
Logistic Regression of Generic Codebooks for  
Semantic Image Retrieval 

João Magalhães, Stefan Rüger 

Department of Computing, South Kensington Campus 
Imperial College London, London SW7 2AZ, UK 

{j.magalhaes, s.rueger}@imperial.ac.uk 

Abstract. This paper is about automatically annotating images with keywords 
in order to be able to retrieve images with text searches. Our approach is to 
model keywords such as 'mountain' and 'city' in terms of visual features that 
were extracted from images. In contrast to other algorithms, each specific key-
word-model considers not only its own training data but also the whole training 
set by utilizing correlations of visual features to refine its own model. Initially, 
the algorithm clusters all visual features extracted from the full imageset, cap-
tures its salient structure (e.g. mixture of clusters or patterns) and represents 
this as a generic codebook. Then keywords that were associated with images in 
the training set are encoded as a linear combination of patterns from the generic 
codebook. We evaluate the validity of our approach in an image retrieval sce-
nario with two distinct large datasets of real-world photos and corresponding 
manual annotations. 

1   Introduction 

The growing interest in managing multimedia collections effectively and effi-
ciently has created new research interest that arises as a combination of multimedia 
understanding, information extraction, information retrieval and digital libraries. In 
this paper we focus on information extraction algorithms that model keywords such 
as ‘sky’ and ’beach’ in terms of visual features that were extracted from images. 
These models return the probability of a keyword being present in new unseen images 
and thus enabling text searches on collections of images. 

Most of the existing approaches just model the visual features of images contain-
ing a given keyword ignoring the presence of other keywords in the same image and 
their cross-interference. Some keywords such as ‘bird’ or ‘plane’ have a visual repre-
sentation too complex to be captured by just its training data: the presence of different 
concepts and their cross-interference increases the uncertainty of the extracted infor-
mation. For example, concepts such as ‘sun’, ‘outdoor’ or ‘indoor’ may be easy to 
detect but concepts such as ‘bird’, ‘boat’ or ‘insect’ may be more reliably detected if 
other, more basic and correlated concepts were detected previously. 



Thus, we advocate that one should first detect the most salient low-level visual pat-
terns of the full image dataset in the feature space and then learn the causality relation 
between these low-level visual pattern co-occurrences and the keywords. To achieve 
this goal, we formulate the following hypothesis: “Given a common generic codebook 
of patterns (codewords) of the full imageset, the keywords can be encoded as a low-
complexity linear combination of codewords and exhibit a competitive retrieval per-
formance”. With this hypothesis we aim to achieve a fast, simple, scalable algorithm 
capable of annotating images with keywords at high precision. The codebook lists the 
low-level visual patterns of the full image dataset and its contents will be inter-
changeably referred to as patterns, clusters or codewords. 

Section 2 describes related work on image-semantic annotation, Section 3 the pro-
posed algorithm, Section 4 presents the experiments and results, and Section 5 dis-
cusses the generic codebook generation and the algorithm characteristics. 

2   Related Work 

Several algorithms have been proposed to extract semantic information from mul-
timedia content. Single-class-model approaches estimate an individual distribution 
function for each keyword. Other types of approaches are based on a translation 
model between keywords and images features (global, tiles or regions). These two 
groups of approaches assume a minimal relation between the various elements of the 
same image (words, blobs, tiles). Hierarchical models consider the hierarchical rela-
tion or the inter-dependence relation between the elements of an image (words and 
blobs or tiles) and reflect it in the statistical model. 

Single-class-models are a straight-forward approach to the semantic analysis of 
multimedia content. The idea behind is to learn a class-conditional probability distri-
bution  of each single keyword w of the semantic vocabulary given its training data x. 
Bayes law is used to invert the problem and model ( )|p x w  the features data den-
sity distribution of a given keyword. Several techniques to model the ( )|p x w  with 
a simple density distribution have been proposed: Yavlinsky et al. [1] deployed a 
nonparametric distribution; Carneiro and Vasconcelos [2] a semi-parametric density 
estimation; Westerveld and de Vries [3] a finite-mixture of Gaussians; while Mori et 
al. [4], and Vailaya et al. [5] apply different flavours of vector quantization tech-
niques. This type of approach only considers the class’s own data ignoring the co-
occurrence of classes, while the present approach takes that into consideration. 

Other types of approaches are based on a translation model between keywords and 
images (global, tiles or regions). Inspired by machine translation research, Duygulu et 
al. [6] developed a method of annotating image regions with words. First, regions are 
created using a segmentation algorithm like normalized cuts. For each region, fea-
tures are computed and then blobs are generated by clustering the image features for 
these regions across an image collection. The problem is then formulated as learning 
the correspondence between the discrete vocabulary of blobs and the image key-
words. Following a translation model Jeon et al. [7], Lavrenko et al. [8] and Feng et 
al. [9] studied a model where blob features ( )r

Ib  of an image I are conditionally inde-



pendent of keywords iw . Jeon et al. [7] recast the image annotation as a cross-lingual 
information retrieval problem applying a cross-media relevance model based on a 
discrete codebook of regions. Lavrenko et al. [8] continued previous work by Jeon et 
al. [7] and described the process of generating blob features with continuous prob-
ability density functions ( )( )|r

IP b J  to avoid the loss of information related to the 
generation of the codebook. Prolonging their previous work Feng et al. [9] replace 
blobs with tiles and model image keywords with a Bernoulli distribution. These 
methods have the mathematical form of kernel density estimation – the model corre-
sponds to the entire training data – making them computationally very demanding: in 
contrast our model uses a linear combination of a common codebook for all classes, 
which is by its very nature computationally much simpler. 

In the hierarchical models group Barnard and Forsyth [10] studied a generative hi-
erarchical aspect model, inspired by a hierarchical clustering/aspect model. The data 
are assumed to be generated by a fixed hierarchy of nodes with the leaves of the hier-
archy corresponding to soft clusters. Blei and Jordan [11] describe three hierarchical 
mixture models to annotate image data, culminating in the correspondence latent 
Dirichlet allocation model. This model specifies a Bayesian model for capturing the 
relations between regions, words and latent variables. It combines the advantages of 
probabilistic clustering for dimensionality reduction with an explicit model of the 
conditional distribution from which image keywords are generated. In our approach 
we do not create a fixed hierarchy of nodes/clusters that decreases the flexibility of 
the method. 

3   Algorithm Description 

The dataset is composed of a training set and a test set of images, and each image 
is manually annotated with a vocabulary of keywords corresponding to the visual 
content of that particular image. The image dataset is initially processed to extract a 
set of low-level visual features from all images. Once the low-level visual features 
and the manual annotations are loaded the features are further processed. 

The generic codebook is produced with an unsupervised learning algorithm that re-
turns a finite mixture of clusters modelling the full dataset feature space. The set of 
clusters of the finite mixture is then stored in the generic codebook as K codewords, 
each of which is defined by a set of parameters kθ . The notation for the probability of 
a codeword k for an image i, ( )( )|i

kq x θ , will be abbreviated as ( )( )ikq x . 
Only in the final step of the algorithm are the annotations used to learn the key-

word-model of each keyword tw , i.e., the weight tw
kβ  of each codeword kθ . The 

model ( )|tp w x  expresses the probability of a word tw  given the low-level visual 
features x  of an unseen image. This model is defined as a generalized linear model: 

( )[ ]( ) ( )( ) ( )( )10 1 1| ...t t tw w wi ii
t KK Kg E w x q x q xβ β β= + + + , (1) 

where the link function ( )g ⋅  allows to model non-linear relations between and the 
features ( ) ( ) ( )[ ]11, , ..., i ii

Kx x x= , or a transformation of it e.g. ( )n nq x , and the 
[ ]|tE w X . Typical link functions are the identity function for normal linear regres-



sion, the logit function for logistic regression and the log function for log-linear re-
gression. In this paper we consider the logistic regression model. 

3.1   Features Processing 

The feature processing step normalises the features and creates smaller-
dimensional subspaces from the original feature-spaces. Three different low-level 
features are used in our implementation: marginal HSV distribution moments, a 12 
dimensional colour feature that captures the histogram of 4 central moments of each 
colour component distribution; Gabor texture, a 16 dimensional texture feature that 
captures the frequency response (mean and variance) of a bank of filters at different 
scales and orientations; and Tamura texture, a 3 dimensional texture feature com-
posed by measures of image’s coarseness, contrast and directionality. We used N=15 
feature sub-spaces. As a common practice we tiled the images in 3 by 3 parts before 
extracting the low-level features. This has two advantages: it adds some locality in-
formation and it greatly increases the amount of data used to learn the generic code-
book. 

3.2   Learning the Generic Codebook 

In the algorithm’s second step, the features subspace clustering is done under the 
assumption that the subspaces are independent. That is, each feature subspace n is 
processed individually and modelled as a Gaussian mixture model (GMM) 

( ) ( )2
, , ,1

| | ,nM
n n m n m n mm

p x p xθ α µ σ
=

= ∑ , (2) 

where Mn is the number of Gaussians (clusters) in feature subspace n, x  is the low-
level visual feature, and nθ  represents the complete set of model parameters with 
mean ,n mµ , covariance 2

,n mσ , and component prior ,n mα . The components priors 
have the convexity constraint ,1 ,,..., 0n n mα α ≥  and ,1 1nM

n mm α= =∑ . We imple-
mented the mixture learning algorithm as proposed by Figueiredo et al. in [12] in 
C++. Each codeword ( )| kq θ⋅  correspond to a certain cluster ( ),| n mp x θ  

The algorithm starts with a number of clusters that is much larger than the real 
number and gradually eliminates the clusters that start to get few support data (singu-
larities). This avoids the initialization problem of EM since the algorithm only pro-
duce mixtures with clusters that have enough support data. This strategy can cause a 
problem when the initial number of clusters is too large: no cluster receives enough 
initial support causing the deletion of all clusters. To avoid this situation, cluster pa-
rameters are updated sequentially and not simultaneously as in standard EM. That is: 
first update cluster 1 parameters ( )2

1 1,µ σ , then recompute all posteriors, update clus-
ter 2 parameters ( )2

2 2,µ σ , recompute all posteriors, and so on. 
After finding a good fit for a GMM with k clusters, the algorithm deletes the weak-

est cluster and restarts itself with k-1 Gaussians and repeats the process until a mini-
mum number of clusters is reached. Each fitted GMM is stored and in the end the set 
of fitted models describe the feature subspace at different levels of granularities. We 



can then consider generic codebooks with different levels of complexities. 

3.3   Learning Keyword-Models: A Logistic Model 

As mentioned before, we cast the keyword-models as a generalized linear model. 
The codebook of clusters modelled the features sub-spaces with great detail so that it 
can be used now as smoothing functions on the logistic model. The link function 
( ) ( ) ( )( )logit log 1g x p p p= = −  defines the log-posterior odds between posi-

tive examples and negative examples of a keyword as a linear combination of the 
codebook output:  

[ ]( ) ( ) ( )1 10 1logit | ...t t tw w w
t K KKE w x q x q xβ β β= + + + . (3) 

Assuming a matrix notation we define the codebook and the parameters as  
( ) ( ) ( )[ ]1 11, ,..., K KQ x q x q x=  and [ ]0 1, ,...,t t tt w w ww

Kβ β β β= , respectively. This 
allows writing the logistic model as: 

( )
( )

1
|

1
wtt Q x

p w x
eβ

=
+

. (4) 

We implemented the binomial logistic regression model where one class is always 
modelled relatively to all other classes. With this choice we achieve some independ-
ence between keywords because they only depend on their own twβ : once the code-
book is computed, it is the same for all classes and only the twβ  weights are specific 
of each class. A second reason for choosing the binomial approach is due to the com-
plexity of the algorithms for fitting multinomial models and their requirements. We 
tested several methods to compute the twβ  weights, and discuss two of the methods. 

3.3.1   Parameter Estimation using L-BFGS 
The only variables we now need to compute using the annotations are the priors 
twβ  which can be computed by minimizing the log-likelihood of the above model 

over the entire data set: 
( )argmaxt t

wt

w w
i I
l

β
β β

∈
= ∑ , (5) 

where ( )l β  is the log-likelihood function, and I is the entire training set. We used a 
Gaussian prior with 2σ  variance to prevent the optimization procedure from overfit-
ting. Thus the log-likelihood function for a binomial logistic model becomes: 

( ) ( ) ( )( )
( )( )( ){ } 2log 1

2

T i

t

T
Q xi T i

wi I
l y Q x eβ

β β
β β

σ∈
= − + −∑ , (6) 

where ( )
t

i
wy  is 1 if the image i has the keyword tw and 0 otherwise, ( )ix  is the low-

level visual features of the image i. To maximize the log-likelihood of each keyword 
model, we set its gradient to zero and proceed with a Quasi-Newton optimization 
algorithm: 

( ) ( )( ) ( ) ( )( )( ) 2| , 0
t

i i i
w ti I

l
Q x y p w x

β β
β

β σ∈

∂
= − − =

∂ ∑ . (7) 



Because the dataset is quite large and the codebook might hold up to 10000 code-
words, algorithms that depend on the computation of the Hessian would require too 
much memory. It has been shown that for this type of models the limited-memory 
BFGS algorithm [13] is the best solution. We use the implementation provided by Liu 
and Nocedal [13]. 

3.3.2   Parameter Estimation using Codewords Log-Odds 
A simpler and computationally less demanding algorithm is based on the code-

words’s log-odds. Since we have a fixed codebook with predefined parameters kθ  we 
estimate the jw

kβ  weights individually as the corresponding codeword log-odds. The 
prior of each codeword is then given by the logarithm of the proportion of positive 
versus negative examples: 

[ ]
[ ]

[ ]
[ ]

| |
log log

1 | |
t k t k tw
k

k t k t

E q w w E q w w
E q w w E q w w

β
= =

= =
− = ≠

. (8) 

The expected values of the above expressions are: 

[ ] ( )( )1
|

w

i
k k ki I

w
E q w q x

I ∈
= ∑ , (9) 

where the set wi I∈  represents the set of images annotated with the keyword w , 
and ( )i

kx  is the low-level visual feature k  of the image i . The interpretation of Equa-
tion (8) is straightforward: if the codeword is more relevant for negative examples the 
proportion will be < 1 and thus its log will be negative, if the codeword is more rele-
vant for positive examples the proportion will be > 1 and thus its log will be also 
positive. This way, when evaluating unseen samples each codeword will have a low 
or high contribution to the overall model probability. 

4   Experiments and Results 

The algorithm was tested with a subset of the COREL Stock Photo CDs [6] and a 
subset of Getty Images [1] in a typical information retrieval scenario to evaluate its  
mean average precision. We conducted an evaluation of our model with a view to 
study the influence of the granularity of the generic codebook. 

 
COREL Dataset This dataset was compiled by Duygulu et al. [6] from a set of 
COREL Stock Photo CDs. The dataset has some visually similar concepts (jet, plane, 
Boeing), and some concepts have a limited number examples (10 or less). In their 
seminal paper, the authors acknowledge that fact and ignored the classes with these 
problems. In this paper we use the same setup as in [1], [2], [7], [8] and [9], which 
differs slightly from the one used in the dataset original paper, [6]. The retrieval 
evaluation scenario consists of a training set of 4500 images and a test set of 500 
images. Each image is annotated with 1-5 keywords from a vocabulary of 371 key-
words. Only keywords with at least 2 images in the test set were evaluated which 
reduced the number of vocabulary to 179 keywords. Retrieval lists have the same 



length as the test set, i.e. 500 items. 
Fig. 1 depicts the evolution of the mean average precision with the complexity of 

the generic codebook. On the test set the maximum achieved MAP was 27.7% with 
an average codebook complexity of 45 clusters per feature per tile – note that these 
clusters are common to all keywords. The different codebook sizes reflect the differ-
ent levels of model granularities of the features-subspaces. The different granularities 
are based on model complexity (number of parameters) of each feature subspace 
(other criteria could have been used such as likelihood or MDL). 
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Fig. 1. Evolution of the MAP vs codewords per feature per tile for the Corel collection on the 
training (left) and on the test set (right). 
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Fig. 2. Evolution of the MAP vs codewords per feature per tile for the Getty-Images collection 
on the training (left) and on the test set (right). 

Getty Images Dataset. This dataset compiled by Yavlinsky et al. [1] is a selection of 
photographs retrieved by submitting queries with a given selection that result in a 
random selection of photos, which excludes any non-photographic content, any digi-
tally composed or enhanced photos and any photos taken in unrealistic studio set-
tings. The resulting dataset contains pictures from a number of different photo ven-
dors, which reduces the chance of unrealistic correlations between keywords and 
image contents. Keywords for Getty images can express subjects (e.g. ‘tiger’), con-
cepts (e.g. ‘emptiness’) or styles (e.g. ‘panoramic photograph’). 

The retrieval evaluation scenario consisted in a training set of 5000 images and a 
test set of 2560 images. Only keywords with at least 2 images in the test set were 
evaluated which results in a vocabulary of 184 keywords. Retrieval lists have the 



same length as the test set, 2560 items. We use the same setup as in [1]. 
Fig. 2 depicts the evolution of the mean average precision with the different com-

plexities of the generic codebook. On the test set, the maximum achieved MAP was 
10.2% with an average codebook complexity of 36 clusters per feature per tile  – note 
that these clusters are common to all keywords. 

5   Discussion 

The creation of the codebook is inevitably a generalization procedure, which trans-
lates into a trade-off between accuracy and simplicity. Thus, the described algorithm 
offers an appealing solution for applications that require an information extraction 
algorithm with a good precision that, at the same time, is simple, economical and 
robust. 

 
Algorithm Corel Getty 
Cross-Media Relevance Model [7] 16.9% - 
Continuous-space Relevance Model [8] 23.5% - 
Logistic regression (Log-Odds) 24.6% 9.6% 
Logistic regression (L-BFGS) 27.7% 10.2% 
Nonparametric Density Distribution [1] 28.6% 9.2% 
Multiple-Bernoulli Relevance Model [9] 30.0% - 
Mixture of Hierarchies [2] 31.0% - 

Table 1. MAP measures of the different algorithms. 

Good retrieval precision. The retrieval performance of our approach is competitive: 
Table 1 compares our algorithm retrieval performance against others. Note that our 
method uses a simple set of features, a basic tiling method and requires less computa-
tional resources than any other method (both in terms of CPU and memory), and it 
still delivers a competitive retrieval performance. The differences in mean average 
precision between these two datasets show that Getty dataset is much more difficult 
than Corel dataset. 

 
Inference scalability. Since the generic codebook is common to all keywords the 
clusters must be computed only once for all keywords. Thus, the resources required to 
evaluate the relevancy of an image for each keywords are relatively modest. Apart 
from the mixture of hierarchies [2] all other methods are some sort of nonparametric 
density distributions. It is well known [14] that the nonparametric nature of these 
methods makes the task of running these models on new data computationally de-
manding: the model corresponds to the entire training set meaning that the demand on 
CPU time and memory increases with the training data. To infer all the keywords 
with our best model requires only 36 to 45 clusters per feature-subspace per tile, 
while method [9] requires 1 Gaussian kernel per tile (24 tiles) per training image 
(4000). For example, to evaluate all 179 keywords of the Corel dataset our model 
needs to compute 36×15×9=4,860 Gaussians plus a linear combination for each key-



word, while method [9] needs to compute 4000×24=96,000 Gaussian kernels plus a 
linear combination for each keyword. 
 
Keywords scalability. Assuming that the used set of keywords is a faithful sample of 
a larger keyword vocabulary it is expected that one can use the same codebook to 
learn the logistic model of new random keywords and preserve the same retrieval 
performance. Note that the codebook is a representation of the data feature space:  it 
is selected based on the set keywords. 

 
Little overfitting. The MAP curve on the test set remains quite stable as the common 
model complexity increases depicting the algorithm’s immunity to overfitting. Our 
model can be interpreted as ensemble methods (additive models) if we consider that 
each cluster is a weak learner and the final model a linear combination of those weak 
learners. This means that our model has some of the characteristics of additive models 
namely the observed immunity to overfitting. It is interesting to note that the simple 
log-odds estimation of the parameters appears more immune to overfitting than the l-
bfgs algorithm. This fact occurs because the optimization procedure fits the model 
tightly to the training data (favouring large tw

kβ ), while the log-odds estimation 
avoids overfitting by computing weighted average the expected value of all code-
words. Note that when fitting the model we are minimizing a measure of the average 
classification residual error (model log-likelihood) and not a measure of how docu-
ments are ranked in a list (Mean Average Precision). The mean average precision is 
the mean of the accumulated precision over a ranked list. This contributes to the large 
difference between the training set MAP and the test set MAP. To the best of our 
knowledge there are no published results assessing the training set MAP versus the 
test set MAP at different model complexities and therefore we cannot compare our 
results with others. 

6   Conclusions 

This paper's novelty resides in the simplicity of the linear combination of a generic 
visual vocabulary for image retrieval and the keyword’s parameters estimation proc-
ess: the results show that such a low complexity approach compares competitively 
with much more complex approaches. This has a bearing on the design of image 
search engines, where scalability and response time is as much of a factor as the ac-
tual mean average precision of the returned results. It is also important to stress the 
little-overfitting exhibited by the algorithm. 

Our aim was to explore the most salient low-level visual patterns of the full dataset 
feature space and learn the causality relation between these patterns’ co-occurrence 
and the keywords. To achieve this goal, we formulated a hypothesis: “Given a com-
mon generic codebook of patterns (codewords) of the full imageset, the keywords can 
be encoded as a low-complexity linear combination of codewords and exhibit a com-
petitive retrieval performance”. The evaluation results allow us to conclude that the 
initial hypothesis is valid. 
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