 

This is a widely used text dataset which allows comparing our results with others in the literature. 

Each document is composed by a text corpus, a title (which we ignore), and labelled categories. This 

dataset has several possible splits and we have used the ModApte split which contains 9,603 training 

documents and 3,299 test documents. This is the same evaluation setup used in several other experiments 

[19, 28, 30, 46]. Terms appearing less than 3 times were removed. Only labels with at least 1 document on 

the training set and the test set were considered leaving us with 90 labels. After these steps we ended with 

7,770 labelled documents for training. 

6.1.2 Corel Images 

This dataset was compiled by Duygulu et al. [10] from a set of COREL Stock Photo CDs. The dataset 

has some visually similar concepts (jet, plane, Boeing), and some concepts have a limited number 

examples (10 or less). In their seminal paper, the authors acknowledge that fact and ignored the classes 

with these problems. In this paper we use the same setup as in [45], [7], [16], [21] and [11], which differs 

slightly from the one used in the dataset original paper, [10]. The retrieval evaluation scenario consists of 

a training set of 4,500 images and a test set of 500 images. Each image is annotated with 1-5 keywords 

from a vocabulary of 371 keywords. Only keywords with at least 2 images in the test set and training set 

each were evaluated, which reduced the number of vocabulary to 179 keywords. Retrieval lists have the 

same length as the test set, i.e. 500 items. 

6.1.3 TRECVID 

To test the similarity ranking on a multi-modal data we used the TRECVID2006 data: since only the 

training set is completely labelled, we randomly split the training English videos into 23,709 training 

documents and 12,054 test documents. We considered each document to be a key-frame plus the ASR 

text within a window of 6 seconds around that key-frame. Key-frames are annotated with the standard 

vocabulary of 39 keywords provided by NIST. 

6.2 Experiment Design 
To evaluate the proposed framework we deployed a retrieval experiment for all collections listed in the 
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previous section. The experiment methodology was as follows: 

1. For a given algorithm and a given a multi-modal feature space 

a. For each keyword in the considered collection 

i. Estimate the keyword model on the training set by applying a cross-validation 

with 5 folds and 10 value iterations, as suggested in [20], to determine the ideal 

Gaussian prior variance 2
ξσ  

ii. Compute the relevance of each test document 

iii. Rank all test documents by their relevance for the considered keyword 

iv. Use the collection relevance judgments to measure the retrieval effectiveness of 

the considered rank 

b. Repeat step a) for all keywords 

c. Compute the mean average precision 

2. Repeat for a different algorithm or a for different multi-modal feature space 
The above methodology was repeated for all linear models that we presented in this chapter and for 

different multi-modal feature spaces. We considered the Reuters-21578 collection, the Corel5000 

collection, the ASR part of the TRECVID2006, the key-frames of the TRECVID2006 and both key-

frames and text of the TRECVID2006 development data, which makes a total of five collections. 

6.3 Text-Only Models 
The text-only models experiments on the Reuters-21578 collection evaluated the sparse data 

processing part of our framework. The optimal feature space was created with the average mutual 

information criterion as described in Chapter 4. All presented linear models were used in the evaluation. 

6.3.1 Retrieval Effectiveness 

Experiments in the Reuters dataset were evaluated with mean average precision, Figure 5, mean 

precision at 20, Figure 6, and precision-recall curves, Figure 7. All results were obtained with a 972 

dimensional multi-modal feature space selected by the minimum description length criterion. 
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Figure 5. Reuters-21578 retrieval MAP evaluation. 

When comparing the naïve Bayes model to the logistic regression model, results confirm what one 

would expect: naïve Bayes performs much worse than logistic regression (24.3% MAP versus 49.0% 

MAP). However, it is a surprise to see that Rocchio classifier is actually comparable to logistic regression 

– it obtained 49.7%. This supports the hypothesis that Reuters data is structured in a single cluster shape.  

 
Figure 6. Reuters-21578 retrieval MP@20 evaluation. 

Another reason why the Rocchio classifier performs so well on this dataset is that from all three 

classifiers it is the one that uses the simplest assumptions about data (organized as a high-dimensional 

sphere). The implications are that it is less prone to over-fit on classes with few training examples, unlike 

logistic regression. However,  MP@20 values on Figure 5 show that logistic regression is actually more 

selective than Rocchio because it can do better on the top 20 retrieved documents: logistic regression 

obtained 39.3% while Rocchio obtained only 37.1%. precision-recall curves, Figure 7, offer a more 

detailed comparison of the models and confirm that logistic regression and Rocchio are very similar. 
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Figure 7. Precision-recall curve evaluation on the Reuters-21578. 

 
Figure 8. Retrieval precision for different space dimensions (text-only models). 

6.3.2 Model Complexity Analysis 

We also studied the effect of the optimal space dimensionality by measuring the MAP on different 

spaces. The different multi-modal feature spaces were obtained by progressively adding new terms 

according to the average mutual information criterion. Figure 8 shows that after some number of terms 

(space dimension) precision do not increase because the information carried by the new terms is already 

present in the previous ones. The graph confirms that Rocchio is consistently better than logistic 

regression. Note that the MDL point (972 terms) achieves a good trade-off between the model 

complexity and the model retrieval effectiveness. 

6.4 Image-Only Models 
The image-only models experiment on the Corel Images collection evaluated the dense data 

processing part of the framework. The multi-modal feature space was created with the hierarchical EM 
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concatenating different colour and texture representations. As before, we evaluated all linear models that 

we presented in this chapter. 

6.4.1 Retrieval Effectiveness 

We first applied the MDL criterion to select a multi-modal feature space and then ran the retrieval 

experiments for all linear models. The space selected by the MDL criterion has 2,989 dimensions. 

 
Figure 9. Corel retrieval MAP for different keyword models. 

The MAP measures shown in Figure 9 shows that the best performance is achieved by the logistic 

regression models with a 27.9%, followed by naïve Bayes with 24.3% and Rocchio with 21.9%. The 

MP@20 measures in Figure 10 show that both naïve Bayes and logistic regression are affected similarly. 

However, the Rocchio classifier is less selective as the decrease in retrieval accuracy shows (from 21.9% 

to 10.1%). Contrary to the Reuters collection, the more complex structure of Corel Images dataset has 

affected the performance of the Rocchio classifier. Thus, both naïve Bayes and, more specifically, logistic 

regression can better capture the structure of this data.  

The precision-recall curves in Figure 11 show that logistic regression is better than Rocchio and naïve 

Bayes across most of the recall area. 

Results on this collection are more in agreement with what one would expect from the complexity of 

each model. Naïve Bayes applies a Gaussian on each dimension of the feature space, which reveals to be a 

more accurate assumption than the single cluster assumption made by the Rocchio classifier. Finally, 

logistic regression can better capture the non-Gaussian patterns of the data and achieve a better 

performance. 
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Figure 10. Corel retrieval MP@20 for different keyword models. 

 
Figure 11. Precision-recall curves for different keyword models. 
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Figure 12. Retrieval precision for different space dimensions. 

6.5 Multi-Modal Models 
For the multi-modal models we proceeded in the same way as for the other single-medium 

experiments with the difference that we deployed single-media and multi-modal experiments to compare 

and analyse the information value of each modality. 

6.5.1 Retrieval Effectiveness 

We first applied the MDL criterion to select a multi-modal feature space and then ran the retrieval 

experiments for all linear models. The space selected by the MDL criterion has 5,670 dimensions for the 

visual modality, 10,576 for the text modality, and the multi-modal space has a total of 16,247 dimensions. 

For the text modality the MDL selects the maximum number of terms because some of the key-frames 

have no ASR. 

  
Figure 13. MAP by different modalities (TRECVID). 

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0 2000 4000 6000 8000 10000 12000

M
ea
n 
av
er
ag
e 
pr
ec
is
io
n

Space dimension

Rocchio Nai eBa es LogisticRegL2

0.148

0.174

0.203

0.234

0.257

0.273

0.240

0.273

0.295

0.000 0.050 0.100 0.150 0.200 0.250 0.300 0.350

Rocchio

NaiveBayes

LogisticRegL2

Mean Average Precision

Cross‐media Images Text



 

35 

  
Figure 14. MP@20 by different modalities (TRECVID). 

Figure 13 and Figure 14 present a summary of the retrieval effectiveness evaluation in terms of MAP 

and MP@20, respectively. All types of keyword models show the same variation with respect to each 

modality: text based models are always much lower than the image based models, and the difference 

between image based models and multi-modal models is always small. Moreover, logistic regression 

models are always better than naïve Bayes and Rocchio. This confirms previous knowledge that 

TRECVID collection is more difficult and its data exhibit a more complex structure, which is why logistic 

regression can exploit the non-Gaussian patterns of data: it achieves 20.2% MAP on the text-only 

experiment, 27.3% on the image-only experiment and 29.5% on the multi-modal experiment. 

 
Figure 15. Precision-recall curve for the text-only models (TRECVID). 
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logistic regression is the most effective model for all values of recall. However, for values of recall higher 

than 70%, all models are very similar. Image based models, Figure 16, present a similar behaviour but the 

difference between the Rocchio and the naïve Bayes model is very small. It is also possible to observe that 

there is a significant difference between these two models for values of recall between 10% and 90%. 

Multi-modal models, Figure 17, show that naïve Bayes models better exploit the higher number of 

information sources than the Rocchio classifier. This is not a surprise as naïve Bayes considers individual 

dimensions, and the data structure is more complex than the spherical structure assumed by Rocchio. 

Also related to this phenomenon is the retrieval effectiveness obtained by the logistic regression model. 

 
Figure 16: Precision-recall curve for image-only models (TRECVID). 

 

Figure 17. Precision-recall curve for multi-modal models (TRECVID). 
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Finally, Figure 18 compares the logistic regression model on the different modalities. The first 

phenomenon to note is the difference between the text modality and the images modality. We believe that 

text-only models achieved such a low performance because some of the documents do not contain any 

text, and most concepts are more directly related to visual features than to text features. Multi-modal 

models perform better than the best single-media based models, which was a predictable behaviour given 

the increase in the number of predictors. However, this difference is not as big as we expected initially. 

We believe that the larger number of predictors would require a more exhaustive cross-validation 

procedure. 

 
Figure 18. Precision-recall curves for different modalities. 

6.5.2 Model Complexity Analysis 

For the second experiment we studied the effect of the complexity of the feature space 

transformations – the number of dimensions of the optimal feature space. Figure 19 illustrates the text-

based models’ retrieval effectiveness as new terms are added to the optimal feature space. The order by 

which terms are added is determined by the average mutual information. Retrieval effectiveness improves 

constantly but at a slower rate and with a different trend than for the Reuters collection. Again, we believe 

that this is related to the fact that some documents have no text and that TRECVID data is more 

complex. 

Image based models, Figure 20, show an identical trend to the Corel collection. For a small number of 

dimensions the retrieval effectiveness is quite low and it quickly increases until a given dimensionality. 
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addition of new dimensions to the feature space. 

 
Figure 19. Retrieval precision for different space dimensions (TRECVID, text-

only). 

 
Figure 20. Retrieval precision for different space dimensions (TRECVID, image-

only). 

 
Figure 21. Retrieval precision for different space dimensions (TRECVID, multi-

modal). 

Multi-modal based models, Figure 21, exhibit a more irregular trend than the single-media models. 
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differences between the three models is related to the respective modelling capabilities: Rocchio assumes 

a spherical structure which reveals to be too simplistic for this data; naïve Bayes assumed independent 

dimensions, which is also not the best model for this data; finally, logistic regression further exploits 

feature dimensions interactions with linear combinations of them. Logistic regression, with an adequate 

cross-validation procedure, revealed to achieve the best retrieval effectiveness. 

7 Conclusions 
The creation of the multi-modal feature space is a generalization procedure which results in a trade-off 

between accuracy and computational complexity. Thus, the described algorithm offers an appealing 

solution for applications that require an information extraction algorithm with good precision, scalability, 

flexibility and robustness. 

The novelty of the proposed framework resides in the simplicity of the linear combination of the 

heterogeneous sources of information that were selected by the minimum description length criterion. 

7.1 Retrieval Effectiveness 
The performed experiments show that our framework offers a performance in the same range as other 

state-of-the-art algorithms. Text and image results are quite good while multimodal experiments were 

affected by the noise present on the speech text and by the higher number of parameters to estimate. It 

was not surprising to see that logistic regression attains better results than naïve Bayes at the expense of a 

higher learning cost. 

7.2 Model Selection 
The algorithm’s immunity to over-fitting is illustrated by the MAP curve stability as the model 

complexity increases. Logistic regression can be interpreted as ensemble methods (additive models) if we 

consider each dimension as a weak learner and the final model as a linear combination of those weak 

learners. This means that our model has some of the characteristics of additive models, namely the 

observed immunity to overfitting. It is interesting to note that the simple naïve Bayes model appears to be 

more immune to overfitting than the logistic regression model. This occurs because the optimization 

procedure fits the model tightly to the training data favouring large regression coefficients, while the naïve 

Bayes avoids overfitting by computing the weighted average of all codewords (dimensions). Note that 
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when fitting the model we are minimizing a measure of the model log-likelihood (the average 

classification residual error) and not a measure of how documents are ranked in a list (average precision). 

The mean average precision is the mean of the accumulated precision over a ranked list. Thus, we believe 

that if we trained our models with average precision as our goal metric, the retrieval results on the test set 

would improve. 

7.3 Computational Scalability 
Since the optimal feature space is common to all keywords the transformation must be computed only 

once for all keywords. Thus, the resources required to evaluate the relevancy of a multimedia document 

for each keyword are relatively small. During classification, both time and space complexity of the data 

representation algorithms is given by the number of Gaussians (clusters) selected by the model selection 

criteria. The computational complexity of linear models during the classification phase is negligible, 

resulting in a very low computational complexity for annotating multimedia content and making it quickly 

searchable. 

The computational complexity during the learning phase is dominated by the hierarchical EM 

algorithm of mixture of Gaussians and the cross-validation method. The worst-case space complexity 

during learning is proportional to the maximum number of clusters, the number of samples, the 

dimension of each feature, and the total number of cross-validation iterations and folds. I consider this 

cost to be less important because the learning can be done offline. 

Apart from the mixture of hierarchies [7] all other methods are some sort of kernel density 

distributions. It is well known [14] that the nature of these methods makes the task of running these 

models on new data computationally demanding: the model corresponds to the entire training set 

meaning that the demand on CPU time and memory increases with the training data.  

Results show that such a low complexity approach compares competitively with much more complex 

approaches. It has a bearing on the design of image search engines, where scalability and response time is 

as much of a factor as the actual mean average precision of the returned results. In Chapter 7 I will 

illustrate how the low computational complexity of the proposed framework allows the development of 

new search paradigms that extract the semantic information of multimedia content on-the-fly. 
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7.4 Semantic Scalability 
Assuming that the used set of keywords is a faithful sample of a larger keyword vocabulary it is 

expected that one can use the same optimal feature space to learn the linear model of new keywords and 

preserve the same models. Note that the optimal feature space is a representation of the data feature 

space: it is selected based on the entire data and independently of the number keywords. The 

consequence of this design is that systems can be semantically scalable in the sense that new keywords 

can be added to the system without affecting previous annotations. 
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