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Data-intensive applications as popularised by cloud computing raise many security
challenges, due to the large number of remote users involved and multi-tenancy. Fre-
quently, the security compartment associated to data stored in shared containers, such
as database tables, is not determined by the static structure of the database schema, but
depends on runtime data values, as required to ensure so-called "row-level" security. In
this paper, we investigate a programming language approach to these issues, based on a
λ-calculus extended with data manipulation primitives. We develop a type-based infor-
mation flow analysis introducing a notion of value-indexed security labels, representing
value-indexed security levels, or compartments. Our results ensure that well-typed pro-
grams do not break confidentiality constraints imposed by a declared security discipline.

1 Introduction

Data-centric applications have become a key component of IT infrastructures and, more
recently, in the average user’s daily tasks, due both to the internet’s popularity and to
the proliferation of cloud computing infrastructures on which most of these applications
rely on nowadays. Unfortunately, such infrastructures, often based in relational database
backends, do not provide enough support for the security requirements posed by such
application scenarios. For instance, an app may inadvertently execute a query to extract
sensitive information from the database and then insert that data in a table any user may
read from, thus creating an insecure information flow, violating confidentiality. Such
operation, however, may be deemed secure in a security model simply based on access
control: a principal may have enough privileges to read the information and since the
second table is public, he also has enough permissions to insert data there. To prevent
such insecure flows, one may, at least in principle, apply to the application’s code and
database interface languages some form of information flow analysis [12, 14, 28].

However, data centric systems pose specific challenges on how to ensure confi-
dentiality and integrity in the presence of multi-tenancy and container sharing. A key
issue is that security compartments are not simply attached to the static structure of the
database schema, but are actually dynamic and dependent on runtime data, inducing so-
called “row-level" security. For a typical example, consider within a social network app
a database table holding for each user the list of her private photos. We would like to
consider that the security level of the whole table is (say) photos, but that the security
level of each row is photos(id), where id is the actual userid value registered on it.
Assuming that different userids give rise to incomparable security levels photos(id)



in the security lattice, we would then like to ensure that the app may never transfer pri-
vate photos from one user to another, even if all photos are stored in the same database
structure. A valued indexed security label such as photos(id) denotes a potential se-
curity compartment for each concrete id index value. Notice that since such indexes of
security labels may be obtained by computation, or as the result of queries, they are not
fixed or known at app design or construction time, and the same must be said of any
indexed security label such as photos(id). Nevertheless, our aim is to statically reason
about information flows between the security compartments denoted by such indexed
labels, so to invalidate code that break security policies. For this purpose, we introduce
a type-based information flow analysis for a λ-calculus extended with a (SQL-like) data
manipulation language (DML). As in classical approaches (e.g., [1, 16]), both a type τ
and a security label s are assigned to expressions by our typing judgment ∆ ` e : τ s,
reflecting the fact that the value of e will only be affected by computations interfering at
security levels≤ s. However, we are not aware of prior work exploring value-dependent
security labels, as we do here. For example, ∆ ` e : τphotos(joe) states that e will not
return a photo from any user other than joe, even if emay read a global table containing
photos of all users. Value-dependency may be explicit, as in photos(joe), or implicit,
captured by security-label dependent record types, useful to express row-level security.

We discuss our approach in more detail using a toy example inspired by a healthcare
center software service that manages medical doctors and patients. The system requires
information about doctors and patients, as well as patient’s clinical records, to be stored
in a database, according to the schema

entity Doctors(id_d, name, age, speciality) in
entity Patients(id_p, name, age, address) in
entity Records(id_p, date, clinical_info) in
entity isPatientOf(id_p, id_d) in ...

which can be manipulated through usual SQL-like DML primitives. We are interested
in statically ensuring confidentiality properties for the applications developed over this
database. Suppose that data in the healthcare system is classified in three security levels
L, P, and D where L represents data that can be disclosed to the general public, P data
that patients can see, and D data that only doctors can observe. As expected, a partial
order for these security levels would be L<P<D, expressing that L is the most permis-
sive level and D the most restrictive. To describe a data security policy, we classify the
database entities fields with these security levels (we omit data types for now): entity
Doctors(id_d: L, name: L, age: D, speciality: L), which states that a doctor’s
profile (represented by a tuple in entity Doctors) is public except his age, that should
remain secret and observable only to doctors; entity Patients(id_p: L, name: P,

age: P, address: P), stating a patient’s profile is not public (except his identification
number, which by itself does not disclose whose patient it belongs to), as well as his
clinical record entity Records(id_p: L, date: P, clinical_info: P), both vis-
ible to patients and to doctors (because P<D). A basic goal is then to guarantee that
throughout the execution of any code manipulating these entities, the data stored in
containers of security level P and D are not visible in a context with security level L, that
is, this data is not made public. This may be achieved by an information flow analysis
for a programming language with DML primitives, a first contribution of our work.



Yet, this basic approach is not enough to enforce the needed security policies. When
we say that a patient can see his full profile we are stating something stronger than that:
a patient can see any patient’s full profile. This is clearly an undesirable limitation of
the simple security label model adopted, which is not expressive enough to talk about
individual tuples of an entity. In intuitive terms, the P security compartment needs to
be partitioned (indexed) in many partitions P(n), one for each patient n, e.g. P(joe),
P(mary), etc, where L<P(n)<P for all n, and P(m) 6=P(n) for all n 6= m. Now, all
patient records are stored in the same data structure, the entity table Patients. To give to
the table a uniform security type, we then introduce security-label dependent records,
allowing us to express“row-level" security compartments:

entity Doctors(id_d: L, name: L, age: D(id_d), speciality: L) in
entity Patients(id_p:L, name:P(id_p), age:P(id_p), address:P(id_p)) in
entity Records(id_p: L, date: P(id_p), clinical_info: P(id_p)) in
entity isPatientOf(id_p: L, id_d: L) in ...

In a security-label dependent record a field identifier may act as a binding occurrence
for the value it might hold, and scopes over the security labels of the remaining fields.
So by indexing security level D with the tuple’s field id_d, we are stating that the age
info of doctor with id_d =house belongs to level D(house); and likewise by indexing
security level P with a patient’s identifier id_p, we are saying that this data is only
visible to the patient (and no other patient) and, eventually, to any doctor (since P<D).
Value dependent security labels allows us to talk about individual tuples and capture
fine grained information flows. For instance, in the following code:

let info = first (from (x in Records)
where x.id_p=42 select x.clinical_info)

in insert [id_p:42, date:today(), clinical_info:info] in Records

value info gets security level P(42) since we are projecting a tuple with id_p value
42. This allows the insert operation to be deemed secure since we are inserting a tuple
with id_p=42, and clinical_info=info and date=today() with security label P(42)
(the latter by up-classification). On the other hand, if we replace the last line above by
insert [id_p:10, date:today(), clinical_info:info] in Records, an insecure
flow must be signalled, since data from patient 42 is being associated to patient 10. In
other words, we prevent information from patient with id_p = 42 to be leaked to an-
other patient’s record. Such a fine grained flow analysis is possible in our runtime value
indexed security label model. Notice that even if, in this example, labels are indexed by
user ids, which may stand for principals, our model is completely general, as labels may
be indexed by any data (for example, one may label by secret(doc_id) the secret part
of document doc_id). Moreover, our analysis is carried out for a higher-order language
with a complete set of DML primitives, allowing stored procedures (higher-order store).

The main technical contributions of our work are thus the development of a type-
based information flow analysis for a λ-calculus extended with DML primitives, based
on a useful notion of value-dependent (indexed) security label (Section 2 and Section 3).
Our technical results include type preservation and the (key) noninterference theorem,
which implies that well-typed programs do not break the confidentiality constraints
imposed by the declared information flow discipline (Section 4). We conclude with an
overview of related work (Section 5) and a final discussion (Section 6).



e : := (expression)
| e.m (field access)
| let x = e1 in e2 (let)
| e1(e2) (application)
| if c then e1 else e2 (conditional)
| [m : e] (record)
| e (list)
| e1::e2 (cons)
| foreach(e1, e2, x.y.e3) (iteration)
| entity t (m : τ s) in e (entity)
| select(t, x.c, x.e) (select)
| insert(t, e) (insert)
| update(t, x.e, x.c) (update)
| delete(t, x.c) (delete)
| x (identifier)
| v (value)

c : := (conditions)
| ¬c (negation)
| c1 ∨ c2 (disjuction)
| V = V (equality)
| V (term)

V : := (terms)
V (list)
| [m : V ] (record)
| λ(x : τ s11 ).e (abstraction)
| true (true)
| false (false)
| x (identifier)
| () (unit)
| V.m (field access)

v : := (values)
v (list)
| [m : v] (record)
| λ(x : τ s11 ).e (abstraction)
| true (true)
| false (false)
| () (unit)
| l (locations)

Fig. 1. Syntax

2 Programming Language

We carry out our development using a core programming language λDB , a typed λ-
calculus with (imperative) data manipulation primitives, which we pick as a reason-
able abstraction of commonly used language idioms for data centric programming
[6, 8, 18]. The syntax of λDB language is given by the grammar in Fig. 1 where we
assume an infinite set of identifiers (ranged over x, y, t, . . .), an infinite set of field
names (ranged over s, n,m, . . .), and an infinite set of (store) locations (ranged over
l, l′ . . .). We abbreviate indexed sets, in our syntax, with an overbar. So [m : e] stands
for [m1:e1, . . . ,mn:en], e stands for {e1, . . . , en}, and entity t(m:τ s )in e stands for
entity t(m1:τ

s1
1 , . . . ,mn:τ

sn
n )in e. Expressions in our language are identifiers, values,

field access e.m, application e1(e2), abstractions λ(x:τ s11 ).e, constant declaration, ad-
dition of an element to a list, list iteration, conditional, and primitives for data creation
and manipulation. Values include booleans, unit value (), collections (lists) of values
{v1, . . . , vn}, records [m1:v1, . . . , mn:vn], and abstractions λ(x:τ s11 ).e. These are as
expected. We assume other basic data types (integers, strings) and associated opera-
tions, such as first(-) and rest(-) for collections (but omit standard details).

The list iterator primitive computes an accumulated value from the list elements. For
example, to compute the sum of all the elements in a list c = {v1, . . . , vn} of integers
we could write foreach(c, 0, x.y.(x+ y)). So the first expression in the list iterator
primitive is the list to iterate on, and the second represents the initial value, and the third
corresponds to the computation we want to perform on each iteration step. Identifiers x



and y are binding occurrences and represent an element of the list and the current value
of the accumulator, respectively.

DML primitives can be explained as follows: entity t(m1:τ
s1
1 ,. . ., mn:τ

sn
n )in e

denotes the allocation of a new database relation named t with attributes m1 to mn;
select(t,x.c,x.e) denotes the projection of a set of attributes e in a relation t for which
condition c holds; insert(t,e) denotes the insertion of a tuple denoted by expression e
in the relation t; update(t,x.e,x.c)denotes the replacement of each tuple in the relation
t for which condition c holds by the tuple expressed by evaluating e, where x denotes
the initial tuple value in c and e. Expression e is required to produce a tuple of the same
type as the table, thus mentioning all of its fields. This does not limit the generality of
the update primitive, since old values can be reused in the updated fields through x in e.
Finally, delete(t,x.c) denotes the deletion from relation t of the set of tuples for which
the condition c is met. Thus in DML primitives we use the notation x.c or x.e to denote
the condition c or body e under the entity cursor value x (which is bound in c and/or e).

For readability we sometimes use for DML primitives the natural concrete syntax
adopted in Section 1. Logical conditions in syntax fragment c, used for conditionals and
DML primitives, are side-effect free (pure). We distinguish a category of testable values
V , used in logical conditions as terms, which denote the values v of our language plus
field access and identifiers, necessary for expressing conditions in DML primitives.

The operational semantics is defined using a reduction relation. Reduction is defined
between configurations of the form (S; e), where S is a store, and e is an expression.
A reduction step of the form (S; e) −→ (S′; e′) states that expression e under state S
evolves in one computational step to expression e′ under state S′. Store S is a mapping
from locations to collections of tuples, representing database tables. We provide an
auxiliary definition for the evaluation of logical conditions.

Definition 2.1 (Conditional Expression Semantics). The value of a closed condition
c is given by the interpretation map C:c → {true, false}, as well as the auxiliary
interpretation function for closed terms T :V → v as follows:
CJ¬cK = ¬CJcK CJc1∨ c2K = CJc1K∨CJc2K CJV1 = V2K = (T JV1K = T JV2K)
T J{V1, . . . , Vn}K = {T JV1K, . . . , T JVnK} T Jλ(x : τ s11 ).eK = λ(x : τ s11 ).e
T J[m1:V1, . . . ,mn:Vn]K = [m1:T JV1K, . . . ,mn:T JVnK]
T JtrueK = true T JfalseK = false T J()K = ()
T JV.mK = field(T JV K,m) field([. . . ,m : v, . . .],m) = v

We now define our reduction relation, denoted as (S; e) −→ (S′; e′), as being induc-
tively defined by the rules in Fig. 2 as well as the expected rules of a call-by-value
λ-calculus for the non-DML expressions. For the complete definition see [17].

Rules in Fig. 2 capture the reductions for DML primitives. Rules (foreach-left) and
(foreach-right) reduce the first and second expressions of the list iterator operator, re-
spectively. These rules, together with rule (foreach), imply an evaluation order from left
to right. Rule (entity) reduces to the continuation expression e and adds a fresh location
l to the store, associating it with the empty list (empty table). Rule (select) states that,
in order to evaluate a projection operation over entity t, we need to evaluate the logical
condition c and then filter out all the rows that do not satisfy the condition. The first
step is achieved by first creating a list of logical conditions, c{ri/x}, obtained by the
substitution of all free occurrences of x in conditional expression c with each record



(foreach-left)
(S; e1) −→ (S′; e′1)

(S; foreach(e1, e2, x.y.e3) −→
(S′; foreach(e′1, e2, x.y.e3))

(foreach-right)
(S; e2) −→ (S′; e′2)

(S; foreach(v, e2, x.y.e3) −→
(S′; foreach(v, e′2, x.y.e3))

(foreach)
vl = h::hs

(S; foreach(vl, v, x.y.e3) −→
(S; foreach(hs, e3{h/x}{v/y}, x.y.e3))

(foreach-base)

(S; foreach({}, v, x.y.e3) −→ (S; v)

(entity)
l 6∈ dom(S) ∪ fn(e)

(S; entity t (m : τ s) in e) −→
(S ∪ {l 7→ ∅}; e{l/t})

(select)

S(l) = {r1, . . . , rn} s = {ri | CJc{ri/x}K}
(S; select(l, x.c, x.e)) −→
(S; {e{s1/x}, . . . , e{sn/x}})

(insert-left)
(S; e) −→ (S′; e′)

(S; insert(l, e)) −→ (S′; insert(l, e′))

(insert)
S(l) = r s = v::r

(S; insert(l, v)) −→ (S[l 7→ s], ())

(update-init)

S(l) = {r1, . . . , rn} e′ = {r′i | r′i = (CJc{ri/x}K? e{ri/x} : ri)}
(S;update(l, x.e, x.c)) −→ (S;updating(l, e′))

(updating)
(S; e) −→ (S′; e′)

(S;updating(l, e)) −→ (S′;updating(l, e′))

(update)

(S;updating(l, v) −→ (S[l 7→ v]; ())

(delete)

S(l) = {r1, . . . , rn} s = {ri | ¬CJc{ri/x}K}
(S;delete(l, x.c)) −→ (S[l 7→ s]; ())

Fig. 2. Reduction rules for DML core

ri of entity t. Then, since for each conditional expression c{ri/x} corresponds a record
ri, the second step is achieved by creating a new list of expressions, s, that will con-
tain all records ri for which their respective conditional expression c{ri/x} evaluated
to true. Finally, we state that the projection operation select evaluates to a list of ex-
pressions obtained by replacing all free occurrences of x in e with the filtered records
in s. Rule (insert-left) reduces the expression in an insert operation while rule (insert)
is applied when that expression is a record value, adding the value to the head of the
list of records that represents entity t in the store. Rule (update-init) starts the compu-
tation of updated table contents by starting to compute the updating record e{ri/x} for
each source record ri such that the selecting condition c{ri/x} holds. Notice that the ex-
pression updating(l, e), where e is a collection expression, is not present in the source
language and is only used in the operational semantics to express the (non-atomic) com-
putation of the updated table contents, expressed by the collection e. When the the state
updating(l, v) is reached, with a final updated collection, the table is updated in one
step, using rule (update). Rule (delete) removes from the relevant entity all records r
for which condition c{r/x} holds.



v : := (label indexes)
v (collection)
| [m : v] (record)
| true (true)
| false (false)
| > (top)
| ⊥ (bot)
|m (field identifier)

Fig. 3. Syntax of label indexes

s, r, t : := `(v) value dependent label
τ s : := τ∗s collection type

| (τ s → τ ′r)t arrow type
| [m : τ s]r record type
| cmds command type
| Bools bool type

Fig. 4. Syntax of types

(s-reflex)

τ s<:τ s

(s-trans)

τ s <: τ s
′′

τ s
′′
<: τ s

′

τ s <: τ s′

(s-arrow)

τ s
′
1 <: τ s1

τ ′s2 <: τ ′s
′
2

(τ s1 → τ ′s2)t <:

(τ s
′
1 → τ ′s

′
2)t

(s-record)

∀i τ sii <: τ
s′i
i t s′i ≤ s′

[m : τ s]s <: [m : τ s′ ]s′

(s-expr)
s ≤ s′

τ s <: τ s′

Fig. 5. Subtyping rules

3 Type System

In this section we present our type system, which ensures the intended non-interference
property. The syntax of types is defined in Fig. 4. Our types are annotated with value
dependent security labels s, thus always of the form τ s where τ is a standard type and
s is a (possibly indexed) security label. Security labels, which may be in general value
dependent, have the form `(v), where v is a security label index given by the grammar
in Fig. 3. A security label is concrete if its index is a value v, not a field identifier m.
A label `(m) where m is a field identifier only makes sense in the scope of a record
type declaration, as explained below. Concrete security labels form a lattice, with> the
top element (the most restrictive security level), and ⊥ the bottom element (the most
permissive security level), and t, u, denoting join and meet respectively. The lattice
partial order is noted ≤ and < its strict part; we write s#s′ to say that neither s ≤ s′

nor s′ ≤ s. We use | · |↑ to denote the concrete upwards approximation of a label where
|`(m)|↑ = `(>) and |`(v)|↑ = `(v), and | · |↓ to denote the concrete downwards approx-
imation where |`(m)|↓ = `(⊥) and |`(v)|↓ = `(v). By convention, dependent security
labels `(⊥) and `(>) are interpreted as approximations to the (standard, non-value de-
pendent) security label `. We then require that for any value v, `(⊥) ≤ `(v) ≤ `(>)
holds in the security lattice L. Apart from this, we do not pose any extra assumptions of
the security lattice, except that the ordering between labels is well defined and satisfies
the lattice property (e.g., well defined meets and joins, etc).

Our type structure includes the boolean type, the unit type, (security-label depen-
dent) record types, functional types, and collection types. We also assume other basic
types, such as integers and strings, with associated operations, useful for examples and
any practical needs. In a record type [m1:τ

s1
1 , . . . ,mn:τ

sn
n ]s

′
any label si with i > 1

may be dependent on a previous field, and thus be of the form `(mj) with j < i. These
are the only allowed occurrences of non-concrete security labels in types and programs:
in the context of security-label dependent records. Moreover, for every such record type



occurring in a valid typing we always have ts′i ≤ s′, where s′i is the concrete security
level of field mi: since a record value depends on all fields, its security level cannot be
lower than the level of any of its fields. The collection type τ∗s states that each collec-
tion element has type τ s, so security labels of a collection’s elements are homogenous.

The typing judgment is of the form ∆ `rS e : τ s, stating that expression e has type
τ under typing environment ∆, and given the constraint set S. The label s states that
value of expression e does not depend on data classified with security levels above s or
incomparable with s. Thus the type system ensures that only information flow from a
level l to a level h such that l ≤ h is allowed. Label r expresses the security level of the
computational context (cf. the “program counter" [19, 22]), a standard technical device
to capture implicit flows. Our type system uses a constraint system to approximate
runtime values, necessary to eliminate or capture value dependencies in security labels,
and approximate reasoning about runtime values. We restrict constraints to talk about
pure expressions, without side-effects (all non-DML expressions).

Definition 3.1. A constraint set S is a finite set of constraints of the form e
.
= e′ where

e, e′ are pure expressions. We assume given a decidable and sound equational theory
and write S |= e

.
= e′ to mean that S entails e .

= e′. We require .
= to be compatible

with reduction in the sense that for any e, e′ pure if (S; e)→ (S; e′) then |= e
.
= e′.

We denote by S{x .
= e} the set S ∪ {x .

= e} if e is a pure expression, and S otherwise.
We give some examples of expected equational axioms:

(c ∧ c′) .= true⇒ c
.
= true [. . . ,mi:vi, . . .].mi

.
= vi

(x
.
= v) ∧ e .

= e′ ⇒ e{v/x} .= e′{v/x} v
.
= v

So, for example, {x.m1
.
= 2, x.m1

.
= y + 1} |= y

.
= 1. As for any equational theory,

we assume that S |= E and S ∪ {E} |= E′ implies S |= E′ (deduction closure). For
our purposes, we abstract away from the particular equational theory used: the precise
formulation of the equational theory is orthogonal to our approach, as long as a sound
and decidable system is adopted (clearly, the more complete the theory the better).
Typing declarations assign types to identifiers x : τ s, and collection types of record
types to locations, t : τ s. A typing environment ∆ is a list of typing declarations.

Definition 3.2 (Type System). Typing is expressed by the judgment ∆ `rS e : τ s,
stating that expression e is well-typed by τ s in environment ∆, given constraints in S,
and concrete context security level r.

Key typing rules are given in Figs. 6 and 7, see [17] for the complete set of rules.
We also define a simple subtyping relation (Fig. 5) denoted <:. Notice the role of ≤
in subtyping, allowing up-classification. Before discussing our typing rules, we present
some useful notions related to security-label dependent record fields.

Definition 3.3 (Label approximation). Let S be a constraint set, s a label, and x an
identifier. We define the label approximation θx(S, s) to be the concrete label given by

θx(S, `(v)) , if (v = m and S |= x.m
.
= v for a value v) then `(v) else |`(v)|↓.

θx(S, s) approximates (from below) the runtime value associated to the index of the
security label s, given the information provided by the constraints S. The interesting



(t-app)

∆ `rS e1 : (τ ′s
′
→ τ s)t ∆ `rS e2 : τ ′s

′

∆ `rS e1(e2) : τ s

(t-lambda)

∆,x : τ s `rS e : τ ′s
′

∆ `rS λ(x : τ s).e : (τ s → τ ′s′)⊥

(t-field )

∆ `rS e : [. . . ,mi:τ
si
i , . . .]

s′ si ∈ L
∆ `rS e.mi : τ

si
i

(t-record)
∀i ∆ `rS ei : τ

si
i

∆ `rS [. . . ,mi:ei, . . .] : [. . . ,mi:τ
si
i , . . .]

tsi

(t-refineRecord)

∆ `rS e : [. . . ,mj :τ
sj
j , . . . ,mi:τ

`i(vj)

i , . . .]s

S{x .
= e} |= x.mj

.
= vj

∆ `rS e : [. . . ,mj : τ
sj
j , . . . ,mi : τ

`i(mj)

i , . . .]s

(t-id)

∆,x : τ s `rS x : τ s

(t-unrefineRecord)

∆ `rS e : [. . . ,mj :τ
sj
j , . . . ,mi:τ

`i(mj)

i , . . .]s

S{x .
= e} |= x.mj

.
= vj

∆ `rS e : [. . . ,mj : τ
sj
j , . . . ,mi : τ

`i(vj)

i , . . .]s

(t-sub)

∆ `rS e : τ s τ s <: τ s
′

r′ ≤ r

∆ `r′S e : τ s
′

(t-let)

∆ `rS e1 : τ s ∆,x : τ s `rS{x .=e1}
e2 : τ ′s

′

∆ `rS let x = e1 in e2 : τ ′s′

(t-if )

∆ `rS c : Bools
∆ `rtsS∪{c .=true} e1 : τ s

∆ `rtsS∪{c .=false} e2 : τ s

∆ `rS if c then e1 else e2 : τ s

Fig. 6. Typing rules for (pure) expressions (sample rules)

case is when the index v is a field identifier mi of record x (typically, is used in typing
rules for constructs where x denotes a query or update cursor of a database entity).
In this case, the runtime value v may be approximated by solving S |= e

.
= v for v.

For example, θx({x.m1
.
= 2, x.m2

.
= x.m1 + 3}, `(m2)) = `(5) because {x.m1

.
=

2, x.m2
.
= x.m1+3} |= x.m2

.
= 5. But θx({x.m1

.
= 2, x.m2

.
= x.m1+3}, `(m3)) =

`(⊥) since there is no v such that {x.m1
.
= 2, x.m2

.
= x.m1 + 3} |= x.m3

.
= v.

We now discuss our key typing rules, omitting the standard ones for any typed
λ-calculus. Rule (t-refineRecord) can be used to introduce a field dependent security
label for a field mj , given that we can derive that the indexing field contains a runtime
value vj (via relation |=). The converse is achieved with rule (t-unrefineRecord). In Fig.
7 we present the typing rules for DML primitives. Type rule (t-entity) adds the entity’s
identifier to the type context, assigning to it a collection type of record types where each
field’s type corresponds to the ones declared, and types the continuation expression with
the extended typing context. To approximate the table record security level, we use |s|↑.

In rule (t-select), to prevent implicit flows, we force the security label of the condi-
tional expression to be the same as the one for body expression e and change the com-
putational context label r to the least upper bound between the current context security
label and the conditional expression’s label. Rule (t-insert) states that an insert prim-
itive is well-typed if the expression has exactly the same security type as the entity’s
elements, this prevents explicit flows from occurring. Moreover, in order to prevent im-



(t-foreach)
∆ `rS e1 : τ∗s ∆ `rS e2 : τ ′s ∆,x : τ s, y : τ ′s `rS e3 : τ ′s

∆ `rS foreach (e1, e2, x.y.e3) : τ ′s

(t-entity)

∆, t : [m1 : τ s11 , . . . ,mn : τ snn ]∗t|si|
↑
`rS e : τ s

′

∆ `rS entity t(m1 : τ s11 , . . . ,mn : τ snn ) in e : τ s′

(t-select)

∆(t) = [. . . ,mi:τ
si
i , . . .]

∗s S ′ = S ∪ {c .= true}
∆,x : [. . . ,mi:τ

si
i , . . .]

s `rS c : Bools
′

∆,x : [. . . ,mi:τ
si
i , . . .]

s `rts
′

S′ e : τ s
′

∆ `rS select(t, x.c, x.e) : τ∗s′

(t-insert)

∆(t) = [. . . ,mi:τ
si
i , . . .]

∗s

∆ `rS e : [. . . ,mi:τ
si
i , . . .]

s ∀i r ≤ θx(S{x
.
= e}, si)

∆ `rS insert(t, e) : cmd⊥

(t-update)

∆(t) = [. . . ,mi:τ
si
i , . . .]

∗s S ′ = S ∪ {c .= true}
∆,x : [. . . ,mi:τ

si
i , . . .]

s `rS c : Bools
′

∆,x : [. . . ,mi:τ
si
i , . . .]

s `rS′ e : [. . . ,mi:τ
si
i , . . .]

s′

∀i r t s′ ≤ θx(S ′, si) u θy(S{y
.
= e}, si)

∆ `rS update(t, x.e, x.c) : cmd⊥

(t-delete)

∆(t) = [. . . ,mi:τ
si
i , . . .]

∗s

∆,x : [. . . ,mi:τ
si
i , . . .]

s `rS c : Bools
′

∀i r t s′ ≤ θx(S ∪ {c
.
= true}, si)

∆ `rS delete(t, x.c) : cmd⊥

Fig. 7. Typing rules for DML core

plicit flows, we check if the current computational context is lower than or equal to all
the fields’ security labels. But since these labels may mention field identifiers, we use
θx to approximate the concrete levels (x fresh in the conclusion). In rules (t-update) and
(t-delete) we apply the same principles of rule (t-insert) to prevent explicit flows, and of
rules (t-select) and (t-insert) to account for implicit flows. In rule (t-update) one needs
to make sure that the least upper bound between the current context security label ("pro-
gram counter" security level) and the conditional expression’s label is below or equal to
the greatest lower bound of the security levels of both the "old" records and "updated"
records, so to make sure only up-flows are allowed. In (t-update), y is required fresh in
the conclusion. As already mentioned, expression e is required to produce a tuple of the
same type as the table elements, updating all fields. This does not limit the generality
of the update primitive, since the old values may be used in the updated fields through
x in e and is in fact convenient for the expressiveness of our information flow analysis.

4 Type Preservation and Non-Interference

In this section we present the soundness results for our type system, which ensures that
well-typed programs do not leak confidential information to security compartments un-
related by the assumed security lattice. Main statements are Theorem 4.1 (Type Preser-
vation) - types are preserved by the reduction relation - Theorem 4.2 (Progress) - well-
typed expressions are either a value or have a reduction step - and 4.3 (Noninterference)
- well-typed expressions satisfy the noninterference property.

We now introduce notions of store consistency and well-typed configurations, and
define an expression equivalence relation.

Definition 4.1 (Store Consistency). Given a typing environment ∆ and a store S, we
say store S is consistent with respect to typing environment ∆, denoted as ∆ ` S, if
dom(S) ⊆ dom(∆) and ∀l ∈ dom(S) then ∆ `rS S(l) : ∆(l).



(e-val)

∆ `rS1 v : τ s
′

∆ `rS2 v : τ s
′

∆ `rS1,S2 v ∼=s v : τ s′

(e-valOpaque)

∆ `rS1 v1 : τ s
′

∆ `rS2 v2 : τ s
′

s < s′

∆ `rS1,S2 v1 ∼=s v2 : τ s′

(e-sub)

∆ `r
′
S1,S2 e

∼=s e
′ : τ s

′′

τ s
′′
<: τ s

′
r ≤ r′

∆ `rS1,S2 e ∼=s e′ : τ s
′

(e-refineRecord)

∆ `rS1,S2 e ∼=s e
′ : [. . . ,mj : τ

sj
j , . . . ,mi : τ

`i(vj)

i , . . .]s
′

S1{x
.
= e} |= x.mj

.
= vj S2{x

.
= e′} |= x.mj

.
= vj

∆ `rS1,S2 e ∼=s e′ : [. . . ,mj : τ
sj
j , . . . ,mi : τ

`i(mj)

i , . . .]s′

Fig. 8. Equivalence of expressions up to level s (sample rules)

Definition 4.2 (Well-typed Configuration). A configuration (S; e) is well-typed in ∆
if ∆ ` S and ∆ `rS e : τ s.

To prove type preservation, we introduce the substitution lemma on which it relies.

Lemma 4.1. If ∆`rSv:τ ′s
′

and ∆,x:τ ′s
′`rSe:τ s then ∆`rS{v/x}e{v/x}:τ

s.

Proof: Induction on the derivation of ∆,x:τ ′s
′ `rS e:τ s, see [17].

Theorem 4.1 states that any reduction step of a well-typed configuration leads to a well-
typed configuration, where the typing of the final configuration is possibly extended
with new locations of entities (via entity) in the state.

Theorem 4.1. Let ∆ ` S and ∆ `rS e:τ s. If (S; e) −→ (S′; e′) then there is ∆′ such
that ∆′ `rS e′ : τ s, ∆′ ` S′ and ∆ ⊆ ∆′.
Proof: Induction on the derivation of ∆ `rS e:τ s, see [17].

The next result says that in a well-typed configuration (S; e) either e is a value, or e has
a reduction step. Theorem 4.2 says that well-typed programs never get stuck.

Theorem 4.2. Let ∆ `rS e:τ s and ∆ ` S. If e is not a value then (S; e) −→ (S′; e′).
Proof: Induction on the derivation of ∆ `rS e : τ s, see [17].

In order to formulate our main result (non-interference), we need to present some
auxiliary definitions, namely store equivalence and expression equivalence up to a secu-
rity level. To define store equivalence we use the filter function filter(∆,S, s) that given
store S returns the store obtained from S by redacting (replace by ?) all stored values
classified at levels above security level s or incomparable to s (see [17]). Stores S1, S2

such that ∆ ` Si are said equivalent up to level s if filter(∆,S1, s) = filter(∆,S2, s).

Definition 4.3 (Expression Equivalence). Expression equivalence of e1 and e2 up to
s is asserted by ∆ `rS1,S2 e1 ∼=s e2:τ

s′ .

Intuitively, two expressions are equivalent up to level s if they yield the same result
under stores equivalent up to s. Such formulations of equivalence are usual for express-
ing non-interference, and always relate expressions at the same type and security level.
Notice that two expressions may be equivalent up to level s even if they are classified



at a different level s′. Technically, expressions e1 and e2 are equivalent up to level s if
they only differ in subexpressions classified at higher (or incomparable) security levels
(so they cannot be distinguished by attackers constrained to see only up to level s). We
show key defining rules for expression equivalence in Fig. 8 (full set of rules in [17]).

We can, at last, present our final main result: the non-interference theorem.

Theorem 4.3. Let ∆ ` S1, ∆ ` S2, S1 =s S2, and ∆ `rS1,S2 e1 ∼=s e2 : τ s
′
. If

(S1, e1) −→ (S′1, e
′
1), and (S2, e2) −→ (S′2, e

′
2) then there is ∆′ such that ∆ ⊆ ∆′,

∆′ ` S′1, ∆′ ` S′2, S′1 =s S
′
2, and ∆′ `rS1,S2 e

′
1
∼=s e

′
2 : τ s

′
.

Proof: Induction on the derivation of ∆ `rS1,S2 e1 ∼=s e2 : τ s
′
, see [17].

The non-interference states that if we execute two equivalent instances of the same
program under stores that differ only on information with higher (or incomparable)
security level than s, then the resulting stores remain indistinguishable up to security
level s. As a consequence we have

Corollary 4.1. Assume ∆ `rS e:τ s
′
, ∆ ` S1, ∆ ` S2 and S1 =s S2. If (S1, e)

∗−−→
(S′1, v1), and (S2, e)

∗−−→ (S′2, v2) then there is ∆′ such that ∆ ⊆ ∆′, ∆′ ` S′1,
∆′ ` S′2, S′1 =s S

′
2 and ∆′ `rS1,S2 v1 ∼=s v2:τ

s′ . Also, for all s if s 6< s′ then v1 = v2.

The above result precisely express the fact that an attacker "located" at security level s
cannot distinguish between evaluations of a program taking place in environments that
only differ in data that should be considered confidential for level s, e.g., data classified
at any level l such that l 6≤ s. To illustrate the non-interference theorem, we use entity
Records (id_p:intL, date:DateP(id

_p), clinical_info:tinfoP(id
_p)).

let info= first( from (x in Records)
where x.id_p=42 select x.clinical_info)

in insert [id_p:42, date:today(), clinical_info:info] in Records

Assume P(10)#P(42). Let S1 and S2 be stores such that S1(Records) = {(10,d1,X), (42,d2,
A)} and S2(Records) = {(10,d1,X), (42,d2,B)} with A 6= B. We have S1 =P (10) S2 since
the values A and B, classified as P(42), are not visible at level P(10). We have ∆ `rS1,S2
insert [id_p: 42, date: today(), clinical_info: info] in Records ∼=P (10) insert [id_p: 42, date:
today(), clinical_info: info] in Records: cmd⊥. Consider the reductions (S1;insert [id_p: 42,
date: today(), clinical_info: info] in Records)−→(S′1; ()) and (S2;insert [id_p: 42,date:today(),
clinical_info:info] in Records) −→ (S′2; ()). Then S′1(Records) = {(10,d1,X), (42,d2,A), (42,
d3,A)} and S′2(Records) = {(10,d1,X), (42,d2,B), (42,d3,B)} meaning the property is satis-
fied, since filter(∆,S′1,P(10)) = {(10,d1,X), (42,?,?), (42, ?,?)} = filter(∆,S′2,P(10)), that
is S′1 =P (10) S

′
2. So, the effects of the above command are not visible at security level

P(10). Now consider the following slight modification of the code above:

let info= first (from (x in Records)
where x.id_p=42 select x.clinical_info)

in insert [id_p: 10, date: today(), clinical_info: info] in Records

We have∆ `rS1,S2 insert [id_p: 10, date: today(), clinical_info: info] in Records∼=P (10) insert
[id_p: 10, date: today(), clinical_info: info] in Records: cmd⊥. After reduction steps (S1;insert
[id_p:10, date: today(), clinical_info:info] in Records)−→(S′1; ()) and (S2;insert [id_p:10, date:
today(), clinical_info:info] in Records)−→ (S′2; ()) we have S′1(Records)={(10,d1,X), (42,d2,
A), (10,d3,A)} and S′2(Records)={(10,d1,X), (42,d2,B), (10,d3,B)}. But now S′1 6=P (10) S

′
2



since, upon the insertion of the tuple [id_p: 10, date: today(), clinical_info: info] , the val-
ues A and B are observable at level P(10). This is captured by the notion of store
equivalence since filter(∆,S′1,P(10)) = {(10,d1,X), (42,?,?), (10, d3,A)} and filter(∆,S′2,

P(10)) = {(10,d1,X), (42,?,?), (10, d3,B)}. Thus, the thesis of the noninterference theorem
is not satisfied, and this program is rejected by the type system. Clearly, it is not possible
to give the appropriate (security-label dependent record) type [id_p:intL, date:DateP(id_p),
clinical_info:tinfoP(id_p)] to the record [id_p:10, date: today(), clinical_info:info] (using rule
(t-unrefineRecord)) since the security level of info is P(42) but the value of id_p is 10.

5 Related Work
Our core typed λ-calculus equipped with SQL-like DML primitives is inspired in pro-
posals such as [5, 9, 18] and provides a natural vehicle to investigate information flow
security analyses for data-centric software systems. There is a huge body of work on
language-based information flow analysis (see e.g., [22]). Early works [23,28] focus on
simple imperative languages. [16] presents an information flow analysis for a λ-calculus
with references, sums, and product types. The dependency calculus [1] generalises [16]
and is shown to be able to encode the languages of [16, 28], as well as the respective
noninterference results.

Several proposals for information flow analysis on web-based or data-centric appli-
cations were put forward. In [2] a dynamic information flow mechanism for a Javascript-
like language based on a notion of faceted values is proposed. Faceted values offer dif-
ferent views of a value given the execution context’s principal. Other recent work [15]
proposes a dynamic information flow analysis for a subset of the ECMA standard for
Javascript. In [13] a taint analysis for mobile applications is proposed, where implicit
flows are not taken into account to minimise performance overhead, and in [11] a dy-
namic analysis to prevent insecure cross-application information flows is developed.
Other works based on dynamic analysis include [7, 24, 30]. Our work is instead based
on static analysis, as we seek to obtain compile time security guarantees, and avoid
possible information leaks due to exceptional behavior (dynamic security errors).

Several works on static language-based analysis of information flow policies for
web and data-centric software systems have also been proposed. The (seminal) decen-
tralised label model of [20] supports static analysis of information flow policies based
on labelling data elements with policies that specifies allowed reader and writer prin-
cipals, but which cannot easily express value-dependent "row-level" security compart-
ments as we do. In [10] the authors present a static analysis to enforce label-based
security policies in the web programming language SELinks. Their analysis is able to
enforce relevant information flow policies in web applications although the authors do
not discuss the noninterference property. Examples of other works aiming to statically
enforce data security on DML-based applications are [8] and [5]. The approach taken by
the former consists in adding program specifications expressed by SQL-queries which
are then typechecked, while the latter uses refinement types and semantic subtyping to
enforce properties that may be relevant for security. Unlike our approach, these works
do not provide a value-dependent information flow analysis leading to non-interference
results, as we have done here. An interesting work tackling dynamic issues within an
statically verified information flow framework is [27], which addresses the manipu-
lation of runtime first-class representations of principals. In [31] an information flow



analysis is introduced where security labels can actually be changed at runtime and
case-analysed by a conditional-construct. In our work we do not consider dynamically
changing labels but, instead, use runtime values to index security labels to ensure “row-
level" security. In [6] a refinement type-based approach for data security for a DML,
which can handle policies depending on the database state, is proposed. To some extent,
the work in this paper can be seen as recasting some ideas of [6] in the setting of a much
more expressive information flow analysis framework. Several recent works explore
applications of refinement types [3, 4] and dependent types [25, 26] to language-based
security, however we are not aware of prior work exploring value-dependent security
labels within an information flow framework, in the sense introduced in this paper.

6 Concluding Remarks
We have developed an expressive type-based information flow analysis for a core λ-
calculus augmented with SQL-like primitives. Our core language may be seen as a
convenient abstraction for practical data-manipulating programming languages. A key
novelty of our work consists in the introduction of a notion of value-indexed security
label, which allows us to parametrize security compartments on the values of com-
putations or on dynamically stored data, thus enabling the enforcement of so-called
“row-level" security policies within shared containers, relevant to address several real-
istic security concerns of data-centric software services. Our main technical results are
type preservation and noninterference theorems, which ensure the soundness of our in-
formation flow analysis: well-typed programs do not disclose information for security
compartments unauthorised by the security lattice.

As information flow analysis per se is not enough in general to provide complete
security guarantees [21], we would like to combine our value dependent type-based
information flow analysis with a suitable form of role-based access control. Some of the
techniques used in this paper relate to the general notion of dependent types. It certainly
deserves further study and generalisation, namely regarding its connection with more
standard dependent type systems [26, 29]. In particular, the introduction of first-order
dependent function types in our language, which would add to the expressiveness of
our approach, should be further investigated.
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