
Compiling linear and static channels in Go

Marco Giunti

NOVA LINCS, Universidade NOVA de Lisboa

INForum, September 5 2019

Motivation
Our approach

GoPi Demo
Thanks

Background
Disallowing forwarding to enhance security
Linearity and deadlocks

Channels and programming languages

I Support for communication channels in programming
languages is increasing (XC, Go, Crystal, Flix,...)

I tour.golang.org: sum of numbers in a slice by 2 goroutines

func sum(s [] i n t , c chan i n t) {
sum := 0
f o r , v := range s {

sum += v
}
c ← sum // send sum to c

}

func c a l c () {
s := gene ra teRandomSl i c e (1000)
c := make (chan i n t)
go sum(s [: l e n (s) / 2] , c) // con cu r r e n t th r ead
go sum(s [l e n (s) / 2 :] , c) // con cu r r e n t th r ead
x , y := ←c , ←c // r e c e i v e from c
fmt . P r i n t f (”The sum o f the s l i c e i s %d” , x + y)

}
Marco Giunti Compiling linear and static channels in Go

tour.golang.org

Motivation
Our approach

GoPi Demo
Thanks

Background
Disallowing forwarding to enhance security
Linearity and deadlocks

Channel forwarding

I Function sum has full control on channel c , and can forward it
to some public channel pub (cf. line 2)

I The sum of the slice can be intercepted and replaced with an
arbitrary value (lines 13–14)

1 func sum(s [] i n t , c chan i n t) {
2 go func (){ pub ← c } () // c i s f o rwarded
3 sum := 0
4 c ← sum
5 }
6 func c a l c () {
7 s := gene ra teRandomSl i c e (1000)
8 c := make (chan i n t)
9 go sum(s [: l e n (s) / 2] , c)

10 }
11 func i n j e c t () {
12 x := ←pub
13 =←x
14 x ← 0 //sum i s s e t to 0
15 }

Marco Giunti Compiling linear and static channels in Go

Motivation
Our approach

GoPi Demo
Thanks

Background
Disallowing forwarding to enhance security
Linearity and deadlocks

Designing protocols with no-forwarding

I Some apps as instant messengers already provide a
no-forwarding feature to strengthen secrecy (e.g. Viber)

I In Go, we would need a static make that disallows channel
extrusion

1 func sum(s [] i n t , c chan i n t) {
2 go func () {pub ← c } ()
3 . . .
4 }
5
6 func c a l c () {
7 s := gene ra teRandomSl i c e (1000)
8 c := s t a t i c m a k e (chan i n t)
9 go sum(s [: l e n (s) / 2] , c) // r e j e c t e d

10 }

I Code would be rejected by compiler

sum.go:9:22: static channel may be extruded

Marco Giunti Compiling linear and static channels in Go

Motivation
Our approach

GoPi Demo
Thanks

Background
Disallowing forwarding to enhance security
Linearity and deadlocks

Difficulties in tracking forwarding

I Because of channel-over-channel passing, detecting the
extrusion of a static channel can be tricky

1 // P ro t o co l v a r i a n t
2 func sum(s [] i n t , c chan i n t , p chan chan i n t) {
3 go func (){ pub ← p } () // f o rwa r d i n g p
4 . . .
5 }
6 func c a l c () {
7 s := gene ra teRandomSl i c e (1000)
8 p := make (chan chan i n t)
9 c := s t a t i c m a k e (chan i n t)

10 go func (){ p ← c } () // pa s s i n g c ove r p
11 go sum(s [: l e n (s) / 2] , c , p)
12 }

I Line 2: sum opens the scope of channel p

I Lines 10–11: c is sent over p: scope of c can be opened

Marco Giunti Compiling linear and static channels in Go

Motivation
Our approach

GoPi Demo
Thanks

Background
Disallowing forwarding to enhance security
Linearity and deadlocks

Linearity and deadlock-avoidance

I Linearity or use channels exactly once enhance programs

I Benefits: resource-awareness, session-based protocols,
predisposition towards deadlock-avoidance

I Analogously, in Go we would need a linear make

1 a , b := l i n e a r m a k e (chan s t r i n g) , l i n e a r m a k e (chan s t r i n g)
2 go func (){
3 a ← ” He l l o ”
4 b ← ”wor ld ”
5 } ()
6 , =←b , ←a //Order o f c hanne l s i n v e r t e d

I Compilation would prevent deadlock (now catched at runtime)

hello.go:6:5: linear channel is deadlocked

Marco Giunti Compiling linear and static channels in Go

Motivation
Our approach

GoPi Demo
Thanks

Compiling linear and static pi calculus
Sum protocol in LSpi
Types with identifiers and static/dynamic qualifiers

An high level language with linear and static channels

I We study the problem of designing, analysing, and executing
message-passing protocols featuring channel-over-channel
passing, linear channels, and static channels

I We propose an high level language, named LSpi, that extends
the pi calculus and offers support for all these features

I The language has few constructs, no decorations, and
fully-automatic compilation in executable Go programs

I The compiler, named GoPi, is available through GitHub

Marco Giunti Compiling linear and static channels in Go

Motivation
Our approach

GoPi Demo
Thanks

Compiling linear and static pi calculus
Sum protocol in LSpi
Types with identifiers and static/dynamic qualifiers

Specification of the sum protocol in LSpi

I Channel c declared as static with hide, si is the slice, loop’s
result calculated by process listening on for , | splits threads

P
def
= [hide c][(new r1)(Sum(s1, c , r1)) | (new r2)(Sum(s2, c , r2))

| c?(x).c?(y).print ::x + y]

Sum(slice, channel , result)
def
=

for !〈slice, result〉.result?(z).channel!z

I The square brackets indicate the static scope of the hide
declaration, and should not be enlarged at runtime

I Operational semantics: input (?) and output (!) on same
channel synchronize (noted: →)

P | ForProc →∗ print ::n1 + n2 | ForProc

Marco Giunti Compiling linear and static channels in Go

Motivation
Our approach

GoPi Demo
Thanks

Compiling linear and static pi calculus
Sum protocol in LSpi
Types with identifiers and static/dynamic qualifiers

Disallowing channel forwarding

I Consider the unsafe version of Sum

P
def
= (new p)([hide c][p!c | (new r1)(Sum(s1, c , r1, p))

| (new r2)(Sum(s2, c, r2, p)) | c?(x).c?(y).print ::x + y])

Sum(slice, channel , result, opt)
def
=

pub!opt | for !〈slice, result〉.result?(z).channel!z

I Protocol P is rejected by GoPi compiler (with contextual
option)

I Catalyser (parallel co-process) breaking the static scope
invariant:

pub?(w).w?(u).u?(v)

Marco Giunti Compiling linear and static channels in Go

Motivation
Our approach

GoPi Demo
Thanks

Compiling linear and static pi calculus
Sum protocol in LSpi
Types with identifiers and static/dynamic qualifiers

How does it work?

I The procedure relies on a type inference algorithm
implemented as a constraint system in SMT-LIB

I Types are qualified as static or dynamic and have integer id

I Hidden channels are qualified as static and are identified

I Processes forced to receive identifiers “in their scope”, or
dynamic channels (id = 0)

I Contextual analysis always available through catalysers
generated from process

Marco Giunti Compiling linear and static channels in Go

Motivation
Our approach

GoPi Demo
Thanks

Running the Sum protocol in GoPi
Detecting deadlocks on linear channels

Demo: Sum - type-checks and runs

marco@gopi$ cat examples/sum.pi ; gopi examples/sum.pi

#Sum protocol

let Sum = pub!p | f!s.r?j.c!j in

let P = new p { hide c [p!c | Sum | c?x.print x] } in

let For = f?w.r!n in

P | For

****************************** GOPI ******************************

TYPE-CHECKED -- MAX ORDER: 3

GENERATING GO FILE gopiProcess.go

RUNNING THE PROCESS (go run gopiProcess.go)

**********Init*********

*****Running process proc1******

Waiting for value on f

Waiting for value on f

Waiting for value on c

Retrieved s from f

Waiting for value on c

Waiting for value on c

Waiting for value on r

Waiting for value on c

Retrieved n from r

Waiting for value on c

Retrieved n from c

Print n

fatal error: all goroutines are asleep - deadlock!

Marco Giunti Compiling linear and static channels in Go

Motivation
Our approach

GoPi Demo
Thanks

Running the Sum protocol in GoPi
Detecting deadlocks on linear channels

Demo: Sum (contextual option) – rejected

marco@gopi$ gopi -cat 3 -debug examples/sum.pi

****************************** GOPI ******************************

**

Process does not type check

**

PROCESS: new p { hide c [p!c | pub!p | f!s.r?j.c!j

| c?x.print x] } | f?w.r!n

CATALYSER: pub?(y).y?(z).z?(u).u?(v) | ...

**

UNSAT CORE: (DebugMode is On)

(A5 A12 A20 A72 A79)

************************ SMT-LIB Header *************************

;; DATATYPES

(declare-datatypes () ((Scope static dynamic)))

(declare-datatypes () (

(Chantype top

(channel (scope Scope) (payload Chantype) (id Int)))))

;; FUNCTIONS

(define-fun equal ((c Chantype) (d Chantype)) Bool

(= c d))

********************* SMT-LIB Constraints ************************

(assert (! (= (id c) 101) :named A5))

(assert (! (equal c (payload p)) :named A12))

(assert (! (equal p (payload pub)) :named A20))

(assert (! (and (equal (payload pub) y) (= (id y) 0)) :named A72))

(assert (! (and (equal (payload y) z) (= (id z) 0)) :named A79))

Marco Giunti Compiling linear and static channels in Go

Motivation
Our approach

GoPi Demo
Thanks

Running the Sum protocol in GoPi
Detecting deadlocks on linear channels

Demo: Linearity – rejected

marco@gopi$ cat examples/mutual_simple.pi ; gopi -debug examples/mutual_simple.pi

#Mutual deadlock on linear channels a,b

<a,b> a!hello.b!world | b!x.a?y

****************************** GOPI ******************************

Symbolic linear channels: a b

Deadlock detection on a b is on

**

Process does not type check

**

UNSAT CORE: (DebugMode is On)

(A3 A4 A15 A16 A17 A39 A42 A43)

************************ SMT-LIB Header *************************

;; DATATYPES

(declare-datatypes () ((Scope static dynamic)))

;; i/o capabilities: 2 is used, 1 is used once, 0 is unused

(declare-datatypes () (

(Chantype top

(channel (scope Scope) (payload Chantype) (id Int) (i Int) (o Int) (ord Int)))))

********************* SMT-LIB Constraints ************************

(assert (! (isChannel a) :named A3))

(assert (! (and (>= (i a) 0) (<= (i a) 2) (>= (o a) 0) (<= (o a) 2)) :named A4))

(assert (! (isChannel b) :named A15))

(assert (! (and (>= (i b) 0) (<= (i b) 2) (>= (o b) 0) (<= (o b) 2)) :named A16))

(assert (! (=> (isLinear b) (< (ord a) (ord b))) :named A17))

(assert (! (=> (isLinear a) (< (ord b) (ord a))) :named A39))

(assert (! (isLinear a) :named A42))

(assert (! (isLinear b) :named A43))

Marco Giunti Compiling linear and static channels in Go

Motivation
Our approach

GoPi Demo
Thanks

Try GoPi!

Thanks!

https://github.com/marcogiunti/gopi

Marco Giunti Compiling linear and static channels in Go

https://github.com/marcogiunti/gopi

	Motivation
	Background
	Disallowing forwarding to enhance security
	Linearity and deadlocks

	Our approach
	Compiling linear and static pi calculus
	Sum protocol in LSpi
	Types with identifiers and static/dynamic qualifiers

	GoPi Demo
	Running the Sum protocol in GoPi
	Detecting deadlocks on linear channels

	Thanks
	Try GoPi!

