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Abstract — Guidelines for refactoring are meant to improve 
software systems internal quality and are widely acknowledged 
as among software’s best practices. However, such guidelines 
remain mostly qualitative in nature. As a result, judgments on 
how to conduct refactoring processes remain mostly subjective 
and therefore non-automatable, prone to errors and 
unrepeatable. The detection of the Long Method code smell is 
an example. To address this problem, this paper proposes a 
technique to detect Long Method objectively and automatically, 
using a Binary Logistic Regression model calibrated by expert’s 
knowledge. The results of an experiment illustrating the use of 
this technique are reported. 

Keywords – Refactoring Process; Code Smells; Long Method; 
Binary Logistic Regression. 

I.  INTRODUCTION 
Refactoring [1] is the process of modifying the structure 

and programming style of a software system in view of 
improving maintainability, reusability and/or efficiency and 
without affecting its external behavior [2]. Decisions for 
when to resort to refactoring are often based on code smells 
(e.g. Long Method), i.e., indicators of potential design flaws 
that harm maintainability and reusability [1, 3]. There is 
empirical evidence that some code smells are positively 
associated with class error probability in the evolution of 
object-oriented systems [2]. Several refactoring catalogues 
[1, 4, 5] have been proposed which, among other things, 
characterize code smells and provide heuristics to detect 
them. Since the latter are commonsense rules, most often 
described in natural language, the whole process of code 
smells detection is subjective, non-repeatable, error-prone 
and non-automatable [6]. This problem makes refactoring 
dependent on developer’s experience and is not cost-
effective. 

The idea of automating code smells detection by using 
metrics and tools is not new [7-10]. Such proposals usually 
require the setting-up of metrics’ thresholds, used by tools 
as decision criteria for the existence or absence of code 
smells. To the best of our knowledge, these thresholds are 
not consensual and have not been validated, thus leaving the 
detection process still in the realm of subjectivity. Consider, 
for instance, the proposal to detect God Class, i.e., a large 
non-cohesive class that has far too much responsibility [11], 
where the Weighted Methods per Class (WMC), Access of 

Foreign Data (AOFD), and Tight Class Cohesion (TCC) 
metrics are used, with the following threshold values [2]: 

 
([AOFD] is in top 20%) AND ([AOFD] > 4) AND 
 ([WMC] > 20) AND ([TCC] < 33)   ((1) 
 
In section IV, we demonstrate that the detection of Long 

Method can be objective, deterministic and automatic. To 
achieve this, we define a mathematical model for this code 
smell, by following a process inspired on the MORE 
(Modularity-Oriented Refactoring) method [12] and 
described in section III. Thus, the contributions of this paper 
are: 
(1) The proposal of a mathematical model for detecting the 

Long Method code smell; 
(2) The feasibility demonstration of the proposed model. 

This paper is organized as follows: we overview the 
subjectivity problem in detecting the Long Method in the 
next section; we present our contributions in sections III and 
IV; we then survey the related work in section V and finally 
draw our conclusions and perspectives for future work in the 
last section. 

II. SUBJECTIVITY IN DETECTING THE LONG METHOD  
To fully appreciate how subjective the detection of this 

kind of code smell is, we quote some widely cited authors 
on the subject. Note than not all authors name this code 
smell the same way, but in essence they all refer to the same 
phenomenon. 

 
On the Long method, by Fowler [1]: 
(1) Longer procedures are more difficult to understand; 
(2) Whenever we feel the need to comment something, we 

write a method instead; 
(3) The key is not method length but the semantic distance 

between what the method does and how it does it; 
(4) Look for comments to find the code to extract. This often 

signals this semantic distance; 
(5) Conditionals and loops also give signs for extractions. 
 
On the Bad routines, by McConnell [3]: 
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(1) Individual method or procedure is not invoked for a 
single purpose; 

(2) Routine has too many parameters. The upper limit for 
an understandable number of parameters is 7; 

(3) Routine reads and writes global variables. 
 

On the Routine size, by McConnel [3]: 
(1) Accessor routines should be very short; 
(2) Issues such as depth of nesting, number of variables, 

and other complexity related considerations should 
dictate the length of the routine rather than imposing a 
length restriction per se; 

(3) A complex algorithm can grow up to 100 – 200 LOC; 
(4) Routines longer than 200 LOC decrease 

understandability. 
 

The previous quotes are excerpts of two widely 
acknowledged books 1 . Most probably they are used by 
many developers when they decide if a method is, or not, a 
Long Method. On the basis of the above cited guidelines, we 
believe decisions can be arbitrary, since criteria for 
detecting Long Method are not objective and therefore hard 
to automate. Nevertheless, we also believe they express 
useful knowledge and can be used as a starting point for 
more precise and objective criteria, thus assisting developers 
in their decisions. 

III. A MATHEMATICAL MODEL TO DETECT LONG METHOD 
In this section, we propose and describe a mathematical 

model, based upon Binary Logistic Regression (BLR), to 
support the automated detection of Long Method instances 
in a given source code component. 

BLR requires an initial calibration phase, i.e., the 
determining of the values of the model coefficients on the 
basis of a group of experts’ classification on a training set. 
In this context, experts are people with significant hands-on 
experience in detecting, classifying and removing code 
smells in software systems. In the study, all three authors 
separately played the role of expert2. An assessment of the 
extent to which the experts’ judgment can be modeled by 
the BLR model is presented. 

After being calibrated, the BLR model is fed with a set 
of regressors (predictor variables), as described in the next 
section. 

A. Binary Logistic Regression 
Introduction. Logistic regression (aka logistic model or 
logit model) is used for prediction of the probability of 
occurrence of an event by fitting data to a logistic curve 
[13]. Here, the event is deeming a method a surrogate of 
Long Method. BLR is a generalized linear model used for 
binomial regression. The logistic function is useful because 
it can take as an input any value from negative infinity to 

                                                           
1 - For instance, in Google Scholar Fowler [1] is cited in 3420 

publications (on 28 June 2010). 
2 - All authors have experience on teaching the code smells topic. 

positive infinity, whereas the output is confined to values 
between 0 and 1. 

Regressors. Like other forms of regression analysis, BLR 
makes use of several regressors (aka predictor variables) 
that may be either numerical or categorical. In this case, the 
regressors are a set of methods’ characteristics, expressed as 
code complexity metrics: MLOC (Method Lines Of Code) 
for length, NBD (Nested Block Depth) for nesting, VG 
(cyclomatic complexity) for control structure and PAR 
(number of PARameters) for interface [14]. Their choice 
was based on their general availability in metric collection 
tools. 

Model formulation. The dependent or outcome variable 
IsLong represents the probability of a given method to be an 
instance of Long Method, i.e., the BLR-based model 
expresses the probability (IsLong) of a method being a Long 
Method on the basis of its complexity characteristics. The 
model is thus the following: 
 

������ = �(	) =
1

1 + 
−	
                       (�) 

 
where 
	 = �0 + �1 ∗ �� + �2 ∗ ���� + �3 ∗ ��� +  �4 ∗ ���        (�) 

Variable z represents the exposure to some set of risk 
factors, while f(z) represents the probability of a particular 
outcome, given that set of risk factors (method complexity 
metrics in this case). Variable z is a measure of the total 
contribution of all the risk factors used in the model and is 
known as the logit. 

Model parameters. The β0 parameter is called the intercept 
parameter (value of z when all risk factors are 0) and β1 
through β4 are the regression coefficients of the 
corresponding predictors. Each of these regression 
coefficients quantifies the contribution of the respective 
predictor. A positive regression coefficient means that the 
risk factor increases the probability of the outcome, while a 
negative regression coefficient means that the risk factor 
decreases the probability of that outcome. The values of all 
βi parameters are obtained by regression upon a training set 
of predictor and outcome values. While the former were 
obtained by running a metrics collection tool [15] upon a set 
of classes, the latter (values of IsLong for each method in 
that set) were obtained by experts’ opinion on the same 
methods. 

B. Using the model – an example 
Steps. Assume you have a calibrated model (section IV). 
Then, to use this model, we start by collecting the regressors 
(predictor values) on a given method, with a metrics 
collection tool. Finally, by instantiating the BLR model with 
the regressors’ values, we obtain the probability of a method 
being an instance of Long Method, which is given by the 
value of IsLong. 
The example. Consider, for instance, the rtrim() method 
taken from the Apache Commons CLI [16]. 
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protected String rtrim(String s) 
{ 
// if the string is empty do nothing and return it 
if ((s == null) || (s.length() == 0)) 
{ 
 return s; 
} 
// get the position of the last character in the 
string 
int pos = s.length(); 
while ((pos > 0) && 
  Character.isWhitespace(s.charAt(pos – 1)) 
{ 
 --pos; 
} 
// remove everything after the last character 
return s.substring(0, pos) 
} 
 
TABLE I contains the corresponding values for the regressors.  

TABLE I – PREDICTOR VALUES FOR THE RTRIM() METHOD 

Method MLOC NBD VG PAR 
rtrim 10 2 5 1 

 
According to the calibrated model (section IV), the 
probability of the rtrim() method to be considered an 
instance of the Long Method code smell is considerably 
high (IsLong = 72,5%). Note that this result is corroborated 
by the heuristics of Fowler [1], since even though the 
method is not very large, its author felt the need of including 
several comments for increased understandability. 

IV. MODEL CALIBRATION AND VALIDATION 
For calibration and validation purposes we selected the 

Apache Commons CLI open source project [16], that 
provides an API for processing command line interfaces. 
This case study was chosen because it is a widely used 
software and also because its size is not exaggerated for 
manual identification of Long Method instances.  Apache 
Commons CLI was developed in Java and has 20 classes and 
193 methods and constructors. 

A. Identification of Long Method code smells by experts 
To identify the Long Method we have followed Fowler’s 

heuristics reproduced in section II. Each method was 
independently inspected by each expert. We have only 
considered a method to be a Long Method in cases where we 
had a full match (all experts marked the method) or a partial 
match (2 out of 3 experts marked the method) followed by a 
consensus reaching discussion where the third expert also 
became “convinced”.  

We found that 37 out of 193 methods (19%) should be 
considered Long Methods. The latter were found in 13 out 
of 20 classes (65%). 

B. Measuring the Apache Commons CLI 
To collect the selected complexity metrics for each 

method, we have used an Eclipse plugin [15]. Some 
descriptive statistics of obtained results are presented in 

Table II. The MLOC minimum of zero may seem odd, but 
we have checked that it indeed occurs. 

TABLE II - DESCRIPTIVE STATISTICS 

 Min. Max. Mean Std.Dev. Skewness Kurtosis 
MLOC 0 69 6,50 11,095 3,243 12,565 
NBD 0 15 1,50 1,331 6,165 55,544 
VG 1 16 2,13 2,489 2,950 9,561 

PAR 0 9 1,17 1,431 2,291 7,273 

C. Validating the Regressors 
Normality. When applying statistical tests, we prefer using 
parametric tests rather than their non-parametric 
counterparts, because the former are more powerful (come 
up with less false negatives). However, normality is a pre-
condition for applying parametric tests. We have applied 
two normality tests (Kolmogorov-Smirnov and Shapiro-
Wilk) to all metrics, as presented in Table III. None of them 
can be said to have a normal distribution. 

TABLE III - NORMALITY TESTS FOR ALL METRICS 

 Kolmogorov-Smirnova Shapiro-Wilk 

 Statistic df Sig. Statistic df Sig. 
MLOC ,297 193 ,000 ,564 193 ,000 
NBD ,388 193 ,000 ,421 193 ,000 
VG ,374 193 ,000 ,528 193 ,000 

PAR ,325 193 ,000 ,725 193 ,000 
a. Lilliefors Significance Correction    

Correlation. We are interested in finding high correlations 
between each metric variable and IsLong, but we are also 
interested in finding low correlations among the metrics 
variables, to guarantee that they are independent of each 
other.  

Since none of the variables has a normal distribution, we 
use the non-parametric Spearman’s rho correlation 
coefficient as represented in Table IV. Note that all 
correlations are significant, with a 99% confidence interval. 

TABLE IV – SPEARMAN’S RHO CORRELATION COEFFICIENTS 

  MLOC NBD VG PAR IsLong 
MLOC Correlation  ,759 ,750 ,298 ,659 

Sig. (2-tailed) . ,000 ,000 ,000 ,000 
NBD Correlation ,759  ,913 ,272 ,846 

Sig. (2-tailed) ,000 . ,000 ,000 ,000 
VG Correlation ,750 ,913  ,303 ,819 

Sig. (2-tailed) ,000 ,000 . ,000 ,000 
PAR Correlation ,298 ,272 ,303  ,327 

Sig. (2-tailed) ,000 ,000 ,000 . ,000 
IsLong Correlation ,659 ,846 ,819 ,327  

Sig. (2-tailed) ,000 ,000 ,000 ,000  

Although there is no widespread consensus among the 
statisticians regarding correlation strength, we adopt the 
following ranges, proposed in [17]. 
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TABLE V - CORRELATION STRENGTH CATEGORIZATION 

Strength Range 
Very high [90%, 100%] 
High [70%, 90%[ 
Moderate [40%, 70%[ 
Low [20%, 40%[ 
Negligible [0%, 20%[ 

 
The results presented in Table IV show us that while all 

the other metrics have a moderate to high correlation with 
IsLong, PAR exhibits low correlation and therefore seems to 
be the worst predictor among the chosen metric set. 

Also note the very high correlation between VG and 
NBD, which indicates a potential threat, if they present 
multicollinearity. The latter occurs when predictor variables 
are highly correlated among themselves. 

Multicollinearity. The collinearity statistics in Table VI, 
allow us to consider all regressors as acceptable. In fact, the 
presence of multicollinearity is assumed for Tolerance 
values lower than 0,20 or VIF values higher than 5 [18]. 

TABLE VI: MODEL COEFFICIENTS AND COLLINEARITY DIAGNOSIS 

 
Model validation. According to Table VII, we can see that 
all regressors are significantly related to IsLong. 

TABLE VII: VARIABLES NOT IN THE EQUATION FOR BLR 

 
According to Table VIII, we can see that the overall 

model is significant when all four independent variables are 
entered. The null hypothesis for the Omnibus test is that 
adding the predictors to the model has not significantly 
increased our ability to predict if the method is a Long 
Method. 

TABLE VIII: OMNIBUS TESTS FOR BLR 

 

Goodness-of-fit analysis. According to Table IX, we can 
see that the R Squares presented in both tests give a rough 
estimate of the variance in IsLong that can be predicted 
from the combination of the four variables. The Cox and 
Snell test is usually an underestimate. The -2 Log likelihood 
statistic is quite small, meaning that the model predicts well 
the occurrence of Long Methods. The Nagelkerke R Square 
statistic corroborates this observation. 

The Hosmer-Lemeshow goodness-of-fit test considers 
the null hypothesis that there is a linear relationship between 
the predictor variables and the log odds of the criterion 
variables. According to Table X we reject this hypothesis. 

TABLE IX: MODEL SUMMARY FOR BLR 

 

TABLE X: HOSMER AND LEMESHOW TEST FOR BLR 

 
According to Table XITable , we can see that 98,7% of the 
methods which are not Long Methods are predicted 
correctly with this model, while 83,8% of the Long Methods 
were predicted correctly. In other words, we had 2 false 
positives and 6 false negatives. We have predicted 33 
(31+2) Long Methods. We were wrong in just 2 cases, so 
the false positive rate is 2/33 = 6%. We have predicted that 
160 (154+6) methods were not Long Methods. We were 
wrong in 6 cases. Thus, the false negatives rate is 6/160 = 
4%. 

TABLE XI: CLASSIFICATION TABLE FOR BLR 

 
 
According to Table XII, we can see that NBD and VG are 
significant predictors (α=0,10) when all variables are 
considered together. Since MLOC and PAR were significant 
predictors when considered alone and are not significant 
when considered together, this suggests some correlation. 
The Wald statistic tests the unique contribution of each 
predictor in the context of the other predictors, from which 
we can see that NBD is the predictor that most contributes to 
the BLR model. 
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Table XII: VARIABLES IN THE EQUATION FOR BLR 

  
Calibrated model. The z value required to calculate the 
probability (IsLong) of a method being a Long Method is 
then the one we can obtain by substituting the coefficients in 
equation (3) by the values in the B column of Table XII, as 
follows: 

	 = −11.336 + 0.598 ∗ �� − 0.057 ∗ ����           
                      + 4.701 ∗ ��� +  0.486 ∗ ���                               (�) 

V. RELATED WORK 
Li and Shatnawi [2] conducted an empirical study in 

which they have found that some code smells were 
positively associated with the class error probability in three 
error-severity levels. This finding supports the use of code 
smells as a systematic method to identify and refactor 
problematic classes in this specific context.  

Several refactoring catalogues [1, 4, 5, 19] provide 
heuristics to detect code smells. 

Mens and Tourwé [20], Simon et al.[7], Habra and 
Lopez [9] and Tahvildari et al. [8, 21, 22] corroborate the 
opinion that metrics can identify potential refactorings and 
estimate the refactoring effect.  

Simon et. al. [7] agree with the difficulty of identifying 
where to apply each refactoring, and propose object-
oriented cohesion-based metrics to mitigate this problem.  

Gronback [10] demonstrates how metrics can be used to 
identify some code smells by using thresholds.  

Our approach significantly reduces subjectivity in the 
detection of code smells, either based on heuristics or based 
on thresholds that are not consensual nor have been 
validated. Furthermore, our approach allows the ranking of 
code smells, based upon the value of the probability IsLong, 
which can be used, for instance, in the prioritization of 
refactoring actions. We show it is possible to assess the 
power of the prediction used, in terms of expected false 
positive/negative rate. 

VI. CONCLUSIONS AND FUTURE WORK 

A. Conclusions 
We demonstrate through a case study that the BLR 

model can be used to detect instances of Long Method in a 
more objective way, thus opening the way for its 
automation. In a nutshell, the BLR model requires 
calibration before being used. For achieving that, a set of 
experts should reach a consensus on which are the Long 
Methods in a training set of methods. Using a metrics 
collection tool, the regressors (code complexity metrics) are 
computed and finally a statistics tool (e.g. SPSS, SAS or R) 
is used to calculate the BLR coefficients. The BLR model is 

then ready to estimate the probability of a given method 
being an instance of Long Method, using as input the code 
complexity metrics, which are easily collectable. 

We have shown that using a small set of widely used 
complexity metrics, with a moderate sized training set and a 
small number of experts, we were able to build a model that 
predicted correctly around 84% of the methods which are 
Long Methods and 99% of the methods which are not, with 
a false positive rate of 6% and a false negative rate of 4%. 
The most significant predictor in our model was NBD, while 
MLOC and PAR are not significant when used with the 
remainder variables. 

We now sum up the strengths and weaknesses of our 
process to detect this code smell. 
 
Strengths. The process strengths are the following: 
(1) Benefits from the expert’s knowledge; 
(2) Benefits from the power of statistical techniques; 
(3) Process is objective and deterministic; 
(4) Enables the automation of the process for detecting 

Long Method; 
(5) Allows the ranking of instances of Long Method by 

probability; 
(6) Enables the quantitative evaluation of the benefits of 

refactoring; 
(7) We can predict how many Long Methods can be 

detected; 
(8) We can predict how many false positives/negatives can 

be detected. 
 
Weaknesses. The process weaknesses are as follows: 
(1) Model calibration requires the availability of code 

smells experts; 
(2) The size and type of the training set may influence the 

results;  
(3) The model may still lead to false positives or false 

negatives. 
 

Our model cannot be generalized, since its calibration 
was performed upon a single project and its detection ability 
was only assessed upon the same project. However, the goal 
of demonstrating that the Long Method code smell can be 
detected automatically and objectively, grounded on 
expert’s knowledge and statistical analysis, has been fully 
achieved. 

B. Future work 
We intend to conduct experiments and propose a general 

model for the detection of the Long Method code smell, by 
experimenting with other code complexity metrics and 
larger training sets (to improve prediction power), as well as 
performing the detection outside the training set, using a 
Jack-Knifing approach. Among other things, and for the 
sake of external validity, we want to assess if our prediction 
model generalizes appropriately across different types of 
application, or does it need to be recalibrated. 

We are also researching if the approach we used to 
detect the Long Method code smell can be applied to detect 
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other code smells. We expect to present the results of this 
effort shortly. 

Logistic regression is a mathematically sound approach, 
but if a limited number of experts participate, subjectivity is 
not removed but rather shifted to the experts' opinion, 
because the constructed regression model will somehow 
reflect their specific judgment, severely limiting the ability 
to generalize the results. Increasing the number of experts 
will cancel that individual bias introduced by experts, but 
will surely introduce classification conflicts. In our 
experiment, consensus among experts was relatively easy in 
most situations. However, for this approach to be more 
systematic, we plan to adopt a formal consensus technique, 
to avoid domination effects, majority vote solution (if the 
number of experts is odd) or ties (if it is even). Formal 
consensus is the least violent decision-making process [23]. 

We plan to build an Eclipse plugin embodying code 
smells detection models, including the one presented in this 
paper. Such a plugin is planned to support a distributed 
formal consensus technique. The latter would be somehow 
similar to the one available to program committee members 
in the final review phase, to reach an agreement on paper 
scores, as provided by web-based conference supporting 
tools, such as EasyChair [24]. With such a facility, and a 
periodic recalibration of the logistic regression models (one 
per each code smell), all power users will contribute to their 
tuning. 
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