
Reducing Subjectivity in Code Smells Detection:
Experimenting with the Long Method

Sérgio Bryton

QUASAR / CITI / FCT
Universidade Nova de Lisboa

Caparica, Portugal
bryton@di.fct.unl.pt

Fernando Brito e Abreu
QUASAR / CITI / FCT

Universidade Nova de Lisboa
Caparica, Portugal
fba@di.fct.unl.pt

Miguel Monteiro
CITI / FCT

Universidade Nova de Lisboa
Caparica, Portugal

mmonteiro@di.fct.unl.pt

Abstract — Guidelines for refactoring are meant to improve
software systems internal quality and are widely acknowledged
as among software’s best practices. However, such guidelines
remain mostly qualitative in nature. As a result, judgments on
how to conduct refactoring processes remain mostly subjective
and therefore non-automatable, prone to errors and
unrepeatable. The detection of the Long Method code smell is
an example. To address this problem, this paper proposes a
technique to detect Long Method objectively and automatically,
using a Binary Logistic Regression model calibrated by expert’s
knowledge. The results of an experiment illustrating the use of
this technique are reported.

Keywords – Refactoring Process; Code Smells; Long Method;
Binary Logistic Regression.

I. INTRODUCTION
Refactoring [1] is the process of modifying the structure

and programming style of a software system in view of
improving maintainability, reusability and/or efficiency and
without affecting its external behavior [2]. Decisions for
when to resort to refactoring are often based on code smells
(e.g. Long Method), i.e., indicators of potential design flaws
that harm maintainability and reusability [1, 3]. There is
empirical evidence that some code smells are positively
associated with class error probability in the evolution of
object-oriented systems [2]. Several refactoring catalogues
[1, 4, 5] have been proposed which, among other things,
characterize code smells and provide heuristics to detect
them. Since the latter are commonsense rules, most often
described in natural language, the whole process of code
smells detection is subjective, non-repeatable, error-prone
and non-automatable [6]. This problem makes refactoring
dependent on developer’s experience and is not cost-
effective.

The idea of automating code smells detection by using
metrics and tools is not new [7-10]. Such proposals usually
require the setting-up of metrics’ thresholds, used by tools
as decision criteria for the existence or absence of code
smells. To the best of our knowledge, these thresholds are
not consensual and have not been validated, thus leaving the
detection process still in the realm of subjectivity. Consider,
for instance, the proposal to detect God Class, i.e., a large
non-cohesive class that has far too much responsibility [11],
where the Weighted Methods per Class (WMC), Access of

Foreign Data (AOFD), and Tight Class Cohesion (TCC)
metrics are used, with the following threshold values [2]:

([AOFD] is in top 20%) AND ([AOFD] > 4) AND
 ([WMC] > 20) AND ([TCC] < 33) ((1)

In section IV, we demonstrate that the detection of Long

Method can be objective, deterministic and automatic. To
achieve this, we define a mathematical model for this code
smell, by following a process inspired on the MORE
(Modularity-Oriented Refactoring) method [12] and
described in section III. Thus, the contributions of this paper
are:
(1) The proposal of a mathematical model for detecting the

Long Method code smell;
(2) The feasibility demonstration of the proposed model.

This paper is organized as follows: we overview the
subjectivity problem in detecting the Long Method in the
next section; we present our contributions in sections III and
IV; we then survey the related work in section V and finally
draw our conclusions and perspectives for future work in the
last section.

II. SUBJECTIVITY IN DETECTING THE LONG METHOD
To fully appreciate how subjective the detection of this

kind of code smell is, we quote some widely cited authors
on the subject. Note than not all authors name this code
smell the same way, but in essence they all refer to the same
phenomenon.

On the Long method, by Fowler [1]:
(1) Longer procedures are more difficult to understand;
(2) Whenever we feel the need to comment something, we

write a method instead;
(3) The key is not method length but the semantic distance

between what the method does and how it does it;
(4) Look for comments to find the code to extract. This often

signals this semantic distance;
(5) Conditionals and loops also give signs for extractions.

On the Bad routines, by McConnell [3]:

2010 Seventh International Conference on the Quality of Information and Communications Technology

978-0-7695-4241-6/10 $26.00 © 2010 IEEE

DOI 10.1109/QUATIC.2010.60

337

(1) Individual method or procedure is not invoked for a
single purpose;

(2) Routine has too many parameters. The upper limit for
an understandable number of parameters is 7;

(3) Routine reads and writes global variables.

On the Routine size, by McConnel [3]:
(1) Accessor routines should be very short;
(2) Issues such as depth of nesting, number of variables,

and other complexity related considerations should
dictate the length of the routine rather than imposing a
length restriction per se;

(3) A complex algorithm can grow up to 100 – 200 LOC;
(4) Routines longer than 200 LOC decrease

understandability.

The previous quotes are excerpts of two widely
acknowledged books 1 . Most probably they are used by
many developers when they decide if a method is, or not, a
Long Method. On the basis of the above cited guidelines, we
believe decisions can be arbitrary, since criteria for
detecting Long Method are not objective and therefore hard
to automate. Nevertheless, we also believe they express
useful knowledge and can be used as a starting point for
more precise and objective criteria, thus assisting developers
in their decisions.

III. A MATHEMATICAL MODEL TO DETECT LONG METHOD
In this section, we propose and describe a mathematical

model, based upon Binary Logistic Regression (BLR), to
support the automated detection of Long Method instances
in a given source code component.

BLR requires an initial calibration phase, i.e., the
determining of the values of the model coefficients on the
basis of a group of experts’ classification on a training set.
In this context, experts are people with significant hands-on
experience in detecting, classifying and removing code
smells in software systems. In the study, all three authors
separately played the role of expert2. An assessment of the
extent to which the experts’ judgment can be modeled by
the BLR model is presented.

After being calibrated, the BLR model is fed with a set
of regressors (predictor variables), as described in the next
section.

A. Binary Logistic Regression
Introduction. Logistic regression (aka logistic model or
logit model) is used for prediction of the probability of
occurrence of an event by fitting data to a logistic curve
[13]. Here, the event is deeming a method a surrogate of
Long Method. BLR is a generalized linear model used for
binomial regression. The logistic function is useful because
it can take as an input any value from negative infinity to

1 - For instance, in Google Scholar Fowler [1] is cited in 3420

publications (on 28 June 2010).
2 - All authors have experience on teaching the code smells topic.

positive infinity, whereas the output is confined to values
between 0 and 1.

Regressors. Like other forms of regression analysis, BLR
makes use of several regressors (aka predictor variables)
that may be either numerical or categorical. In this case, the
regressors are a set of methods’ characteristics, expressed as
code complexity metrics: MLOC (Method Lines Of Code)
for length, NBD (Nested Block Depth) for nesting, VG
(cyclomatic complexity) for control structure and PAR
(number of PARameters) for interface [14]. Their choice
was based on their general availability in metric collection
tools.

Model formulation. The dependent or outcome variable
IsLong represents the probability of a given method to be an
instance of Long Method, i.e., the BLR-based model
expresses the probability (IsLong) of a method being a Long
Method on the basis of its complexity characteristics. The
model is thus the following:

������ = �() =
1

1 +
−	
 (�)

where
	 = �0 + �1 ∗ �� + �2 ∗ ���� + �3 ∗ ��� + �4 ∗ ��� (�)

Variable z represents the exposure to some set of risk
factors, while f(z) represents the probability of a particular
outcome, given that set of risk factors (method complexity
metrics in this case). Variable z is a measure of the total
contribution of all the risk factors used in the model and is
known as the logit.

Model parameters. The β0 parameter is called the intercept
parameter (value of z when all risk factors are 0) and β1
through β4 are the regression coefficients of the
corresponding predictors. Each of these regression
coefficients quantifies the contribution of the respective
predictor. A positive regression coefficient means that the
risk factor increases the probability of the outcome, while a
negative regression coefficient means that the risk factor
decreases the probability of that outcome. The values of all
βi parameters are obtained by regression upon a training set
of predictor and outcome values. While the former were
obtained by running a metrics collection tool [15] upon a set
of classes, the latter (values of IsLong for each method in
that set) were obtained by experts’ opinion on the same
methods.

B. Using the model – an example
Steps. Assume you have a calibrated model (section IV).
Then, to use this model, we start by collecting the regressors
(predictor values) on a given method, with a metrics
collection tool. Finally, by instantiating the BLR model with
the regressors’ values, we obtain the probability of a method
being an instance of Long Method, which is given by the
value of IsLong.
The example. Consider, for instance, the rtrim() method
taken from the Apache Commons CLI [16].

338

protected String rtrim(String s)
{
// if the string is empty do nothing and return it
if ((s == null) || (s.length() == 0))
{
 return s;
}
// get the position of the last character in the
string
int pos = s.length();
while ((pos > 0) &&
 Character.isWhitespace(s.charAt(pos – 1))
{
 --pos;
}
// remove everything after the last character
return s.substring(0, pos)
}

TABLE I contains the corresponding values for the regressors.

TABLE I – PREDICTOR VALUES FOR THE RTRIM() METHOD

Method MLOC NBD VG PAR
rtrim 10 2 5 1

According to the calibrated model (section IV), the
probability of the rtrim() method to be considered an
instance of the Long Method code smell is considerably
high (IsLong = 72,5%). Note that this result is corroborated
by the heuristics of Fowler [1], since even though the
method is not very large, its author felt the need of including
several comments for increased understandability.

IV. MODEL CALIBRATION AND VALIDATION
For calibration and validation purposes we selected the

Apache Commons CLI open source project [16], that
provides an API for processing command line interfaces.
This case study was chosen because it is a widely used
software and also because its size is not exaggerated for
manual identification of Long Method instances. Apache
Commons CLI was developed in Java and has 20 classes and
193 methods and constructors.

A. Identification of Long Method code smells by experts
To identify the Long Method we have followed Fowler’s

heuristics reproduced in section II. Each method was
independently inspected by each expert. We have only
considered a method to be a Long Method in cases where we
had a full match (all experts marked the method) or a partial
match (2 out of 3 experts marked the method) followed by a
consensus reaching discussion where the third expert also
became “convinced”.

We found that 37 out of 193 methods (19%) should be
considered Long Methods. The latter were found in 13 out
of 20 classes (65%).

B. Measuring the Apache Commons CLI
To collect the selected complexity metrics for each

method, we have used an Eclipse plugin [15]. Some
descriptive statistics of obtained results are presented in

Table II. The MLOC minimum of zero may seem odd, but
we have checked that it indeed occurs.

TABLE II - DESCRIPTIVE STATISTICS

 Min. Max. Mean Std.Dev. Skewness Kurtosis
MLOC 0 69 6,50 11,095 3,243 12,565
NBD 0 15 1,50 1,331 6,165 55,544
VG 1 16 2,13 2,489 2,950 9,561

PAR 0 9 1,17 1,431 2,291 7,273

C. Validating the Regressors
Normality. When applying statistical tests, we prefer using
parametric tests rather than their non-parametric
counterparts, because the former are more powerful (come
up with less false negatives). However, normality is a pre-
condition for applying parametric tests. We have applied
two normality tests (Kolmogorov-Smirnov and Shapiro-
Wilk) to all metrics, as presented in Table III. None of them
can be said to have a normal distribution.

TABLE III - NORMALITY TESTS FOR ALL METRICS

 Kolmogorov-Smirnova Shapiro-Wilk

 Statistic df Sig. Statistic df Sig.
MLOC ,297 193 ,000 ,564 193 ,000
NBD ,388 193 ,000 ,421 193 ,000
VG ,374 193 ,000 ,528 193 ,000

PAR ,325 193 ,000 ,725 193 ,000
a. Lilliefors Significance Correction

Correlation. We are interested in finding high correlations
between each metric variable and IsLong, but we are also
interested in finding low correlations among the metrics
variables, to guarantee that they are independent of each
other.

Since none of the variables has a normal distribution, we
use the non-parametric Spearman’s rho correlation
coefficient as represented in Table IV. Note that all
correlations are significant, with a 99% confidence interval.

TABLE IV – SPEARMAN’S RHO CORRELATION COEFFICIENTS

 MLOC NBD VG PAR IsLong
MLOC Correlation ,759 ,750 ,298 ,659

Sig. (2-tailed) . ,000 ,000 ,000 ,000
NBD Correlation ,759 ,913 ,272 ,846

Sig. (2-tailed) ,000 . ,000 ,000 ,000
VG Correlation ,750 ,913 ,303 ,819

Sig. (2-tailed) ,000 ,000 . ,000 ,000
PAR Correlation ,298 ,272 ,303 ,327

Sig. (2-tailed) ,000 ,000 ,000 . ,000
IsLong Correlation ,659 ,846 ,819 ,327

Sig. (2-tailed) ,000 ,000 ,000 ,000

Although there is no widespread consensus among the
statisticians regarding correlation strength, we adopt the
following ranges, proposed in [17].

339

TABLE V - CORRELATION STRENGTH CATEGORIZATION

Strength Range
Very high [90%, 100%]
High [70%, 90%[
Moderate [40%, 70%[
Low [20%, 40%[
Negligible [0%, 20%[

The results presented in Table IV show us that while all

the other metrics have a moderate to high correlation with
IsLong, PAR exhibits low correlation and therefore seems to
be the worst predictor among the chosen metric set.

Also note the very high correlation between VG and
NBD, which indicates a potential threat, if they present
multicollinearity. The latter occurs when predictor variables
are highly correlated among themselves.

Multicollinearity. The collinearity statistics in Table VI,
allow us to consider all regressors as acceptable. In fact, the
presence of multicollinearity is assumed for Tolerance
values lower than 0,20 or VIF values higher than 5 [18].

TABLE VI: MODEL COEFFICIENTS AND COLLINEARITY DIAGNOSIS

Model validation. According to Table VII, we can see that
all regressors are significantly related to IsLong.

TABLE VII: VARIABLES NOT IN THE EQUATION FOR BLR

According to Table VIII, we can see that the overall

model is significant when all four independent variables are
entered. The null hypothesis for the Omnibus test is that
adding the predictors to the model has not significantly
increased our ability to predict if the method is a Long
Method.

TABLE VIII: OMNIBUS TESTS FOR BLR

Goodness-of-fit analysis. According to Table IX, we can
see that the R Squares presented in both tests give a rough
estimate of the variance in IsLong that can be predicted
from the combination of the four variables. The Cox and
Snell test is usually an underestimate. The -2 Log likelihood
statistic is quite small, meaning that the model predicts well
the occurrence of Long Methods. The Nagelkerke R Square
statistic corroborates this observation.

The Hosmer-Lemeshow goodness-of-fit test considers
the null hypothesis that there is a linear relationship between
the predictor variables and the log odds of the criterion
variables. According to Table X we reject this hypothesis.

TABLE IX: MODEL SUMMARY FOR BLR

TABLE X: HOSMER AND LEMESHOW TEST FOR BLR

According to Table XITable , we can see that 98,7% of the
methods which are not Long Methods are predicted
correctly with this model, while 83,8% of the Long Methods
were predicted correctly. In other words, we had 2 false
positives and 6 false negatives. We have predicted 33
(31+2) Long Methods. We were wrong in just 2 cases, so
the false positive rate is 2/33 = 6%. We have predicted that
160 (154+6) methods were not Long Methods. We were
wrong in 6 cases. Thus, the false negatives rate is 6/160 =
4%.

TABLE XI: CLASSIFICATION TABLE FOR BLR

According to Table XII, we can see that NBD and VG are
significant predictors (α=0,10) when all variables are
considered together. Since MLOC and PAR were significant
predictors when considered alone and are not significant
when considered together, this suggests some correlation.
The Wald statistic tests the unique contribution of each
predictor in the context of the other predictors, from which
we can see that NBD is the predictor that most contributes to
the BLR model.

340

Table XII: VARIABLES IN THE EQUATION FOR BLR

Calibrated model. The z value required to calculate the
probability (IsLong) of a method being a Long Method is
then the one we can obtain by substituting the coefficients in
equation (3) by the values in the B column of Table XII, as
follows:

	 = −11.336 + 0.598 ∗ �� − 0.057 ∗ ����
 + 4.701 ∗ ��� + 0.486 ∗ ��� (�)

V. RELATED WORK
Li and Shatnawi [2] conducted an empirical study in

which they have found that some code smells were
positively associated with the class error probability in three
error-severity levels. This finding supports the use of code
smells as a systematic method to identify and refactor
problematic classes in this specific context.

Several refactoring catalogues [1, 4, 5, 19] provide
heuristics to detect code smells.

Mens and Tourwé [20], Simon et al.[7], Habra and
Lopez [9] and Tahvildari et al. [8, 21, 22] corroborate the
opinion that metrics can identify potential refactorings and
estimate the refactoring effect.

Simon et. al. [7] agree with the difficulty of identifying
where to apply each refactoring, and propose object-
oriented cohesion-based metrics to mitigate this problem.

Gronback [10] demonstrates how metrics can be used to
identify some code smells by using thresholds.

Our approach significantly reduces subjectivity in the
detection of code smells, either based on heuristics or based
on thresholds that are not consensual nor have been
validated. Furthermore, our approach allows the ranking of
code smells, based upon the value of the probability IsLong,
which can be used, for instance, in the prioritization of
refactoring actions. We show it is possible to assess the
power of the prediction used, in terms of expected false
positive/negative rate.

VI. CONCLUSIONS AND FUTURE WORK

A. Conclusions
We demonstrate through a case study that the BLR

model can be used to detect instances of Long Method in a
more objective way, thus opening the way for its
automation. In a nutshell, the BLR model requires
calibration before being used. For achieving that, a set of
experts should reach a consensus on which are the Long
Methods in a training set of methods. Using a metrics
collection tool, the regressors (code complexity metrics) are
computed and finally a statistics tool (e.g. SPSS, SAS or R)
is used to calculate the BLR coefficients. The BLR model is

then ready to estimate the probability of a given method
being an instance of Long Method, using as input the code
complexity metrics, which are easily collectable.

We have shown that using a small set of widely used
complexity metrics, with a moderate sized training set and a
small number of experts, we were able to build a model that
predicted correctly around 84% of the methods which are
Long Methods and 99% of the methods which are not, with
a false positive rate of 6% and a false negative rate of 4%.
The most significant predictor in our model was NBD, while
MLOC and PAR are not significant when used with the
remainder variables.

We now sum up the strengths and weaknesses of our
process to detect this code smell.

Strengths. The process strengths are the following:
(1) Benefits from the expert’s knowledge;
(2) Benefits from the power of statistical techniques;
(3) Process is objective and deterministic;
(4) Enables the automation of the process for detecting

Long Method;
(5) Allows the ranking of instances of Long Method by

probability;
(6) Enables the quantitative evaluation of the benefits of

refactoring;
(7) We can predict how many Long Methods can be

detected;
(8) We can predict how many false positives/negatives can

be detected.

Weaknesses. The process weaknesses are as follows:
(1) Model calibration requires the availability of code

smells experts;
(2) The size and type of the training set may influence the

results;
(3) The model may still lead to false positives or false

negatives.

Our model cannot be generalized, since its calibration
was performed upon a single project and its detection ability
was only assessed upon the same project. However, the goal
of demonstrating that the Long Method code smell can be
detected automatically and objectively, grounded on
expert’s knowledge and statistical analysis, has been fully
achieved.

B. Future work
We intend to conduct experiments and propose a general

model for the detection of the Long Method code smell, by
experimenting with other code complexity metrics and
larger training sets (to improve prediction power), as well as
performing the detection outside the training set, using a
Jack-Knifing approach. Among other things, and for the
sake of external validity, we want to assess if our prediction
model generalizes appropriately across different types of
application, or does it need to be recalibrated.

We are also researching if the approach we used to
detect the Long Method code smell can be applied to detect

341

other code smells. We expect to present the results of this
effort shortly.

Logistic regression is a mathematically sound approach,
but if a limited number of experts participate, subjectivity is
not removed but rather shifted to the experts' opinion,
because the constructed regression model will somehow
reflect their specific judgment, severely limiting the ability
to generalize the results. Increasing the number of experts
will cancel that individual bias introduced by experts, but
will surely introduce classification conflicts. In our
experiment, consensus among experts was relatively easy in
most situations. However, for this approach to be more
systematic, we plan to adopt a formal consensus technique,
to avoid domination effects, majority vote solution (if the
number of experts is odd) or ties (if it is even). Formal
consensus is the least violent decision-making process [23].

We plan to build an Eclipse plugin embodying code
smells detection models, including the one presented in this
paper. Such a plugin is planned to support a distributed
formal consensus technique. The latter would be somehow
similar to the one available to program committee members
in the final review phase, to reach an agreement on paper
scores, as provided by web-based conference supporting
tools, such as EasyChair [24]. With such a facility, and a
periodic recalibration of the logistic regression models (one
per each code smell), all power users will contribute to their
tuning.

ACKNOWLEDGMENT
The work presented herein was partly supported by the

VALSE project of the CITI research center within the
Department of Informatics at FCT/UNL in Portugal.

REFERENCES
[1] M. Fowler, K. Beck, J. Brant, W. Opdyke, and D. Roberts,

Refactoring: Improving the Design of Existing Code, Addison-
Wesley, 2000.

[2] W. Li and R. Shatnawi, "An empirical study of the bad smells and
class error probability in the post-release object-oriented system
evolution", Journal of Systems and Software, vol. 80, n. 7, pp. 1120-
1128, Elsevier Science, ISSN:0164-1212, 2007.

[3] S. McConnell, Code Complete - A Practical Handbook of Software
Construction, 2nd ed., Microsoft Press, 2004.

[4] M. P. Monteiro and J. M. Fernandes, "Towards a Catalogue of
Refactorings and Code Smells for AspectJ", LNCS - Transactions on
Aspect-Oriented Software Development I, vol. 3880, pp. 214-258,
Springer, 2006.

[5] J. Kerievsky, Refactoring to Patterns, Addison-Wesley, 2004.
[6] S. Bryton and F. Brito e Abreu, "Strengthening Refactoring: Towards

Software Evolution with Quantitative and Experimental Grounds", in
proceedings of the Fourth International Conference on Software
Engineering Advances (ICSEA 2009), pp. 570-575, Porto, Portugal,
2009.

[7] F. Simon, F. Steinbrückner, and C. Lewerentz, "Metrics Based
Refactoring", in proceedings of the CSMR'2001, pp. 30-38, P. Sousa
and J. Ebert (Eds.), Lisbon, Portugal, 2001.

[8] M. Salehie, S. Li, and L. Tahvildari, "A Metric-Based Heuristic
Framework to Detect Object-Oriented Design Flaws", in proceedings

of the 14th International Conference on Program Comprehension
(ICPC’06), pp. 159-168, Athens, Greece, 2006.

[9] N. Habra and M. Lopez, "On the Use of Measurement on Software
Restructuring", in proceedings of the International ERCIM Workshop
on Software Evolution (co-located with / organized by ERCIM
Consortium), pp. 81-88, L. Duchien, M. D'Hondt, and T. Mens (Eds.),
Lille, France, 2006.

[10] R. C. Gronback, "Software Remodeling: Improving Design and
Implementation Quality, Using Audits, Metrics and Refactoring in
Borland Together ControlCenter", White Paper, Borland, 2003.

[11] A. J. Riel, Object-Oriented Design Heuristics, Reading, MA, USA,
Addison-Wesley Publishing Company, Reading, MA, USA, ISBN:0-
201-63385-X, 1996.

[12] S. Bryton and F. Brito e Abreu, "Modularity-Oriented Refactoring",
in proceedings of the 12th European Conference on Software
Maintenance and Reengineering (CSMR'2008), pp. 294-297, Athens,
Greece, 2008.

[13] N. Leech, K. Barrett, and G. A. Morgan, SPSS for Intermediate
Statistics: Use and Interpretation, 3rd ed., Psychology Press
ISBN:978-0-8058-6267-6, 2007.

[14] B. Henderson-Sellers, Object-Oriented Metrics - Measures of
Complexity, Upper Saddle River, NJ, USA, Prentice Hall PTR, Upper
Saddle River, NJ, USA, ISBN:0-13-239872, 1996.

[15] Metrics Plugin for Eclipse, version 1.3.6, 2009. Available:
http://metrics.sourceforge.net. [Accessed: May 2010].

[16] A. S. Foundation, "Apache Commons CLI". Available:
http://commons.apache.org/cli/. [Accessed: May 2010].

[17] M. H. Pestana and J. N. Gageiro, Análise de Dados para Ciências
Sociais: A Complementaridade do SPSS, 5th ed., Lisboa, Edições
Sílabo, Lisboa, ISBN:978-972-618-498-0, 2008.

[18] A. Field, Discovering Statistics Using SPSS, 3rd ed., London, SAGE
Publications, London, ISBN:978-1-84787-906-6, 2009.

[19] R. Laddad, Aspect-Oriented Refactoring, Addison-Wesley, 2006.
[20] T. Mens and T. Tourwé, "A Survey of Software Refactoring", IEEE

Transactions on Software Engineering, vol. 30, n. 2, pp. 126-139,
February 2004, 2004

[21] L. Tahvildari and K. Kontogiannis, "A Metric-Based Approach to
Enhance Design Quality Through Meta-Pattern Transformations", in
proceedings of the 7th European Conference on Software
Maintenance and Reengineering (CSMR’03), pp. 183-192,
Benevento, Italy, 2003.

[22] L. Tahvildari, "Quality-Driven Object-Oriented Re-engineering
Framework", in proceedings of the 20th International Conference on
Software Maintenance (ICSM'04), pp. 479-483, Chicago, USA, 2004.

[23] C. T. L. Butler and A. Rothstein, On Conflict and Consensus: A
Handbook on Formal Consensus Decisionmaking, 3rd ed., Creative
Commons, 2007.

[24] EasyChair Conference System, University of Manchester,
Manchester, UK, 2010. Available: http://www.easychair.org.
[Accessed: May 2010].

342

