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Abstract 

This report describes and outlines our main concepts regarding aspect-oriented concepts for 

MATLAB programming. The report begins by introducing the notion of aspects and how they 

can be used to provide a wide variety of applications such as profiling of the code execution by 

observing specific values and specific conditions of the execution. The proposed aspects 

consider code specialization (data types and computations), exploration primitives by injecting 

special code in order to explore certain aspects of the application (e.g., data types, word 

lengths, precision), tracking and dealing with special results and conditions, etc. We provide 

several examples of the use of aspects, including a more advanced example we call dynamic 

value injection where the programmer can perform testing of the MATLAB program by 

injecting specific values upon specific predicate conditions. This report also describes the 

framework of the AMADEUS project in which this aspect technology is currently being 

developed for MATLAB systems. 

1 Aspect-Oriented Programming and MATLAB 

Aspect-oriented programming (AOP) [1, 2] is an emerging paradigm characterized by a 

systematic approach to software modularity, with a focus on the modularization of 

crosscutting concerns. AOP was proposed as a way to tackle limitations and deficiencies in 

traditional paradigms caused by the “tyranny of the dominant decomposition” [3], i.e., 

paradigms that support only a single criterion to decompose systems into modules. Most 

concerns that do not align with the dominant decomposition cut across the boundaries of the 

modules of the system. The usual symptoms of the presence of such crosscutting concerns are 

code tangling and scattering [1]. 

An early, and widely cited, proposal of what comprises the essence of AOP rests on the 

concepts of quantification and obliviousness [4]. Quantification is the ability of an AOP 

language to specify a predicate that can match a variety of points in the static module 

definitions and dynamic object interaction graphs. Obliviousness is the ability of the modules 

of a system to be the subject of quantification without having to provide explicit hooks to 

expose the join points that the aspect modules intend to quantify over. Quantification can also 

be viewed as a “program-augmentation” approach where one decouples some concerns into 

separate aspect modules – henceforth referred simply as aspects – from the remaining 

modules of the program, by making aspects take the form of transformation specifications 

over the modules related to the primary functionality. This transformational approach to 

quantification, taken in this report, seems equally powerful in providing productivity tools 

(such as a compilers and aspect weavers), features that are typically impossible to express (or 

extremely hard to derive) when using traditional mechanisms. 

The quantification capabilities under development in the context of AMADEUS include the 

definition of expected ranges of variable values and assertions that must hold at specific 

program points. While some of these aspect modules can be viewed as essentially (static) 
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annotation-based code injection and geared towards execution analysis, other features are 

also planned to inject values during runtime execution of the program, whenever certain 

conditions occur. 

It has long been established that separation of concerns [5] contributes to improve code 

understandability and maintainability and may help tools (such as compilers) to improve 

productivity. To attain enhanced separation of concerns in MATLAB source code bases, we 

proposed in [6] an aspect-oriented language to enrich MATLAB with declarative aspect rules 

specifically tailored for the composition of crosscutting concerns such as monitoring; data type 

binding; function specialization and configurations; debugging, handling of abnormal 

conditions, including exceptions. As a continuation to that work, we focus here on more 

advanced concepts proposed within the AMADEUS project
2
. 

The main goal of the AMADEUS project is to augment MATLAB program specifications with 

advanced compilation approaches, namely by leveraging user’s knowledge for the automatic 

development of code transformation strategies. In the AMADEUS approach, an input MATLAB 

program/model can be augmented with specifications to guide a given set of code 

transformations or/and to add information about certain properties of the input algorithm. 

Ongoing work focuses on the weaver responsible to perform code transformations taking as 

two types of inputs: (1) files with MATLAB code and (2) files containing aspect rules. In the 

end, the weaver will assist MATLAB and C code generators by outputing a representation of 

the MATLAB program much closer to the implementation (e.g., with shape and type 

information), enriched by users’ knowledge about the algorithm, etc.  

Figure 1 outlines the proposed environment. Aspect rules and MATLAB code are specified in 

separate source files. A transformation engine playing the role of aspect weaver generates 

modified MATLAB code that includes the features specified by the aspect rules. We also plan 

to develop an optimized C code generator from MATLAB descriptions. The C code generator 

may also use certain aspects to produce more efficient code (e.g., with respect to memory 

usage or to execution time). 

Figure 2 presents more details about the front-end tool in the compilation environment. The 

original MATLAB code is translated to TIR (TOM
3
 intermediate representation (IR)). The 

specification of crosscutting concerns is translated to an intermediate representation and the 

data types and shapes are made available as symbol tables to the subsequent tools in the flow. 

The other concerns (such as monitoring, code transformations) are then composed with the 

TIR of the original MATLAB program through a weaver yielding a modified TIR that is made 

available to the subsequent tools in the development process. This modified TIR can include, 

e.g., representations of additional code. The environment is capable to weave the input 

MATLAB code and to produce new/modified MATLAB code and/or to translate this MATLAB 

code into C code. 

                                                             
2
 AMADEUS: ASPECTS AND COMPILER OPTIMIZATIONS FOR MATLAB SYSTEM DEVELOPMENT, research 

project partially funded by the portuguese science foundation (FCT): POCTI, PTDC/EIA/70271/2006. 
3
 http://tom.loria.fr/ 



 7 

For the core part of the tools we use TOM [7], a high-level program rewriting framework that 

can be used to manipulate/transform an intermediate representation (TOM-IR, a 

representation of a DAG is used) of the input MATLAB program. TOM permits rules and 

rewriting strategies to be defined [8] and includes a pattern matching engine. 

The code generators proposed in AMADEUS include the MATLAB and the C code generators. 

Each one is important for different aspects of the approach. The generation of code also takes 

advantage of the TOM [7] code rewriting capabilities. 

 

Figure 1. Outline of the MATLAB-based system augmented with aspect rules (rectangular boxes represent the 

two main concepts in the environment: the MATLAB weaving to produce MATLAB and C code). 

 

Figure 2. Front ends of the AMADEUS approach. 

In this report we focus on the description of a set of simple static aspects used for code 

generation and transformations geared towards execution analysis. Specifically, we focus on 

aspects that augment a working MATLAB program with the ability to specify program 

characteristics such as data types and shapes of variables, data dependencies, optional 

functional implementations, parameterization capabilities that are either beyond the 

expressive scope of MATLAB or very hard to derive via static compiler analysis. 

In our approach, we consider the following AOP-specific mechanisms: 

• Pointcut-like intersections that identify specific points in the program (joinpoints) where a 

given aspect is to be applied or observed, i.e., program locations in the code where an 

aspect composes with program code. Typical intersections are: all uses of a set of 
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variables, a particular definition of a variable, an invocation of a particular method, and a 

certain point in the code. 

• Advices/Actions are related to the action that is required at a particular joinpoint or at a 

set of joinpoints. The actions may include monitoring of variable properties and behavior 

(values, shapes), transforming code, inserting/replacing/removing code, transforming 

data-types, or performing design space exploration. 

• Conditions are enablers or disablers of the trigger of a particular action. These conditions 

are optional and can be “static” or “dynamic”. Static conditions refer to conditions that are 

checked before weaving (or static transformation of the code). Dynamic conditions refer to 

conditions that are checked during runtime. 

Each aspect can be considered as a rule that can include intersections, advices and conditions. 

According to this approach, aspects and their rules are defined in source files separated from 

the MATLAB code. The rules are defined declaratively as initially proposed in [6]. To impose a 

certain sequence of rules the user needs to specify strategies as is shown in section 2. 

In the following sections, we describe in more detail some of the concepts being used in the 

AMADEUS approach and illustrate the use and effects of several “static” aspect specifications. 

The examples are organized in sections according to the considered concern. 

2 Concepts of the AMADEUS approach 

The approach presented in this report is based on an aspect-oriented domain-specific 

language. Figure 3(a) illustrates the aspect and its code sections
4
 as the main component of 

the language and Figure 3(b) shows an example of an aspect. Each aspect can have several 

intersection-advice-conditions sections and all must be considered when executing that 

aspect. Aspects may have input arguments and return output information. Inputs and outputs 

may include parameters to specialize an aspect, joinpoints to limit the scope of the 

intersection of an aspect to a set of intersections previously determined by another aspect, 

variables, etc. The sequence of aspects to be run is specified by the user. Different sequences 

are considered strategies. 

We describe next in detail the concepts of our approach, which includes join points, advices, 

conditions, and strategies. 

                                                             
4
 An implementation possibly more understandable for MATLAB programers can use 

select/apply/when(for identifying the three sections: intersection/advice/conditions. 
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aspect <name>  

 

   input: ... 

   output: ... 

 

   ( 

   intersection: 

   ... 

   advice: 

   ... 

   (conditions:  

   ...)? 

   )* 

 

end 

aspect rule1  

   input: var_name, const_value 

    

   intersection: 

       all uses <var a1> in {<var_name>} 

   advice: 

insert {if <a1.name> >= <const_value> warning 

('<a1.name> too big! %f',<a1.name>); end}:: 

execute before 

 

end 

(a) an aspect and its sections. (b) example of an aspect. 
Figure 3. Aspect module, the main component of the language. 

2.1 Classification of Aspects 

We classify aspects in two orthogonal dimensions as being either static or dynamic and being 

either declarative or transformative. Static aspects convey information or direct the 

application of code transformations that are performed at compilation time and are thus 

confined to syntactic transformations or simple declarative aspects. Declarative aspects can 

include static information regarding the types and shape of a variable or dynamic information 

regarding the range of assumed values. 

Transformative aspects can also be either static or dynamic. Static examples include the 

unrolling of a loop for a specific factor or to replace the references to variable “i” by a newly 

introduced variable, say “k”. A dynamic transformative aspect reflects a transformation that 

depends on run-time data values and can be extensively used in design-space-exploration 

strategies. For instance, it might be desirable to change the precision requirements of a 

specific variable at run-time in response to the accumulated data values or even change the 

unrolling of a specific loop based on the target architecture to look for an optimal unrolling 

factor. Figure 4 depicts the overall classification of aspects. 

 

Figure 4. Classification of Aspect in two dimensions: declarative vs. transformative and static vs. dynamic. 

The code transformations involved in the transformative dynamic aspects require some 

specific support from the code generation and corresponding run-time execution 

environments. When generating multiple code versions corresponding for instance to different 

unrolling factors, the generated code may contain replicates of the loops (properly unrolled) 
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controlled by a “switch” statement that dispatches to the appropriate code variant. In 

addition, one can also include the generation of code instrumentation to monitor specific 

execution metrics such as time, cache hit rates and so forth. 

Alternatively, a dynamic code generation strategy can be used where the tool will use the 

aspect to create an executable file that at run-time will generate and possibly recompile the 

code. All these code generation aspects must be adequately supported by the target 

infrastructure, which in many cases will disallow (for performance considerations) the use of 

dynamic code generation and compilation techniques. 

2.2 Join Points 

The joinpoint model from our approach covers any point in the code of a program. Unlike in 

many AOP approaches including AspectJ [9], joinpoints are not restricted to method 

invocations, object instantiations, and variable accesses. Joinpoints can be identified by a 

name related to an identifier (of a variable or function) or a broader characteristic (all 

variables, all variables of type float, all invocations of a function). In addition, one can use tags 

embedded in MATLAB comments to identify joinpoints. The AMADEUS approach uses the 

convention that such tags must start with ‘%@’, e.g., %@here1, %@loop1. These tags are 

processed and are embedded in the adopted IR and passed in this form by the MATLAB front-

end to the other tools of the compilation flow. Choice of the keyword “%” assumes that it is 

the beginning of a valid comment line and thus the resulting annotated MATLAB code is as 

valid an instance of MATLAB as the original unannotated version (i.e., the annotations are 

treated as plain comments by typical MATLAB parsers). 

Figure 5 illustrates the use of the tags and how they are represented in the IR generated by the 

MATLAB front-end [10]. As illustrated in Figure 5, the IR also keeps the line numbers. 
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1. function [y] = f1(x1,x2) 

2.  

3. % this is a simple 

example to show the 

tags 

4.  

5. %@l1 

6. y=x1*x2; %@l2 

7. %@l3 

Start( 

    FunctionMFile(ConcIdentifier( 

       Identifier("y",1)), 

       Identifier("f1",1), 

            ConcIdentifier( 

                 Identifier("x1",1), 

                   Identifier("x2",1)), 

      ConcStatement( 

             Statement(Pragma("%@l1",5),-16), 

            Statement( 

                 Assign(Expression(Id(Identifier("y",6))), 

                   Times(ConcExpression( 

                         Id(Identifier("x1",6)), 

                         Id(Identifier("x2",6))),6,0,ConcDim()),6),11), 

                Statement(Pragma("%@l2",6),-16), 

     Statement(Pragma("%@l3",7),49)),1), 

1) 

(a) MATLAB example (b) IR code for the MATLAB example 
Figure 5. MATLAB example and the IR. 

We use a number of keywords to position the intersection points in the code. Table I presents 

those keywords and describes their meaning. 
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Table I. Keywords to specify positions. 

keyword Description Example (underline represents the 

final intersection) 

innermost Specifies innermost nested levels in 

blocks of code (e.g., nested loops) 

...  

for i=1:10  ... 

   for j=1:20  ... end 

   ... end  

... 

pattern with loop: innermost 

innermost(<integer>) <integer> is a positive integer number 

used to identify the level of the 

intersection in the nested levels 

counting from the innermost level 

...  

for i=1:10  ... 

   for j=1:20  ... end 

   ... end  

... 

pattern with loop: innermost(2) 

outermost Specifies outermost nested levels in 

blocks of code (e.g., nested loops) 

...  

for i=1:10  ... 

   for j=1:20  ... end 

   ... end  

... 

pattern with loop: outermost 

outermost(<integer>) <integer> is a positive integer number 

used to identify the level of the 

intersection in the nested levels 

counting from the outermost level 

...  

for i=1:10  ... 

   for j=1:20  ... end 

   ... end  

... 

pattern with loop: outermost (2) 

leftmost Specifies the leftmost use of an 

identifier or variable 

a=b*c+b*d+b; 

<var> = b.leftmost 

leftmost(<integer>) <integer> represents the number of 

the use from the leftmost 

a=b*c+b*d+b; 

<var> = b.leftmost(2) 

rightmost Specifies the rightmost use of an 

identifier or variable 

a=b*c+b*d+b; 

<var> = b.rightmost 

rightmost(<integer>) <integer> represents the number of 

the use from the rightmost 

a=b*c+b*d+b; 

<var> = b.rightmost(3) 

All consider all nested levels ...  

for i=1:10  ... 

   for j=1:20  ... end 

   ... end  

... 

pattern with loop: all 

 

More examples for defining intersections are presented in “Appendix B: Intersections, page 

36”. Note, however, that the goal is to have an initial proposal for a set of joinpoint 

designators and not a final, finished joinpoint model. We expect to design a language and to go 

through a maturing process. 

More elaborated intersections include a scheme to define intersection patterns by allowing 

lexical matching and approximate syntactic matching. Figure 6 and Figure 7 show examples of 

a pattern matching specification of an intersection. The two examples differ in that one uses a 

static condition (Figure 6) and the other a dynamic condition (Figure 7). 
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Intersection: { 

 for <var a1> = 1:1: <const integer c1>  

  <body> 

  end 

} :: position innermost 

 

for i=1:1:100 

   A(i) = B(i) + 1; 

end 

(a) specification of a pattern based 

intersection. 

(b) example of code with 

successful pattern matching. 

Advice/Action: 

insert {for a1 = 1:2: c1  

<body> 

<body(replace <a1.name> with 

<a1.name>.”+1”)> end} :: position around 

Conditions: 

static { 

 if <c1.value> % 2  == 0 

} 

 

 

(c) specification of an advice. (d) static condition. 

... 

for i=1:1:50 

   A(i) = B(i) + 1; 

   A(i+1) = B(i+1) + 1; 

end 

... 

(e) example of code after weaving. 
Figure 6. Example of intersection mechanism, using pattern matching and a static condition. 

Intersection: 

- {for <var a1> = 1:1:<var a2>  

                 <body> 

             end} :: position innermost 

 

... 

for i=1:1:N 

   A(i) = B(i) + 1; 

end 

... 

(a) specification of a pattern based 

intersection. 

(b) example of code with 

successful pattern matching. 

Advice/Action: 

insert {for <a1.name> = 1:2:<a2.name>  

<body> 

<body(replace <a1.name> with 

<a1.name>.”+1”)> end} :: position around 

Conditions: 

dynamic  

  {if <a2.name> % 2  == 0} 

 

(c) specification of an advice. (d) dynamic condition. 

... 

if N % 2 == 0 

  for i=1:2:N 

    A(i) = B(i) + 1; 

    A(i+1) = B(i+1) + 1; 

  end 

else % original code if pattern is unmatched 

  for i=1:1:N 

     A(i) = B(i) + 1; 

  end 

end 

... 

(e) example of code after weaving. 
Figure 7. Example of intersection mechanism, using pattern matching and a dynamic condition. 
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2.3 Advices/Actions 

The actions to be performed play the same role as advices in AspectJ. The actions are 

associated with one or more join points. This approach uses three main actions: insert, 

replace, and remove; with the obvious meanings. With respect to the position at a particular 

joinpoint, the advice is activated (i.e. if enabled by its trigger, the corresponding action is 

executed). We distinguish three types: “around”
5
 (over a joinpoint, i.e., the advice replaces the 

code in that joinpoint), “before” (the advice is executed before the code in that joinpoint), and 

“after” (the advice is executed after the code in that joinpoint). Recall that this joint-point can 

be either a high-level construct or a single occurrence of a variable identifier. Table II presents 

simple examples of the use of the advice position features. 

Figure 6(c) shows an example of an advice for the intersection illustrated in Figure 6(a). This 

advice unrolls every loop that matches the specified pattern twice. 

Table II. Keywords to define positions relative to the intersections points to run the advice. 

keyword Description Example 

after run advice after join point a=b*c; %@here1 

@here1.insert{%comment}:: execute after 

 

a=b*c; %@here1 

%comment 

before run advice before join point a=b*c; %@here1 

@here1.insert{%comment}:: execute before 

 

%comment 

a=b*c; %@here1 

around run advice over join point a=b*c; %@here1 

@here1.insert{%comment}:: execute around 

 

%comment 

2.4 Conditions 

Conditions are the enablers or disablers of the execution of an advice. An advice without 

conditions is always executed. Figure 6(e) and Figure 7(e) present examples of conditions: a 

static condition and a dynamic condition. In each case, the condition evaluates if the upper 

bound of the iteration interval is a multiple of 2. In the static condition, the advice (i.e., the 

code transformation) is executed only if this condition evaluates to true. The dynamic 

condition forces the weaver to include in the output code the original intersected code and the 

modified code according to the advice, being the execution of one or the other based on the 

evaluation of the condition. 

                                                             
5
 The words “instead” and “surround“ seem to better describe the aspect effect, when compared with 

“around”. Anyway, we adopt “around” as it is used in most AOP approaches such as AspectJ. 
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2.5 Strategies 

As aspect rules are declarative in nature, we allow users to specify a specific sequence for the 

application of rules by a mechanism called “strategy”. For example, the strategy “A: rule1 → 

rule2 → rule3” implies that the weaver must first perform rule 1, then rule2, and finally rule3. 

Each rule in the sequence may modify code and new modifications may follow previous 

modifications. Different sequences (strategies) may produce different results. Although finding 

the appropriate and correct strategy is an interesting research topic, in this work we mainly 

focus on the programming support for strategies. 

We follow an imperative approach for specifying strategies. This approach also has 

mechanisms to perform typical programming languages control flow. This strategic 

programming must deal with the following issues: 

� a rule can be applied recursively while a certain condition holds
6
,  

� execution of different rule sequences in paths enabled by conditions,  

� the use of loops to repeat sequences of rules, and 

� passing data between aspects. 

Strategies define possible flows of aspects and are defined in aspect management units (as 

represented by the examples in Figure 8). For each call of an aspect, a list of sets of attributes 

can be returned to the aspect management unit. This list may consist of a set of aspect 

attributes for each intersection of the aspect in a given call. 

The scope for intersection of an aspect can be a set of regions of code given by the intersection 

of a previous aspect. This is specified by inputting to an aspect the intersection region of 

occurred in a previous aspect (e.g., a1=aspect1 → aspect2(a1.intersection_region)). 

Table III. Attributes for aspect components. 

Aspect attribute Description 

name name of the aspect 

id a number identifying the intersection 

modified true if the aspect modified the code 

status ... 

intersected true | false 

number of 

intersections 

... 

intersection_region  

 

Figure 8 presents two examples of an aspect management unit. The first example illustrates a 

strategy defining a sequence of 3 aspects. The second example illustrates a strategy where an 

aspect is repeated until a certain condition does not hold. 

                                                             
6
 An aspect used to unroll a certain kind of loops (based on a pattern) can be called recursively in the 

nested loop structure until no modification occurs to perform loop unrolling over all its loops. 
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apply: strategy1 

 

strategy1  

    aspect1 -> aspect2 -> aspect3 

end 

apply: strategy1 

 

strategy1  

    do  

        a1=aspect1  

     while(a1.modified); 

end 

(a) a sequence of aspects (b) an aspect repeated called while a 

condition holds 
Figure 8. Examples of strategies in the aspect management unit. 

2.6 Lifetime of Aspect Rules 

In our approach we consider aspect rules with lifetimes that span over the entire compilation 

flow (from the input program to the generated output) or only in the first compilation stages. 

Aspect rules related to the insertion of MATLAB code span only until the insertion of code is 

done. However, aspect rules related to insertion of C code are delegated to the generator of C 

code. As expected, aspect rules need to be active until the specific stages of the compilation 

flow where they can be required or used. Although out of the scope of our current work, there 

may be aspect rules that remain active during the entire lifetime of a given application and not 

simply at compilation time. This is the case of the aspects that are dynamic in nature and need 

to live beyond the compilation phase of a program. 

2.7 Variables for Referring and Modifying Code 

In the intersection subsection of the aspect we can define some variables that can be used in 

the other two sections (advice and conditions). The current types of variables are presented in 

Table II where we show for each variable (first column) its attributes (second column) and a 

brief description (third column) . Table IV presents some examples of using those variables (in 

this case we illustrate for each variable in the first column, an example in the second column). 

Code can be modified/specialized assigning different values to variables present in the code. 

For example, a segment of code <body> can use a variable defined as <var> outside the code in 

the <body> and the reference <var> can be used to modify the name of the variable referred 

by <var>, or to substitute the name of the variable referred by <var> with the same name 

concatenated to “+1” as illustrated in Figure 6. 

These variables have attributes (represented in Table II) that can be used in the advice and 

condition sections of the aspects. Attributes are identified by the name of the variable 

followed by ‘.’ and the attribute name (e.g., “a.name” for the variable <var a>). 

One important feature of these variables is that we can refer them in actions that can modify 

other inner variables. The code insert{p1(replace <c1.value> with “100”)} in which “p1” 

identifies a code pattern is an example of that fact. In this case, the code related to pattern 

“p1” is inserted in a pointcut and the constant identified by “c1” in the pattern is replaced by 

“100”. 
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Variables can be also a mechanism to manage differences in the actions performed by the 

same aspect. For instance, they can transpose different values for the same pattern based on 

the program location where that pattern intersects. 

Table IV. Proposed variables. 

variables attributes Description 

<var [name]> name 

type 

shape 

size 

length 

maxvalue 

minvalue 

wordlength 

variable used to refer to variables in the 

code 

<stmt [name]>  

[+|*|?|{n}|{n,m}|{n,}] 

content variable to refer code statements 

<body [name]> content variable to refer the statements in a 

body of a loop, function, or if-then 

structure. 

<pattern [name]> content variable to refer a given pattern 

<const [integer|real] 

[name]> 

value variable to refer literals (constants) 

<ident [name]> name 

type 

variable to refer an identifier (it can be a 

variable or a function) 

<key [name]> name variable to identify keywords 

<tag [name]> name variable to identify tags 
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Table V. Examples using the variables proposed. 

variables Example 

<var [name]> Intersection: 

- <pattern p1> = {<var a1> “=”  <const integer c1> “;”} :: 

position all 

Advice: 

- insert {p1(replace <a1.name> with “a1_const”}::execute 

around 

<stmt [name]>  

[+|*|?|{n}|{n,m}|{n,}] 

Intersection: 

- <pattern p1> = {“{“ <stmt s1>+ “}”} :: position all 

Advice: 

- insert {p1(copy <s1.content>))}::execute after 

<body [name]> Intersection: 

- <pattern p1> = {“{“ <body b1> “}”} :: position all 

Advice: 

- insert {p1(copy <b1.content>)}::execute after 

<pattern [name]> Intersection: 

- <pattern p1> = {if <var a1> ==  <const integer c1>  <body> 

end} :: position innermost 

Advice: 

- insert {p1(replace <c1.name> with “100”)}::execute around 

<const [integer|real] 

[name]> 

<ident [name]> Intersection: 

- <pattern p1> = {<var> “=” <ident f1> “(“ <var>{3} “)”} :: 

position all 

Advice: 

- insert {p1(replace <f1.name> with “stub1”)}::execute 

around 

<key [name]> Intersection: 

- <pattern p1> = {<key a1> 1:10 “;”} :: position all 

Advice: 

- insert {p1(replace <a1.name> with “parfor”}::execute 

around 

<tag [name]> Intersection: 

- <pattern p1> = {for <statement> <tag a1>} :: position all 

Advice: 

- insert {p1(replace <a1.name> with “@newtag”}::execute 

around 

2.8 Generalization of Aspects 

Generalization of the aspects are possible as in some cases one needs not repeat a specific 

aspect over and over for every “instance” of the original program where we would like the 

specific action take effect. To address this issue we include a few simple mechanisms for 

aspect parameterization and naming akin to procedure definition and arguments. For instance, 

it is possible to indicate the application of a specific aspect (loopTransf(var = j; factor=3)) by 

calling it in the aspect code or by embedding it with the annotation %@apply::loopTransf(var = 

j; factor=3). This replaces the already defined aspect named “loopTransf” with its “factor” 

parameter bound to the value 3. Unless otherwise stated in the argument list, all other aspects 

of the transformation remain as defined in the (possibly unique) definition of the “loopTransf” 

aspect. These include the location, which is for this particular transformation the entire loop 

construct and/or variables to be affected. This instantiation ability also requires that the 
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definition of the aspect exists in the aspect code accompanying the MATLAB code or in a 

separate aspect repository. 

The use of parameterized aspects and their instantiation might prove to key when generating 

higher-level aspects, thus helping to structure in a very compact and easily maintained form a 

whole range of transformations. These in turn will enable the definition of design-space-

exploration strategies. 

As with any declarative mechanism, it is conceivable, although not desirable, that declarative 

aspects give rise to conflicts. For instance, declaring the type of a given variables to be integer 

whereas in a second aspect declare the range of values for the same variable to be in the real 

or floating point domains. In these scenarios de compilation tool will choose the later (in the 

syntactic sense) aspect. 

2.9 Inner Aspects 

Inner aspects are aspects that run for each intersection of the aspect (outer) that encapsulates 

them. This notion is very important, because it permits to test other intersection points that 

might use information defined by a specific intersection of the outer aspect. 

Figure 9 presents aspects responsible to insert code for counting and reporting the number of 

iterations of the loops identified with tags. Figure 10 presents a more sophisticated example, 

which uses the notion of inner aspects. In the example of Figure 10, one wants to print the 

number of iterations of each innermost loop with a pre-defined pattern in a function. For each 

such loop, one needs to insert a statement responsible for the counting, a statement that 

initializes the counting variable to zero, and a statement that prints the value in the standard 

output (as has been exemplified in Figure 9 with specific aspects). A generic and reusable 

scheme to do this is to use inner aspects. Inner aspects may be executed based on the 

conditions of the aspect where they pretence. 
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1. function a=f1(...) %@begin 

2. ... 

3. for j = 1:1:N %@loop1 

4.    sum = sum + A(j);   

5. end 

6. ... 

7. for j = 1:1:N %@loop2 

8.    A(j) = A(j)/sum;   

9. end 

10. … 

11. end %@end 

Intersection: 

- {@loop1} 

Advice: 

- insert {cnt1 = cnt1 + 1;}:: execute after  

 

Intersection: 

- {@loop1} 

Advice: 

- insert {cnt2 = cnt2 + 1;}:: execute after  

 

 

Intersection:  

- {@begin}  

Advice: 

- insert {cnt1 = 0; cnt2=0;}:: execute after 

 

Intersection: // last end in the function 

- {@end} 

Advice: 

- insert {sprintf('loop executed %d', cnt1); 

sprintf('loop executed %d', cnt2;}:: execute before 

(a) piece of MATLAB code with 

tags. 

(b) aspects. 

1. function a=f1(...) 

2. cnt1 = 0; cnt2 = 1; 

3. ... 

4. for j = 1:1:N 

5.    cnt1 = cnt1 + 1; 

6.    sum = sum + A(j);   

7. end 

8. ... 

9. for j = 1:1:N 

10.    cnt2 = cnt2 + 1; 

11.    A(j) = A(j)/sum;   

12. end 

13. … 

14.    sprintf('loop executed %d', cnt1);  

15.    sprintf('loop executed %d', cnt2); 

16. end 

(c) Code after weaving. 
Figure 9. The use of tags. 
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12. function a=f1(...) 

13. ... 

14. for j = 1:1:N 

15.    sum = sum + A(j);   

16. end 

17. ... 

18. for j = 1:1:N 

19.    A(j) = A(j)/sum;   

20. end 

21. … 

22. end 

 

aspect top() 

Intersection: // locate innermost loops with a given 

pattern 

- {for <var> = 1:1:<const integer c1> <body b1> end} :: 

position innermost, <b1> // use of the loop body 

joinpoint identified by b1 

Advice: 

- insert {<this.name+this.id> = <this.name+this.id> + 

1;}:: execute before // before the loop body  

 

inner aspect a1() 

Intersection:  

- {function ...} // function header  

Advice: 

- insert {<super.name+super.id> = 0;}:: execute after 

end a1 

 

inner aspect a2() 

Intersection: // last end in the function 

- {function ... <key k1> in {end}} :: position <k1> 

Advice: 

- insert {sprintf('loop executed %d', <super.name+ 

super.id>);}:: execute before 

end a2 

 

end top 

(a) piece of MATLAB code. (b) inner aspects. 

17. function a=f1(...) 

18. top_1 = 0; 

19. top_2 = 1; 

20. ... 

21. for j = 1:1:N 

22.    top_1 = top_1 + 1; 

23.    sum = sum + A(j);   

24. end 

25. ... 

26. for j = 1:1:N 

27.    top_2 = top_2 + 1; 

28.    A(j) = A(j)/sum;   

29. end 

30. … 

31.    sprintf('loop executed %d', top_1);  

32.    sprintf('loop executed %d', top_2); 

33. end 

(c) Code after weaving. 
Figure 10. The use of inner aspects. 
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3 Examples Using Aspects 

We show herein examples of the aspects being proposed in the AMADEUS project. 

3.1 Code Transformations: Insertion, Deletion and Modification 

We now illustrate the use of aspect actions to remove a specific code section. In Figure 11 we 

present an aspect that will take effect at the MATLAB code line labeled as “@here1”. Since an 

around execution is selected for this case and no code is included within the bracket, the code 

in the line of the tag is effectively removed. The example in Figure 12 is similar but allows for 

the removal of a section of code, rather than a single instruction. 

… 

23. for j = 1:1:N 

24.    sum = sum + A(j);   

25. end 

26. outa(i) = sum; %@here1 

… 

Intersection: 

{@here1} 

Advice: 

insert {}:: execute around 

(a) piece of MATLAB code with join-point 

identified by tag “here1”. 

(b) aspect with code between {}. 

… 

for j = 1:1:N 

      sum = sum + A(j);   

end 

… 

(c) Code after elimination of line 4 in (a). 
Figure 11. Elimination of one line of code. 

… 

1. %@begin1 

2. for j = 1:1:N 

3.    sum = sum + A(j);   

4. end 

5. %@end1 

6. outa(i) = sum;  

… 

Intersection: 

{@begin1-@end1} 

Advice: 

insert {}:: execute around 

(a) piece of MATLAB code with joinpoint 

identified by tags “begin1” “end1”. 

(b) aspect with code between {}. 

… 

%@begin1 

%@end1 

outa(i) = sum; 

… 

(c) Code after elimination of the segment of code from line 2 to line 5 in (a). 
Figure 12. Elimination of a segment of code. 

The next example in Figure 13 describes a replacement aspect. Here at the instruction 

specified as the @here1 tag we include an identifier, in this case “outa”. In the action, we 

specify that we should insert the identifier “sumA” in effect replacing “outA” with “sumA”. 
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… 

1. for j = 1:1:N 

2.    sum = sum + A(j);   

3. end 

4. outa(i) = sum; %@here1 

… 

Intersection: 

- {@here1}: <var a1> in {outa} // variable 

outa in line identified by @here1 

Advice: 

- replace <a1.name> with “sumA” 

(a) piece of MATLAB code with joinpoint 

identified by tag “here1”. 

(b) aspect. 

… 

for j = 1:1:N 

      sum = sum + A(j);   

end 

sumA(i) = sum; %@here1 

… 

(c) MATLAB code after weaving. 
Figure 13. Code modification (the name of a variable in this example). 

The insertion of code also permits to verify certain conditions and to compute according to 

those conditions. Figure 14 shows a simple example where a division by zero needs to be 

identified in runtime and, whenever it occurs, the calculations in line 2 of the example (Figure 

14(a)) are replaced by the assignment of 0 to a(i). Note in this case that we assume func has no 

side effects and we do not need to execute it for each iteration of the loop to maintain the 

values of a(i) for the other iterations (i.e., for the iterations where b(i) does not equal zero). 

With a similar mechanism we may define traditional – or even more advanced try-catch – 

constructs. 

… 

1. for i = 1:n 

2.    a(i) = func(i)/b(i); %@here1 

3. end 

… 

Intersection: 

- {@here1}  

Advice: 

- insert {if b(i) == 0 a(i) = 0; else}:: execute before 

- insert {end}:: execute after 

(a) piece of MATLAB code with 

joinpoint identified by tag 

“@here1”. 

(b) aspect. 

… 

1. for i = 1:n 

2.    if b(i) == 0 a(i) = 0; else 

3.      a(i) = func(i)/b(i); %@here1 

4.   end 

5. end 

… 

(c) MATLAB code after weaving. 
Figure 14. Injection of code to avoid a division by zero exception and to continue execution with pre-defined 

results (zero is used in this case, but one can use the highest value for a(i) for each b(i) equal to zero). 

3.2 Execution Monitoring: Source-level Instrumentation 

The next example in Figure 15 illustrates an aspect used for source-level instrumentation for 

monitoring the specific value of a loop accumulation variable. In this specific case, the 

transformed code includes a simple threshold test at each loop iteration. The locus of 
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applicability is every instruction in the segment of code between @begin and @end where 

variable “sum” is used (read in this case). Without the use of “{@begin-@end}”, the 

intersections would have applied over the entire MATLAB function (as shown in Figure 16). 

… 

sum = 0; 

... 

%@begin 

for j = 1:1:N 

      sum = sum + A(j) * B(j+N);   

end 

outa(i) = sum; 

%@end 

… 

Intersection: 

- {@begin-@end}: all uses <var a1> in 

{sum} 

Advice: 

- insert { if <a1.name> >= 10000 warning 

('<a1.name> too big! %f', <a1.name>); 

end }:: execute before 

(a) piece of MATLAB code. (b) aspect with MATLAB code between {}. 

… 

for j = 1:1:N 

 if sum >= 10000 warning ('sum too big! %f',sum); end 

      sum = sum + A(j) * B(j+N);  end 

 if sum >= 10000 warning ('sum too big! %f',sum); end 

outa(i) = sum; 

… 

(c) MATLAB code after weaving. Code inserted is underlined and in italic. 
Figure 15. Insertion of code to report the value of a single variable before every use in a segment of code and if its 

value is greater than a certain value.   

… 

sum = 0; 

... 

for j = 1:1:N 

      sum = sum + A(j) * B(j+N);   

end 

outa(i) = sum; 

… 

Intersection: 

- all uses <var a1> in {sum} 

Advice: 

- insert { if <a1.name> >= 10000 warning 

('<a1.name> too big! %f', <a1.name>); 

end }:: execute before 

(a) piece of MATLAB code. (b) aspect with MATLAB code between {}. 

… 

if sum >= 10000 warning ('sum too big! %f',sum); end 

sum = 0; 

... 

for j = 1:1:N 

      if sum >= 10000 warning ('sum too big! %f',sum); end 

      sum = sum + A(j) * B(j+N);  end 

if sum >= 10000 warning ('sum too big! %f',sum); end 

outa(i) = sum; 

… 

(c) MATLAB code after weaving. Code inserted is underlined and in italic. 
Figure 16. Insertion of code to report the value of a single variable before every use, whenever its value is greater 

than a certain constant.   

Figure 17 illustrates an example using two variables instead of one. The approach simply 

requires a generic advice to insert one message per variable. The use of the expression <var> 

permits to change the name of the variable (“sum” or “B”) in the message to output according 
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to the variable name in each intersection. Note that the attribute name of <var> includes the 

name of the variable (“sum” and “B”) and its access pattern (“B(j+N)” for the variable “B”). 

… 

for j = 1:1:N 

      sum = sum + A(j) * B(j+N);   

end 

outa(i) = sum; 

… 

Intersection: 

- all uses <var a1> in {sum, B} 

Advice: 

- insert { if <a1.name> >= 10000 warning ('<a1.name> 

too big! %f',<a1.name>); end}:: execute before 

(a) piece of MATLAB code. (b) aspect using a template based approach. 

… 

for j = 1:1:N 

      if sum >= 10000 warning ('sum too big! %f',sum); end 

      if B(j+N) >= 10000 warning ('B(j+N) too big! %f', B(j+N)); end 

      sum = sum + A(j) * B(j+N);  end 

if sum >= 10000 warning ('sum too big! %f',sum); end 

outa(i) = sum; 

… 

(c) MATLAB code after weaving. 
Figure 17. Insertion of code to report the value of two variables before every use and if their value is greater than 

a certain value.  The code inserted is based on a template based approach. 

Figure 18 illustrates a simple case where the insertion of the code occurs just immediately 

before the line identified by the tag “@here1”. Figure 19 illustrates another example of an 

aspect using code insertion in positions identified by tags. The code inserted in the example 

from Figure 19 is responsible for dynamically checking if the index values to the matrix are 

valid. An alternative aspect producing the same result but using only one intersection-advice 

rule is represented in Figure 20. 

… 

for j = 1:1:N 

      sum = sum + A(j) * B(j+N);  %@here1 

end 

outa(i) = sum; 

… 

Intersection: 

- {@here1} 

Advice: 

- insert {sprintf('sum = %f', 

sum);}:: position before 

(a) piece of MATLAB code. The tag “here1” refers to 

the line. 

(b) aspect. 

… 

for j = 1:1:N 

       sprintf('sum = %f' ,sum); 

      sum = sum + A(j) * B(j+N);  end %@here1 

outa(i) = sum; 

… 

(c) MATLAB code after weaving. 
Figure 18. Code insertion in a specific location identified with a tag. 
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… 

%@ loop1-begin 

for j = lower:1:upper 

      sum = sum + A(j);   

end 

%@ loop1-end 

… 

 

Intersection: 

- {@loop1-begin} 

Advice: 

- insert {if lower >= 1  && upper <=  length(A)}:: position 

before 

 

Intersection: 

- {@loop1-end} 

Advice: 

- insert {else warning(‘array limits exceeded!’); end}:: 

position after 

(a) piece of MATLAB code. (b) Aspects. 

… 

if lower >= 1  && upper <= length(A) 

   %@loop1-begin 

   for j = lower:1:upper 

       sum = sum + A(j);   

   end 

   %@loop1-end 

else warning(‘array limits exceeded!’); end 

… 

(c) MATLAB code after weaving. 
Figure 19. Aspect to check array limits (this example does not use the pattern matching and it is specific to the 

code shown). 

Intersection: 

- {@loop1-begin-@loop1-end} 

Advice: 

- insert {if lower >= 1  && upper <=  length(A)}:: position 

before 

- insert {else warning(‘array limits exceeded!’); end}:: position after 
Figure 20. Alternative aspect using a code segment joinpoint. 

3.3 More Advanced Code Transformations 

Loop transformations are one of the most important compiler optimizations when considering 

execution time acceleration and/or energy consumption improvements. One of the most well-

known transformation is loop unrolling (full or partial). Figure 21 and Figure 22 show examples 

of aspects to instruct the weaver to perform partial loop unrolling of the loop by a factor of 

two if the iteration space is multiple of 2. The example in Figure 22 instructs the weaver with 

high-level primitives. 

The same transformation can be applied with the use of pattern-matching as in the example 

shown in Figure 6. To apply it to a specific loop and not to all of the loops that matches that 

pattern, we may restrict the scope of the intersection to the code region that includes the loop 

as illustrated in Figure 23. 
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… 

for j = 1:1:100 %@loop1 

      sum = sum + A(j);  %@line1 

end 

… 

Intersection: 

- {@loop1} 

Advice: 

- insert {for j = 1:2:100}:: position around 

 

Intersection: 

- {@line1} 

Advice: 

- insert {sum = sum + A(j+1);}::position after 

(a) piece of MATLAB code. (b) aspect to partially unroll the loop by a factor of two. 

… 

for j = 1:2:50 %@loop1 

      sum = sum + A(j);  %@line1 

      sum = sum + A(j+1); 

 end 

… 

(c) MATLAB code after weaving. 
Figure 21. Partial loop unrolling of two if the number of loop iterations is multiple of 2 using low-level advisors. 

… 

for j = 1:1:100 %@loop1 

      sum = sum + A(j);   

end 

… 

Intersection: 

- {@loop1} 

Advice: 

- transformation::unroll{factor=2} 

(a) piece of MATLAB code. (b) aspect to partially unroll the loop by a factor of two. 

… 

for j = 1:2:100 %@loop1 

      sum = sum + A(j);   

      sum = sum + A(j+1);  

 end 

… 

(c) MATLAB code after weaving. 
Figure 22. Partial loop unrolling of two if the number of loop iterations is multiple of 2 using high-level advisers. 

… 

%@loop-begin 

for j = 1:1:100  

      sum = sum + A(j);  

end 

%@loop-end 

… 

Intersection: 

- {@loop-begin-@loop-end}:{for <var a1> = 1:1:<const 

integer c1>  

                 <body> end} :: position innermost 

(a) original code. (b) intersection based on pattern matching limited to the code 

region identified by the tags. 

Figure 23. Example limiting the intersection of a pattern to a certain code region. 

3.4 Data Types and Shapes Aspects 

As MATLAB assumes matrix shapes and the type double for all the variables in the program, 

advanced compilers need to perform shape and type inference to produce more efficient code 

[11]. This is even more relevant when compiling MATLAB programs to embedded systems as 

they may have restrictions regarding size of storage memory, computing power, and direct 
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execution of operations dealing with floating-point data types. However, shape and type 

inference are not easy tasks. In some cases might even be impossible to determine, at compile 

time or without the user knowledge about the application and the scenarios related to input 

data, the shape and type of variables. 

One advantage of our approach is that it allows users to specify concerns on the basis of shape 

and data types. Figure 24 shows an example where the user specifies that all variables in the 

program minus the variables i, j, and k, are represented by a signed fixed-point type with 32-

bits of wordlength and 16 of fraction part (fixed_point(1,32,16)), and that variable j is 

represented as a signed integer of 16 bits. 

... 

sum = 0; 

… 

for j = 1:1:100 

      sum = sum + A(j) * B(j+k);   

end 

C(i) = sum; 

… 

Intersection: 

- all <var v1> in ^{j,k,i} 

Advice: 

- assign <v1.type>  to fixed_point(1,32,16) 

 

Intersection: 

- all <var v2> in {j} 

Advice: 

- assign <v2.type>  to int16 

(a) piece of MATLAB code. (b) aspects to assign data types to variables. 

... 

sum = fi(0, 1, 32, 16); %using “fi” objects 

… 

for j = int16(1):int16(1):int16(100) 

      % assuming that all data in coef and internal_state have been converted to “fi” objects 

      sum = sum + A(j) * B(j+k);    

 end 

C(i) = sum; 

… 

(c) MATLAB code after weaving. 
Figure 24. Aspects to assign data types to variables. 

In some cases, one might need to use a specific set of aspects in different places where a given 

function is invoked, e.g., we may like to use fixed-point data types in an invocation place and 

floating-point data types in another invocation place. Figure 25 shows how the specification of 

different sets of aspects (each one in a different file) can be done. 
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... 

y1=f(x1); %@f_invoke1 

… 

y2=f(x2); %@f_invoke2 

... 

Intersection: 

- {@f_invoke1} 

Advice: 

- replace  f_invoke1 with f_aspects1.asp 

 

Intersection: 

- {@f_invoke2} 

Advice: 

- replace  f_invoke2 with f_aspects2.asp 

(a) piece of MATLAB code. (b) aspects to assign data types to variables. 

... 

y1=f(x1); %@f_aspects1.asp 

… 

y2=f(x2); %@f_aspects1.asp 

... 

(c) MATLAB code after weaving (the two files will be used by the C and MATLAB 

code generators). 
Figure 25. Specifying different data-types for each function call. 

The aspects related to shape and data type definitions are translated to a representation used 

by the back-end compilers [12]. The generators receive for each MATLAB function a 

specification of the shapes and data types as illustrated in Figure 26. 

A:INT16:1x2 // a 1x2 matrix of 2 16-bit signed integer elements 

B:DOUBLE:1x1 // a double element 

C:INT:3x4 // a 3x4 matrix of 32-bit signed integer elements 

D:FIXED_POINT(1, 10, 4):2x1 // a 2x1 matrix of fixed-point elements with 10 

bits of wordlength and 4 bits of fraction 

E:UINT:1x2 // a 1x2 matrix of 32-bit unsigned integer elements 

Figure 26. Shape and data type specification used by the back-end tools. 

3.5 Configuration Aspects 

During the development of certain applications there might be the need to evaluate different 

implementations of a given function. This often leads to the emulation dynamic dispatch, 

which usually entails the maintenance of multiple source files or the use of pre-processing 

directives, such as those from the C programming language (as #ifdef, #ifndef, etc). 

Figure 27 shows how an aspect rule can be used to inform the weaver to use a particular 

implementation called “sin1” of the function “sin”. This example has been used to explore the 

impact on using the following implementations of the sine trigonometric functions: the one 

included in MATLAB, one using a Taylor series using the first three terms, and other one using 

a loop-up table of 128 sin values for angles between 0 and 90 degrees. With simple 

substituting rules we can test the different implementations without polluting the original 

MATLAB code. 
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... 

for z = 0:n-1 

 arg = 2*PI * z / n; 

 for k = 0:n-1 

  cosarg = cos(k * arg); 

  sinarg = sin(k * arg); 

  x2(z+1) = x2(z+1)+xre(k+1) * cosarg - xim(k+1)*sinarg; 

  y2(z+1) = y2(z+1)+xre(k+1) * sinarg + xim(k+1)*cosarg; 

 end 

end 

… 

Intersection: 

- <identifier i1> in 

{sin} 

Advice: 

- replace 

<i1.name> with 

“sin1” 

(a) piece of MATLAB code. (b) aspect to assign a 

different callee. 

... 

for z = 0:n-1 

   arg = 2*PI * z / n; 

   for k = 0:n-1 

 

      cosarg = cos(k * arg);   

      sinarg = sin1(k * arg);  

… 

(c) MATLAB code after weaving. 
Figure 27. Aspects to specify the use of a different implementation of a function. 

3.6 Design Space Exploration Aspects 

In this section, we illustrate the insertion of code to explore certain aspects. In the example 

from Figure 28 one inserts code that will repeat the execution of a piece of code, augmenting 

in each execution the precision of the fixed-point variables (1 additional fraction bit per 

iteration). The repetitions stops when the specified number of iterations is reached or when 

the sum of the errors obtained in the last two iterations is below the specified value. This 

example is illustrated with insertion code primitives. In Figure 29 we show the same example 

considering higher-level aspect abstractions that directly deal with primitives for this kind of 

exploration. 



 31 

 … 

%@begin 

for j = 1:1:100 

      sum = sum + 

internal_state(j) * coef(j+ORD);   

end 

outa(i) = sum; 

%@end 

... 

Intersection: 

- {@begin} 

Advice: 

- insert { prev = zeros(1, NPOINTS); 

for FRACTION = 1:1:16 % Loop to explore  

   quant1=quantizer('fixed', 'floor', 'wrap', [32 

FRACTION]);}:: execute  after 

 

Intersection: 

- {@end} 

Advice: 

- insert {   if(abs(prev_data-outa) < 0.1)  

      sprintf('number of bits in fractional part: %d', 

FRACTION) 

      break; 

  end 

       

  prev = outa; 

end 

}:: execute before 

(a) piece of MATLAB code. (b) aspects. 

 

… 

%@begin 

prev = zeros(1, NPOINTS); 

for FRACTION = 1:1:16 % Loop to explore 

 quant1=quantizer('fixed', 'floor', 'wrap', [32 FRACTION]); 

 

 for j = 1:1:100 

  sum = sum + internal_state(j) * coef(j+ORD);   

 end 

 outa(i) = sum; 

 

 if(abs(prev_data-outa) < 0.1) 

  sprintf('number of bits in fractional part: %d', FRACTION) 

  break; 

 end 

 

 prev = outa; 

end 

%@end 

... 

(c) MATLAB code after weaving. 
Figure 28. Aspects for runtime exploration of precision with fixed-point data types using the insertion of code. 

Exploration might be helpful in other domains, e.g., to determine the unrolling factor or the 

size of the block in the loop tilling transformation. In Figure 22 we have shown the use of 

aspect rules to instruct the weaver to unroll by a factor of 2 a loop. In an exploration scenario, 

we might consider the exploration of the unrolling factor by weaving for each unrolling factor 

and get feedback results (e.g., execution time, code size) in order to decide about the best 

unrolling factor. 
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… 

%@begin 

for j = 1:1:100 

      sum = sum + internal_state(j) * 

coef(j+ORD);   

end 

outa(i) = sum; 

%@end 

... 

Intersection: 

- all variables in {@begin-@end} ^{j} 

Advice: 

- explore variables: 

fixed_point(1,32,FRACTION=1:1:16):: 

execute around 

Conditions: 

- dynamic: {if(abs(prev_data-{outa}) < 

0.1) sprintf('number of bits in fractional 

part: %d', FRACTION) break; end} 

(a) piece of MATLAB code. (b) aspect. 

 

… 

%@begin 

prev = zeros(1, NPOINTS); 

for FRACTION = 1:1:16 % Loop to explore 

   quant1=quantizer('fixed', 'floor', 'wrap', [32 FRACTION]); 

 

    for j = 1:1:100 

         sum = sum + internal_state(j) * coef(j+ORD);   

    end 

    outa(i) = sum; 

 

   if(abs(prev_data-outa) < 0.1) 

      sprintf('number of bits in fractional part: %d', FRACTION) 

      break; 

  end 

       

  prev = outa; 

end 

%@end 

... 

(c) MATLAB code after weaving. 
Figure 29. Aspects for runtime exploration of precision with fixed-point data types. In this example, all but one 

variables (j) are assigned to signed, 32-bit, fixed-point representation. The adviser specifies that the number of 

bits for the fractional part of these variables should go from 1 to 16 in steps of 1. The exploration may exit if a 

certain difference between the previous and the current results has been reached. 

3.7 Aspects Guiding Compiler Optimizations 

Our approach also focuses on aspects that specify additional information about a program that 

can be used to guide compilers on optimizations that are otherwise difficult or impossible to 

achieve, including windowing computations, data distribution and replication, distribution of 

computations, task level pipelining and producer/consumer patterns, streaming 

characteristics, etc. 

4 Folding Polluting Code 

The approach presented in this report will permit to fold certain concerns included by the user 

directly in the MATLAB program (e.g., with legacy code), which should not to be taken into 
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account when targeting an embedded system, for instance. These concerns may include 

monitoring variables, assertions, plots of data, etc. A “de-weaver" would be needed to 

automatically fold those aspects in aspect rules. 

5 Related Work 

Part of the aspect-oriented approach being researched in AMADEUS needs a code 

transformation engine. Several code transformation engines have been proposed. An example 

is the ctt (Code Transformation Tool) approach for transforming C code [13]. Ctt is a source-to-

source transformation engine that uses a pattern-oriented language and allows transformation 

rules specified in three parts (subsections), pattern-conditions-result, which resemble the 

intersection-conditions-adviser used by the AOP community. It appears that ctt is fairly more 

verbose as the programmer must in essence indicate what is cut and what is paste instead. 

PATTERN { 

 description of the code selection stage 

} 

CONDITIONS { 

 additional constraints 

} 

RESULT { 

 description of the new code 

} 
Figure 30. The three parts for specifying a code transformation rule in ctt. 

Cetus
7
 [14] is an infrastructure for code transformations. It currently supports C code and uses 

pragmas and needs the transformations to be coded using the APIs integrated in the 

framework. This is a too low-level approach for users, but can be an interesting approach to 

add to compilers a repository of code transformations depending on the target architecture, 

for instance. This sort of approach is in practice only accessible to the most experience 

programmers or compiler writers and not the average programmer or library implementer. 

Source-level code transformations are a key program transformation technique to improve 

specific execution metrics such as time, energy or space (memory) metrics. These 

transformations, however, often have conflicting goals making their choice and ordering an 

extremely hard optimization problem. For example, data replication increases data availability 

(i.e., available bandwidth) at the expense of memory storage. In addition, they are very 

cumbersome and error-prone for programmers to carry them manually, thus suggesting the 

use of automated code transformation systems and/or compilation tools. To exacerbate these 

difficulties, many if not all of these transformations require program knowledge that is often 

neither present in the original program specification nor can it be easily extracted from it. As 

such, compilers that use them are extremely limited by the semantics of the input 

programming language and thus require programmer input to guide them in the applicability 

of these transformations. 

                                                             
7
 http://cetus.ecn.purdue.edu/ 
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Generative programming tools [15] offer a path for the automation of code transformations. 

They allow programmers to augment computation with key desired metric goals that will lead 

to the development of internal transformation application strategies. These approaches thus 

rely on linguistics mechanisms that are beyond the semantics of the input program languages, 

typically in the form of rule-based systems (e.g., pattern-apply-condition). We thus believe, to 

be very important to exploit the synergies between the more traditional domains of compiler 

optimization and code transformations holistic concepts from generative programming. Tools 

such as TXL [16], Tom [7], and Stratego/XL [17] may undoubtedly play an important role by 

enhancing the compilation flow code transformation rules and strategies. 

In a technical report [18], Aslam et al describe AspectMatlab, a new language that extends 

MATLAB with aspect-oriented features. The design of AspectMatlab is inspired on that of 

AspectJ, adapted to the specific features of MATLAB. Part of the report is focused on 

describing the technical issues arising in the context of a weakly typed language and the static 

analysis techniques used to derive information needed for composing aspects on the 

remaining parts of the system without compromising performance of the generated system. 

The primary difference between AspectMatlab and the approach described in this report is 

that our approach keeps MATLAB sources separate from aspect-specific constructs, while 

AspectMatlab integrates them into a single whole. The primary advantage of AspectMatlab 

over our approach seems to be tighter integration between the MATLAB “base” and aspects. 

By contrast, our approach was designed to minimize dependencies between the MATLAB 

original sources and aspects. Keeping aspects separate from plain MATLAB parts provides 

additional guarantees of such independence. Both approaches need to deal with the future 

evolution of the base language. This issue is particularly relevant in the case of proprietary 

languages, as in the case of MATLAB. Evolution issues can be more flexibly handled when a 

strict separation between a MATLAB base and aspects is maintained. In the scenario of a new 

version of MATLAB being available providing new features, programmers can immediately 

reuse older sources with the new version, provided it is backwards compatible. 

6 Conclusions 

This report described the main aspect-oriented concepts to augment MATLAB proposed in the 

AMADEUS project. The report includes many examples of aspect rules considered important to 

monitor activity and data values, explore specific features in a MATLAB program, configure and 

specialize code, among others. 
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Appendix A: Glossary 

Advice: name used in the context of many AOP languages to refer to the actions to be 

performed when a joinpoint is reached during the execution of a program. In AspectJ, advice 

are nameless blocks of code but in other AOP languages advice can be plain methods. Instead 

of being called explicity, as with methods in traditional OOP, advice are in general called 

implicitly, upon reaching one of the specified joinpoints. 

AMADEUS project (ASPECTS AND COMPILER OPTIMIZATIONS FOR MATLAB SYSTEM 

DEVELOPMENT): A research project partially funded by the Portuguese science foundation 

(FCT): POCTI, PTDC/EIA/70271/2006. AMADEUS involves research groups from FEUP 

(Faculdade de Engenharia da Universidade do Porto), INESC-ID/IST (Lisbon), Universidade do 

Minho (Braga), and the Universidade Nova de Lisboa (UNL). The AMADEUS project focuses on 

aspect-oriented techniques to enhance MATLAB programming and to assist MATLAB to C 

transformations. 

Annotation: text usually embedded in code for a specific purpose. Usually annotations can be 

represented as pragmas in programming languages with pragma support or embedded as 

comments using certain marks (e.g., ‘@’) to distinguish those annotations from usual 

comments. 

Aspect (or aspect module): a crosscutting concern modularized. An aspect is a special kind of 

module enclosing functionality that otherwise would cut across multiple modules of a system. 

Aspects have novel kinds of features that endow them with the compositional capability to 

compose its crosscutting functionality without compromising code locality and other 

modularity properties. 

Aspect rules: in the context of AMADEUS, aspect rules are used to identify the rules that 

enable the use of an aspect. 

Attributes: in the context of AMADEUS, attributes are used to identify the set of values that 

define properties of an aspect after executed (e.g., if it has intersected and how many times, if 

the action has been applied). 

Back-end: term broadly used in compilers to identify the final stages of the compilation which 

usually involves target-specific optimizations and code generation.  

Code instrumentation: the insertion of code mechanisms to monitor certain aspects of the 

program. 

Code transformation strategy: a specification of the set of transformations and the ordering to 

apply them to the program code. 

Code specialization: modification in the program code in order to reflect target-specific 

properties. 
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Concern: any kind of facet, functionality or property in a software system that developers may 

want to consider as a separate concept and want to see represented separately from the other 

concepts – in its own module – to better reason with it and and manipulate it. 

Conditions: Boolean expressions used to specify when an advice/action should be trigger. 

Crosscutting concern: a concern that does not align with the (module) decomposition of the 

system at hand. Non aligning concerns tend to cut across the modules of the system and often 

give rise to the tangling and scattering symptoms. 

Data shape: used to refer the dimensions of the matrix variables used in a MATLAB program. 

Design space exploration (DSE): the exploration of optimization options (or possible 

characteristics of a given solution) in order to search for better implementations. 

Execution analysis: analysis of what happens during execution of a program.  

Front-end: term broadly used in compilers to identify the first stage of the compilation which 

involve lexical, syntactic, semantic analysis, and the generation of intermediate 

representations (IR) of the input program.  

Intermediate representation (IR): a data structure to represent an input program that is used 

to perform stages in the compilation flow such as optimizations and code generation. 

Depending on the goals, the IR can be represented as a tree, as a graph, or a list of 

instructions. 

Intersection: concept akin to that of pointcut used in the context of AMADEUS. 

Joinpoint: originally defined as a principled point in the execution of a program. A joinpoint is a 

well-defined event in the execution of a program, such as the call to a method, the access to 

an object field, the execution of constructor, or the throwing of an exception. The execution 

trace of a program can be approached as a sequence of such events. Some joinpoints are 

atomic in that no other joinpoint can originate between the beginning of the joinpoint and its 

conclusion (e.g., “field get” and “field set”). Other joinpoints have nested joinpoints (e.g., 

“method execution” joinpoints). Joinpoints are always properly nested: two joinpoints are 

either disjoint or one is included in the other. 

Joinpoint model: one of dimensions in the design of an aspect-oriented language. The 

joinpoint model of an AOP language characterizes that language and determines the kinds of 

quantifications allowed in that language. The level of obliviousness attained directly depends 

of the quantification capabilities of the language. 

Joinpoint shadow: points, regions or locations in the static representation of the program 

(usually source code) that represent joinpoints. The joinpoint shadows are the actual points 

where the compiler actually operates. 

Obliviousness: the possibility of an aspect module to add, change or delete functionality 

and/or behavior of another module, or set of modules, in a way that code from the other 

modules does not depend on the first module. The other modules are said to be oblivious to 
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the aspect module. Compiling the other modules without the aspect module should not 

generate compiler errors. Programmer obliviousness is the possibility of an aspect module to 

add, change or delete functionality and/or behavior of a set of modules that were developed 

by programmers that were oblivious to the existence of the aspect module. 

Pattern matching engine: a computing engine to determine the similarity between two or 

more patterns. Patterns can be represented as graphs, trees, strings, regular expressions, etc. 

Pointcut: a declarative clause that specifies sets of joinpoints. As the places in the source code 

relating to the specified joinpoints (i.e., joinpoint shadows) are non-contiguous, the set of 

captured joinpoints cuts across the system’s module structure. Many AOP languages provide 

pointcuts with the ability to capture useful values from the context of the joinpoint, such as 

method arguments, the reference to the currently executing object, or the target of a method 

call. In some AOP languages, certain pointcuts serve to restrict the set of joinpoints captured 

by other pointcuts, giving rise to a form of constraint programming. Technically, logic 

programming can also be used to yield highly expressive and powerful forms of pointcut 

protocols. 

Program-augmentation: the addition of complementary information to a given program. 

Quantification: the expressing of a condition or assertion over a set of program properties and 

the ability to perform specific actions on the elements derived from those assertions. In the 

general case, quantification is the ability to state: “In programs P, whenever condition C arises, 

perform action A.” Different kinds of quantification map to different joinpoint models. 

Rewriting (code rewriting/ program rewriting): changes in the original code in order to 

accomplish certain goals. 

Rewriting strategy: see code transformation strategy. 

Scattering: a symptom in program source code frequently observable when in the presence of 

one (or several) crosscutting concern(s). A concern is scattered when its associated source 

code of a module is not modularized but instead spread over multiple modules. 

Tangling (in source code): a symptom in program source code frequently observable when in 

the presence of one (or several) crosscutting concern(s). Tangled code is code whose parts 

relate to more than one concern but are nevertheless enclosed within the same unit of 

modularity, harming comprehensibility and other software engineering properties. 

Unit of modularity: any element of a program that has an interface and that can be handled 

through its interface. Units of modularity include all kinds of modules (such as classes in OOP) 

and some units that bear some of its characteristics but are not modules (such as class 

methods in OOP and procedures in procedural programming). 

Weaving: the phase during which aspect functionality is composed with the remaining 

modules of the system. The exact moment when composition takes place (e.g., static time, 

load time, run time) and how that impacts on language mechanisms depend on the 

language/tool design and the implementation technologies. 
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Appendix B: Intersections 

Rules 

Below are a first set of grammar rules for the intersections: 

1. Start → [<NAME OF FILE>”.”][<NAME OF FUNCTION>”.”] JoinPoint “:” 

[AdvancedDescriptor] Descriptor 

2. JoinPoint → “{“ Tags “}” 

3. Tags → CodeSegment | Tag (“,”CodeSegment | Tag)* 

4. CodeSegment → <@Tag> “-“ <@Tag>  

5. Tag → <@Tag>  

6. AdvancedDescriptor → PATTERN LANGUAGE (grammar to be defined) 

7. Descriptor → (“all” | “all uses” | “all definitions”) Variables [“in“ IdentifierSet] 

8. IdentifierSet →  “{“ <IDENTIFIER> (“,” <IDENTIFIER>)* “}” | 

“{“ “*” “}” 

9. Variables → “<var” [<IDENTIFIER>] ”>” |  

“<ident” [<IDENTIFIER>] “>” |  

“<key” [<IDENTIFIER>] ”>” |  

“<tag” [<IDENTIFIER>] ”>” |  

“<const” [“integer” | “real”] [<IDENTIFIER>] “>” 

Examples of intersections in a given code 

- A tag referring a line in the program: 

{@here1} // line in the code where this tag is located 

{@here1} : <ident> in {sum} // identifier “sum” in the line in the code where this tag is located 

{@here1}: <ident> in {*} // all identifiers in the line in the code where this tag is located 

{@here1}: <var> in {sum} // variable “sum” in the line in the code where this tag is located 

{@here1}: <var> in {*} // all variable in the line in the code where this tag is located 

{@here1}: <key> in {for} // keyword “for” in the line in the code where this tag is located 

{@here1}: <key> in {*} // all keywords in the line in the code where this tag is located 
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- Two tags referring segments of code in the program 

{@begin-@end} // segment of code 

{@begin-@end}: all uses <var> in {a, sum} // all uses of variables “a” and “sum” in the segment 

of code 

{@begin-@end}: all uses <var> in {*} // all uses of variables in the segment of code 

{@begin-@end}: all definitions <var> in {*} // all definitions of variables in the segment of code 

{@begin-@end}: all uses <ident> in {a, sum} // all uses of identifiers “a” and “sum” in the 

segment of code 

{@begin-@end}: all uses <ident> in {*} // all uses of identifiers in the segment of code 

 

{@begin-@end}: all <key> in {for, while} // all uses of keywords “for” and “while” in the 

segment of code 

{@begin-@end}: all uses <key> in {*} // all keywords used in the segment of code 

 

 

- Identifying the file and the function where intersections may occur: 

myFile.myFunction.{@begin-@end} // segment of code in function “myFunction” located in 

file “myFile” 

myFunction.{@begin-@end} // segment of code in function “myFunction”  

 

- Examples referring tags: 

{@begin-@end}: <tag> in {@here} // line in the segment of code where tag @here is located 

{@begin-@end}: <tag> in {*} // lines in the segment of code where tags @ are located 

<tag> in {*} // all lines in the code where tags @ are located 

<tag> in {@here1} // line in the code where tag @here1 is located (this is equivalent to 

{@here1} but adds also a mechanism to the adviser to use the tag labels in actions by using 

<tag> in a template, for instance) 

{@begin-@end}: all <key> in {for, while} // all uses of keywords “for” and “while” in the 

segment of code 
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{@begin-@end}: <key> in {*} // all keywords used in the segment of code 

 

- Identifying the file and the function where intersections may occur: 

myFile.myFunction.{@begin-@end} // segment of code in function “myFunction” located in 

file “myFile” 

myFunction.{@begin-@end} // segment of code in function “myFunction”  

 

Rules for Advices/Actions 

(not complete) 

replace “<” <IDENTIFIER>[.name | .type | .value] “>” with <STRING> 

execute before | after | around | (before , after) | (after , before) 


