
Cross-Validation of a Component Metrics Suite

Miguel Goulão, Fernando Brito e Abreu

Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Portugal
{miguel.goulao, fba}@di.fct.unl.pt

Abstract. This paper describes an independent validation study for a suite of
reusability metrics for component based design published in the literature. The
metrics under validation were originally proposed using a semi-formal notation,
namely a combination of mathematical formulae with natural language
descriptions for elementary parts of those formulae. They were then computed
using proprietary tools. By contrast, we present a formalization for the metrics
suite that combines the version 2.0 of the UML metamodel with OCL. This
technique provides a formal, portable and executable definition of the metrics
set that can be used to perform other cross-validations of the metrics suite. A
prototype working environment to perform such cross-validation experiments,
both with this and other metrics sets was developed and a metrics collection
experiment using that environment is discussed.

1. Motivation

Software quality modeling involves not only the definition of adequate taxonomies of
quality attributes, but also the establishment of methods to assess those attributes. This
assessment may be performed both in a qualitative and in a quantitative way. In this
paper, we are concerned with the latter. The quantitative assessment of quality
attributes requires the usage of software metrics. Quality models can then be built
based on a combination of such metrics, using general purpose statistical techniques,
such as multivariate regression models.

Statistical models require validation before they can be adopted by a large
community. This validation should cover:
• Internal consistency – The model is specified through a set of mathematical

statements, whose validity should be checked for mathematical correctness. A set
of inputs are collected from the system represented by the model, along with
relevant information on the assumptions made about the system elements. The
model allows computing a set of outputs representing the predicted behavior of the
system being modeled. In an internally consistent model, the outputs are valid if the
inputs are valid.

• External consistency – A model has external consistency if information collected
from it is not contradicted by other information observed in practice. This relates to
the applicability of the model, as it focuses on the extent to which the assumptions
made in the model apply beyond the sample from which the model was delivered.

 The credibility of component-based development (CBD) quality models and
related metrics suites depends not only on their soundness, but also on the extent to
which they are validated, both by their own proponents and by independent parties.
The current state of practice of experimental software engineering in what concerns
CBD quality models and metrics is still far from reaching this level of maturity. Some
quality models and metrics have been proposed [1, 2], but they lack proper validation
in order to be widely accepted by the CBD community.

Although more validation studies are required, several difficulties hamper this task,
such as (i) the lack of available data for conducting case studies, (ii) problems with the
interpretation of the models and metrics specifications and (iii) lack of supporting
tools for data collection.

In this paper, we present a CBD metrics suite cross-validation effort. On the
original metrics set proposal, its authors used semi-formally defined metrics and
proprietary tools to collect them and support their validation effort. Here, we
formalize the metrics’ definition and present an experimental environment that
combines publicly available tools with standard languages for representing the metrics
specification, heuristics based on those metrics, and the analyzed software
components specification.

Our formalization technique, developed within the QUASAR research group
(http://ctp.di.fct.unl.pt/QUASAR/) uses a metamodel of the target domain – CBD
modeling with the Unified Modeling Language (UML), in the present case – upon
which metrics are defined using the Object Constraint Language (OCL). The
advantages of this formalization technique are manifold:

i. it is not affected by subjectivity, since the underlying metamodel removes any
concept imprecision, or fuzzy inter-relationship interpretation;

ii. it is formal, because OCL [3] offers the required mechanisms for granting
precision in metrics definition;

iii. it is standard, since both the metamodel and the metrics specification are expressed
using the UML standard, of which OCL is a part;

iv. it is understandable to software practitioners, because both class diagrams (used
for representing the meta-model) and the OCL itself were conceived for simplicity,
without sacrificing expressiveness;

v. it is generic, therefore creating the conditions either for replication of validation
experiments with this metrics suite, or with others;

vi. it is easily automated, since with the upcoming adoption of the new UML 2.0
standard [4, 5] it is likely that many tool producers will provide direct support to
the new UML metamodel, as well as to OCL, which is also part of the UML
standard.
This paper is organized as follows. In section 2, we present some related work

concerning independent validation of software metrics. In section 3, we present our
technique for formally defining metrics upon the UML 2.0 metamodel, using OCL.
The formal definition of Washizaki et al.’s metrics set is presented in section 4.
Section 5 contains the formal definitions of a set of heuristics that helps interpreting
the metrics. In section 6, a metrics collection experiment is described and discussed.
The used metrics set is then analyzed for its weaknesses. Conclusions are presented in
section 7, while further work is outlined in section 8.

2. Related Work

The idea of independent validation of quality models and metrics is not new. It was
borrowed from other sciences, where it is common to cross-check model validity by
conducting independent experiments. For instance, in the pharmaceutical industry,
new drugs have to undergo independent testing before being approved for public use
(see, for instance, the regulations concerning this process in the United States of
America – http://www.fda.gov/).

In the realm of experimental software engineering, there are several examples of
this sort of independent scrutiny, concerning software metrics suites. In [6], Harrison
et al. validated the MOOD (Metrics for Object-Oriented Design) metrics set [7]. In
[8], Basili et al. checked the adequacy of Chidamber and Kemerer’s metrics suite [9]
to predict class fault-proneness. The same metrics suite was assessed as a
maintainability predictor in [10]. Metrics such as McCabe’s cyclomatic complexity
[11] have been extensively used both in academic and industrial settings and
integrated in several commercial development tools.

However, the previous examples are the exception and not the rule. Most of the
metrics proposed in the literature have gone through scarce validation, if any at all.
This phenomenon is particularly true within the more recent quest for CBD metrics
(e.g. [12-14]). One noteworthy exception is the proposal of Washizaki et al. [15],
which has gone further along the way of validating the proposed models. Their
validation relies on a sounder statistical analysis, rather than on anecdotal examples or
“gut-feeling” hints on descriptive statistics collected from small samples (see [16] for
an overview on current CBD metrics proposals).

No known cross-validation has been performed on any of the CBD metrics sets.
Washizaki et al.’s metrics set is no exception, regarding this. This paper is expected to
mitigate this problem and to open the road for other cross-validation studies (of this
and other metrics sets) by sharing our methodological approach.

The formalization approach presented in this paper is an evolution of our previous
work concerning the formalization of metrics for object-oriented (OO) design. The
approach of using OCL to perform such formalization was introduced in [17], using
the metamodel of the GOODLY (a Generic Object Oriented Design Language? Yes!)
OO design language [18]. With the growing adoption of UML by the software
industry and academia, the need to make metrics available to the common practitioner
has led us to develop the FLAME (Formal Library for Aiding in Metrics Extraction)
metrics extraction library in OCL, on top of the UML 1.x metamodel, upon which
several metrics suites were formalized [19-22]. The work presented in this paper
differs from our previous work in metrics formalization in the following ways:
• instead of version 1.x, we are now using the UML 2.0 metamodel as a basis for our

experiments; this is a sensible choice, due to its extended expressiveness for
specifying component based architectures, as shown in [23].

• the focus of the metrics being analyzed has shifted from OO design to CBD;
• the tool support became more independent from proprietary formats, with the

adoption of XMI as the input format for our metrics collection tools.

3. Metrics formalization and collection technique

Our metrics formalization and collection technique relies on the specification of OCL
clauses that allow us to navigate through a metamodel and collect the required
information for metrics computation. Consider a very small subset of the UML 2.0
metamodel, depicted in Figure 1. From this metamodel extract, we can see, for
instance, how components are linked to their operations (ownedOperation) and
properties (ownedAttribute), as well as how operations may contain parameters
(ownedParameter). Due to space constraints, and for the sake of readability, we
omit a few model elements and attributes used in the formalization described in this
paper, as they would imply a much denser class diagram.

Component
(f rom BasicComponents)

Class
(f rom Communications)

Operation
(f rom Kernel)

Class
(f rom Kernel)

0..1

*

+class

0..1

+ownedOperation
*

Property
(f rom Kernel)

0..1

*

+class
0..1

+ownedAttribute
*

Class
(f rom StructuredClasses)

Property
(f rom InternalStructures)

0..1

*

0..1

+ownedAttribute

*

Class
(f rom Constructs)

Operation
(f rom Constructs)0..1 *

class

0..1

ownedOperation

*

NamedElement

name : String
(from Basic)

Parameter
(f rom Basic)

Class
(f rom Basic)

Operation
(f rom Basic)

0..1

*

operation0..1

ownedParameter*

0..1 *

class

0..1

ownedOperation

*

TypedElement
(from Basic)

Classifier
(from Basic)

*

0..1

*
type

0..1

Figure 1 – UML 2.0 metamodel extract

In order to illustrate the metrics collection process, we now provide a small

example. Consider the SQL_Select component, in Figure 2. This fine grained
component allows us to show how metrics can be computed. It contains 9 attributes
and 21 operations. Out of those 21 operations, 1 is a constructor, 5 are getters, 5 are
setters, and the remaining 10 are business operations (all the operations with no
stereotype, in the example). We use the term “business operations” to conform to
Washizaki et al.’s classification for all the available operations that implement the
functionality of components other than constructors, getters and setters.

The following OCL expressions compute the set of owned properties, its size, the
set of owned operations, and its size, respectively. The two size expressions, in

particular, show how simple metrics can be computed for a given component. The
results of the evaluation of each of the expressions are presented in italic. For the
sake of simplicity, we assume the objects that populate the metamodel to have the
same name as the model elements they represent, in the following OCL clauses.

SQL_Select.ownedAttribute = {NO_WORK, …, maxRows}
SQL_Select.ownedAttribute->size() = 9
SQL_Select.ownedOperation = {SQL_Select, …, writeObject}
SQL_Select.ownedOperation->size() = 21

SQL_Select
NO_WORK : int
DO_SELECT : int
work : int
spaces : Logical View::java::lang::String
url : Logical View::java::lang::String
user : Logical View::java::lang::String
password : Logical View::java::lang::String
selectString : Logical View::java::lang::String
maxRows : int

<<constructor>> Select()
doLayout() : void
doWork() : void
getMaxRows() : int
<<getter>> getPassword() : Logical View::java::lang::String
<<getter>> getSQL() : Logical View::java::lang::String
<<getter>> getURL() : Logical View::java::lang::String
<<getter>> getUser() : Logical View::java::lang::String
<<getter>> getWork() : int
initialize() : void
layout() : void
readObject(arg0 : ObjectInputStream) : void
select() : void
<<setter>> setMaxRows(arg0 : int) : void
<<setter>> setPassword(arg0 : Logical View::java::lang::String) : void
<<setter>> setSQL(arg0 : Logical View::java::lang::String) : void
<<settter>> setURL(arg0 : Logical View::java::lang::String) : void
<<setter>> setUser(arg0 : Logical View::java::lang::String) : void
update() : void
update(arg0 : ActionEvent) : void
writeObject(arg0 : ObjectOutputStream) : void

<<component>>

Figure 2 – The select component

Furthermore, we can define clauses within a given context. The following OCL
expressions define a set of clauses that we will use later in the paper as auxiliary
clauses to specify a component metrics set. The first set of clauses is defined for the
model element Component, while the second one is defined for Operation.

Component
-- Readable Properties
Pr(): Integer = self.ownedOperation->select(o: Operation|
 o.stereotype = ‘getter')->size()

-- Writable Properties
Pw(): Integer = self.ownedOperation->select(o: Operation|
 o.stereotype = 'setter')->size()
-- Properties in the component
A(): Integer = self.ownedAttribute->size()
-- Total number of constructors in the component
Co(): Integer = self.ownedOperation->select(o: Operation|
 o.stereotype = 'constructor')->size()
-- Business methods with no return value
Bv(): Integer = self.ownedOperation->select(o: Operation|
 (not (o.stereotype = 'constructor'))and
 (not (o.stereotype = 'getter')) and
 (not (o.stereotype = 'setter')))->
 select(b: Operation|
 b.ReturnType()= 'void')->size()
-- Business methods with no parameters
Bp(): Integer = … -- Similar to Bv(), but counting operations
 -- with an empty parameter list.
-- Business methods (all bur getters, setters and constructors)
B() : Integer = self.ownedOperation->size()
 + self.Pr() + self.Pw() + self.Co()
Operation
-- Set of formal parameters (except return parameter)
Params(): Set(Parameter) = self.formalParameter->
 select(fp: Parameter |
 fp.direction <> #return)
-- Set of return parameters of an Operation
ReturnParams(): Set(Parameter) =
 self.formalParameter->
 select(fp: Parameter |
 fp.direction = #return)
-- Return type of an Operation
ReturnType (): String =
 if (self.formalParameter ->
 exists(direction = #return))
 then
 if (self.ReturnParams()->
 asSequence() ->first.type.isDefined)
 then
 self.ReturnParams()->asSequence()->
 first.type.name
 else
 'void'
 endif
 else
 'void'
 endif

We can then use these clauses to extract information about a given component. For
instance, the number of constructors provided by c1 is given by:

c1.Co() = 1

4. Washizaki et al.’s metrics set formalization

4.1. Metrics set description

Washizaki et al. proposed a metrics set of 5 metrics for JavaBeans component
reusability assessment in [15]: Existence of Meta-Information (EMI), Rate of
Component Observability (RCO), Rate of Component Customizability (RCC), Self-
Completeness of Components parameters (SCCp) and Self-Completeness of
Components’ return values (SCCr). For each of the metrics, the authors presented:
• their intent;
• their definitions, combining a mathematical and an informal formulation;
• a confidence interval [Lower Limit; Upper Limit] for each metric; if its value is

outside this interval, the component is regarded as a potential source of future
problems, badly designed, or prone to exhibit bad behavior;

• interpretation heuristics based on such confidence intervals.
The quality characteristics, factors and criteria that lead to the development of each

of the metrics are presented in Figure 3.

Component
reusability

Characteristic

Understandability

Adaptability

Portability

Existence of
meta-inf ormation

Customizability

External
dependency

Observ ability

RCC

Metric

RCO

EMI

CriteriaQuality f actor

SCCr

SCCp

Figure 3 – Washizaki et al.’s quality model for reusability (adapted from [15])

In order to validate their approach, Washizaki et al. performed a case study where a
sample of 125 JavaBeans from jars.com [24] was used, along with a prototype tool to
extract the metrics from jar files. At jars.com, components are rated for quality with
an 8 levels scoring system that employs expert opinions on the components. The
criteria publicized by jars.com are presentation, functionality and originality. The
rationale is that this rating can be used for component reusability assessment. This
rating was used as a dependent variable in their validation experiment. They computed
95% confidence intervals for high quality components, based upon the average value
of each metric, for components on the two top quality levels.

4.2. Metrics formalization

The first step for applying our technique is the formalization of the original metrics
definitions with OCL, using the subset of the UML 2.0 metamodel that corresponds to
component diagrams. A discussion on the formalization was presented in [25]. Only 4
out of the 5 metrics in Washizaki et al.’s set were formalized. The remaining metric

(EMI, valued 1 when a BeanInfo class exists for the component, or 0 otherwise)
cannot be conveniently expressed upon the UML 2.0 metamodel, as we will discuss in
section 4.3. Here, we present the metrics formalization for the purpose of self-
containment of the paper. All the elementary OCL clauses were defined in section 3.

Component
-- Rate of Component Observability
RCO(): Real = if self.A() = 0 then
 0.0
 else
 self.Pr()/self.A()
 endif

-- Rate of Component Customizability
RCC(): Real = if self.A() = 0 then
 0.0
 else
 self.Pw()/self.A()
 endif

-- Self-Completeness of Component's return value
SCCr(): Real = if self.B() = 0 then
 1.0
 else
 self.Bv()/self.B()
 endif

-- Self-Completeness of Components Parameter
SCCp(): Real = if self.B() = 0 then
 1.0
 else
 self.Bp()/self.B()
 endif

4.3. On the formalization expressiveness

As seen on the previous section, we did not formalize the EMI metric. Our
formalization technique relies on the expressiveness of the underlying metamodel, as
well as on our ability to populate it from an existing specification (in this case, a jar
archive). As long as a concept can be consistently and unambiguously represented by
the meta-objects of the metamodel, it is possible to explore those meta-objects with
appropriate OCL expressions and extract relevant information from them. In this
particular case, detecting the BeanInfo class would require that we would parse the
name of classes associated with our JavaBean, as our reverse engineering tools do not
make any special annotations to express this. On the one hand, the UML metamodel
itself does not include any special abstraction for this JavaBean’s specific mechanism;
on the other, OCL is not a convenient language to implement string parsing.

This is not an intrinsic limitation of the formalization technique. We could extend
the metamodel to address this issue and improve the parsing mechanism to populate
the extended metamodel with appropriate meta-objects. The trade-off would be to
sacrifice the conformance to the standard meta-model, with its obvious negative
implications to the portability of our formalization.

The formalization of metrics concerning extra-functional properties is also a
challenge for the future. The UML 2.0 metamodel would have to be extended with
convenient profiles in order for us to use our formalization approach.

5. Formalizing a suite of reusability heuristics

Along with their metrics set, Washizaki et al. also proposed a set of heuristics, to aid
in the metrics interpretation. Three of the heuristics based on these metrics, referred to
as WarningRCO, WarningRCC and WarningSCCp, behave as a band-pass filter, in
the sense a potential problem warning should be issued if the metrics value is either
lower than the lower threshold, or higher than the upper one (for RCO, RCC and SCCp,
respectively). The WarningSCCr heuristic only establishes a minimum threshold for
the value of the SCCr metric. If the metric value is below the threshold, this should be
interpreted as an indication of a potential problem regarding the quality characteristic
being assessed by that particular metric (portability). These heuristics can be
formalized with OCL.

Class
AboveRange (limit: Real, value: Real): Boolean = value > limit
BelowRange (limit: Real, value: Real): Boolean = value < limit
OutOfRange (lowerLimit: Real, upperLimit: Real, value: Real):
Boolean = (self.BelowRange (lowerLimit, value))
 or (self.AboveRange (upperLimit, value))
pre: lowerLimit < upperLimit

Component
WarningRCO(lowerThreshold: Real, upperThreshold: Real):
Boolean = self.OutOfRange (lowerThreshold, upperThreshold,
 self.RCO())
WarningRCC(lowerThreshold: Real, upperThreshold: Real):
Boolean = self.OutOfRange (lowerThreshold, upperThreshold,
 self.RCC())
WarningSCCr(lowerThreshold: Real): Boolean =
 self.BelowRange(threshold, self.SCCr())
WarningSCCp(lowerThreshold: Real, upperThreshold: Real):
Boolean =
 self.OutOfRange (lowerThreshold, upperThreshold, self.SCCp())

We defined the first three clauses in the Class context, rather than at the
Component one. In the UML 2.0 metamodel, Component is a subclass of Class, so
the clauses defined for Class can be used with Component. This allows us to reuse
those clauses in the definition of heuristics based on other kinds of metrics based upon
the UML metamodel (e.g. OO design metrics upon class diagrams).

Metric Average LowerLimit Upper Limit # components
RCO 0,40 0,17 0,42 36
RCC 0,35 0,17 0,34 35
SCCr 0,85 0,61 1,00 108
SCCp 0,74 0,42 0,77 28
EMI 0,84 0,50 1,00 105

Table 1 – Washizaki et al. heuristics thresholds

Table 1 summarizes the heuristics thresholds information provided by Washizaki et
al.. For each metric, we present its acronym, the average value found in the metrics
sample, described in 4.1, the lower and upper thresholds for the quality filters and the
number of components in the sample which fulfill that criterion. For the sake of
completeness, we include also the thresholds for EMI. All the metrics in this suite are
defined as ratios and their maximum possible value is 1,00. For this reason, the
predicate of WarningSCCr does not require an upperThreshold.

Finally the DesignWarning heuristic is defined as a simple combination of the
previous ones. The arguments of the DesignWarning predicate allow calibrating
each heuristic, as more data gets collected.

Component
DesignWarning(RCO_LL: Real, RCO_UL: Real,
 RCC_LL: Real, RCC_UL: Real,
 SCCp_LL: Real,
 SCCr_LL: Real, SCCp_UL: Real): Boolean =
 (self.WarningRCO(RCO_LL, RCO_UL))
 or (self.WarningRCC(RCC_LL, RCC_UL))
 or (self.WarningSCCr(SCCr_LL))
 or (self.WarningSCCp(SCCp_LL, SCCp_UL))

Checking if a given component (e.g. c1) violates any of these heuristics can then be
achieved by evaluating the following OCL expression:

c1.DesignWarning (0.17, 0.42, 0.17, 0.34, 0.61, 0.42, 0.77)

6. Cross-validation experiment

6.1. Metrics collection

In order to test our formalization technique we conducted the following experiment:
we collected Washizaki et al.’s metrics upon a public domain component library, the
FukaBeans component library [26]. This library was developed according to the

JavaBeans component model [27] by Washizaki’s research team. Each component is
distributed as a separate jar file.

Table 2 contains the metrics values for each of the components in the library. In our
analysis, we used reverse engineered models of those components, obtained from their
jar files. The bold values represent data points where the heuristics proposed by
Washizaki et al. trigger design warnings.

Although all the average values for the metrics are well inside the quality intervals
suggested by Washizaki et al.’s experiments, only two of the components
(GameBean and GraphBean) comply with all the quality heuristics. Seven out of
twelve components fail three out of four heuristics. It may seem surprising that the
components developed by the metrics set proponents fail to meet the structural quality
standards proposed by themselves. It is worth mentioning that while Washizaki et al.’s
model was calibrated with commercial JavaBeans components, this sample contains
JavaBeans developed with academic purposes, with usually less than 10 methods. A
possible interpretation for the apparent lack of reusability, with respect to Washizaki
et al.’s quality model, is that, for such relatively small interfaces, the model is
vulnerable: since all the metrics are defined as ratios, the small number of elements
used in their computation leads to a high standard deviation of metrics values.

JavaBean RCO RCC SCCr SCCp

CellBean 0,037 0,111 0,909 0,818

FileUtil 1,000 0,667 1,000 1,000

FilterBean 0,267 0,133 0,933 0,200

FukaCalendarBean 0,444 0,444 0,857 0,571

FukaGraphBean 1,000 1,000 1,000 0,733

FukaStopWatchBean 0,667 0,667 1,000 0,200

FukaTextBean 0,000 0,000 1,000 1,000

GameBean 0,250 0,250 1,000 0,556

GraphBean 0,182 0,273 1,000 0,714

StatementBean 0,667 0,667 0,500 0,500

DocumentBean2 0,000 0,000 1,000 1,000

WordBean2 0,000 0,000 1,000 1,000

Mean 0,376 0,351 0,933 0,691

Standard deviation 0,376 0,333 0,145 0,294

Table 2 - Washizaki et al.'s metrics for the FukaBeans Library

6.2. Definition of the metrics set

Several issues can be raised regarding the definition of this metrics set. The original
metrics definition is ambiguous in what concerns inheritance. It is unclear how
inherited features (methods and attributes) should be accounted for. Our formalization
only uses the directly defined features. While for this particular sample of components
this is not a problematic issue, it is possible to define hierarchies of object-oriented
components where this option would have an influence on the metrics values.

Another possible concern relates to the complexity associated with parameter types
in the evaluation of the complexity of method interfaces. The metrics just count the
number of parameters, thus being blind to parameter type repetition and parameter
type complexity. For instance, a method with N parameters of distinct types is
intuitively more complex than another method with N parameters of the same type.
Also, arguments of atomic types (e.g. Integer, Real or Boolean) are intuitively less
complex than ones of a composed type.

6.3. Applicability of the metrics set

Washizaki et al.’s metrics set was designed to assess reusability of fine grained
components (JavaBeans) through the analysis of their interface complexity. This limits
somewhat the scope of model elements being analyzed. UML architectural
components have a much richer expressiveness than the one used in these metrics,
which leaves out important model elements such as the provided and required
interfaces, as well as the events the component may produce or consume.
Furthermore, it does not address non-functional aspects of the components.

7. Conclusions

Independent validation of metrics is an essential step to foster adoption by a broader
audience. The current CBD metrics state of the art is dominated by proposals that are
insufficiently validated not only by their own authors, but mainly by third parties.
Although we could argue that most CBD metrics proposals are recent, from our
experience in the field for the past ten years, we believe that the most important
factors hampering the replication of experiments are the ambiguity in metrics
definition and the usage of inadequate specifying formalisms.

The proposal presented in this paper solves these two problems. It provides a
formal, portable and executable way of specifying metrics for CBD, using standard
notations such as UML 2.0 class diagrams and OCL. The emphasis on standard
technologies aims to bring together the academic and practitioners communities, by
providing a simple, but powerful solution to integrate metrics collection and
heuristics-based help for CBD with the practitioners’ normal development
environments. This level of integration is a key factor to foster cross-validation of
metrics proposals. Furthermore, using precise mechanisms based on standard
notations to support the validation (and subsequently, the usage) of metrics makes

validation activities become testable and reproducible, two essential characteristics to
promote them from a “craft” to a “science”.

8. Future work

Although the metrics formalized in this paper are centered in fine-grained compo-
nents, the approach is flexible enough to be applied at different levels of granularity
and with different concerns. In particular, we are interested in exploring metrics for
component assemblies, rather than evaluating isolated components, with the objective
of capturing the effect of the different components interaction in the overall quality of
the component assembly.

The proposed approach is generic in the sense that, from a conceptual point of
view, it is independent from the underlying metamodel. In particular, we expect to
explore this technique for the evaluation of software product lines, using metrics sets
such as the one proposed by [13]. In a parallel effort, we are exploring the definition
of metrics for object-relational database schemas [28].

References

[1] M. Bertoa and A. Vallecillo, "Quality Attributes for COTS Components", 6th
International Workshop on Quantitative Approaches in Object-Oriented
Software Engineering (QAOOSE'2002), Málaga, Spain, 2002.

[2] N. S. Gill and P. S. Grover, "Component-Based Measurement: Few Useful
Guidelines", ACM SIGSOFT Software Engineering Notes, vol. 28, 2003.

[3] OMG, "Unified Modeling Language: OCL (version 2.0)", Object Management
Group Inc. ptc/03-08-08, August 2003.

[4] U2-Partners, "3rd revised submission to OMG RFP ad/00-09-01: Unified
Modeling Language: Infrastructure - version 2.0", U2-Partners January 2003.

[5] OMG, "Unified Modeling Language: Superstructure - Version 2.0 - Final
Adopted Specification", Object Management Group Inc. ptc/03-08-02, 2003.

[6] R. Harrison, S. J. Counsell, and R. V. Nithi, "An Evaluation of the MOOD Set of
Object-Oriented Software Metrics", IEEE Transactions on Software
Engineering, vol. 24, pp. 491-496, 1998.

[7] F. B. Abreu, "Candidate Metrics for Object-Oriented Software within a
Taxonomy Framework", Journal of Systems and Software, vol. 26, pp. 87-96,
1994.

[8] V. Basili, L. Briand, and W. L. Melo, "A Validation of Object-Oriented Design
Metrics as Quality Indicators", IEEE Transactions on Software Engineering,
vol. 22, pp. 751-760, 1996.

[9] S. R. Chidamber and C. F. Kemerer, "A Metrics Suite for Object Oriented
Design", IEEE Transactions on Software Engineering, vol. 20, pp. 476-493,
1994.

[10] W. Li and S. Henry, "Object-Oriented Metrics that Predict Maintainability",
Journal of Systems and Software, vol. 23, pp. 111-122, 1993.

[11] T. McCabe, "A Complexity Measure", IEEE Transactions on Software
Engineering, vol. 2, pp. 308-320, 1976.

[12] R. Dumke and A. Schmietendorf, "Possibilities of the Description and
Evaluation of Software Components", Metrics News, vol. 5, 2000.

[13] A. v. d. Hoek, E. Dincel, and N. Medvidovic, "Using Service Utilization Metrics
to Assess and Improve Product Line Architectures", Ninth International Software
Metrics Symposium (Metrics'03), Sydney, Australia, 2003.

[14] M. A. S. Boxall and S. Araban, "Interface Metrics for Reusability Analysis of
Components", Australian Software Engineering Conference (ASWEC'2004),
Melbourne, Australia, 2004.

[15] H. Washizaki, H. Yamamoto, and Y. Fukazawa, "A Metrics Suite for Measuring
Reusability of Software Components", Metrics'2003, 2003.

[16] M. Goulão and F. B. Abreu, "Software Components Evaluation: an Overview",
5ª Conferência da APSI, Lisbon, 2004.

[17] F. B. Abreu, "Using OCL to formalize object oriented metrics definitions",
INESC Technical Report, Software Engineering Group ES007/2001, May 2001.

[18] F. B. Abreu, L. M. Ochoa, and M. A. Goulão, "The GOODLY Design Language
for MOOD2 Metrics Collection", ECOOP Workshop on Quantitative
Approaches in Object-Oriented Software Engineering, Lisboa, Portugal, 1999.

[19] A. L. Baroni, S. Braz, and F. B. Abreu, "Using OCL to Formalize Object-
Oriented Design Metrics Definitions", QUAOOSE'2002, Malaga, Spain, 2002.

[20] A. L. Baroni, "Formal Definition of Object-Oriented Design Metrics": Vrije
Universiteit Brussel - Belgium, in collaboration with Ecole des Mines de Nantes
- France and Universidade Nova de Lisboa - Portugal, 2002.

[21] A. L. Baroni and F. B. Abreu, "Formalizing Object-Oriented Design Metrics
upon the UML Meta-Model", Brazilian Symposium on Software Engineering,
Gramado - RS, Brazil, 2002.

[22] A. L. Baroni and F. B. Abreu, "A Formal Library for Aiding Metrics
Extraction", International Workshop on Object-Oriented Re-Engineering at
ECOOP'2003, Darmstadt, Germany, 2003.

[23] M. Goulão and F. B. Abreu, "Bridging the gap between Acme and UML for
CBD", Specification and Verification of Component-Based Systems
(SAVCBS'2003), at the ESEC/FSE'2003, Helsinki, Finland, 2003.

[24] JARS, "http://www.jars.com/".
[25] M. Goulão and F. B. Abreu, "Formalizing Metrics for COTS", MPEC'2004,

Edimburgh, 2004.
[26] Y. Fukazawa, H. Washizaki, H. Yamamoto, T. Adachi, Y. Sakai, K. Satoh, and

D. Hoshi, "FukaBeans: JavaBeans Components Library,
http://www.fuka.info.waseda.ac.jp/Project/CBSE/fukabeans/".

[27] G. Hamilton, "JavaBeans (version 1.01-A)", Sun Microsystems, API
Specification August 1997.

[28] A. L. Baroni, C. Calero, F. Ruiz, and F. B. Abreu, "Formalizing Object-
Relational Structural Metrics", 5ª Conferência da APSI, Lisbon, 2004.

