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ABSTRACT 
To solve the problem of indexing collections with diverse text 
documents, image documents, or documents with both text and 
images, one needs to develop a model that supports heterogeneous 
types of documents. In this paper, we show how information 
theory supplies us with the tools necessary to develop a unique 
model for text, image, and text/image retrieval. In our approach, 
for each possible query keyword we estimate a maximum entropy 
model based on exclusively continuous features that were pre-
processed. The unique continuous feature-space of text and visual 
data is constructed by using a minimum description length 
criterion to find the optimal feature-space representation (optimal 
from an information theory point of view). We evaluate our 
approach in three experiments: only text retrieval, only image 
retrieval, and text combined with image retrieval. 

Categories and Subject Descriptors 
H.3.1 [Content Analysis and Indexing]: Abstracting methods. 

General Terms 
Algorithms, Measurement, Experimentation. 

Keywords 
Multimedia indexing, minimum description length, multi-modal 
categorization, information retrieval. 

1. INTRODUCTION 

Demand for techniques that handle both text and image based 
documents is increasing with the wide spread of search 
applications. It is impossible to conceive nowadays a world 
without systems that allow us to search for specific news articles, 
scientific papers, or information in general. Users want more: they 
want to submit the same query to search for text documents, 
visual documents, or documents with both media, e.g., 
photographs with captions, video shots (keyframes and speech). 

To achieve this, a new breed of information retrieval models is 
required: one that seamlessly integrates heterogeneous data. We 
propose an information retrieval model that can simultaneously 
model text-only documents, image-only documents, and 
documents with both text and images. 

1.1 Information Theory and Multimodal Data 
The objective of the proposed information retrieval model is to 
create a single text and image model of each keyword from a 
given query vocabulary. Prior to estimating a text and image 
model for each keyword, we must first process the input text and 
image data, after which we can estimate the model of a given 
query keyword. 

Both types of data have very different characteristics: while text 
data is typically sparse and high-dimensional, visual data is 
usually dense and low-dimensional (note that adjectives high and 
low are used to contrast the different data that we are dealing 
with). Information theory [9] provides us with a set of information 
measures that not only assess the amount of information that one 
single source of data contains, but also the amount of information 
that two sources of data have in common. After selecting the 
optimal text feature space and the optimal image feature-space 
with the minimum description length (MDL) criterion we merge 
both feature spaces and obtain a unique continuous feature space 
for text and visual data. Note we use “optimal” in this paper from 
an information theory point of view. 

Once we have the optimal continuous feature space we estimate a 
maximum entropy model for each keyword present on the query 
vocabulary. To avoid over-fitting, a Gaussian prior on the 
parameters prevents situations where one single feature inserts 
bias in the model. 

1.2 Contributions 
In this paper we propose a maximum entropy model for each 
query keyword based on text and image features that were 
optimally pre-processed (from an information theory point of 
view). In contrast with previous maximum entropy contributions 
that work with only discrete and/or positive valued features, we 
use real-valued features allowing richer features to be included in 
our framework. 

In our view, the first most important contribution in our approach 
is the ability to seamlessly integrate heterogeneous data (text only 
documents, image only documents, and documents with both text 
and images) in a unique information retrieval model that borrows 
strong statistical foundations from information theory. 

The second most important contribution is in terms of information 

Permission to make digital or hard copies of all or part of this work for 
personal or classroom use is granted without fee provided that copies are 
not made or distributed for profit or commercial advantage and that 
copies bear this notice and the full citation on the first page. To copy 
otherwise, to republish, to post on servers or to redistribute to lists, 
requires prior specific permission and/or a fee. 
CIVR'07, July 9-11, 2007, Amsterdam, The Netherlands. 
Copyright 2007 ACM 978-1-59593-733-9/07/0007 ...$5.00. 



retrieval system scalability. As will be discussed later, the 
framework has a very low computational cost for indexing and 
searching, and it can easily scale with the number of keywords in 
the vocabulary. Last but not least, the retrieval precision of the 
algorithm is in the same range as other state-of-the art algorithms. 

This paper is organised as follows: Section 2 contrasts our work 
with previous work. In Section 3 we describe how text is handled 
as sparse data, and images as dense data; Section 4 describes the 
maximum entropy model implementation. Section 5 presents 
experiments and results. We conclude by discussing the proposed 
information-theoretic framework characteristics. 

2. RELATED WORK 

In text retrieval the search process is triggered by a text query that 
can be compared directly to the corpus of the documents in the 
collection. Since we want to offer a common query interface for 
both text and images we need to define a common vocabulary of 
keywords to query all possible types of documents. Therefore the 
present work is related to text categorization, image annotation 
and multimodal content annotation. We will now look at these 
three areas with a view to seamlessly integrate text and image 
data on the same framework. 

Text categorization models pre-process data by removing stop-
words and rare words, stemming, and finally term-weighting. Due 
to the high-dimensional feature space of text data most text 
categorization algorithms are linear models such as naïve Bayes 
[26], maximum entropy [28], Support Vector Machines [19], 
regularized linear models [44], and Linear Least Squares Fit [40]. 
Joachims [19] applies SVMs directly to the text terms. Text is 
ideal for applying SVMs without the need of a kernel function 
because data is already sparse and high-dimensional. Linear 
models fitted by least squares such as the one by Yang et. al [40] 
offer good precision, and in particular regularized linear methods, 
such as the one we propose and the one by Zhang and Oles [44], 
perform similarly to SVMs, with the advantage of yielding a 
probability density model. The maximum entropy classification 
model proposed by Nigam [28] defines a set of features that are 
dependent on the class being evaluated while we use a unique set 
of features for all keywords. The proposed maximum entropy 
framework has the same characteristics and performance of linear 
models (logistic regression, least squares) with the crucial 
advantage that while these approaches have no automatic 
mechanism to select a vocabulary size we use the minimum 
description length principle to select its optimal size. 

Yang [39], and Yang and Liu  [41] have compared a number of 
text classification algorithms and reported their performances on 
different text collections. Their results indicate that k-Nearest 
Neighbour, SVMs, and LLSF are the best classifiers. Note that 
nearest neighbour approaches have certain characteristics (see 
[14]) that make them computationally too complex to handle 
large-scale indexing. 

The simplest image annotation models deploy a traditional multi-
class supervised learning model and learn the class-conditional 
probability density distribution of each keyword w  given its 

training data x . Bayes law is used to model ( )|p x w , the 
features data density distribution of a given keyword. Several 
techniques to model ( )|p x w  with different types of 
probability density distributions have been proposed: Yavlinsky 
et al. [43] deployed a nonparametric distribution; Carneiro and 
Vasconcelos [7] a semi-parametric density estimation; Westerveld 
and de Vries [37] a finite-mixture of Gaussians; while Vailaya et 
al. [36] apply a vector quantization technique. Density based 
approaches are among the most successful ones. However, density 
distributions are not adequate for text because the density models 
do not get enough support from such sparse data. 

Other types of approaches are based on a translation model 
between keywords and images (global, tiles or regions). Inspired 
by automatic text translation research, Duygulu et al. [10] 
developed a method of annotating images with words. First, 
regions are created using a segmentation algorithm like 
normalised cuts. For each region, features are computed and then 
blobs are generated by clustering the image features for these 
regions across an image collection. The problem is then 
formulated as learning the correspondence between the discrete 
vocabulary of blobs and the image keywords. Following the same 
translation approach [11, 17, 20] have developed a series of 
translation models that use different models for keywords 
(multinomial/binomial) and images representations (hard 
clustered regions, soft clustered regions, tiles). 

Hierarchical models have also been used in image annotation such 
as Barnard and Forsyth’s [3] generative hierarchical aspect model 
inspired by a hierarchical clustering/aspect model. The data are 
assumed to be generated by a fixed hierarchy of nodes with the 
leaves of the hierarchy corresponding to soft clusters. Blei and 
Jordan [6] propose the correspondence latent Dirichlet allocation 
model; a Bayesian model for capturing the relations between 
regions, words and latent variables. The exploitation of 
hierarchical structures (either of the data or of the parameters) 
increases the number of parameters (model complexity) to be 
estimated with the same amount of training data. 

Maximum entropy models have also been applied to image 
annotation [2, 18] and object recognition [21]. All these three 
approaches have specific features for each class (keywords in our 
case) which increases the complexity of the system. It is curious 
to note the large difference in precision results between [18] and 
[2], we believe that it is related to the lack of regularization and to 
a differing number of features. These approaches were not as 
successful as density estimation based models as maximum 
entropy works best in a high-dimensional sparse feature spaces. 
The proposed maximum entropy framework tackles this problem 
by expanding the feature space in a similar spirit to Hoffman’s  
probabilistic Latent Semantic Indexing [15]. 

These single-modality based approaches are far from our initial 
goal but by analysing them we can see which family of models 
can be used to simultaneously model text, image, and multi-modal 
content. Each modality captures different aspects of that same 
reality, thus carrying valuable information about each keyword of 
the vocabulary. The simplest approach to multi-modal analysis is 
to design a classifier per modality and combine the output of these 
classifiers. Westerveld, et al. [38] combine the visual model and 
the text model under the assumption that they are independent, 



thus the probabilities are simply multiplied. Naphade and Huang 
[27] model visual features with Gaussian Mixtures Models 
(GMM), audio features with Hidden Markov Models (HMM) and 
combine them in a Bayesian network. 

In multimedia documents the different modalities contain co-
occurring patterns that are synchronised/related in a given way 
because they represent the same reality. Synchronization/relation 
and the strategy to combine the multi-modal patterns is a key 
point of the Semantic pathfinder system proposed by Snoek et al. 
[34, 35]. Their system uses a unique feature vector that 
concatenates a rich set of visual features, text features from 
different sources (ASR, OCR), and audio features. Three types of 
classifiers are available: logistic regression (which without 
regularization is known to over-fit [8]), Fisher linear discriminant, 
and SVMs (offering the best accuracy). The fusion of the different 
modalities is possible to be done at different levels and it is 
chosen by cross-validation for each concept. The extremely high 
computational complexity required to compute the visual features 
and to iteratively select the best classifier, the best type of fusion, 
and the SVMs parameter optimization are serious drawbacks of 
this system. IBM’s Marvel system [1] has a similar architecture 
with different learning algorithms to analyse the semantics of 
multimedia content. These two approaches offer the best 
performance on the TRECVID2005 conference. Both approaches 
combine the high-dimensional sparse text features and the low-
dimensional dense features on the same feature vector. This might 
represent a problem for the optimization procedure because the 
information present on each dimension can be very different. 
Ideally each dimension should contain the same amount of 
information and the data density/sparseness should be similar 
across the entire feature space. The first step of our framework 
aims at finding this optimal trade-off point by compressing the 
text feature space dimension and by expanding the visual feature 
space dimension. 

3. OPTIMAL DATA REPRESENTATION 

In the problem addressed in this paper a collection of d  
documents is defined as the set 

( ) ( ) ( ){ }1 1 2 2, , , , ..., ,d dX W X W X W=D , (1) 

where each document i  is identified by the pair ( ),i iX W  
corresponding to the document’s features and its annotations. The 
feature vector iX  is decomposed into a text feature vector 
iT  and a visual feature vector iV , and the binary elements of 

the vector iW  indicate the presence of a given keyword from 
the vocabulary of L  keywords in a document 

[ ] [ ]1, , , ...,i ii i i i
LX T V W w w= = . (2) 

Additionally, the elements of the n  dimensional text feature 
vector and the m  dimensional visual feature vector are real 
values (not discrete or only positives values) 

[ ] [ ]1 1, ..., , , ...,i ii i i i
n mT t t V v v= = . (3) 

As discussed in the introduction, text features are very different 
from visual features. Processing a joint feature-space with both 
text and visual features would require a generic algorithm that 
could lead to lower indexing precisions. Moreover, because we 
are also targeting single-modality and multi-modality information 
indexing, we process each feature-space individually with 
algorithms adequate to the specific feature-space characteristics. 
To create a unique feature space where keywords are optimally 
represented, we transform both original feature spaces into an 
optimal unique feature space with a transformation 

( ) ( ) ( )F , F , Fi i S i D iT V T V⎡ ⎤= ⎢ ⎥⎣ ⎦ , (4) 

where FS  is the multivariate function that transforms sparse 
feature spaces (text) and FD  is the multivariate function that 
transforms dense feature spaces (images). The resulting function 
F  is the simple concatenation of the other two transformations.  

3.1 The MDL Principle 

The transformations FS  and FD  change the representation of 
the original data into a different representation of the data. As we 
will see transformations FS  and FD  have different strategies to 
handle text features and visual features. However, in both cases 
there is the problem of selecting the optimal transformation from 
the large number of possible transformations and their varying 
complexities. In this section we answer questions like “how many 
text features?” and “how many visual clusters?” that are usually 
addressed by some heuristic method. We employ a minimum 
description length criterion [32], to infer the optimal 
representation of each feature space as follows. 

When changing the representation of the data we compute a 
candidate transformation *F  that carries an expected error of the 
data on the new representation expressed with the squared-error 
loss, see [14]: 

( )2*

2

Err( ) 1 ( )

Irreducible Error + Bias  + Variance.

x E F x X x⎡ ⎤= − =⎢ ⎥⎣ ⎦
=

 (5) 

The first term is the variance of the modelled process and cannot 
be avoided. The second term measures the difference between the 
true mean of the process and the estimated mean. The third term 
is the variance of the estimated model around its mean. The more 
complex we make the candidate transformation *F  the lower the 
bias but the higher the variance. Equation (5) expresses the 
transformation bias-variance trade-off: simple transformations can 
only represent the training data’s coarse details (high bias) 
causing a high prediction error (low variance) because the 
transformation ignores important aspects of the data structure; 
complex transformations can represent training data structures in 
great detail (lower bias) but the prediction error increases (in 
variance) because the transformation do not generalise to other 
data. 



The MDL principle finds the transformation *F  that achieves the 
best trade-off between the feature space dimensionality and data 
representation. The solution is the transformation that minimises 
the description length, 

( ) ( ) ( )* * *DL F DL F DL F= − −D, D | , (6) 

which is the description length needed to represent the data D  in 
terms of a candidate transformation *F : the description length of 
the transformation *F  itself, plus the description length needed 
to represent the data D  on the new feature space. 

3.2 Sparse Feature Spaces: Text Data 

This section starts by describing the text features that were 
extracted from the collection’s documents and then we present 
how to transform them to obtain an optimal feature space. 
Following traditional information retrieval text processing 
techniques [39] we remove stop words and, following Joachims 
[19], remove rare words from the text corpus (to avoid over-
fitting). After this, the Porter stemmer [31] reduces words to their 
morphological root. The terms obtained by this process are 
weighted by their inverse document frequency [33], 

( ) ( )( )IDF log DFi
i

dt t= , (7) 

where d  is the number of documents in the collection and 
( )DF it  is the number of documents containing the term it . 

Text features are high-dimensional sparse data, which pose some 
difficulties to parametric generative models because each 
parameter receives little support from the data. In discriminative 
models one observes over-fitting effects because the data 
representation might be too optimistic by leaving out a lot of the 
underlying data structure information. 

To find an optimal representation we define the SF  
transformation, which reduces the number of dimensions of a 
sparse space with n  dimensions into an optimal space with sk  
dimensions, as 

( )
( )

( )

1 1

1

1

f , ...,

F , ..., ,

f , ...,
s

is i
n

is i
n s

is i
k n

t t

t t k n

t t

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

. (8) 

3.2.1 Term Selection 
To reduce the dimensions we rank the terms 0, ... , nt t  by 
their importance for the problem classes and select the most 
important ones. The criterion to rank the terms (or dimensions) is 
the mutual information (referred to as information gain) [32], 
expressed by 

( ) ( )
( )

( ) ( )
,

MU , , log
i j

i j
i j i j

i jw t

P w t
w t P w t

P w P t
= ∑∑  (9) 

For each term jt , the criterion measures the common entropy 
between a given query keyword entropy ( )iH w  and the query 
keyword entropy given a term jt , ( )|i jH w t . Yang and 
Pedersen [42] and Gorman [13] have shown experimentally that 
this is one of the best criteria for feature selection. 

3.2.2 Feature Space Selection 
With the terms ranked by their amount of entropy shared with the 
query keywords, we can select the most relevant terms by using 
the minimum description length criterion: 

( ) ( )DL log | log .
2
sS k

M p T F dθ = − +D,  (10) 

The criterion measures the trade-off between the likelihood of the 
data D  for the model Mθ  and the model complexity. The MDL 
criterion is designed “to achieve the best compromise between 
likelihood and … complexity relative to the sample size”, [4]: it 
selects automatically the optimal feature space representation that 
can be obtained with an average mutual information measure. 

3.3 Dense Feature Spaces: Visual Data 

We now describe the visual features that were extracted from the 
collection’s documents and then present the transformation to 
obtain the optimal feature space. The low-level features that we 
use in our implementation are a Marginal HSV colour feature [29] 
with 12 dimensions, a Gabor texture feature [16] with 16 
dimensions, and a Tamura texture feature [16] with 3 dimensions. 
Images are segmented into 3 by 3 parts (9 tiles) before extracting 
the low-level features. 

Our visual feature spaces are dense and low-dimensional spaces: 
hence, keyword data may overlap increasing class cross-
interference. This means that the discrimination between 
keywords is difficult and the estimation of a density model is also 
less effective due to keyword data overlapping. One solution is to 
expand the original feature space into a higher-dimensional 
feature space where keywords data overlap is minimal. Thus, we 
define DF  as the transformation that increases the number of 
dimensions of a dense space with m  dimensions into an optimal 
space with dk  dimensions: 

( )
( )

( )

1 1

1

1

f , ...,

F , ..., ,

f , ...,
d

iD i
m

iD i
m d

iD i
k m

v v

v v k m

v v

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 (11) 

3.3.1 Visual Codebook 
Unlike most expansion techniques that use a predefined expansion 
we learn the expansion function DF  by exploring the natural 



structure of the data. The expansion function DF  is determined 
by estimating a density model of the entire dataset to capture its 
structure in the form of clusters and use each cluster as a new 
dimension. This strategy is similar to probabilistic latent semantic 
indexing [15] in the sense that we are estimating a canonical 
representation of the feature space. 

The cluster density models of each visual feature space are 
computed with an expectation-maximization (EM) algorithm 
which fits a GMM to the data. The expression of a GMM is 

( ) ( )2

1

( ) | | ,
dk

n m m m
m

p x p x p xθ α µ σ
=

= = ∑ , (12) 

where dk  is the number of Gaussians (clusters), x  is the low-
level visual features, and nθ  represents the complete set of model 
parameters with component means mµ , covariances 2

mσ , and 
priors mα . The priors have the convexity constraint 

1,..., 0mα α ≥  and 1mα =∑ . The cluster density model is 
estimated with an EM algorithm, which forces each cluster to 
model a particular and different structural aspect of the data. 
Since the algorithmic nature of EM reduces the cross-interference 
between clusters each cluster will be a new dimension of the 
resulting feature space. To obtain several models with different 
numbers of clusters (different model complexities) we estimate a 
hierarchal set of density models (GMMs). We developed a C++ 
implementation of the modified expectation-maximization 
algorithm proposed by Figueiredo and Jain in [12]. With minor 
modifications this algorithm responds to our needs, see [23]. It 
starts with a number of clusters much larger than the true number 
of clusters and deletes clusters as they get little support data or 
when they become singularities. Once a model is fitted, the 
smallest cluster is deleted and the modified EM algorithm 
continues with that model as a seed for estimating the next 
hierarchal level. The result is a hierarchy of GMMs (and 
equivalently a set of DF  candidate transformations) with 
different number of clusters (resulting dimensions). 

3.3.2 Feature Space Selection 
Once we have learned a hierarchal set of density models, we let 
the minimum description length criterion select automatically the 
density model (transformation FD ) that has the information-
theoretic optimal number of clusters (dimensions): 

( ) ( )DL F () log | F log
2
DD D k

p V d⋅ = − +D,  (13) 

Note that this process differs from probabilistic latent semantic 
indexing [15] in the application of MDL criterion to select the 
optimal number of clusters and the creation of hierarchical 
models. 

4. MAXIMUM ENTROPY MODEL 

Maximum entropy modelling is a statistical learning technique 
that has been applied to a great variety of fields, e.g. natural 

language processing [5], text classification [28], image annotation 
[18]. Maximum entropy is used in this paper to model query 
keywords in the optimal feature space that was discussed in the 
previous section. As is shown in [30] maximum entropy models 
have an exponential (or log-linear) form 

( )
( )

( )F ,1
| ,

Z ,
wt T V

tP w T V e
T V

β ⋅= , (14) 

where ( )F ,T V  is the feature vector, 
twβ  is the weight vector 

for keyword tw , and ( )Z ,T V  is a normalising factor to ensure 
a proper probability. 

We implemented the binomial model, where one class is always 
modelled relatively to all other classes, and not a multinomial 
which would impose a model that does not reflect the reality of 
the problem. The multinomial model implies that events are 
exclusive and in our problem keywords are not always exclusive. 
For this reason, the binomial model is the correct choice for the 
problem at hand because documents can have more than one 
keyword assigned. 

4.1 Over-fitting control: Gaussian Prior 
As discussed by Nigan et al [28] and Chen and Rosenfeld [8], 
maximum entropy models may suffer from over-fitting. This is 
usually because features are high-dimensional and sparse meaning 
that the weights can easily push the model density towards some 
particular training data points. Zhang and Oles [44] have also 
presented a study on the effect of different types of regularization 
on logistic regression. Their results indicate that with the adequate 
cost function (regularization), precision results are comparative to 
SVMs with the advantage of rendering a probabilistic density 
model. 

The MDL criterion already addresses this problem by selecting 
the optimal space complexity. Another more efficient way of 
tackling maximum entropy over-fitting is to set a prior on the 
weights. As suggested in [28] and [8] we use a Gaussian prior 
with mean zero and 2σ  variance to prevent the optimization 
procedure from over-fitting. 

4.2 Large-Scale ML Estimation 
To estimate the maximum entropy model the weights 

twβ  are the 
only variables that need to be computed by minimizing the log-
likelihood of the above model over the entire dataset 

( )arg min
t t

wt

w w
i

l
β

β β
∈

= ∑
D

, (15) 

where ( )
twl β  is the log-likelihood function, and D  is the entire 

training set. As discussed previously we use a Gaussian prior to 
reduce the over-fitting effect. Thus the log-likelihood function for 
a binomial logistic model becomes 

( )
( )

( )

F ,

2log
Z , 2

i i
wt

t t

TT V
w w

i i
i

e
l

T V

β β β
β

σ

⋅

∈

⎛ ⎞⎟⎜ ⎟⎜= −⎟⎜ ⎟⎟⎜⎝ ⎠
∑
D

, (16) 

where ( )i
tw  is 1 if the image i  has the keyword tw and 0 

otherwise, ( )ix  is the low-level visual features of the image i , 
and 2σ  is the Gaussian prior variance. Thus, maximum log-



likelihood model estimation is computed with a quasi-Newton 
algorithm that finds the solution to Equation (15) by finding the 
root of the first derivative of Equation (16): 

( ) ( )( ) ( ) ( )( )( ) 2F | ,i i i
t t

i

l
x w p w x

β β
β

β σ∈

∂
= − −

∂ ∑
D

. (17) 

Newton algorithms need the Hessian matrix to drive the algorithm 
into a local maximum solution. The computation of the Hessian 
matrix is very complex because the feature space might have up 
to around 10,000 dimensions producing the computation of a 
10,000×10,000 on each iteration. Thus, algorithms that compute 
approximations to the Hessian matrix are ideal for the problem at 
hand. The limited-memory BFGS algorithm proposed by Liu and 
Nocedal [22] is one of such algorithms that “use curvature 
information from only the most recent iterations to construct the 
Hessian approximation. Curvature information from earlier 
iterations, which is less likely to be relevant to the actual 
behaviour of the Hessian at the current iteration, is discarded in 
the interest of saving storage”. Malouf [25] has compared several 
optimisation algorithms for maximum entropy and found the 
limited-memory BFGS algorithm to be the best one. We use the 
implementation provided by Liu and Nocedal [22]. 

5. EVALUATION 

To evaluate our information-theoretic framework we tested it on a 
text dataset, an image dataset, and a text and image dataset. The 
following sections will present these datasets, a baseline 
classifier, the experiments, and the results of the evaluation. 

5.1 Datasets 
Reuters-21578: This is a widely used text dataset which allows 
comparing our results with others in the literature. Each document 
is composed by a text corpus, a title (which we ignore), and 
labelled categories. This dataset has several possible splits and we 
have used the ModApte split which contains 9,603 training 
documents and 3,299 test documents (the same evaluation setup 
used in [19, 26, 28, 44]). Terms appearing less than 3 times were 
removed. Only labels with at least 1 document on the training set 
and the test set were considered leaving us with 90 labels. After 
these steps we ended with 7,770 labelled documents for training. 

Corel Images: This dataset was compiled by Duygulu et al. 
[10] from a set of COREL Stock Photo CDs. The dataset has 
some visually similar concepts (jet, plane, Boeing), and some 
concepts have a limited number of examples (10 or less). In their 
seminal paper, the authors acknowledge that fact and ignored the 
classes with these problems. In this paper we use the same setup 
as in [7, 11, 17, 20, 43], which differ slightly from the one used in 
the dataset original paper, [10]. The retrieval evaluation scenario 
consists of a training set of 4,500 images and a test set of 500 
images. Each image is annotated with 1-5 keywords from a 
vocabulary of 371 keywords. Only keywords with at least 2 
images in the test set were evaluated which reduced the number of 
vocabulary to 179 keywords. 

TRECVID2005: To test the algorithm on a multi-modal 
collection of documents we used TRECVID2005: each document 
(a video shot) has text (from speech), images (keyframes) and the 
labels from vocabulary of 39 standard keywords rather than the 
full 400 LSCOM concepts. Since only the training set is 
completely labelled, we randomly split the training English 
videos to use as train and test. We considered each document to 
be a keyframe plus the text within a window of 6 seconds, and the 
retrieval evaluation was done at the document (shot) level. We did 
not consider the non-English data because that would require 
more time/processing power and the English ASR in these cases 
are too noisy (the ASR obtained from speech recognition 
followed by machine translation). 

5.2 Baseline Naïve Bayes Model 
The naïve Bayes text classifier results from the direct application 
of Bayes law and from the use of strong independence 
assumptions between terms in a document. As discussed by 
McCallum and Nigam [26], a document can be represented as an 
event model of term presence or term count, leading to the choice 
of a binomial or multinomial model respectively. We choose the 
multinomial distribution, as the binomial distribution is too 
limiting given the probabilistic nature of our problem. The 
description of the naïve Bayes implementation used in our 
experiments is in [24]. 

5.3 Experiments and Results 
We run retrieval experiments by ranking documents for each 
keyword and computing the corresponding average precision. The 
mean of the results for all keywords, the mean average precision, 
is plotted on figures against the dimension of the feature spaces. 
The mark indicates the results with the feature space chosen with 
the minimum description length. The regularization parameter 
was chosen by cross-validation. The graphs also compare the 
maximum entropy framework to a baseline naïve Bayes model. 
The low-level visual features are: Marginal HSV colour feature 
[29] with 12 dimensions; Gabor texture feature [16] with 16 
dimensions; Tamura texture feature [16] with 3 dimensions. 
Images are segmented into 3 by 3 parts (9 tiles) before extracting 
the low-level features. Text features are processed as described 
previously. 

Results in the Reuters dataset in Figure 1 show that after some 
number of terms (space dimension) precision does not increase 
because the information carried by these terms are already present 
on the previous ones. It is interesting to note that the MDL point 
is slightly below the best value because the number of samples is 
too small and does not favour more complex models (see the 
MDL expression).  

Figure 2 shows the retrieval results versus the data representation 
complexity for the Corel images dataset. Each point in the curve 
is obtained by concatenating different colour and texture 
representations with the same number of dimensions (e.g. 100 
dimensions for colour plus 100 dimensions for texture).  

The precision stabilises after a certain space dimension because 
the new dimensions being added to the feature space do not bring 
any original information (the same phenomenon shows on the 
Reuters dataset). The MDL point is not on top of the curve 
because it corresponds to the concatenation of the best 



representation of the colour features plus the best representation 
of the texture features. Note that in the Reuters case the MDL 
point is on top of the curve because there is only a single feature 
space. 

With the TRECVID dataset we tested our statistical modelling 
framework on data with both dense and sparse data. Figure 3 
shows the results and it is possible to observe the same 
phenomenon that we observed on the other datasets. Note also 
that the difference between naïve Bayes and maximum entropy is 
not big which we believe is due to the fact of the increasing 
number of parameters to estimate. 
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Figure 1 – Retrieval results on Reuters-21578. 
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Figure 2 – Retrieval results on Corel Images. 
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Figure 3 – Multimodal retrieval results on TRECVID2005. 

6. CONCLUSIONS 

We propose an information-theoretic framework for semantically 
indexing text, images and multimedia information. The text, 
image, and multimedia models are a multi-modal representation 
of a query keyword on an information retrieval system. Text and 
visual features are transformed via information theory related 
techniques (average mutual information and clustering) into an 
optimal representation of the original data with the MDL 
criterion. Finally, the query keywords are represented as a 
maximum entropy model regularised with a Gaussian prior and 
estimated with a quasi-Newton algorithm. 

Precision. The performed experiments show that our framework 
offers a performance in the same range as other state-of-the-art 
algorithms. Text and image results are quite good while 
multimodal experiments were affected by the noise present on the 
speech text and by the higher number of parameters to estimate. It 
was not surprising to see that maximum entropy attains better 
results than naïve Bayes at the expense of a higher learning cost. 

Model selection. The MDL criterion selects the optimal 
complexity of a model that faithfully represents data for the given 
number of samples. It does not necessarily select the model that 
achieves the best results. In some situations cross-validation 
might select a model which produces better results for two 
reasons: (1) sometimes the assumption that data was generated by 
a random process is too weak (there’s a strong bias between the 
train and test set) and (2) the number of samples is too low 
leading the MDL criterion to select a simpler model. 

Precision vs space dimensions. We use MDL to select the 
optimal representation of each individual feature space and not 
the optimal representation of all feature spaces together. 
Individual feature spaces contain redundant information that 
already exists on some other feature space. This means that after 
merging all new data representations, there will be dimensions 
containing related information. To solve this problem one would 
have to employ some type of greedy search algorithm that gathers 
a feature space with only the useful dimensions, discarding the 
redundant ones. Note that this is related to the way we design new 
representations of data and not to the way we assess them (in our 
case with MDL). 

Learning scalability. The high computational cost of the learning 
process resides on the clustering of the visual feature space and on 
the quasi-Newton algorithm. These learning procedures are 
usually done offline and they aim at estimating the keyword 
model with the minimum complexity possible which results in a 
simple model with a high inference scalability. 

Indexing scalability. In contrast to most maximum entropy 
models that have a set of feature functions specific for each 
keyword, we have a unique set of features to compute all 
keywords probabilities. Obviously, this results in a low 
complexity indexing algorithm which is crucial for large-scale 
search engines. The clustering of the visual feature space 
contributes to this reduction on the computational complexity: 
apart from its hierarchical nature, it pursues the same objective as 
probabilistic latent semantic indexing [15], which is to 
approximate the SVD canonical representation of a feature space. 
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