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ABSTRACT 
We address the problem of searching multimedia by semantic 
similarity in a keyword space. In contrast to previous research we 
represent multimedia content by a vector of keywords instead of a 
vector of low-level features. This vector of keywords can be 
obtained through user manual annotations or computed by an 
automatic annotation algorithm. In this setting, we studied the 
influence of two aspects of the search by semantic similarity 
process: (1) accuracy of user keywords versus automatic 
keywords and (2) functions to compute semantic similarity 
between keyword vectors of two multimedia documents. We 
consider these two aspects to be crucial in the design of a keyword 
space that can exploit social-media information and can enrich 
applications such as Flickr and YouTube. Experiments were 
performed on an image and a video dataset with a large number of 
keywords, with different similarity functions and with two 
annotation methods. Surprisingly, we found that multimedia 
semantic similarity with automatic keywords performs as good as 
or better than 95% accurate user keywords. 

Categories and Subject Descriptors 
H.3.1 [Content Analysis and Indexing]: Abstracting methods. 

General Terms 
Algorithms, Measurement, Experimentation. 

Keywords 
Search, multimedia, user keyword annotations, automatic 
keyword annotations, keyword spaces. 

1. INTRODUCTION 
In the classic multimedia search paradigm the user transforms 
some information need into a system query, and the system replies 
with the required information. Unlike text documents, multimedia 
documents do not explicitly contain symbols that could be used to 
express an information need. This problem has roots in two 
different aspects: 

 Richness of multimedia information: visual and audio 
information can communicate a wide variety of messages, 
feelings and emotions; structure adds organization and 

usability. 

 Expressiveness of the user query: systems have always 
forced humans to describe their information need in some 
query language. However, not all information needs are easily 
expressed. 

Multimedia systems are best at processing user queries 
represented by mathematical expressions, and not everyone has 
the same skills of expressing ideas, emotions and feelings in such 
a formal way. While in text retrieval we express our query in the 
format of the document (text), in multimedia systems this is more 
difficult. The user is not aware of the low-level representation of 
multimedia, e.g., colour, texture, shape features, pitch, volume or 
tones. These low-level feature spaces are ideal to find multimedia 
documents with similar colours, textures, shapes, etc, but are not 
adequate to find multimedia by semantic similarity. This scenario 
calls for a feature space capable of representing multimedia by its 
semantic content where semantic similarity is easily computed. 

Figure 1 depicts the process of computing the semantic similarity 
( )SemSim ,X Y  between multimedia documents X  and Y . A 

multimedia document X  is transformed into the keyword space 
by the : wp X X→  transformation. In this keyword space, a 
multimedia document X  is represented by the vector wX  
containing keyword scores. These scores indicate the confidence 
that a keyword is present in the document. Now, in this keyword 
space the distance ( )dist ,w w wX Y  between vectors wX  and 
wY   is equivalent to the semantic dissimilarity1 between 

documents X  and Y , i.e., ( )1 / SemSim ,X Y . 

( )dist ,w w wX Y

( )SemSim ,X Y

wX wY

X Y

p p1distw
−

 
Figure 1 – Commutative diagram of the computation of 
semantic similarity between two multimedia documents. 

Thus, in this paper we study the following aspects of the process: 

 Manual versus automatic methods of transforming a 
multimedia document into the keyword space, i.e., the  

: wp X X→  transformation. 

 Functions to compute the semantic dissimilarity as the 
distance ( )dist ,w w wX Y  between two keyword vectors. 

                                                                 
1 Distance is equivalent to the inverse of similarity: large distances imply 

low similarity and small distances imply high similarity. 
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1.1 Keywords and Categories 
It is in this context that we designed a framework to search 
multimedia by semantic similarity. As mentioned before, the 
keyword vectors can be obtained by manual or automatic 
methods, which we define formally as: 

 User keywords: a user manually annotates multimedia with 
keywords representing meaningful concepts present in that 
multimedia content. 

 Automatic keywords: an algorithm infers multimedia 
keywords and a corresponding confidence representing the 
probability that a given concept is present in that multimedia 
content. 

Figure 2 illustrates some of the images on the Flickr web site 
annotated by a user with the keyword “London”. These images 
can be further grouped into themes concerning the same idea: (1) 
London touristic attractions; (2) London’s river Thames; (3) 
London metro; (4) London modern art. Each one of these themes 
is a row of images in Figure 2. Formally we define categories as: 

 Categories are groups of multimedia documents whose 
content concern a common meaningful theme, i.e., documents 
in the same category are semantically similar. 

The above definitions create two types of content annotations – at 
the document level (keywords) and at the group of documents 
level (categories). Because both keywords and categories describe 
the content of multimedia one would assume that categories can 
be inferred from keywords. For example, given a query image 
depicting the Big Ben the system would retrieve other images 
belonging to the same category, “London touristic attractions”,  
and not necessarily visually similar. 

In our experimental framework, keywords and categories of 

multimedia documents are defined by each collection ground 
truth: keywords are used to compute semantic similarity and 
categories are used to evaluate semantic similarity. 

1.2 Contributions 
The contributions of this paper can be summarized as: 

 Proposing a high-level feature space to represent multimedia 
by a vector of keywords 

 Comparing manual and automatic methods of computing 
keyword vectors and their influence in the accuracy of search 
by semantic similarity 

 Analyzing the effectiveness of different similarity functions in 
the proposed keyword space 

 Finding that multimedia semantic-similarity with 
automatically annotated keywords perform better than 95% 
accurate user keywords but is still below completely accurate 
user keywords 

Section 3 exposes our idea of keyword space, followed by the 
implementation description of our semantic-multimedia search 
system. Section 4 describes how keyword vectors are computed 
with a naïve Bayes algorithm (automatic keywords) or are 
obtained from the ground truth labels of the collection (user 
keywords). We then apply noise to the user keywords to simulate 
different levels accuracy (100%, 95%, 90%, 85% and 80%). Once 
documents are represented in the keyword space the user can 
select or submit a query document (Section 5). A semantic 
similarity function is used to find documents from the same 
unknown category. Section 6 presents the tested similarity 
functions: cosine similarity, Minkowski distance, Kullback-
Leibler divergence, and Jensen-Shannon divergence. Experiments 
were done on Corel Images and TRECVID2005 data. 

 
Figure 2 – Example of Flickr images annotated with the keyword London. 



2. RELATED WORK 
Searching multimedia by semantic similarity has been a problem 
in Computer Science for many years that has been tackled with 
different types of paradigms: some approaches have processed 
multimedia at feature level; others have exploited user interaction 
to refine the user query; while some have explored a combination 
of these paradigms, see [11] for a recent survey. 

Content based Systems 
Early research in this area produced systems where users would 
provide a multimedia example of what they wanted to search for, 
e.g., QBIC [5]. This type of system works well when we want to 
search for images that are visually very similar to the query 
image. Going one step further, relevance feedback systems allow 
the user to compose a set of visual positive examples that are 
different instances of the same category. The system is still not 
aware of any keyword because it represents images by their low-
level features: it relies on the user interaction to establish the link 
between multimedia low-level features and categories. 

In most relevance feedback literature these links are initialised 
with some predefined set of weights and updated by an iterative 
algorithm based on the feedback from the user. Relevance 
feedback tries to iteratively specify the semantic characteristics of 
the intended results by adding semantically relevant examples and 
removing semantically non-relevant examples from the working 
model. Yang et al. [27] implemented a relevance feedback 
algorithm that works on a semantic space created from image 
clusters that are annotated with the most frequent keyword in that 
cluster. Semantic similarity is then computed between the 
examples and the image clusters. Lu et al [13] proposed a 
relevance feedback system that annotates images with the 
previously described heuristic and updates these semantic 
relations according to the user feedback. The semantic links 
between the documents and the keywords are heuristically 
updated or removed, if appropriate. Zhang and Chen [29] 
followed an active learning approach, and He et al [8] applied 
spectral methods to learn the semantic space from the user 
feedback. Other relevance feedback approaches have been 
proposed by Zhou and Huang [30], Chang et al. [2] and Wang and 
Li [26]. 

Systems based on Automatic Keywords 
While the previous approaches are not aware of multimedia 
keyword annotations, a new type of systems that explores this 
extra information has already flourished in the multimedia 
community. These systems allow the user to query with one or 
more keywords, which are used to search for multimedia content 
annotated with them. The initial annotation of multimedia content 
with keywords can be done manually (user keywords) or with 
some learning-algorithm and/or heuristic-rules (automatic 
keywords). Automatic algorithms are attractive as they only 
demand a low analysis cost when compared to the manual 
alternatives. Automatic image annotation algorithms are mostly 
based on some statistical modelling technique of image low-level 
features. Several techniques to model a keyword with different 
types of probability density distributions have been used: Feng 
and Manmatha [4] proposed a Bernoulli model with a vocabulary 

of visual terms for each keyword, Yavlinsky et al. [28] deployed 
nonparametric density estimation, Carneiro and Vasconcelos [1] a 
semi-parametric density estimation. Automatic multimedia 
keyword annotation has also been an active area of research: 
Snoek et al. [24] explore temporal synchronization to combine the 
multi-modal patterns, Monay and Gatica-Perez explore 
dependencies across different media [17], while Magalhães and 
Rüger [15] developed a multimodal maximum entropy 
framework. The above methods extract features from the 
multimedia itself, but other, heuristic techniques rely on metadata 
attached to the multimedia: for example, Lu et al [13] analyse 
HTML text surrounding an image and assign the most relevant 
keywords to it. We follow Magalhães and Rüger’s [15] approach 
to generate automatic keywords for its simplicity, scalability and 
relatively high precision.  

The described family of techniques allows multimedia 
applications to work at a semantic level by extracting the 
keywords from both multimedia database documents and user 
query examples. This is already a big step from previous 
approaches towards more semantic applications but in some cases 
(if not most cases) it still might be too limiting. 

Keyword based Multimedia Similarity 
The above types of approaches can produce good results but it 
puts an extra burden on the users who now have to describe their 
information need in terms of all possible instances and variations 
or express it with keywords. In both cases users may find limits in 
terms of their creativity, expressiveness or patience in 
reformulating their queries. Thus, in these cases users should be 
able to formulate a query with a semantic example of what they 
want to retrieve. Of course, the example is not semantic per se but 
the system will look at its annotations instead of its low-level 
characteristics (e.g. colour or texture). This means that the system 
will infer a vector of keywords from an image and use the 
keyword vector to search for images represented by similar 
vectors. Moving away from implementing query by semantic 
example as relevance feedback, Rasiwasia proposed a framework 
to compute the semantic similarity with a distance metric that 
ranks images according to the keywords of the current query [20, 
21]. They start by computing keyword annotations with an 
algorithm based on a hierarchy of mixtures [1]. They then 
compute the semantic similarity as the Kullback-Leibler 
divergence. Tesic et al. [25] address the same problem but replace 
the Kullback-Leibler divergence as the semantic similarity by an 
SVM. The SVM views the provided examples as positive ones 
and samples negative examples randomly from regions of the 
feature space where the positive examples have low probability. 
Their results show good improvements over text-only search. 
Following these steps, Natsev et al. [19] explored the idea of using 
keyword-based query expansion to re-rank multimedia 
documents. They discuss several types of methods to expand the 
query with visual keywords. Another approach to query expansion 
in multimedia retrieval by Haubold et al. [6], uses lexical 
expansions of the queries. Semantic distances between words is 
also explored by Smeaton and Quigley [23] to perform query 
expansion. They show that this technique offers a substantial 
improvement over traditional IR techniques. Note that these 
approaches limit their methods to automatic keywords and do not 



consider user keywords as we do on this paper. 

Another interesting and related work is the study by Hauptman et 
al. [7] to identify the number of keywords that is required to fill 
the semantic gap. They use a topic search experiment to assess the 
number of required keywords to achieve a high precision retrieval 
system – their study suggests 3,000 keywords. This study 
associates the success of semantic-multimedia IR to a single factor 
(number of keywords) and leaves several different aspects aside 
such as similarity functions and different querying paradigms. 

3. KEYWORD SPACES 
Our goal is to devise a feature space capable of representing 
documents according to their semantics. In this setting we 
represent a multimedia document as 

( ), ,f wd d d=  (1) 

where fd  corresponds to the document low-level features  and 
wd to the document keyword annotations. These two 

representations form two distinct feature spaces, e.g., in the first 
case an image is represented by its texture or colour features, in 
the second case the same image is represented by its semantics in 
terms of keywords. A keyword space for searching multimedia by 
semantic similarity is defined by the following properties: 

 Vocabulary: defines a lexicon 

{ }1, ... , TV w w=  (2) 

of T keywords used  to annotate multimedia documents. 

 Multimedia keyword vectors: a multimedia document d  is 
represented by a vector 

( )1, ... , 0,1
T

w Td d d ⎡ ⎤= ∈ ⎣ ⎦  (3) 

of T keywords from the vocabulary V , where each 
component id  corresponds to the likelihood that keyword 
iw  is present in document d . 

 Keyword vectors computation: the keyword vector can be 
computed automatically or provided by a user. Section 4 
discusses and compares both methods. 

 Semantic dissimilarity: given a keyword space defined by 
the vocabulary V , we define semantic dissimilarity between 
two documents as 

0dissim : 0,1 0,1
T T

w
+⎡ ⎤ ⎡ ⎤× →⎣ ⎦ ⎣ ⎦ , (4) 

the function in the T  dimensional space that returns the 
distance between two keyword vectors. Section 6 presents 
several distance functions. 

Given the above definitions it is easy to see that for a query 
example ( ),f wq q q= and a candidate document ( ),f wd d d= , 
the semantic similarity between documents is computed as the 
inverse of the dissimilarity ( )dissim ,w w wq d  between the 
corresponding keyword vectors. 

The lexicon of keywords corresponds to dimensions of the 
keyword space, allowing documents to be represented with 

varying types of information according to the type of keyword 
(e.g., visual concepts, creation date, authorship). In searching 
semantic multimedia it is important that the semantic space 
accommodates as many keywords as possible to be sure that the 
user’s idea is represented in that space without losing any 
meaning. Thus, automatic systems that extract a limited number of 
keywords are less appropriate. This design requirement leads us to 
the research area of high-dimensional spaces. The structure of the 
space, i.e. the way keywords interact with each other, is defined 
by the distance function of that space. Distance functions are 
crucial in computing the semantic similarity between two 
multimedia documents – they define keyword independence and 
dependence. For example, the Euclidean distance considers 
keywords to be independent while graph-based metrics take 
keyword dependence into account. 

In this paper we limit the lexicon of keywords to a set of T  visual 
and multimodal concepts that are present in images and video 
clips. 

4. KEYWORD VECTORS COMPUTATION 
Data points in the keyword space correspond to a vector of 
keywords for each multimedia document – the way these vectors 
are computed is application dependent. 

In some applications, keyword vectors wd  are extracted 
automatically from captions, Web page text, or low-level features. 
In this paper we implemented a machine learning algorithm Ap  
that computes keyword vectors from low-level features: 

:A f wp d d d→ →  (5) 

The machine learning algorithm supports a large number of 
keywords so that the keyword space can wrap the semantic 
understanding that the user gives to a document. This is in line 
with the requirement for highly expressive descriptions of 
multimedia, i.e., large number of keywords. 

In other type of applications, keyword vectors wd  are extracted 
manually from the document content by a user Up , i.e., 

:U wp d d→ . (6) 

The user inspects the document to verify the presence of a concept 
and annotates the document with that keyword if it is present. This 
introduces several ambiguities rooted on user’s understanding of 
the keywords and criterion to decide the keyword presence in the 
content.  

The next two sections describe the implemented automatic 
keyword computation and the method to obtain user annotations. 

4.1 Automatic keyword annotations 
In this section we describe how to estimate a probability function 
p  that automatically computes the vector 

( ) ( )( )1 | ,  ... , | ,w f T fd p w d p w d=  (7) 

of T  keyword probabilities from the document’s low-level 
features fd . Following the approach proposed by Magalhães and 
Rüger [14, 15], each keyword iw  is represented by a naïve Bayes 



model. The model allows expressing multimodal information as 
described in the following sections. 

4.1.1 Keyword Models 
Keywords are modelled as text and visual data with a naïve Bayes 
classifier [15]. In our approach we look at each document as a 
unique low-level feature vector ( )1,...,f Md f f=  of visual 
features (Section 4.1.2) and text terms (Section 4.1.3). The naïve 
Bayes classifier results from the direct application of Bayes law 
and independence assumptions between terms in a document: 

( )
( ) ( )
( ) ( )( )

1

11

|
|

,..., |

M
j i ji

j f T
i f M ii

p w p f w
p w d

p w p d f f w

=

=

=
=

∏
∑

. (8) 

A document can be represented as an event model of term 
presence or term count, leading to the choice of a binomial or 
multinomial model respectively [16]. We choose the multinomial 
distribution as the binomial distribution is too limiting given the 
probabilistic nature of visual and text features. Defining jw  as 
the not-presence of keyword jw  we can formulate naïve Bayes in 
the log-odds space, 

( )
( )

( )
( )
( )

( )
( )1

|
log log

|

|
| log ,

|

j f j

j f j

M
i j

i
i i j

p w d p w

p w d p w

p f w
p f d

p f w=

=

+∑
 (9) 

which casts it as a linear model that avoids decision thresholds in 
annotation problems. 

4.1.2 Visual Data Processing 
Three different low-level visual features are used in our 
implementation: marginal HSV distribution moments, a 12 
dimensional colour feature that captures the histogram of 4 central 
moments of each colour component distribution; Gabor texture, a 
16 dimensional texture feature that captures the frequency 
response (mean and variance) of a bank of filters at different 
scales and orientations; and Tamura texture, a 3 dimensional 
texture feature composed by measures of image coarseness, 
contrast and directionality. The images are tiled in 3 by 3 parts 
before extracting the low-level features. More details can be found 
in [15]. 

4.1.3 Text Data Processing 
Text feature spaces are high dimensional and sparse. To reduce 
the effect of these two characteristics, one needs to reduce the 
dimensionality of the feature space. We use mutual information to 
rank text terms according to their discriminative properties. See  
[15] for details. 

4.2 User keyword annotations 
Manual annotations done by real end-users are sometimes 
random, incomplete or incorrect for several reasons: the user 
might not be rigorous, users have different understanding of the 
same keyword, or it might be the result of spam annotations. A 
professional annotator produces better quality annotations – thus, 
in a real scenario one would expect to have user keywords with 

accuracies below 100%. Following this reasoning, we use 
professional annotations to generate user keywords with different 
levels of accuracies: 

 Generate completely accurate user keywords from the 
professional annotations of the collection;  

 Given the professional annotations, replace 0%, 5%, 10%, 
15% or 20% of the annotations by incorrect ones to simulate 
different levels of user keywords accuracies (this is done to 
both positive and negative annotations). 

This procedure can also be seen as the simulation of an improved 
automatic annotation algorithm. Automatic annotation algorithms 
are not completely accurate and we do not foresee that a new 
algorithm will achieve a high-level of accuracy in the near future. 
Thus, this can also be seen as a forecast to what can be achieved 
with an improved automatic algorithm. 

5. QUERYING THE KEYWORD SPACE 
User queries can include keywords, multimedia examples, and 
arbitrary combinations of keywords and multimedia examples. 
The algorithm that parses the user request produces query vectors 
in the keyword space with the same characteristics as multimedia 
document vectors. For the objectives of this paper we only need to 
consider single example queries. Thus, for each query, the system 
analyses the submitted example and infers a keyword vector with 
the automatic algorithm 

:A f wp q q q→ → , (10) 

or a user provides the keywords present in the example, i.e.,  

:U wp q q→ . (11) 

Query examples are converted into keyword vectors with the 
methods already described in section 4. 

6. KEYWORD VECTORS DISSIMILARITY 
In this section we discuss the dissimilarity functions used to 
compute the semantic similarity between two multimedia 
documents. The dissimilarity functions presented in this section 
assume two different types of spaces: geometric spaces and 
probabilistic spaces. Thus, all dissimilarity functions assume that 
either the space is linear or that keywords are independent. 

Note that with completely accurate user keywords we isolate the 
dissimilarity functions from the keyword annotation process. This 
way we can assess how much of the semantic similarity precision 
is due to the keyword vector computation method and how much 
is due to the dissimilarity functions. 

The computation of similarity ranks for all documents in a 
database is an expensive process with linear complexity. Several 
methods exist to reduce this complexity, as for example sampling 
[10]. This topic is outside the scope of this paper as we are 
interested in finding methods to rank documents by semantic 
similarity with the maximum possible precision. 

6.1 Geometric Space: Minkowski Distances 
Similarity metrics in high-dimensional spaces are widely studied 



in image retrieval: low-level features have a large number of 
dimensions and different characteristics. Several measures have 
been studied in this area such as Manhattan, Euclidean, and 
Mahalanobis. Howarth and Rüger [9] have shown that for visual 
features fractional dissimilarity measures (Minkowski distance 
with 1p < ) offer a good performance for several types of 
features. The Minkowski distance between the query example q  
and a database document d  is defined as 

( ) ( )
1/

dissim , ,

,
i i

w w a w w
a

a

w w
i

q d L q d

q d

=

⎡ ⎤
⎢ ⎥= −⎢ ⎥⎣ ⎦
∑

 (12) 

where the indices i  concern the keyword iw , and a  is a free 
parameter 0a > . In this paper we use { }0.5,  1,  2a =  as 
different distance measures. This measure requires the vectors wq  
and wd to be normalized. aL  is not a true metric for 1a <  
because it violates the triangle inequality; nevertheless it can offer 
useful dissimilarity values. 

6.2 Geometric Space: Cosine Similarity 
Since we work in high-dimensional spaces, in geometric terms 
one can define the independence between two vectors as the angle 
between them. This is the well known cosine similarity which 
becomes a dissimilarity by taking the difference to 1: 

( )dissim , 1 w w
w w

w w

q d
q d

q d

⋅
= −

⋅
 (13) 

Geometric correlation is one of the several possible ways to 
measure the independence of two variables. This metric is 
equivalent to the Pearson correlation coefficient in statistics; it 
measures the correlation between two random variables as the 
strength of their independence. 

6.3 Probabilistic Space: KL Divergence 
In statistics and information theory the Kullback-Leibler (KL) 
divergence is a measure of the difference between two probability 
distributions. It is the distance between a "true" distribution, (the 
query vector), to a "target" distribution, (the document vector). 
The KL divergence is expressed as 

( ) ( )

( ) ( )
( )

dissim , ||

log .i

i

i

w w KL w w

w
w

i w

q d D q d

p q
p q

p d

=

= ∑
 (14) 

In information theory it can be interpreted as the expected extra 
message length due to using a code based on the candidate 
distribution (the document vector) compared to using a code based 
on the true distribution (the query vector). Note that KL 
divergence is not a true metric as it is not symmetric. 

6.4 Probabilistic Space: JS Divergence 
The Jensen-Shannon (JS) divergence is the symmetrised variant of 
the KL divergence and provides a true metric to compare two 
probability distributions: 

( ) ( )

( )

( )

dissim , ,

1 1
||

2 2
1 1

||
2 2

w w JS w w

KL w w w

KL w w w

q d D q d

D q q d

D d q d

=
⎛ ⎞⎟⎜= + ⎟⎜ ⎟⎜ ⎟⎝ ⎠
⎛ ⎞⎟⎜+ + ⎟⎜ ⎟⎜ ⎟⎝ ⎠

 (15) 

An interesting characteristic of the JS divergence is that one can 
assign different weights to each distribution, [12]. This makes it 
particularly useful for decision problems where weights could be 
the prior probabilities. 

7. EVALUATION 
We will now describe the multimedia semantic similarity 
experiments done in an image and a video database and discuss 
the results of our evaluation. 

7.1 Collections 
Experiments were done in an image collection and a video clip 
collection. Both collections were split into training and test set, 
and each image/video clip is annotated with a set of keywords and 
categories. The manual annotations used to train keyword models 
and to simulate the user keywords were done by professional 
annotators. This means that real user keyword annotations will be 
less accurate than our completely accurate user keyword 
annotations. 

Corel Images 
This dataset was compiled by Duygulu et al. [3] from a set of 
COREL Stock Photo CDs. The dataset has some visually similar 
keywords (jet, plane, Boeing), and some keywords have a limited 
number examples (10 or less). The collection is split into a 
training set of 4,500 images and a test set of 500 images. Each 
image is annotated with one to five keywords from a vocabulary 
of 371 keywords. Only keywords with at least one image both in 
the test and training set were used, which reduces the size of the 
vocabulary to 260 keywords. The collection is already organized 
into 50 image categories, such as rural France, Galapagos 
wildlife and nesting birds, as illustrated in Figure 7. Despite its 
small size this collection has often been used in retrieval 
evaluation scenarios, e.g., [1, 4, 15, 20, 21, 28] and still serves 
well for comparisons to the state of the art. 

TRECVID 
To test semantic similarity on video data we used the 
TRECVID2005 data: since only the training set is completely 
labelled, we randomly split the English training videos into 23,709 
training documents and 12,054 test documents. We considered 
each document to be a key-frame plus the ASR text within a 
window of 6 seconds around that key-frame. Key-frame keywords 
have two origins: the standard vocabulary of 39 keywords 
provided by NIST, plus the large-scale LS-COMM ontology of 
400 keywords provided by Naphade et al. [18]. We trained the 
keyword models on the 39 keywords to form the keyword space 
and used 8 categories as relevance judgments (ground truth) for 
evaluation (landscape, weapons, politics, vehicle, group, daytime 
outdoor, dancing and urban park). The 8 categories were selected 
from the LS-COMM ontology as non overlapping keywords with 



the other 39 keywords and had an enough number of examples. 
Note that because TRECVID categories are not annotated at the 
level of groups of documents we expect to have a lower accuracy 
in TRECVID when compared to Corel that have meaningful 
categories. 

7.2 Experimental Design 
We designed an experimental methodology that allows us to 
isolate the two aspects that we want to study: semantic 
dissimilarity functions and comparison between automatic 
keywords and user keywords. The experiment methodology was 
as follows: 

1) Learn the naïve-Bayes model for each keyword on the 
training set of each collection (260 models for Corel and 39 
for TRECVID). Note that we do not reuse the training set. 

2) Submit a test document as a query example to rank the 
remaining test examples by semantic similarity 

3) Compute keyword annotations for both documents and 
queries with the different algorithms: 

a) Automatic keywords with the naïve-Bayes algorithm 
(260 keywords for Corel and 39 for TRECVID) 

b) User keywords with different accuracies: 100%, 95%, 
90%, 85% and 80% (260 keywords for Corel and 39 for 
TRECVID) 

4) Rank documents by their semantic similarity to the query 
example according to a given dissimilarity function: 

a) Cosine, Minkowski, KL and JS 

5) The category of the query example is used as relevance 
judgment to evaluate the rank of documents 

6) Repeat steps 2 to 5 for all test examples 

7.3 Results and Discussion 
Average precision is the used measure for comparing a ranked set 
of results to binary relevance judgements. The average precision 
of a particular query rank is the area under the precision-recall 
curve of that query. It is calculated by averaging the precision 
found at every relevant document. The advantage of using average 
precision as a performance measure is that it gives a greater 
weight to results retrieved early. Mean average precision (MAP) 
is defined as the mean of the average precisions of all queries. 

User keywords versus automatic keywords 
The MAP upper bound of retrieval by semantic similarity is 
computed with completely accurate user keywords. This bound is 
specific for the set of keywords and categories. In the image 
collection the upper bound is 0.453; in the video-clip collection 
the upper bound is 0.103. Experiments in the image collection are 
presented in Table 1, Figure 3 and Figure 4. Table 1  displays the 
results of searches that rely on user keywords with a varying 
degree of annotation accuracy (see Section 4.2 for details). Figure 
3 shows the MAP of ranking by similarity that uses the naïve 
Bayes classifier and various dissimilarity functions. For example, 
using these automated keywords and the Cosine similarity results 
in a MAP of 0.235, which is on par with or even slightly better 
than the corresponding one of the 95% correct user keyword 
(0.226). The same holds for other similarity functions. Figure 4 

visually summarises Figure 3 and Table 1. Automatic keywords 
have roughly the same performance as 95% correct user keyword. 
As one would expect, they perform better than user keywords with 
smaller accuracy and worse than using the 100% ground truth. 
The encouraging news here is that we are comparing a simple 
automatic annotation algorithm to professional level annotations, 
and one would expect there to be scope for improvement. 
Experiments on the video-clip collection are presented on Table 2, 
Figure 5 and Figure 6. These results reinforce those of the one’s 
on the image collection (the values are lower in this case because 
the rank length is now 12,054 instead of 500). The summary 
presented on Figure 6 also shows that the MAP of the automatic 
keywords 0.054 is on par with the corresponding MAP of the 95% 
correct user keywords (0.051). 

Both experiments show a major change in retrieval precision 
when the user keyword accuracy goes from 100% to 95 % 
suggesting that the semantic similarity is highly sensitive to small 
changes in highly accurate annotations. Another interesting fact is 
the ranking stability for accuracies under 90%, which implies a 
more robust behaviour than in the 90%-100% range. 

Similarity functions 
With completely accurate user keywords we isolated the similarity 
functions from the keyword annotation process. This way we 
could assess how much of the retrieval precision is due to the 
keyword annotation algorithm and how much is due to the 
semantic dissimilarity functions. The 100% accurate user 
keywords establish an upper bound on the MAP that is still below 
0.50 for the image collection (and much lower in the video-clips 
collection). KL and cosine similarity functions were consistently 
better than the others. No single similarity function was much 
better than the others. It is also interesting to note that Minkowski 
distances appear to be the most robust to the probabilistic output 
of the naïve Bayes keywords extractor. 

These observations point to two possible ways of improving 
semantic similarity distances: increase the number of keywords or 
investigate alternative similarity metrics. One solution would be 
the simple application of brute force, hoping to have 
comprehensive annotations with sufficiently good automatic 
keyword extractors. Another solution would suggest investigating 
similarity functions that incorporate keyword interdependencies 
and are robust to noisy keyword vectors, e.g., [22]. 

User keywords and uncontrolled vocabularies 
The use of an uncontrolled vocabulary can be a disadvantage for 
semantic similarity because it causes keyword matching problems 
at several levels. First, it is never possible to know the correct 
meaning that a user gives to a keyword (e.g., the keyword football 
means different sports for different cultures). Second, the user 
might dishonestly annotate a document with a popular keyword to 
attract other users. Third, users might have different criteria to 
annotate documents, e.g., some users might rigorously annotate all 
keywords while others might skip the obvious ones.  

Because all these problems do not exist in automatic methods, we 
believe that the results of the proposed framework show that 
automatic methods have an important role in the semantic 
exploration of multimedia content. 



 
Figure 3 – MAP with automatic keywords (Corel Images). 

 

User keywords 
accuracy 

100% 95% 90% 85% 80% 

Cosine 0.446 0.226 0.162 0.151 0.142 

Minkowski (0.5) 0.438 0.181 0.152 0.146 0.141 

Minkowski (1.0) 0.438 0.181 0.152 0.146 0.141 

Minkowski (2.0) 0.438 0.181 0.152 0.146 0.141 

Kullback-Leibler 0.453 0.224 0.160 0.150 0.143 

Jensen-Shannon 0.436 0.226 0.162 0.151 0.146 

Table 1 – MAP with different user keywords accuracies (Corel 
Images). 

 
Figure 4 – MAP with different user keywords accuracies and 

automatic keywords (Corel Images). 

 
Figure 5 – MAP with automatic keywords (TRECVID). 

 

User keywords 
accuracy 

100% 95% 90% 85% 80% 

Cosine 0.098 0.051 0.053 0.047 0.040 

Minkowski (0.5) 0.095 0.051 0.040 0.036 0.032 

Minkowski (1.0) 0.095 0.051 0.040 0.036 0.032 

Minkowski (2.0) 0.095 0.051 0.040 0.036 0.032 

Kullback-Leibler 0.103 0.064 0.062 0.050 0.042 

Jensen-Shannon 0.095 0.051 0.040 0.036 0.033 

Table 2 – MAP with different user keywords accuracies 
(TRECVID). 

 
Figure 6 – MAP with different user keywords accuracies and 

automatic keywords (TRECVID). 
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