
Modularity-Oriented Refactoring

Sérgio Bryton, Fernando Brito e Abreu
Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Portugal

bryton@di.fct.unl.pt, fba@di.fct.unl.pt

Abstract

Refactoring, in spite of widely acknowledged as one

of the best practices of object-oriented design and pro-
gramming, still lacks quantitative grounds and efficient
tools for tasks such as detecting smells, choosing the
most appropriate refactoring or validating the goodness
of changes.

This is a proposal for a method, supported by a tool,
for cross-paradigm refactoring (e.g. from OOP to AOP),
based on paradigm and formalism-independent
modularity assessment.

1. Introduction

Refactoring is the process of modifying software
implementation to improve its internal structure, without
altering its external behavior [1]. Implicitly, this
definition encompasses four tasks:

(1) Find where to apply a change;
(2) Choose how to perform the modification;
(3) Guarantee that the external behavior of the

impacted software module was not altered;
(4) Make sure that the systems’ internal structure

has effectively improved.
For each of the previous tasks, an immediate question
arises, respectively:
(1) Which part of the code should be changed?
(2) Which kind of refactoring should be applied?
(3) How to evaluate that the external behavior of the

resulting software part remains the same?
(4) How to evaluate the alleged improvements?
While for assessing the stability of the external

behavior, automated regression tests will do a good job,
for the remainder questions, the answer is not so
straightforward.

A serious evaluation of improvements should be
formal and quantitatively based. Without a metrics-
based assessment (before and after a refactoring is
applied) it would not be possible to rank the set of

applicable refactorings in terms of the actual
improvements they would cause.

Curiously, while some researchers claim that metrics
are a simple approach for the quality assessment of
source code [2] or that no set of metrics rivals informed
human intuition[1], others get puzzled when confronted
to the fact that although refactorings are used to improve
the quality of their systems, a supposedly adequate set of
metrics indicates that this process often has the opposite
result [3].

As stated before, refactoring implies improvement of
the internal structure of a system, but this improvement
can be achieved on several quality characteristics, the
most usually claimed being maintainability, reusability
and efficiency [4].

The proposed method, Modularity-Oriented
Refactoring (MORe) will enable cross-paradigm
refactoring automation based on paradigm and
formalism independent modularity metrics, as well as
the development of a tool to support it.

The remainder of this proposal is organized as
follows. At section 2 a brief description of the state of
the art is presented, followed by the research objectives,
current work and work plan at sections 3, 4 and 5
respectively. Section 6 presents some conclusions.

2. State of the art

2.1 Refactorings and code smells

Code smells are ways to describe warning signs about
potential problems in code [1, 5]. One of the purposes of
refactoring is precisely eliminating code smells.

Several catalogues of refactoring have been
proposed, being the most widely accepted those from
Fowler [1] and Kerievsky [6]. There are also some very
interesting publications regarding refactoring for aspect-
oriented programming, such as those from Laddad [7]
and Monteiro [5].

Simon et al. agree with the difficulty of identifying
where to apply each refactoring and propose object-
oriented cohesion-based metrics to solve this problem.

However, they do not evaluate the quality improvements
after the refactoring is applied [8].

Tahvildari et al. proposed a taxonomy for design
flaws, a reengineering strategy [9], and a framework to
detect design flaws and re-engineer them [10, 11] for
object-oriented systems using, among other, classical
modularity metrics.

In spite of the work done so far, the relation among
code smells, refactoring, and the affected quality
characteristics has a lot of room for improvement,
namely if considered that these quality properties are
independent of paradigm and adopted language and
should be measured as such. Therefore, there is a wide
berth for research on cross-paradigm quantitatively-
based refactoring.

2.2 Tools

Ideally, tools should provide a fully automated
refactoring process, whilst giving the developer a chance
to select the most appropriate decisions at their
discretion. To fully achieve this purpose, tools must be
able to detect, decide upon changes, and assess the
results achieved, in a quantitative way, as seen before.
However, even though at least 31 refactoring tools for
10 different languages exist [12], none of these seems to
fully support the aforementioned requirement.
Nevertheless, two of them are worth mentioning for
being a step ahead: JDeodorant [13] and TRex [14].

JDeodorant is an Eclipse plugin that identifies
Feature Envy bad smells in Java projects and resolves
them by applying the appropriate Move Method
refactoring upon ranking them. The whole process is
grounded on dissimilarity metrics and no changes to the
source occur until the decision to refactor is taken. No
post-refactoring assessment is made, and the tool is very
limited in scope, since only one smell for Java is
supported. Still, the process is quite elegant and
promising.

TRex is also an Eclipse plugin that automates the
application of refactorings and the detection of
refactoring opportunities for test suites specified using
the Standardized Tree and Tabular Combined Notation
(TTCN-3) [15]. The whole process is grounded on
specific metrics for test suites and pattern-based
analysis. Refactorings can be applied in two different
ways: either the developer invokes the refactoring from
the code location, or the refactoring is invoked directly
by a quick fix which is provided by the analysis results
of the automated quality assessment. As for this tool,
besides being too domain-specific, no post-refactoring
assessment is performed. However, this process is also
quite elegant and aiming systems with thousands of lines
of code.

The remainder tools focus on implementing well the
refactorings for their corresponding target language.
They do not provide assistance in detecting smells, they
do not help on choosing the right refactoring and they do
not assess the final result. Basically, the user decides
everything, while the tool tries to implement the
decisions quick and cleanly. We are not aware of tools
that perform cross-paradigm quantitative modularity-
based refactorings.

3. Research Objectives and Approach

3.1 Research Objectives

The research objective of this dissertation is to enable a
fully automated and quantitatively grounded refactoring
process, focused on modularity benefits. We expect to
contradict Opdyke claim that a refactoring tool can help
a designer by providing the right set of refactorings and
by ensuring that each refactoring is applied correctly,
but it cannot decide which refactorings to apply [16].
Habra [17] and Tahvildari et al. [9-11] corroborate the
opinion that metrics can identify potential refactorings
and estimate the refactoring effect.

The main expected contributions of this work are:
(1) A cross-paradigm and language independent

method for refactoring, based on modularity
metrics, called Modularity-Oriented Refactoring
(MORe). The latter follows the Meta-Model Driven
Measurement (M2DM) approach [18] and uses the
PIMETA metamodel [19].

(2) The MORe tool, an Eclipse plug-in, which will
fully implement the MORe method for refactoring
Java and AspectJ systems.

3.2 Research Approach

The classical scientific method depends upon theory
formation, followed by experimentation and
observation, to provide a feedback loop to validate,
modify and improve the theory. This procedure can be
followed, and it is also appropriate, for software
engineering research [20-22].

This thesis will follow the scientific method; first an
evaluation of the state of the art will be conducted; then
the MORe method and the MORe tool will be proposed
and developed and, finally, to assess the claims
presented in this paper, a statistical validation of the
achieved modularity improvements will be performed,
based on a set of case studies, the GoF Design Patterns
implemented both in Java and AspectJ [23]. For this
purpose, a set of paradigm-independent metrics will be
collected on the original manual refactorings and on

those resulting from the application of the MORe
method.

4. Current Work and Preliminary Results

A lot of significant references have already been
gathered and these seem to underline the actuality and
relevance of this research work.
PIMETA offers provisions for performing a formal
comparison of software systems using the M2DM
approach. Given the expressiveness and preciseness of
OCL for expressing modularity metrics and the
simplicity of the PIMETA semantics, combined with its
intended multi-paradigm instantiation ability, PIMETA
appears to be an adequate ground for basing paradigm
and language independent modularity assessments. The
benefit of independence allows comparisons across
paradigm boundaries.

Grounded on PIMETA, several paradigm and
language independent modularity metrics have already
been defined and are being used to analyze modularity
benefits from AOP over OOP. These metrics, and
eventually others that may be required, will be used to
identify code smells based upon their effect on
modularity, to evaluate the impact of candidate
refactorings on modularity, and to evaluate the overall
system modularity, before and after refactorings take
place.

There is also ongoing work on the capability of
visualizing modularity with graphs. This visual
capability has proven of value when it comes to analyze
the dependencies among the elements in a software
system and validate the metrics results. It may also be
useful to visualize the proposed changes, before
approving them. The visualization technique has also
been used by Simon et Al. [8] to identify code smells.

The MORe method, visible at Figure1, consists in a
sequence of seven steps. At each step, a result is
produced (r1 through r7). To achieve the results for each
step, several artifacts (a1, a2 and a3) and previous
results are combined.

At the first step, the modularity metrics (a2) are
collected from the source code (a1), to obtain a
modularity assessment for the source code (r1). Then, at
step number 2, the previous modularity metrics (a2) are
used along with code smell catalogues (a3), to identify a
set of code smell detection metrics (r2). At the third step,
the code smell detection metrics (r2) will be collected
from the source code (a1) to identify the code smells
(r3). Then, at step number 4, the refactorings to apply
(r4) at the code smells will be chosen based on a
modularity evaluation, with the modularity metrics (a2),
of each possible refactoring, according to the code smell
catalogues (a3), for each code smell (r3). At step number

5, the best refactorings (r4) are applied to the code
smells (r3) and the refactored code is obtained (r5).
Then, at step number 6, another modularity assessment
(r6) is obtained by applying the modularity metrics (a2)
at the refactored code (r6). Finally, the modularity
improvements (r7) are identified by comparing the
source code modularity assessment (r1) and the
refactored code modularity assessment (r6).

Figure 1 - The MORe method

The MORe tool architecture is being outlined. It is

not intended to implement the refactorings. Instead, the
refactoring features available at the Eclipse IDE will be
triggered for this purpose. The MORe tool will be
focused on instantiating the PIMETA with the system
under assessment, conducting the required
measurements, analyzing the results, and interacting
with the user. From these four features, the first two
have already been developed and are going through
intensive validation, although not yet as an Eclipse
plugin.

5. Work Plan and Implications

The work plan is divided into three phases, which are
expected to take place between January 2007 and
October 2009, when the thesis is expected to be
delivered.

The first phase aims at obtaining as much insight as
possible on the problem in hands. The main activity here
will be an intensive literature review on four areas of
research: (i) refactoring code-smells, (ii) catalogues,
tools and meta-models, (iii) quantitative-based
refactoring and (iv) refactoring from OOP to AOP.

On the second phase, the thesis proposals will be
implemented, and at the third phase, the results will be
validated with a case study, the GoF Design Patterns
implemented both in Java and AspectJ, as mentioned
earlier.

6. Conclusions

The MORe method will bring more quantitative
arguments which, supported by a tool, will enable cross-
paradigm refactorings, namely from OOP to AOP. We
aspire at obtaining at least as good results as those
produced by informed human intuition.

The strategy followed by the MORe method can be
used by similar methods aiming to automate refactoring,
regarding different quality properties.

The results achieved will provide a good ground for
classifying existing refactorings, according to their
effect on modularity, and proposing new ones.

It is also expected that the relations between bad
smells, metrics, refactorings and modularity can be
clearly identified.

7. References
[1] M. Fowler, et al., Refactoring: Improving the Design of

Existing Code, Addison-Wesley, 1999.

[2] H. Neukirchen and M. Bisanz, “Utilising Code Smells to
Detect Quality Problems in TTCN-3 Test Suites,” Proc.
of 19th IFIP TestCom'2007 and FATES'2007, Springer,
2007, pp. 228-243.

[3] K. Stroggylos and D. Spinellis, “Refactoring: Does it
improve software quality?,” Proc. of 5th International
Workshop on Software Quality, ACM Press, 2007.

[4] ISO 9126 Standard: Information Technology - Software
Product Evaluation - Software Quality Characteristics
and Metrics, 2001.

[5] M.P. Monteiro and J.M. Fernandes, “Towards a
Catalogue of Refactorings and Code Smells for AspectJ,”
Transactions on Aspect-Oriented Software Development
I, vol. LNCS, no. 3880, 2006, pp. 214-258.

[6] J. Kerievsky, Refactoring to Patterns, Addison-Wesley,
2004.

[7] R. Laddad, Aspect-Oriented Refactoring, Addison-
Wesley, 2006.

[8] F. Simon, et al., “Metrics Based Refactoring,” Proc. of
CSMR'2001, IEEE Computer Society Press, 2001, pp. 30-
38.

[9] L. Tahvildari and K. Kontogiannis, “A Metric-Based
Approach to Enhance Design Quality through Meta-
pattern Transformations,” Proc. of CSMR’03, IEEE
Computer Society Press, 2003.

[10] L. Tahvildari, “Quality-Driven Object-Oriented Re-
engineering Framework,” Proc. of ICSM’04, IEEE
Computer Society Press, 2004.

[11] M. Salehie, et al., “A Metric-Based Heuristic Framework
to Detect Object-Oriented Design Flaws,” Proc. of
ICPC’06, IEEE Computer Society Press, 2006.

[12] M. Fowler, “Refactoring home page,” 2008;
http://www.refactoring.com/.

[13] M. Fokaefs, et al., “JDeodorant: Identification and
Removal of Feature Envy Bad Smells,” Proc. of
ICSM'2007, 2007, pp. 519-520.

[14] H. Neukirchen and B. Zeiss, “Automation of refactoring
and refactoring suggestions for TTCN-3 Test Suites,”
Proc. of 1st Workshop on Refactoring Tools held in
conjunction with ECOOP'2007, 2007.

[15] Methods for Testing and Specification (MTS) - The Tree
and Tabular Combined Notation version 3 (TTCN-3):
Core Language, ETSI, .

[16] B. Opdyke, Refactoring Object-Oriented Frameworks,
Technical Report UIUCDCS-R-92-1759, University of
Illinois at Urbana-Champaign, Dept. of Computer
Science, 1992.

[17] N. Habra and M. Lopez, “On the Use of Measurement on
Software Restructuring,” Proc. of International ERCIM
Workshop on Software Evolution, 2006.

[18] F.B. Abreu, Using OCL to formalize object oriented
metrics definitions, Technical Report ES007/2001,
Software Engineering Group, INESC, 2001.

[19] S. Bryton and F.B. Abreu, “Towards paradigm-
independent software assessment,” Proc. of
QUATIC'2007, IEEE Computer Society, 2007.

[20] M.V. Zelkowitz and D. Wallace, “Experimental
Validation in Software Engineering,” Journal of
Information and Software Technology, vol. 39, no. 11,
1997, pp. 735-743.

[21] W.F. Tichy, et al., “Future Directions in Software
Engineering,” SIGSOFT Software Engineering Notes,
vol. 18, no. 1, 1993, pp. 35-48.

[22] M. Goulão and F.B. Abreu, “Modeling the Experimental
Software Engineering Process,” Proc. of QUATIC'2007,
IEEE Computer Society Press, 2007.

[23] J. Hannemann and G. Kiczales, “Design pattern
implementation in Java and AspectJ,” Proc. of
OOPSLA’02, ACM Press, 2002, pp. 161-173.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.33333
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /PDFX1a:2001
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

