
Revised version: Originally published in Proceedings of
"4th Int. Conf. on Software Quality", McLean, VA, USA, 3-5 October 1994

Object-Oriented Software Engineering:
Measuring and Controlling the Development Process

Fernando Brito e Abreu (INESC/ISEG)
Rogério Carapuça (INESC/IST)

INESC, Rua Alves Redol, 9, Apartado 13069, 1000 Lisboa, PORTUGAL
(phone: +351-1-3100226 / fax: +351-1-525843 / email: fba@inesc.pt)

ABSTRACT

Although the benefits of Object-Orientation are mani-
fold and it is, for certain, one of the mainstays for software
production in the future, it will only achieve widespread
practical acceptance when the management aspects of the
software development process using this technology are
carefully addressed. Here, software metrics play an
important role allowing, among other things, better
planning, the assessment of improvements, the reduction
of unpredictability, early identification of potential
problems and productivity evaluation. This paper proposes
a set of metrics suitable for evaluating the use of the main
abstractions of the Object-Oriented paradigm such as
inheritance, encapsulation, information hiding or
polymorphism and the consequent emphasis on reuse that,
together, are believed to be responsible for the increase in
software quality and development productivity. Those
metrics are aimed at helping to establish comparisons
throughout the practitioners’ community and setting
design recommendations that may eventually become
organization standards. Some desirable properties for such
a metrics set are also presented. Future lines of research
are envisaged.

1. INTRODUCTION

The continuing increase in both the amount and
complexity of the information to be handled by organi-
zations, and the need to develop cheaper, more reliable,
easily alterable and reusable application systems, required
to deal with that information in an efficient and user-
friendly way, was the ground where Object-Oriented (OO)
technology has bloomed in recent years. However, object-
orientation is not a panacea for successful system
development as noted in [Jacobson92]. The shift from
craftsmanship to industrialism must come on a more
fundamental level that also includes the organization of
the complete development process. Object-Oriented Soft-
ware Engineering (OOSE) has, accordingly, received an
inflated attention. Its main objective is to make the OO
software development process an engineering activity,
either by adapting "traditional" software engineering tech-
niques, or by proposing its own. OOSE deals with

technical and managerial issues, the former having
received much more attention in the past few years.

Several problem areas in OOSE are, among others, the
adoption of the OO technology itself (i.e. paradigm shift),
the lack of adequate life-cycle models that support
reusability, the ability to assess the quality of the
development process and resulting products, and the
capability of evaluating the productivity of development
teams. These last two issues are fundamental in order for
managers to control, steer and follow up software
development efforts.

Quality and productivity are indeed the two most im-
portant input parameters for controlling any industrial
process. Successful control requires some means of
measurement. The need for software metrics is now fully
recognized by the software engineering community and
included in standards like the [ISO9000-3]. The reasons
for using metrics in software development are mainly
independent of the adopted paradigm, although the latter
deeply influences the set of metrics to choose, as its
concepts and corresponding abstractions are either disjoint
or implemented differently [Abreu93].

This paper aims at achieving some advances towards a
solution to the problem of assessing quality and
productivity on OO systems and is organized as follows:
the next section introduces the specific goals of the current
research work in quantitative methods applied to Object-
Orientation from which this paper originated. Section 3
presents a set of criteria for choosing a suitable metrics
set. Section 4, the core of this paper, includes the detailed
proposal of a metrics set named MOOD, for guiding and
assessing OO design quality and potential productivity
gains. The possible shapes of expected design
recommendations based on the MOOD set are introduced
in section 5. Some complementary research topics that
deserve further effort are identified in section 6. Some
concluding remarks are presented in section 7.

2. QUALITY AND OBJECT-ORIENTATION

Quality of software systems can be characterized by
the presence of a certain number of external1 attributes

1 - Perceptible to purchasers, subcontractors and end users.

2

like functionality, reliability, usability, efficiency, main-
tainability and portability [ISO9126] which can be further
detailed. However, due to the evident difficulty and cost2

of evaluating those attributes, most efforts on the software
quality field have focused on defining and evaluating
suitable development processes. It is believed that a
defined and controlled process will lead to the production
of quality software products and with fewer costs. Let us
call this approach "outside-in". Object-Orientation came
to strengthen the complementary "inside-out" approach
where the quality of internal structure is supposed to be
the key for ensuring that (external) quality and increased
productivity are achieved.

Object-Orientation is well suited for what is called
"seamless development", which basically stands for using
the same formalism and corresponding notation through-
out the life-cycle, by means of stepwise refinement. The
traditional barriers between analysis and design and
particularly between design and coding, characterized by
formalism shifts with corresponding translation rules, are
bound to diminish. Therefore, analysis and design play an
even more important role than ever. Coding, for instance,
can be considered just as a "fill-in-the-design-blanks" acti-
vity. Better internal quality is due to new abstractions
brought by this paradigm such as classes, methods,
inheritance, polymorphism, encapsulation or messages and
a corresponding increased emphasis on reuse. However,
the use of those abstractions can be varied, depending
mainly on the designer ability, so we can expect rather
different quality products to emerge, as well as different
productivity gains.

The aim of the research going on in our team is two-
fold. First, we want to be able to identify quality OO
designs by means of quantitative evaluation (i.e. using
metrics) of the use of the paradigm abstractions that are
supposed to be responsible for internal quality. Second,
we want to express some of the external quality attributes
and productivity advances as a function of those metrics.
Our first step was to develop some metrics for OO
designs, from a set of criteria presented in next section,
that among other things, is expected to allow doing
comparative evaluation throughout the OO community,
and eventually help training new OO software
practitioners by setting design standards that traduce best
practice.

3. CRITERIA FOR DESIRED METRICS

The choice of a set of metrics exposes the pitfalls of
measuring too much and becoming overwhelmed by a
large amount of unmanageable numeric data, or measuring
too little and not gaining sufficient insight into the desired

2 - In industries other than software, quality assessment is often done by

evaluating samples of massively produced products, thus allowing to

dilute the corresponding effort (i.e. scale economy benefit).

objective. After surpassing this problem by deciding to
adopt just a few (but not too few) metrics, we need to set
some evaluation criteria based on the goals we want to
achieve. Without them it is relatively easy to fall in the
"YAM"3 trap or become swamped by the myriad of those
proposed in the available literature. A better perspective
on this problem can be obtained in [Zuse91]. Next we will
derive a set of criteria to help define the MOOD set.

Different people at different times or places should
yield the same values when measuring the same systems.
Subjectivity makes metrics comparisons throughout soft-
ware industry an impossible mission. Subjective ratings
(e.g. "Very Low", "Low", "Average", "High", "Very
High") are copious in the metrics literature. That is un-
doubtedly one of the reasons that leads to metrics
suspicion among software practitioners and the computer
science community in general. One road to achieve this
objectivity is:

Criterion 1: metrics determination should be formally
defined

For being useful, metrics must be collected and ana-
lyzed throughout time in as many different projects as
possible in order to establish comparisons and derive
conclusions. However, those projects will surely vary in
size. If metrics other than the ones specifically designed to
measure size also depend on it, no cumulative knowledge
will be achieved. So:

Criterion 2: non-size metrics should be system size
independent

Metrics are supposed to represent some product or
process attribute. Thus we are faced with the issue of units
of measurement. Subjective or "artificial" units inevitably
yield to misunderstandings. Remember, for instance, the
discussions around different interpretations of LOC (lines
of code) [Albrecht83] and Function Points
[Symons91][Dreger89]. Then:

Criterion 3: metrics should be dimensionless or ex-
pressed in some consistent unit system

The cost of recovering from effects caused by an error
increases exponentially with elapsed project progress,
since its commitment. Metrics, particularly design ones,
are aimed at exposing the defects provoked by those errors
and buried in the design. We must be able to collect
metrics as soon as a first design is available, if we want to
identify the possible flaws, before too much effort is built
on top of them. Therefore:

3 - Yet Another Metric...

3

Criterion 4: metrics should be obtainable early in the
life-cycle

Real software systems are usually built by a team of
people. Often is possible to break down the specification
in almost independent modules or subsystems. Each team
member or small group of members can be responsible for
each of those subsystems. Then, we need metrics
applicable not only to the whole system under considera-
tion, but also to each one of its modules or subsystems,
thus allowing to pin-point "ill-designed" ones. So:

Criterion 5: metrics should be down-scaleable

Metrics collection is a repetitive task, therefore tedious
and boring for human beings. The worst is that it takes a
lot of time and money! Provided that criterion 1 is met,
and that designs are also formally defined, it is possible to
build some kind of syntactic analyzer that extracts from
them the needed information for computing the metrics.
The effort to build such a tool is considerable but it is
worth while. Then:

Criterion 6: metrics should be easily computable

Many specification and programming languages (either
graphical or textual) that support the OO paradigm
abstractions are available in the marketplace. Each of them
has its own constructs that allow for implementation of
those abstractions in more or less detail. Again, the
requirement of a common base of understanding for the
metrics analysis process, leads us to the need of avoiding
the syntactic level. Tools such as those mentioned in the
previous paragraph can guarantee this independence.
Therefore:

Criterion 7: metrics should be language independent

Several authors have suggested sets of metrics for the
OO paradigm; see for instance [Bieman92, Campanai94,
Chidamber91, Karunanithi93, Yousfi92]. However, most
of the proposed metrics do not fulfill all the above criteria,
mainly 1, 2, 3 and 7.

4. THE MOOD METRICS SET

4.1 Introduction

The MOOD (Metrics for Object Oriented Design) set
is a collection of metrics that were designed with the
above defined criteria in mind. The set includes the fol-
lowing metrics:
• Method Inheritance Factor
• Attribute Inheritance Factor
• Coupling Factor

• Clustering Factor
• Polymorphism Factor
• Method Hiding Factor
• Attribute Hiding Factor
• Reuse Factor

Considering that metrics are intended to quantify the
presence or absence of a certain property or attribute, we
can view them as probabilities. They would then range
from 0 (total absence), to 1 (maximum possible presence).
This perspective was also used in the ESPRIT REBOOT
project [Stalhane92]. This kind of interpretation allows the
application of statistical theory to software metrics. For
instance, statistically independent metrics can be
combined (e.g. multiplied) so that the result can still be
interpreted as a probability.

The MOOD metrics definitions are based on a group
of formally defined functions and on set theory and simple
mathematics. This fulfills criteria 1 and 6. All MOOD
metrics are expressed as quotients where the numerator is
the actual use (in the design under consideration) of a
given OO abstraction and the denominator is the
maximum achievable possible value for the same
abstraction use. As a result, all metrics are size
independent and dimensionless and criteria 2 and 3 are
met. The MOOD metrics meet criterion 4 because they are
applicable as soon as a preliminary system design is
available. The proposed metric set can be applied to any
existent Class Cluster (as defined in section 4.4), or any
combination of them, and so we can say that criterion 5 is
also fulfilled. No reference is made to specific language
constructs, that is, MOOD metrics refer to OO abstrac-
tions, and not to its implementations. Criterion 7 is there-
fore also accomplished.

4.2 Encapsulation and Information Hiding

Plenty of OO analysis and design methods, as well as
programming languages exist, but often different termi-
nologies are used to refer to the same abstraction with the
inevitable entanglement of non-experts. The basic OO
concepts are introduced along with metrics definitions in
order to help this paper to be as self-explanatory as pos-
sible.

Objects are an encapsulation of information and be-
havior relative to some entity of the application domain
under consideration (sometimes referred as the UoD -
Universe of Discourse). In real systems many objects with
similar information (data) and behavior (functionality) can
be found. The class abstraction captures this reality and
can be viewed as an abstract data type. The class
definition includes at least two types of features:
attributes (also called variables, fields or data members),
which stand for the stored information and methods (also
called operations, function members, tasks or routines),
which represent the behavior. All objects created belong to
a certain class, so they are often referred as class

4

instances. Within each class all objects share the same
methods. The object instance variables (i.e. local data) are
defined in the corresponding class.

Many features defined in a class are designed for im-
plementing certain functionalities that are only relative to
the class itself. Those features should be hidden from
client programmers4, not for protection sake but for
helping them to cope with complexity, as internal imple-
mentation details do not (or should not) bring a better
perspective on how to use the services of the class.
Another very important advantage of this information
hiding mechanism is that the use of a class is independent
of its implementation, thus allowing to alter it without
"side-effects". As a conclusion, all information about a
class should be private to the class, unless it is specifically
declared public. The public part of a class is called its
interface and should only be the "tip of the iceberg". The
public methods represent the services that the supplier
class is able to render to client classes. The hidden part is
called the implementation. The number of methods
defined in class Ci is given by:

M C M C M Cd i v i h i() () ()= +
where:

• M Cv i() - number of visible methods (interface) in

class Ci

• M Ch i() - number of hidden methods

(implementation) in class Ci

Then we define the Method Hiding Factor:

MHF
M C

M C

h ii

TC

d ii

TC= =

=

∑
∑

()

()
1

1

Conversely, the number of attributes defined in class
Ci is given by:

A C A C A Cd i v i h i() () ()= +
where:

A Cv i() - number of visible attributes in class Ci

A Ch i() - number of hidden attributes in class Ci

Then we define the Attribute Hiding Factor:

AHF
A C

A C

h ii

TC

d ii

TC= =

=

∑
∑

()

()
1

1

4- Programmers in a team using the class, other than its creator.

4.3 Inheritance

Inheritance is a mechanism for expressing similarity
among classes. Semantically, it allows the portrayal of
generalization and specialization. As far as design is con-
cerned, it allows for the simplification of the definition of
inheriting classes. When a class inherits from another, that
means it can use its methods and attributes, unless they are
redefined locally. A class Cd that inherits directly or

indirectly from a class Ca is said to be a descendent5 of

class Ca which, conversely, is called an ancestor6 of class

Cd . Now, being more restrictive, a class Cc that inherits

directly from a class Cp is said to be a child of class Cp

which, conversely, is called a parent of class Cc .

Inheritance can be single or multiple, depending on the
number of parents. The inheritance relation will be
represented here by an arrow, for instance as in
C Cc p→ or C Cd a→ .

The composition of several inheritance relations
defines a directed acyclic graph, often called an inheri-
tance hierarchy tree. A base class is the root of such an
inheritance hierarchy (i.e. the one that does not inherit;
who has no ancestors). Formally we can define the
function:

is base C
iff j TC C C C

otherwise
b

j b j
_ ()

, , :
=

∀ ∈ ¬∃ →1 1

0

where TC is the total number of classes in the system
under consideration.

 A leaf class is a class that has no descendants. For-
mally, we can define the function:

is leaf C
iff j TC C C C

otherwise
l

j j l
_ ()

, , :
=

∀ ∈ ¬∃ →1 1

0

In a class hierarchy, each class can have features either
inherited from its ancestors or the locally defined. These
latter features can be either new or a redefined version of
inherited ones (overriding situation), or even only declared
but not implemented there7. Some approaches even allow
to drop inherited features.

For defining the MOOD set of metrics we will need
some basic class metrics. They will be introduced next, by
means of functions where the argument is the class under
consideration and the returned value is the value for the
corresponding metric. Let Ci be any class of the system

under consideration. We define:

5 - Sometimes also called subclass.
6 - Also referred as superclass.
7 - The implementation is left to its descendants. These kind of features

are usually called "deferred".

5

•••• Children Count, CC Ci() - number of children of

Ci (note: if CC Ci()= 0 then Ci is a leaf class)

•••• Descendants Count, DC Ci() - number of

descendants of Ci

•••• Parents Count, PC Ci() - number of parents of Ci

(notes: if PC Ci()=0 then Ci is a base class; if

PC Ci()>1 we have multiple inheritance).

•••• Ancestors Count, AC Ci() - number of ancestors of

Ci .

• M Cd i() - number of Methods defined in Ci

• M Cn i() - number of New8 Methods defined in Ci

• M Ci i() - number of Methods Inherited in Ci (not

overridden)
• M Co i() - number of Overridden Methods in Ci

(inherited methods that are redefined)
• M Ca i() - number of Available9 Methods in Ci

The following relations hold, and can be easily trans-
posed to attributes instead of methods:

M C M C M Cd i n i o i() () ()= +

M C M C M C

M C M C

a i d i i i

n i a jj

PC Ci

() () ()

() ()
()

= +

= +
=∑ 1

where C Ci j→
This last expression is recursive up the inheritance

chain, till a base class is found. The only situation in
which it is not valid is when methods inherited from
different parents (when PC Ci() >1) have the same

designation10.
Some system metrics are now defined, based on the

above ones. The demonstration of some expressions is not
included here because they are either trivial or beyond the
scope of this paper.

•••• Total number of Methods Defined,

TM TM TM M Cd n o d kk

TC
= + =

=∑ ()
1

•••• Total number of New Methods defined,

TM M Cn n kk

TC
=

=∑ ()
1

•••• Total number of Methods Overridden,

TM M Co o kk

TC
=

=∑ ()
1

8 - "New" denotes those methods that are not overriding inherited ones.
9 - "Available" stands for those methods that can be invoked in

association with the class under consideration (i.e. those defined in that

class as well as the inherited ones).
10 - This situation is generally referred as "name clashing".

•••• Total number of Methods Inherited,

TM M C M C DCC M C

M C M C DCC M C

i i kk

TC

n k k o kk

TC

d k o k k o kk

TC

= = −

= − −

= =

=

∑ ∑
∑

() ()* () ()

() () * () ()

1 1

1

•••• Total number of Methods Available,

TM TM TM M C

M C M C DC C

M C DC C

a d i a kk

TC

d k o k kk

TC

n k kk

TC

= + =

= − +

= +

=

=

=

∑
∑
∑

()

() () * ()

()* ()

1

1

1

1

1

Note: iff there are no overriding situations, that is,
∀ ∈ =i TC M C M Cd i n i1, () ()

the two expressions above become:

TM M C M C DC C

M C DC C

i i kk

TC

d k kk

TC

n k kk

TC

= =

=

= =

=

∑ ∑
∑

() ()* ()

()* ()

1 1

1

TM TM TM M C

M C DC C

M C DC C

a d i a kk

TC

n k kk

TC

d k kk

TC

= + =

= +

= +

=

=

=

∑
∑
∑

()

()* ()

()* ()

1

1

1

1

1

•••• Total Length of Inheritance Chain, (total number of
inheritance relations),

TLIC PC C CC Ci ii

TC

i

TC
= =

== ∑∑ () ()
11

•••• Total Number of Inheritance Paths, (total number of
inheritance paths from a base class to a leaf class),

TNIP

TLIC TC is base C is leaf Ci ii

TC

=

− − +
=∑ _ () _ ()

1

We then define the Method Inheritance Factor as:

MIF
TM

TM
i

a

=

Note: MIF=0 means that there is no effective inheri-
tance (i.e. there are no inheritance hierarchies or all
inherited methods are overridden).

Similarly, we can also define the Attribute Inheritance
Factor given by:

6

AIF
TA

TA
i

a

=

where TAi and TAa have definitions similar to TMi and

TMa .

4.4 Coupling and Clustering

A class Cc is called a client of class Cs , and Cs a

supplier11 of class Cc , whenever Cc contains at least one

reference to a feature (method or attribute) of class Cs .

We will represent this client-supplier relation by
C Cc s⇒ .

Some of these client-supplier relations can be viewed
as communications between class instances. These
communications should be made explicit for the sake of
understandability. Some approaches use the designations
message, event or stimulus, to refer to the call that an
instance of the client class does to a supplier class method.
It is desirable that classes communicate with as few others
as possible and even then, that they exchange as little
information as possible [Meyer88].

Supplier class references are not only made by means
of messages. A supplier class type reference can be made
inside client classes in situations such as:
• a public or private global attribute (some languages

only allow global attributes to be private)
• a public or private method argument or local attribute

A bigger number of client-supplier relations increase
complexity, reduces encapsulation and potential reuse, and
limits understandability and maintainability.

Every class in a certain system is a potential supplier of
all other classes and vice-versa. Thus, the maximum value

of client-supplier relations12 is given by TC TC2 − . If
we consider the following function:

is client C C
iff C C C C

otherwisec s

c s c s
_ (,) =

⇒ ∧ ≠1

0
then, the Coupling Factor is given by:

COF
is client C C

TC TC

i jj

TC

i

TC

=
−

== ∑∑ _ (,)
11

2

The "web" defined by client-supplier and inheritance
relations is, in real systems, a set of disjoined graphs
where nodes represent classes and edges represent the
relations. Each of these graphs is a potential cluster for

11 - Note that a class can be client (and therefore supplier) of itself.
12 - Here we have not considered the "harmless" reflexive client-supplier

situations, that is, a class being supplier of itself.

reuse because they do not need to drag along anything
else. We shall name them Class Clusters and the shape of
each one will be of a single or several intercommunicating
inheritance hierarchy trees. For a total number of Class
Clusters, TCC, we define the Clustering Factor:

CLF
TCC

TC
=

4.5 Polymorphism

Polymorphism is a greek originated word that means
"many forms". When applied to Object-Orientation, it
stands for the possibility of sending a message without
knowing which will be the form (class) of the object that
will bind that message to one of its interface methods. All
the potential receiving classes belong to the same inheri-
tance hierarchy tree. Binding can be static (at compilation
time) or dynamic13 (at run time).

Messages can be bound to instances of a certain class
or to instances of one of its descendants and not the other
way around. Consider for instance that the class ball is
specialized by classes tennis_ball, golf_ball, soccer_ball
and rugby_ball. If by sending the message ball.new (call
of constructor method), we get a tennis_ball or a
golf_ball, everything is fine. However, if the message
soccer_ball.new is sent, getting some instance of class ball
is not acceptable as it might consist, for example, of a
rugby_ball.

If there is no overriding, a message to a class or to one
of its descendants will be bound to the same method (i.e.
no polymorphism). Conversely, we will obtain the
possible maximum polymorphism potential if all methods
are overridden in all classes (except the base ones, of
course). In fact, if a method M in class Ci , is overridden

in all descendants of class Ci , then a message bound to M

can have DC Ci() possible addressees other than the

implementation of M in class Ci . Those correspond to the

same amount of different implementations of M in Ci

descendants (polymorphic situations). Extending this
reasoning to whole methods in the whole system, the
maximum number of possible different polymorphic
situations is given by:

M C DC Cd i ii

TC
()* ()

=∑ 1

For a given system, however, the total number of
possible different polymorphic situations is:

M Co jj

DC C

i

TC i ()
()

== ∑∑ 11

13 - Also called late or delayed binding.

7

Note: the inner sum refers to the descendants of Ci

Finally we define the Polymorphism Factor:

PF
M C

M C DC C

o jj

DC C

i

TC

d i ii

TC

i

= ==

=

∑∑
∑

()

() * ()

()

11

1

4.6 Reuse

Reuse, enforced by the OO paradigm abstractions, is
expected to produce big impacts on development produc-
tivity and quality. It apparently14 saves a lot of develop-
ment time, thus reducing system costs or allowing savings
to be spent on building more functionality, quality
assurance or other activities. Reusable components are
usually more carefully designed than ordinary program
code. Besides, its repeated use brings out quickly any
flaws in its design or implementation. That is why those
components tend to be of better quality, therefore
embedding that quality in systems who incorporate them.

Reuse in OO software development can mainly take
two shapes: reuse of library components and reuse by
means of inheritance. Then, we can consider three types
of classes in a given system: (i) those base classes built
totally new, (ii) those extracted from a library and finally
(iii) those that reuse existing classes by means of inheri-
tance. As stated in the inheritance section above, inherited
class definitions are usually specialized either by
extending its features or by redefining ("overriding")
them. This specialization effort, together with that of
building classes "from scratch" corresponds to the effec-
tive "new" part of the system under consideration. We
want to quantify exactly the other part, that is, the one
corresponding to used library classes and the fraction of
all others that may be imputed to inheritance. For this
fraction calculation, we will only consider methods, as
those are much more expensive to build and maintain than
attributes. Now we can define the Reuse Factor as:

+

= +

−

=

=

∑

∑

RF
in library C

TC

MIF in library C

TC

ii

TC

ii

TC

_ ()

* _ ()

1

1
1

where

14 - We can not downplay the effort of searching, and eventually

adapting, reusable components from the class library, as well as the

effort of building, validating and maintaining it.

in library C
iif C L

otherwisei
i_ () =
∈1

0
 L = {classes in the reusable class library}

5. DESIGN HEURISTICS

By thorough interpretation of data taken from real
projects, we believe that we will be able to compute
design heuristics. Those can exhibit three shapes:
recommended lower limit (LL), recommended interval
(INT) and recommended upper limit (UL). Table 1 shows
which shape applies for each of the MOOD metrics. The
appropriateness of each limit (including the interval ones)
is expected to increase as our metrics collection and
analysis process proceed.

MOOD METRIC LL INT UL
Method Inheritance Factor x
Attribute Inheritance Factor x

Coupling Factor x
Clustering Factor x

Polymorphism Factor x
Method Hiding Factor x
Attribute Hiding Factor x

Reuse Factor x

Table 1: Shape of design heuristics based on MOOD

According to this framework, expected recommenda-
tions will be of the kind:

• "Keep the Method Inheritance Factor between 0.25
and 0.37"

• "Coupling Factor should be below 0.52"
• "Good Reuse Factors are those above 0.43"

Values mentioned above are irrelevant. We expect to
disclose some realistic ones in a following paper.

6. FUTURE WORK

We are presently developing a tool for supporting the
collection, storage and analysis of the MOOD metrics set.
The core of this tool (metrics definition dictionary, metrics
storage, human-machine interface) is language
independent. Specific implementation language stubs will
parse the specification code and determine the base
measure function values. The C++ stub is under
construction and we plan to develop an Eiffel [Meyer92]
one in the near future. When the tool becomes fully
operational, we will proceed to an extensive evaluation of
available systems and try to derive and refine the values
for the limits mentioned in the design recommendations.

The study of correlation between MOOD metrics and
quality attributes as those mentioned in [ISO9126] will be

8

one of next steps. We will also investigate the statistical
independence of each MOOD metric towards each of the
other ones.

We think that the MOOD metrics (except the Reuse
Factor) can be combined to obtain a generic OO software
system complexity metric. That is one of our future chal-
lenges. We will start by evaluating the MOOD metrics
against a set of desiderata for software complexity metrics
defined in [Weyuker88].

A concurrent effort for developing a resource estima-
tion model named MOORED (Model for Object Oriented
Resource Estimation Determination) is under way, and
some cross-fertilization is expected in the field of com-
plexity and productivity evaluation.

7. CONCLUSIONS

The adoption of the Object-Oriented paradigm is ex-
pected to help produce better and cheaper software. The
main concepts of this paradigm, namely, inheritance,
encapsulation, information hiding or polymorphism, are
the keys to foster reuse and achieve easier maintainability.
However, the use of constructs that support those concepts
can be more or less intensive, mainly depending on the
designer ability. Advances in quality and productivity
need to be correlated with the use of those constructs.
Therefore, we need to evaluate them quantitatively to
guide OO design. The availability of these metrics should
allow comparison of different systems or different
implementations of the same system, thus helping to
derive some design heuristics that could/should be
included in design tools. Those heuristics would at least be
a valuable help to new staff members.

"Blind" choice (or creation) is dangerous, so a set of
common requirements for metrics and corresponding
rationale was introduced, which includes the need for
formal definition, language independence, dimension-
lessness, ease of calculation and early obtainability. A
suitable metrics set named MOOD was then proposed. We
believe that these metrics can help in setting OO design
standards at the organization level, helping OO
practitioners to guide their development process and,
hopefully, leaving them in a cheerful MOOD...

REFERENCES

[Abreu93] Abreu F.B., "Metrics for Object Ori-
ented Software Development", Proceedings of 3rd Inter-
national Conference on Software Quality, ASQC, Lake
Tahoe, USA, October 1993.

[Albrecht83] Albrecht A.J. and Gaffney J.E.,
"Software Function, Source Lines of Code and Develop-
ment Effort Prediction", IEEE TSE, vol.9, n.6, pp.639-
648, November 1983.

[Bieman92] Bieman J., "Deriving Measures of
Software Reuse in Object Oriented Systems", Proceedings
of The BCS-FACS Workshop on Formal Aspects of
Measurement, Springer-Verlag, 1992.

[Campanai94] Campanai M. and Nesi P., "Supporting
O-O Design with Metrics", Proceedings of TOOLS
Europe'94, France, 1994.

[Chidamber91] Chidamber S. and Kemerer C.,
"Towards a Metrics Suite for Object Oriented Design",
Proceedings of OOPSLA'91, pp.197-211, 1991.

[Dreger89] Dreger J.B., Function Point Analysis,
Prentice-Hall, Englewood Cliffs, NJ,1989

[ISO9000-3] ISO/IEC 9000 Part 3, Guidelines for the
Application of ISO 9001 to the Development, Supply and
Maintenance of Software, 1991.

[ISO9126] ISO/IEC 9126, Information Technology
- Software Product Evaluation - Quality Characteristics
and Guidelines for their use, 1991.

[Jacobson92] Jacobson I., Christerson M., Jonsson P.
and Övergaard G., Object-Oriented Software Engineering
- A Use Case Driven Approach, ACM Press / Addison-
Wesley, 1992.

[Karunanithi93] Karunanithi S. and Bieman J.,
"Candidate Reuse Metrics For Object Oriented and Ada
Software," Proceedings of IEEE International Software
Metrics Symposium, pp.120-128, May 1993.

[Meyer88] Meyer B., Object-oriented Software
Construction, Prentice Hall International, 1988.

[Meyer92] Meyer B., Eiffel: The Language,
Prentice Hall International, 1992.

[Stalhane92] Stalhane T. and Coscolluela A., "Final
Report on Metrics", Deliverable D1.4.B1, ESPRIT Project
5327 (REBOOT), February 1992.

[Symons91] Symons C.R., Software Sizing and
Estimating - Mk II Function Point Analysis, John Wiley &
Sons, 1991.

[Weyuker88] Weyuker E., "Evaluating Software Com-
plexity Metrics", IEEE TSE, vol.14, n.9, pp.1357-1365,
September 1988.

[Yousfi92] Yousfi N., "Measuring Internal
Attributes of Object-Oriented Software Products", Pro-
ceedings of the 5th Int. Conference on Software Engi-
neering & its Applications, Toulouse, 1992.

[Zuse91] Zuse H., Software Complexity: Mea-
sures and Methods, Walter de Gruyer, 1991.

