
SLMC: A Tool for Model Checking Concurrent Systems
against Dynamical Spatial Logic Specifications

Luı́s Caires and Hugo Torres Vieira

CITI / Departamento de Informática, FCT Universidade Nova de Lisboa, Portugal

Abstract. The Spatial Logic Model Checker is a tool for verifying safety, liveness,
and structural properties of systems in the π-calculus, expressed in the spatial logic for
concurrency of Caires and Cardelli. Model-checking is one of the most widely used
techniques to check temporal properties of software systems. However, when the anal-
yses focuses on properties related to resource usage, localities, interference, mobility,
or topology, it is crucial to reason about spatial properties and structural dynamics.
The SLMC is the only currently available tool supporting the combined analysis of be-
havioral and spatial properties of systems. The implementation, written in OCAML, is
mature and extremely robust, available in open source, and outperforms other existing
tools for verifying processes modeled in the π-calculus.

1 Introduction
Model-checking is one of the most widely used verification techniques in the analysis
of software applications. The usual focus is on behavioral/temporal properties, which
allow to check liveness and safety properties of systems, from the standpoint of their
externally observable behaviour. However, it is often the case that verification really
needs to address on properties about (spatial) distribution, mobility, or resource usage.
It is then crucial to be able to observe the structural/spatial configuration of systems. Ex-
amples of such properties include connectivity (there is always an access route between
two sites) or unique handling (there is at most one server listening on a given channel
name), or race absence (no simultaneous sends/writes to the same receiver/reader).

The Spatial Logic Model Checker [3, 18] is a tool that allows the user to automat-
ically verify behavioral and spatial properties of distributed and concurrent systems
expressed in the π-calculus. Its base logic is a very rich dynamical spatial logic for
concurrency, even if conveniently contains as a subset the logics supported by early
model-checkers for π-calculi (e.g.,[16, 11, 20]). The verification algorithm (using on-
the-fly techniques) is provably correct for all expressible processes, and complete for
the class of bounded processes [4] (which includes the finite control π-calculus). The
tool itself is written in OCAML. In the next section, we present the SLMC by going
through a simple example, which already illustrates the usefulness of the tool, briefly
presenting the input languages in the meanwhile (see, e.g., [12, 13, 15] and [4–7] for
background on π-calculus and on dynamic spatial logics, respectively).

2 Checking a Topological Property of a Distributed Protocol
The example we now discuss models a protocol which allows a set of nodes to orga-
nize itself into a ring like structure. The basic idea of the protocol is that in each step
two rings (which includes the case of the singleton ring, i.e., a ring with one node)
are merged into a larger ring. Then, regardless of the intermediate configurations, a se-
quence of such steps leads to the point in which the whole set of nodes is included in the

2

ring. The correctness of such protocol may be verified by our tool, since we are able to
observe the topology of the system and check if the protocol yields a ring configuration.

We start by the specification of the three possible states of a node in our system:
state Node represents the initial state of a node, which has no connections; state Link
represents a node which is in a ring, hence connected to his left and to his right (we use
left and right for the sake of illustration); state Leader also represents a node which is
in a ring, but is the only node in its ring that is willing to connect to other nodes.

The specification of the Node in SLMC syntax is as follows:
defproc Node(com) =

new link,chan in select {
com!(link,chan).chan?(right).Leader(com,link,right);
com?(right,newch).newch!(link).Link(link,right)};

The defproc introduces a π-calculus process definition in the system, named Node.
The parameter com is the name of a public channel used by nodes to connect to each
other. The process specified creates names link and chan (cf., π-calculus name restric-
tion) and then may select one of two possible behaviors: either it outputs on channel
com the freshly created names link and chan or it receives some names right and
newch in channel com. In the former case, the process proceeds by receiving right
in chan, after which becomes the Leader of the ring. In the latter case, the process
proceeds by sending link in the received newch, and then becomes a Link node.

We then specify a Link node as a process that either inputs from the node on his
left or outputs to the node on his right, and after which proceeds as a Link node:
defproc Link(left,right) =

select { left?().Link(left,right);
right!().Link(left,right)};

Like the Link, a Leader also receives from his left node and outputs to his right:
defproc Leader(com,left,right) =

new chan in select {
left?().Leader(com,left,right);
right!().Leader(com,left,right);
com?(newr,newch).newch!(right).Link(left,newr);
com!(right,chan).chan?(newr).Leader(com,left,newr)};

Furthermore, a Leader node is willing to connect to another ring via channel com
(and a freshly created chan). Intuitively, two Leaders connect by swapping their right
links, in such way merging two rings into one. This is the case both when the Leader
receives or outputs on com, the difference is that the former implies yielding the Leader
status (proceeding as Link), while the latter does not (proceeding as Leader).

The system is specified as a set of (e.g., four) Nodes that share a public com channel:
defproc System = Node(com) | Node(com) | Node(com) | Node(com);

We may now present the spatial/behavioral properties that characterize the system.
For starters, we describe a leader node:
defprop leader(a,b) =
1 and (a != b) and (@com) and (<a?> true) and (<b!> true);
This defprop command defines property leader (with parameters a,b), which

describes processes which are indivisible (1), that have com as a free name (@com)
and that are able to input on a name (<a?> after which proceeding as processes that
satisfy true, i.e., any) and output on another name (<b!> after which proceeding as
any process). A link has a similar description, where com is not a free name:

3

defprop link(a,b) =
1 and (a != b) and (not @com) and (<a?> true) and (<b!> true);

A node may be described as an indivisible process which is not a link nor a leader:
defprop node =
1 and not exists a. exists b. (leader(a,b) or link(a,b));

Notice properties link, leader and node are specially suited for the node specifi-
cation of this system in particular. However, testing for indivisibility (single-threaded)
is a generic feature of a node, and is possible to observe thanks to the expressiveness of
the logic — 1 may be taken as an abbreviation of “non-empty system which cannot be
decomposed into two non-empty parts” (not 0 and not (not 0 | not 0)).

The separating composition A|B is a key operator of the dynamic spatial logic, char-
acterizing systems that can be decomposed (via structural congruence) in two parts, one
satisfying property A and the other satisfying property B. Using parallel composition,
we may, e.g., specify the initial state of the system as a composition of four nodes:
defprop initial = inside (node | node | node | node);

Property inside is used so as to reveal all name restrictions, i.e., open the scopes
of all name restrictions, in such way allowing for spatial decomposition to split threads
otherwise indivisible because of the sharing of some restricted name.

We now turn to the verification of the correctness of the protocol. In order to char-
acterize rings, we first introduce the notion of a chain of connected link nodes:
defprop chain(c,d) = (minfix C(a,b).(link(a,b) or

(exists x. (link(a,x) | C(x,b)))))(c,d);

Intuitively, the least fixpoint (minfix), parameterized by a,b (with initial instanti-
ation c,d), characterizes a chain of linked nodes where the leftmost and rightmost links
are a and b, respectively. Such chain may either be a single link node, or there exists
(existencial quantifier) name x such that there is a link(a,x) in parallel with a chain
from x to b. Then, a ring is a chain of links in parallel with a leader:
defprop ring = exists a. exists b. (leader(a,b) | chain(b,a));

Notice the chain connects b to a, for some names b,a, which are the right and left
link of the leader node, respectively. We may now ask the tool if all execution paths
lead (always and eventually, defined as expected) to a ring configuration:
check System |= always (eventually (inside (ring)));

The success of this verification, which explores all possible execution paths of the
system and exploits the unique combination of behavioral and spatial properties sup-
ported by the tool, guarantees the protocol always leads, regardless of intermediate
steps, to a final configuration of a ring that connects all nodes.

3 Verification Algorithms and Implementation
In this section we discuss the verification algorithms, based on [4] and on a canonical
representation of processes, and present some benchmark figures.

The model-checking procedure is based on an on-the-fly technique, which means
the model state space is explored gradually, guided by the deconstruction of the for-
mula. In our case, the verification comprises observing both structure and behavior of
processes. Namely model-checking relies on decompositions of processes (up to struc-
tural congruence) to check the composition formula A | B, on observing behaviors of

4

processes (up to the labeled transition system which defines the operational semantics)
to check action modalities, and, crucially to check fixpoints, on the ability to compare
two processes (up to the identification of some irrelevant names for the purpose of
the model-checking, i.e., names that are not referred by the formula [4]). Lots or the
reasoning performed by our algorithms are optimized by relying on equivariance [10]
(working up to name permutations).

Processes are modeled by data structures representing sets of equations in a normal
form. Each equation describes a flat state of the process, where only immediate actions
are represented. Using X to range over equation identifiers and α to range over actions
we then write X (x) !→ (νa) (α1 | . . . | αk) to represent the equation identified by
variable X , parameterized by the x variable set (x abbreviates x1, . . . , xj), specifying a
flat configuration with restricted names (a) and consists of the composition of k actions
(α1 to αk). Action prefixes, denoted by p, and actions, denoted by α, are given by:

p ::= n!(m) (Output) | n?(x) (Input) α ::= α+ α (Sum)
| [n = m] (Test) | τ (Internal) | p.X (n) (Prefix)

An action prefix may be an output n!(m) (read “send names m on channel n”), an
input n?(x) (read “instantiate variables x with the names received on channel n”), a
test [n = m] (read “if n is the same as m proceed”) and τ which represents a process
internal action. Actions are either the non-deterministic choice of two actions α + α,
or a prefix and its respective continuation. Continuations in our setting are specified
by the corresponding equation variable, hence p.X (n) represents a process (thread)
which after p behaves as specified in the equation identified by X (where the equation
parameters are instantiated by n).

Abstracting continuation states with equation variables is crucial to quickly verify
if two processes are the same, since we only need to check if the immediate actions and
their respective continuations are the same. This simplification is crucial for the veri-
fication of fixpoints, which rely on an approximation of the fixpoint which is updated
and consulted throughout unfolding, via the process comparison mechanism.

A process model may then be represented by a set of equations, together with an
entry point. To further optimize the verification we model active (top-level) processes
considering the set of connected components [9]: two processes (threads) sharing a re-
stricted name cannot be decomposed (via π-calculus structural congruence). Hence, for
the sake of verifying the composition formula, which involves exploring all possibili-
ties for decomposing a process, it is vital that the representation clearly identifies which
threads are not decomposable, and hence identify the basic units of decomposition. The
SLMC top-level process representation is then given by:

(νa1) (α1
1 | . . . | α1

k) | . . . | (νaj) (αj
1 | . . . | αj

k)

where each (νai) (αi
1 | . . . | αi

k) piece (for some i) is an indivisible process because
the αi

t actions share between them the ai restricted names. This way, the several possi-
bilities for decomposing a process in two pieces are obtained by the possible combina-
tions of gathering these basic indivisible blocks.

At the level of the optimizations, the main challenge we address is the expedite
(re-)building of the process normal form, i.e., updating the top-level process represen-
tation as the consequence of observing an action/transition (labeled transitions model

5SLMC Petruchio MWB (prove) MWB (check) MMC
Handover 0.0005 0.2 0.002 0.015 0.01
Arrow (a) 0.01 0.8 0.115 — —
Arrow (b) 0.3 4.3 6.2 — —

Table 1. Model-Checking Deadlock Absence (in seconds).

Ring Handover Arrow (a) Arrow (b)
0.08 0.02 0.11 7.76

Table 2. Model-Checking Spatial properties (in seconds).

interaction with the external environment). For example, observing an output action
entails updating the top-level process with the continuation of the output which then
becomes active. So, actions and name restrictions specified in the continuation configu-
ration (given by the equation identified by the variable prefixed by the output) must be
integrated in the top-level representation, and the set of connected components must be
updated considering the “new” actions and due to restricted names scope changes.

We now present some benchmark figures, comparing with model-checking proce-
dures available in the Mobility Workbench (MWB) [16], in the Petruchio tool [11], and
with the Mobility Model Checker (MMC) [20]. The comparison is established for the
verification of a behavioral property, deadlock absence (always (<> true)) (since
no other system supports spatial properties). We consider two systems: Milner’s imple-
mentation of the Handover protocol [13] and a π-calculus implementation of the Arrow
Distributed Directory Protocol [8], both available in the SLMC homepage [3].

The numbers shown in Table 1 list the amount of time needed for each tool to ver-
ify the systems are deadlock free (obtained running the tools on a Mac OS X 10.5.8,
2.4GHz Intel Core 2 Duo). For the Petruchio tool in particular, the figures indicate the
time needed to translate π-calculus specifications into petri-nets [14], since Petruchio
exports such petri-nets to external verification engines to carry out the model-checking.
In the case of the MWB, we distinguish between the prove and check procedures. We
consider the arrow system as available in [3] — Arrow (a) — and also some small vari-
ations obtained by adding more nodes to the system —- (b). Notice that both the check
procedure available in the MWB and the MMC did not provide results for checking
deadlock absence for the arrow system, due to timeout and memory overflow, respec-
tively. The comparison with the prove procedure available in the MWB is favorable to
the SLMC, where the figures obtained hint on the complexity of the arrow system itself.
The comparison with Petruchio is favorable to SLMC except in the more complex ar-
row system considered, which suggests that the minimization of the system carried out
in the translation to petri-nets pays off in the long run. We believe further optimizing the
π-calculus models used in the SLMC tool could likewise be worthwhile. Notice how-
ever none of the tools mentioned above supports the verification of structural properties,
and there exists none, to the best of our knowledge, which allows for the combined anal-
ysis of behavioral and spatial specifications as the ones expressible in dynamic spatial
logic. For this reason we cannot present any benchmark comparison for the verification
of dynamic spatial properties. Table 2 reports on figures obtained for verifying spatial
properties over the same systems, namely the verification shown in the previous section
in the Ring system, race-freedom in the Handover system, and a complex correctness
property of the Arrow system (see [3]): it is always the case that every node may even-
tually gain exclusive access to the shared object. We offer no comparison in this case,
since no other tools can handle spatial properties as the SMLC does.

6

4 Concluding Remarks
The SLMC is publicly available online, in open source, and is often downloaded. The
tool, in development since 2004, has reached a very high maturity and robustness level,
and is very fast in practical use. It has been routinely used for teaching purposes in
our department, we would like to further promote its use elsewhere. The development
of the first version of the tool was supported by the FET Profundis project [1]. The
development continued under the support of project IP Sensoria [2], where the tool was
included in the Sensoria tool suite, and extended for the verification of service oriented
systems, as described in [19]. In particular, we have also concluded recently further
extensions to the tool, namely an extension to the applied π-calculus (for security),
and another for checking choreography conformance of service-oriented applications,
based on the an encoding of the Conversation Calculus [17]. Further info about Spatial
Logic Model Checker, and the structure of a typical demo session may be found in
http : //ctp.di.fct.unl.pt/SLMC/dem.
References

1. FET Profundis Project. http://www.it.uu.se/profundis/.
2. IP Sensoria Project. http://www.sensoria-ist.eu/.
3. Spatial Logic Model Checker. http://ctp.di.fct.unl.pt/SLMC/.
4. L. Caires. Behavioral and Spatial Observations in a Logic for the π-Calculus. In FOSSACS

2004, Proceedings, volume 2987 of LNCS, pages 72–89. Springer, 2004.
5. L. Caires. Dynamical Spatial logics: A Tutorial Survey. In Bulletin of the EATCS, 2008.
6. L. Caires and L. Cardelli. A Spatial Logic for Concurrency (Part I). Information and Com-

putation, 186(2):194–235, 2003.
7. L. Cardelli and A. Gordon. Anytime, Anywhere: Modal Logics for Mobile Ambients. In

POPL 2000, Proceedings, pages 365–377. ACM Press, 2000.
8. M. Demmer and M. Herlihy. The Arrow Distributed Directory Protocol. In DISC 1998,

Proceedings, volume 1499 of LNCS, pages 119–133. Springer, 1998.
9. J. Engelfriet and T. Gelsema. Multisets and Structural Congruence of the π-Calculus with

Replication. Theor. Comput. Sci., 211(1-2):311–337, 1999.
10. M. Gabbay and A. Pitts. A New Approach to Abstract Syntax with Variable Binding. Formal

Aspects of Computing, 13(3–5):341–363, 2002.
11. R. Meyer and T. Strazny. Petruchio: From Dynamic Networks to Nets. In CAV 2010, Pro-

ceedings, volume 6174 of LNCS, pages 175–179. Springer, 2010.
12. R. Milner. The Polyadic π-Calculus: A Tutorial. In F. Bauer, W. Brauer, and H. Schwicht-

enberg, editors, Logic and Algebra of Specification, pages 203–246. Springer, 1993.
13. R. Milner. Communicating and Mobile Systems: the π-Calculus. CUP, 1999.
14. C. Petri and W. Reisig. Petri net. Scholarpedia, 3(4):6477, 2008.
15. D. Sangiorgi and D. Walker. The π-Calculus: A Theory of Mobile Processes. CUP, 2001.
16. B. Victor and F. Moller. The Mobility Workbench - A Tool for the π-Calculus. In CAV 1994,

Proceedings, volume 818 of LNCS, pages 428–440. Springer, 1994.
17. H. Vieira, L. Caires, and J. Seco. The Conversation Calculus: A Model of Service-Oriented

Computation. In ESOP 2008, volume 4960 of LNCS, pages 269–283. Springer, 2008.
18. H. Vieira, L. Caires, and R. Viegas. The Spatial Logic Model Checker User’s Manual v1.0.

Technical Report UNL-DI-05/2005, Universidade Nova de Lisboa, 2005.
19. M. Wirsing and M. Hölzl, editors. Rigorous Software Engineering for Service-Oriented

Systems. Springer-Verlag, 2011.
20. P. Yang, C. Ramakrishnan, and S. Smolka. A Logical Encoding of the π-Calculus: Model-

Checking Mobile Processes Using Tabled Resolution. STTT, 6(1):38–66, 2004.

