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ABSTRACT  
This report presents an AspectJ framework for parallel computing 
and compares it with a Java framework providing equivalent 
functionality (concurrency/parallelization, distribution, profiling 
and optimizations). We detect several relative benefits in the 
AspectJ implementation, namely greater levels of uncoupling 
among framework features, a greater level of obliviousness from 
framework code (avoidance of adapters and concern specific 
hooks) and possibility of framework features to be used stand 
alone. The downsides are that composition of aspects can be 
tricky, which has a strong influence of the overall framework 
design. Generation of source code for some features remains a 
convenient implementation technique. AspectJ avoids it in more 
cases than in the Java version, but not in all. 
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1. INTRODUCTION 
Most reported aspect-oriented frameworks fall into two 
categories: (1) existing object-oriented (OO) frameworks that 
were extended from a certain point on with additional 
functionality by means of aspect technology [1][2] and 
(2) existing OO frameworks, in which various crosscutting 
concerns were identified and extracted to aspects [11]. In both 
cases, the original, OO architecture is kept largely in place, with 
no significant redesign. Such relatively minor tweaking risks 
missing the full benefits that aspect-oriented programming (AOP) 
can bring to framework design. 

We believe that fully leveraged AOP can yield simpler, less 
coupled designs than those that can be obtained through plain OO 
technology. Presently, aspect-oriented frameworks fully 
developed from the ground up with aspect technology are 
virtually non-existent. It is desirable that such frameworks be 
reported to the research community, as they can provide a clearer 
picture of the implications of AOP on framework design, as well 
as provide a means to better characterize and assess its advantages 
over traditional, OO frameworks [14]. To date, this area of 
research remains largely unexplored. 

In this report, we contribute to the understanding of AOP 
frameworks by describing and comparing two frameworks for 
parallel programming that were separately developed, using Java 
and AspectJ technology, respectively. We provide a comparative 
analysis of both systems and report on various hurdles we felt 

during development that have a bearing on the evolution of 
AspectJ systems. To organize the analysis, we use the majority of 
the 13 criteria proposed in [35] for frameworks in field of parallel 
computing. 

The focus of this report is on frameworks developed with AOP 
technology, not frameworks whose purpose is provide support for 
AOP as an alternative to AOP languages, as is the case with [7]. 
In addition, the comparison and analysis provided in this report is 
tailored to the specific field of parallel computing. However, we 
believe that many of our findings can be beneficial to other 
domains. 

The rest of this report is structured as follows. Section 2 presents 
an overview of the functionality provided by both frameworks and 
describes how this functionality is implemented in Java and 
AspectJ. In section 3, we compare both systems on the basis of the 
13 criteria proposed in [35]. Section 4 compares this work against 
other efforts and section 5 presents future work. Section 6 
concludes the report. 

2. FRAMEWORKS FOR PARALLEL 
PROGRAMING 
In our previous work, we developed a collection of reusable 
abstract aspects, coded in AspectJ, that in practice comprise an 
AOP framework for concurrency [8]. In addition, we developed a 
collection of pluggable aspects that can help the programmer to 
convert a sequential application into a parallel equivalent [36]. In 
earlier work [15][37][38], we developed equivalent functionality 
using traditional OO framework (coding in C++, Java and C#). 

Our previously implemented OO frameworks for parallel 
computing (i.e., C++ and C# [37][38]) include support for object 
distribution and automatic optimizations. The latter aim to relieve 
the programmer from manual optimizing work associated to 
specific architectures. The goal is to obtain code that is more 
platform-independent without losing efficiency across a wide 
range of platforms. The Java implementation [15] is the most 
recent and complete OO implementation and benefited from the 
experience gained in developing the previous (C++ and C#) ones. 
It provides all the features previously implemented, plus an 
additional feature, based on parallel skeletons [6] (see 2.1), which 
helps the programmer to structure parallel applications. 

Previous OO framework implementations suffer from classic 
tangling problems as concurrency/parallelization, distribution and 
optimization concerns cut across multiple framework components. 



One of our aims in developing an AspectJ implementation of the 
previous frameworks was to avoid this tangling, providing the 
complete set of functionalities in a way that is also easier to use, 
maintain and evolve. AspectJ was selected due to its wide 
acceptance, maturity and tool support, as well as for its support 
being based on static weaving, as parallel computing is a 
performance-centric field that requires the generation of efficient 
executables. 

2.1 Framework overview 
The purpose of all frameworks covered in this report is to ease 
development of parallel applications by providing the basic 
support infrastructure for parallel programs. Such infrastructure is 
implemented through skeleton composition. The term skeleton 
[6][9][32] is widely used by the parallel computing community – 
a skeleton implements a common parallelization mechanism and 
encapsulates design decisions concerning the structure of a 
parallel application. Skeletons are akin to design patterns [17], 
though the term is generally used in the context of parallel 
programming and is more low level, as a skeleton is generally 
associated to some concrete implementation. In this context, we 
regard specific implementations of design patterns, including 
AspectJ aspects, to be instances of skeletons. To develop a 
parallel application, the programmer selects a set of skeletons that 
best fits application requirements and fills the hooks provided by 
the skeletons with domain specific code. Usually, it must also 
develop new code to instantiate the selected skeletons and to start 
skeleton activity, though in same cases the instantiation code can 
be automatically generated. 

Several well-known skeletons exist from some time [6][9]. These 
include Farm, Pipe, Divide/Conquer and Heartbeat. One 
important feature of skeleton approaches is the ability to compose 
skeletons [10] – either to achieve a more efficient execution or to 
obtain more complex parallelizations. For instance, a Farm can be 
combined with a Pipe to yield a Pipeline of Farming (a Pipe in 
which each element is a Farm). Another example is the 
composition of two Farms to yield a two-level Farm. This type of 
structure closely matches an architecture composed by several 
machines (i.e., a cluster) in which each node is composed by 
multi-core processors. 

Distribution is an important concern that, due to its nature, must 
be considered early in the design of the framework. Distribution 
concerns include remote creation of objects, remote method 
invocation and access to distributed data structures. Each of the 
framework skeletons must be suitably structured so that they can 
be deployed in distributed machines. The framework must provide 
efficient implementations of each skeleton on shared memory 
machines (e.g., multi-core) as well as on distributed memory 
machines (e.g., clusters).  

In all frameworks discussed in this report, distribution stands 
apart from the other features in that it is implemented through 
code-generation techniques rather than skeletons. Thus, we avoid 
the need to provide distribution-specific hooks, as well as 
providing a more efficient implementation – distribution 
operations are inlined into the source. 

Performance and scalability to a large numbers of processing 
resources are fundamental concerns in all parallel applications. 
We address the scalability issue by supporting fine-grained 
parallelism and by incorporating mechanisms into the framework 

that reduce the excess of parallelism whenever necessary. Thus, 
two mechanisms are used to control parallelism grain-size: 
computation agglomeration and communication aggregation. 
Computation agglomeration combines parallel tasks into larger 
tasks by executing inter-object method calls synchronously. 
Communication aggregation aggregates messages by (delaying 
and) combining several inter-object method calls into a single call 
message. Implementations of these mechanisms require the 
gathering of application execution profile during run-time. 

2.1.1 Farm skeleton 
For illustration purposes, in this report, we use the Farm skeleton, 
one simple and popular parallelization mechanism. The Farm 
skeleton comprises a master entity and multiple workers (Figure 
1). The master decomposes the input data in smaller independent 
data pieces and sends a piece to each worker. After processing the 
data, the workers send their partial results back to the master, 
which merges them to yield the final result. 

 

Figure 1: Farm skeleton 

A farm skeleton risks being marred by parallelism overheads in 
cases the task grain-size proves to be too small. Such overheads 
are due to communication costs and thread/process management. 
The solution lies in mechanisms to reduce excessive parallelism. 
A significant gain can be accomplished by incorporating a 
mechanism that automatically tunes the grain-size of tasks and the 
number of workers to use on each platform. Automation frees the 
developer from dealing with these concerns directly. 

A single master can be a bottleneck in the presence of a large 
number of workers (i.e., computing resources). Composition of 
farm skeletons can address this issue as well, as a farm skeleton 
can use several masters to improve performance (e.g., by yielding 
a two level farm). 

2.2 Java implementation 
Development of the Java framework (JaSkel, see [15]) relied on 3 
independent techniques/tools. This decomposition was motivated 
by the requirement that use of the different bits of functionality 
should be possible in a broad range of contexts. These tools are: 

1. A skeleton library based on Java classes structured 
according to the template method pattern [17]; 

2. A source code generator which supports distribution of 
selected object classes; 

3. A run-time system that performs adaptive grain-size 
control and run-time load and data scheduler. 



The independence between these tools allows programmers to 
develop, test and run structured applications in a non-distributed 
environment, by using the skeleton library. It also allows the use 
of the distribution generation tool as a stand-alone tool to generate 
distributed applications on the basis of sequential Java code, or 
combine this tool with the skeleton library to yield structured 
parallel applications that run on distributed systems. The run-time 
system is an additional tool that collects run-time execution 
profile information and performs run-time optimizations to adapt 
the application to specific platforms. We chose to provide this 
functionality as an additional tool to avoid execution overheads, 
when grain-size control is not required (e.g., when the 
programmer is in charge of this task or when the application does 
note require this feature). 

2.2.1 Skeleton library 
The JaSkel framework includes several common skeletons for 
parallel computing. We will focus on the implementation of the 
Farm skeleton (Figure 2) to illustrate how skeletons are 
implemented in this framework. In JaSkel, skeleton composition 
is supported by means of OO composition and polymorphism: the 
Farm class also extends the Compute abstract class (see Figure 2). 
Thus, it is possible to build a farm where each worker is also a 
farm. 

+compute(in  : Object) : Object
+clone() : Object

Compute

+Farm(in  : Compute, in  : int, in  : Object)
+split(in  : Object) : Collection
+join(in  : Collection) : Object
+getResult() : Object
+eval() : void
+compute(in  : Object) : Object

Farm Skeleton

«uses»

 

Figure 2: JaSkel farm skeleton 

The farm constructor gets a reference for a cloneable Compute 
worker, the number of workers (an optional parameter) and the 
initial data to process. Methods split and join are hooks to plug 
domain specific code. These methods perform the partition of the 
input data into pieces that can be processed in parallel and join the 
collection of processed data pieces. The eval method starts the 
skeleton activity. It calls the split method to get a collection of 
pieces of data, calls the compute method on each worker to 
process each datum and calls the join method to merge the 
processed data. method getResult provides access to the processed 
data. Methods eval and getResult are separate methods to allow 
other tasks to execute while the farm is computing (i.e., executing 
the method eval). Figure 3 presents a simple farm in JaSkel. 

The JaSkel Farm class does not include concurrency related code. 
FarmConcurrent provides this functionality by extending a Farm, 
overriding eval and getResult methods to perform concurrent calls 
to workers compute methods. The eval method spawns a thread 
per worker to call the compute method and the getResult method 
waits until all workers complete their tasks. Extending the Farm 
to a FarmConcurrent requires complete new implementations of 

methods eval and getResult. This is due to the limitation of the 
Java (as well as most other OO languages) to effectively 
modularize concurrency related code. Code in Figure 3 can extend 
the FarmConcurrent instead of Farm to use a concurrent farm. 

public class Worker extends Compute { 
 ... // other local data 
 
 public Object compute(Object obj) { 
  return(/* processed obj */); 
 } 
} 
class Farmer extends Farm { 
 
 public Collection split(Object initialTask) { 
  return(/* split initialTask */); 
 } 
 public Object join(Collection partialResults) { 
  return(/*merge partialResults*/); 
 } 
} 
public class Main { 
 public static void main(String[] args) { 
 
  Worker worker = new Worker(); 
  Object task = ... // new task to process 
  Farmer f = new Farmer(worker, numberOfWorkers, task); 
  f.eval(); 
  ... // other processing may be included here 
  Object result = f.getResult(); 
 } 
} 

Figure 3: Simple farm in JaSkel 

The Farm skeleton is used mostly in the initial development 
stages as it avoids the introduction of concurrent execution in the 
farm (and the consequent non-deterministic behaviour). This 
provides an easier way to trace an incorrect behaviour either to 
sequential or to concurrency code. 

2.2.2 Distribution tool 
Although distribution could be implemented by extending 
skeletons to address distribution concerns, as in [3][18], we opted 
for a tool that generates source code. This brings several 
advantages: (1) the distribution tool can be used stand alone, 
which broadens the range of applications to cover applications 
that do not rely on skeletons, (2) distribution does not have to be 
included into the application if it is not needed, (3) explicit hooks 
to support distribution are avoided and (4) applications that do not 
use distribution do not incur any extra run-time overhead. 

The purpose of the distribution tool is to support object 
distribution among multiple JVMs. A remote object is an object 
that may reside in another Java Virtual Machine. A system that 
transparently distributes objects among several JVM is known as 
a distributed JVM. A tool that implements a distributed JVM must 
provide three basic services: remote object creation, remote 
method invocation and access to remote data. Our tool is based on 
a well known process [31][37][38] that performs a source code 
transformation. It is based on 3 classes: proxy objects (PO), 
implementation objects (IO) and object managers (OM). The code 
generator analyses source classes retrieving information about 
each class interface. Each class is renamed to an IO class and a 
new PO class with the same interface as the original class 
transparently replaces it. Each node has an OM that implements 
local object factories to enable remote object creations. A similar 



strategy implemented through a bytecode rewriter is presented in 
[12]. 

   JVM 0 JVM 1

IO 1

c)

b)

Call through RMI 

Method call 
 

IO 

IO 2
a)

d)

PO 1

Object creation 

OM OM

a)

PO 2 

a)

 

Figure 4: Run-time system for object distribution 

Figure 4 presents an example of how PO, IO and OM collaborate 
to implement remote object creation and remote method calls. 
Whenever an object was created in the original code a new PO 
object is created instead. This PO requests the IO creation to the 
local node OM (JVM 0, call a) in the figure), which may locally 
create the IO object or forward the request to a remote OM, which 
locally creates the requested object (example shown in the figure, 
call a) ). After remote object creation the PO transparently 
redirects local method calls to the remote IO (call b) in the 
figure). 

public class Server { 
 public void process(int[] num) { 
  ... // method implementation 
 } 
} 

Figure 5: Server class 

01 public interface IServer { 
02  public void process(int[] num) throws RemoteException; 
03 } 
04 
05 public class ImplementionServer implements IServer { // IO class 
06  public void process(int[] num) { 
07   ... // original method implementation 
08  } 
09 } 
10 
11 public class ObjectManager {  // OM class 
12  IServer factoryServer() { 
13   return( new ImplementationServer() ); 
14  } … // register server as OM is externally visible 
15 } 
16 
17 public class Server {   // PO class 
18  IServer myRemoteServer; 
19 
20  Server() {  // request remote object creation 
21   ObjectManager remoteOM = ... // get reference to OM 
22   myRemoteServer = remoteOM.factoryServer(); 
23  } 
24  public void process(int[] num) {  // remote method invocation  
25   myRemoteServer.process(num); 
26  } 
27 } 

Figure 6: Generated code for simple Server class 

Figure 6 presents a simplified example of Java RMI generated 
code for a Server class (Figure 5). The interface IServer (lines 01-
03) is created due to Java RMI requirements. The original Server 
class is rewritten to ImplementationServer class (lines 05-09). The 
ObjectManager is an object that implements a remote 

ImplementationServer factory (lines 11-15). The original Server 
class is replaced by a PO (lines 17-27) that transparently requests 
the remote object creation to OMs (lines 20-23) and redirects the 
process calls for remote execution (lines 24-26). 

2.2.3 Run-time system 
The run time system is in charge of performing load distribution 
by selecting the most adequate JVM for the creation of each 
object. It also performs several optimizations to support grain-size 
control of parallel tasks. 

public class Server {   // PO class 
 IServer myRemoteServer; 
 ImplementionServer myLocalServer; 
 
 Server() { 
  if ( agglomerateComputation() ) {   // locally create server object 
   myLocalServer = new ImplementationServer(); 
  } else { 
   ObjectManager remoteOM = ... // get a reference a remote OM 
   myRemoteServer = remoteOM.factoryServer(); 
  } 
 } 
 public void process(int[] num) { // performs local/ remote invocation  
  if (agglomerateComputation() { 
   myLocalServer.process(num); 
  } else { 
   myRemoteServer.process(num); 
  } 
 } 
} 

Figure 7: Generated code for computation agglomeration 

public class ImplementionServer implements IServer { // IO class 
 … 
 public void processN(Vector args) { // performs N calls to process 
  for(int i=0; i<args.size(); i++) { 
   process((int[]) Vector.elementAt(i) ) 
  } 
 } 
} 
public class Server { // PO class 
 … // 
 Vector args = new Vector(); 
 
 public void process(int[] num) {  
  if (agglomerateComputation() ) { 
   myLocalServer.process(num); 
  } else { 
   If ( aggregateComunication() ) { 
    args.add(num); 
    if ( args.size() == callsPerMessageLimit ) { 
     myRemoteServer.processN(args); 
     args.clear(); 
    } 
   } else myRemoteServer.process(num); 
  } 
 } 
} 

Figure 8: Generated code for communication aggregation 

The first optimization is computation aggregation, which locally 
creates an object, without OM involvement. This is implemented 
by allowing the PO object to directly create an IO without 
performing a request to the local OM (call c) in Figure 4). Latter 
calls to this object are also performed directly, as in standard Java 
objects (call d) in Figure 4). Java RMI also performs a similar 
optimization in RMI calls to local objects. 



The implementation of local object creation requires minor 
changes to the distribution tool. It mainly involves changes into 
the PO generated code to implement local IO creation and to 
implement direct calls this local IO. Figure 7 presents these 
changes in shaded. The generated code includes a test to 
determine when to apply agglomeration. In those cases it performs 
direct IO creations and method calls to myLocalServer. 

Communication aggregation aims to reduce communication costs 
by packing several method calls into a single network message (a 
similar functionality is provided by ARMI [39]). This 
optimization can take advantage of the increase in network 
bandwidth (e.g., 10 Gbit/s Ethernet) and reduce penalties due to 
network latencies, by using a smaller number of larger messages. 
The framework implements communication aggregation by 
packing several remote method calls, performed on the same 
target object, into a single method. This is implemented by 
introducing a new method into the IO class and by calling this 
method in the PO class (Figure 8 in shaded). 

2.2.4 Limitations of the OO implementations 
Experience acquired during several years of evolution of the 
parallel computing framework exposed several weaknesses of this 
type of approach, most of which are related to framework 
limitations and excessive complexity to develop and maintain the 
proposed tools. The first limitation is related to the introduction of 
concurrency concerns into JaSkel skeletons. These concerns are 
introduced by providing skeleton implementations that support 
concurrent execution. Current implementation overrides specific 
skeleton methods, leading to a considerable increase in code size 
and harming skeleton implementation understandability. A serious 
problem is that skeleton base classes must be designed upfront 
(e.g., to include hooks) to allow concurrent execution to be 
composed through inheritance. Another limitation is that it is not 
possible to use concurrency as stand alone framework feature. 
This could be overcome through the use of an external tool to 
generate concurrency related code. However, this would increase 
the complexity of the tools that generate source code. 

Generative patterns are an alternative implementation strategy to 
the skeleton library. Generating pattern code can avoid method 
overriding as application specific code can be included by 
modifying the implementation of specific methods, supports more 
flexible skeleton configurability (by means of template 
parameters) and can also generate concurrency related code. 
However, this strategy has two limitations: it introduces another 
source code generator and the changes to the generated code are 
non-reversible, which can lead to problems when, for some 
reason, the pattern code must be re-generated. 

Implementation of the distribution tool requires the use of a parser 
generator tool that analyses source code and generates new case 
specific classes. The tool must traverse the abstract syntax tree 
(built by the parser) several times to generate PO, IO and OM 
classes. A similar strategy is required to implement the run-time 
system (including generation of code to tune grain size of parallel 
tasks) and to implement code to collect execution profiling. 

These code generator tools are independent from the user point of 
view. However, at the level of the framework implementation, 
they are tightly coupled. Programmers extending the code 
generator tools must learn how to parse Java code and how to 
traverse the generated syntax tree to generate the required code. It 
also requires knowledge of all the generated code (e.g., run-time 

system implementations must be aware of minute details related to 
distribution generated code, see Figure 8). To add support for a 
new feature, the programmer must identify and edit all points 
where code related to new features should be placed. One of the 
main sources of complexity is the generation of tangled code that 
mixes distribution, profiling and optimization concerns. This 
imposes a limitation to independent development (evolution of the 
distribution code and run-time system). Code generation tools 
also have problems to trace errors into the original code since they 
rewrite the original code to new classes. This makes it hard to 
debug generated code and to trace errors to the corresponding 
location in the original code. 

A minor problem arose in the Java implementation. Java does not 
include multi-inheritance, which makes it more complex to 
generate RMI code. The application specific classes must extend 
both skeleton classes and RMI classes. 

In summary, introducing new features requires careful planning to 
ensure non interference with current framework features that 
requires knowledge about source code generation and about the 
structure of generated code. This is a consequence of the 
generation of tangled code, where distribution, profiling and 
optimization concerns are mixed in the generated code. Using 
code generation tools instead of libraries pushes the tangling 
effect from framework template classes to the generated code. 

2.3 AspectJ implementation 
The AspectJ implementation framework combines libraries of 
reusable aspects [8][20] with generation of AspectJ source code 
[5]. AspectJ enables the modularization of more framework 
features than its Java counterpart. However, some framework 
features are not conveniently implemented by a library of reusable 
aspects. In some cases, that would entail extensive use of 
reflection and in others a library based approach is simply not 
feasible. For instance, distribution related code requires the 
remote creation of an object, implemented by a remote object 
factory. The factory must be generated, since it is not possible to 
remotely create objects in AspectJ. 

A library of reusable aspects brings the same benefits as a tool 
that generates source code to implement a specific framework 
feature. In cases where an approach based on a library is not 
feasible, generation of AspectJ (rather than Java) code yields a 
solution that is more modular. Generation of AspectJ code can 
also have a performance advantage over reusable aspects, as it 
avoids two of the three main costs of an aspect library: retrieval of 
joinpoint context and management of global joinpoint history. See 
[8] for a discussion of the performance costs involved in a library 
of reusable aspects. The source code generator can generate an 
aspect tailored for the specific case (for instance, Figure 12 
presents an aspect generated specifically for the Server class). 

2.3.1 AspectJ Skeletons 
An important issue is how to provide functionality similar to a 
farm skeleton (Figure 2 and Figure 3) in AspectJ. The skeleton is 
based on a Compute class and a Farm class. Our experience with 
the JaSkel framework revealed that the Farm class usually has a 
defining role [20] in the pattern (i.e., the class only exists in the 
context of the pattern and must be written from scratch), as it 
plays a role of interfacing between domain specific code and the 
skeleton implementation. On the other hand, Compute has a 



superimposed role, as it usually results from an adaptation of a 
class that already plays a role in the domain specific code. 

public abstract aspect Farm { 
 public abstract Collection split(Object initialTask); 
 public abstract Object join(Collection partialResults); 
 
 public abstract pointcut computeCall(Object task, Object tgt); 
 public abstract pointcut objectCreation(); 
 
 Object around() : objectCreation() { 
  workers = … // clone target object numberOfWorkers times 
 } 
 Object around(Object initialTask,Object target) :  
   computeCall(initialTask,target) { 
  workers = … // get array of workers of target object 
  Collection tasks = split(initialTask); 
  Iterator i = tasks.iterator(); 
  Collection oTasks = new Vector(); 
  int taskId = 0; 
 
  while (i.hasNext()) { 
   int workerIndex = taskId % numberOfWorkers; 
   oTasks.add( proceed(i.next(), workers[workerIndex],) ); 
   i.remove(); 
   taskId++; 
  } 
  return(join(oTasks)); 
 } 
} 

Figure 9: Farm AOP skeleton 

public aspect Farmer extends Farm { 
 public Collection split(Object initialTask) { 
  return(/* split initialTask */); 
 } 
 
 public Object join(Collection partialResults) { 
  return(/*merge partialResults*/); 
 } 
 
 public pointcut objectCreation() : 
  call (SomeCoreClass.new()) && within(Main); 
 
 public pointcut computeCall(Object initialTask, Object tgt) : 
  call(* SomeCoreClass.someMethodCall(..)) &&  
  args(initialTask) && target(tgt) && within(Main); 
} 
 
public class Main { 
 public static void main(String[] args) { 
  SomeCoreClass worker = new SomeCoreClass(); 
  Object task = ... // new task to process 
  Object result = worker.someMethodCall(task); 
 } 
} 

Figure 10: Sample use of a farm AOP 

In light of the above considerations, the Farm mechanism is 
implemented by an abstract aspect, with abstract methods to 
provide split and join functionality. The Compute functionality is 
implemented by adapting a class from the domain specific code to 
which the farm parallelization applies. The skeleton compute 
method becomes becomes an abstract pointcut that indicates the 
point in the core functionality where the skeleton activity should 
start. Association between the class that implements the Compute 
functionality and the farm aspect is provided by another pointcut 
that captures the joinpoints in which instances of that class are 
created. Whenever the domain specific code does not expose 

joinpoints suitable to superimpose the Compute role, an approach 
similar to JaSkel must be used (i.e., a class Compute must be 
created). Figure 9 presents a sketch of the AspectJ implementation 
of farm. 

In the advice associated to pointcut objectCreation, the farm 
aspect clones an object (numberOfWorkers times). In the advice 
associated to pointcut computeCall, the aspect calls method split 
to partition the original data into pieces that are sent to workers. 
Partial results are merged by calling method join. 

Application of the farm AspectJ skeleton to a specific case entails 
the implementation of split and joins methods by a concrete 
aspect, as well as the specification of pointcuts computeCall and 
objectCreation (see example in Figure 10). In AspectJ, 
composition of skeletons is a bit tricky, as it requires another 
aspect to capture proceed calls performed in an advice, something 
that is not currently covered by the AspectJ joinpoint model. This 
was implemented by resorting to Chained Advice idiom [19] to 
allow a reusable aspect to explicitly expose this joinpoint. 

Implementation of a concurrent farm entails creating a thread per 
each call to a worker object, to obtain concurrent processing. This 
must be performed in advice acting on pointcut computeCall. 
Extending the Farm abstract aspect to yield a concurrent farm is 
not feasible in AspectJ as it is not possible to override an advice. 
The alternative and more effective way is to provide an additional 
aspect to plug concurrency into the farm skeleton. In [8], we 
presented an AspectJ collection of concurrency patterns and 
mechanisms. This collection includes the FutureReflectProtocol 
aspect that can be plugged into the Farm aspect to yield a 
concurrent farm. FutureReflectProtocol requires the definition of 
two pointcuts: futureMethodExecution and useOfFuture. The 
former defines the points where the computation methods are 
invoked and the latter defines the joinpoints where the result of 
the computation is needed. . Unfortunately it is also too tricky to 
plug this functionality directly into the Farm reusable aspect, 
again due to AspectJ limitations, as now we need to capture two 
different joinpoints (one is the proceed, the second requires an 
explicit joinpoint inside the abstract join method). Figure 11 
presents an outline of an aspect that achieves a concurrent farm 
but it advises joinpoints from code functionality (i.e., it is a case 
specific aspect).We can also use aspect FutureReflectProtocol to 
provide functionally similar to methods eval and getResult (i.e., to 
perform other processing while the farm is computing, see section 
2.2.1) 

public aspect ServerConcurrency extends FutureReflectProtocol { 
  
 protected pointcut methodCall(Object servant) : 
  call(* SomeCoreClass.someMethodCall (..)) && 
  target(servant); 
 
 protected pointcut useValuePoint(Object servant) : 
  call(/* some join specific hook*/) &&  
  withincode(Object Farmer.join(Collection)) && 
  target(servant); 
} 

Figure 11: Introduction of concurrency into farm skeleton 

There are two important advantages of AspectJ implementations 
relative to Java. First, concurrency can be used as a stand alone 
framework feature (our concurrency library was previously 
presented and applied to several cases). Second, it avoids code 



duplication present in Java implementation (and other OO), since 
concurrency can be plugged into the Farm without rewriting 
aspect code. 

2.3.2 AspectJ distribution 
In the OO distribution tool we introduced proxy objects, 
implementation objects and object managers (Figure 4) that 
collaborate to transparently implement object distribution. Proxy 
objects and object managers play defining roles in this 
collaboration, as they are used only in the context of distribution. 
On the other hand, distribution-aware objects (i.e., 
implementation objects) that provide domain-specific 
functionality are generated by the tool, based on the original 
classes. Thus, they have a superimposed role in the context of 
distribution. 

Following a procedure similar to that of the previous section, the 
proxy object becomes an aspect that must intercept all domain-
specific object creations and method calls, to make a class 
separate (i.e., distributed). Proxy object is the core of the 
distribution concern as it implements the code to transparently 
distribute objects to remote machines. Implementation objects are 
no longer required, as we can use an aspect to superimpose that 
role into domain specific classes. Object managers have a defining 
role in the distribution context. However, these are not visible 
outside the distribution aspect, which is why these objects were 
implemented as plain Java classes. 

Implementation of distribution using Java RMI requires the 
generation of one interface per each remote class. We also need to 
create a remote object factory (i.e., object manager) to implement 
remote creation of objects. Thus, we still need to use a source 
code parser and a source code generator. Figure 12 presents the 
code equivalent to Figure 6 in the AspectJ implementation. The 
most significant differences between these versions are shaded. 

01 public interface IServer { 
02  public void process(int[] num) throws RemoteException; 
03 } 
04 
05 declare parents Server implements IServer;   // replaces OM class 
06 
07 public class ObjectManager {  // OM class 
08  IServer factoryServer() { 
09   return( new Server() );  
10  } 
11 } 
12 
13 public aspect ServerDistribution {  // replaces PO class 
14  IServer myRemoteServer; 
15 
16  Object around() : call (Server.new(..)) && /* … */ { 
17   ObjectManager remoteOM = ... // get a reference to OM 
18   myRemoteServer = remoteOM.factoryServer(); 
19   return new Server(); // return a fake local 
20  } 
21  void around(int[] num): call(void Server.process(..)) 
         && args(num) && !within(*Distribution)) { 
22   myRemoteServer.process(num); 
23  } 
24 } 

Figure 12: Generated AspectJ code for simple Server class 

The code of the implementation object was simply replaced by an 
AspectJ intertype declaration (line 5). We still need to generate 
code for the IServer interface and for ObjectManager class. Proxy 

objects were replaced by an aspect that intercepts local calls and 
forwards them to the remote object (lines 16–23). 

In spite of still requiring a source code generation tool, the 
AspectJ implementation has the advantage of generating 
modularized distribution code. As such, we do not need to change 
any of the class implementations from the domain specific code.  

2.3.3 AspectJ run-time 
The run-time system implements application profiling, 
computation agglomeration and communication aggregation. In 
this section, we do not provide details concerning profiling since 
there are several well known AspectJ implementations [22]. The 
point is that profiling can be provided as a library of reusable 
aspects that can also be used in a stand alone way, outside the 
context of the framework’s run-time system. 

Computation agglomeration is based on local creation of specific 
object instances instead of requesting these creations to remote 
JVMs (see Figure 7). To implement this feature the distribution 
aspect should not be applied when the object is intended to be 
created locally (e.g., to locally create a Server object we just need 
to avoid the execution of both around advices in Figure 12, lines 
16-23). Thus, we can generate an aspect that executes on the same 
joinpoints as the distribution aspect, but that has higher 
precedence and this way it can avoid the execution of the 
distribution related advices of Figure 12 (see Figure 13). In this 
framework is not a problem for an aspect to perform proceed only 
in some cases, since the distribution aspect never proceeds the 
original call. However, it can pose problems in other cases if we 
need to have an aspect with lower precedence. A similar problem 
was reported when trying to compose a cache aspect with a cache 
profiling aspect [26], as the cache aspect does not always perform 
a proceed. 

01 public aspect ServerAgglomeration { 
02  Object around() : call (Server.new(..)) { 
03   if ( ! agglomerateComputation() ) { 
04    return(proceed()); // proceed to distribution concern 
05   } else { 
06    return( new Server() ); // avoids distribution concern 
07   } 
08  … // 

Figure 13: Alternative implementation of agglomeration 

Communication aggregation must generate an aspect that also 
specifically acts on the distribution aspect. It must introduce the 
method processN into IServer and Server class. It also must 
overwrite implementation of both distributions advices. 

2.3.4 Discussion of AspectJ implementation 
Although AspectJ implementations attain greater levels of 
modularity, some hurdles are felt when trying to compose these 
aspects together. Aspect composition is an important issue in the 
design of the framework, as features can be plugged into the same 
core functionality (e.g., they must share joinpoints in domain 
specific code). One solution to this composition problem is to 
provide anchor pointcuts that are captured by multiple aspects. 
Aspect precedence is another important issue. Advices must 
execute in a specific order: farm, concurrency, computation 
agglomeration, communication aggregating and distribution. To 
ensure this order, all advices are of type around, since AspectJ 
implements different execution orders for before, around and after 
advices. 



Some aspects depend on other aspects, which require the design 
of specific hooks in aspect code to support aspect composition 
(e.g., composition of concurrency into the farm aspect). Some 
framework features simply can not be implemented by a library of 
reusable aspects (e.g., communication aggregation requires the 
introduction of a new method in the target class). In other 
features, we resorted to code generation to avoid the use of 
refection and to provide maximum efficiency (e.g., in Figure 12 
we could provide a single advice to intercept all calls, as proposed 
in [34]). Framework extension hooks must be designed upfront, 
just as with OO frameworks (by providing abstract methods and 
abstract pointcuts). This is a consequence of limitations in 
AspectJ’s joinpoint model as regards aspect-specific joinpoints. In 
addition, in AspectJ we can extend abstract aspects but cannot 
override advice implementation, which is proving to be an 
important constraint to framework evolution, since evolution 
paths must be anticipated. 

Even if AspectJ does not fully support independent development 
of all framework features (e.g., the case with computation 
agglomeration) we nevertheless think that AspectJ enables a 
higher level reasoning about features than when code is tangled 
(as is the case with OO). To understand this AspectJ framework, it 
is vital to understand the collaborations among aspects. Since 
joinpoints in domain-specific code are captured by multiple 
aspects in a very specific order, understanding and extension of 
this framework requires a grasp of this advice execution chain. To 
correctly compose new functionality into the framework, new 
aspects must be plugged in the correct points of this advice 
execution chain. 

3. DISCUSSION 
We base our discussion on the set of criteria proposed in [35] 
which were adopted by MacDonald for an ideal pattern–based 
parallel programming system [24]. Conceptually, MacDonald 
treats patterns as modular units, in a way that is akin to skeletons 
[6] (and as we of course do with aspects), which facilitates the 
comparison presented in this section. In [24], MacDonald uses the 
following 13 criteria: 

1. Separation of specification 

2. Hierarchical resolution of parallelism 

3. Mutual Independence 

4. Extendibility 

5. Large collection of useful patterns. 

6. Openness. 

7. Correctness guarantees. 

8. Commonly–used language 

9. Language Non–Intrusiveness 

10. Performance 

11. Tool Support 

12. Tool Usability 

13. Application Portability 

In the remainder of this section, we discuss the various 
approaches to framework development on the basis of the 
aforementioned criteria and in the light of the experience gained 
when developing the frameworks mentioned in this report. 

However, as criteria 12 and 13 are out of scope of the report, they 
are covered. The order of the criteria is the same as above. Each of 
the sub-sections that follow deals with one criterion, starting with 
brief a description of it. 

3.1 Separation of specification 
MacDonald states that there should be a clean separation between 
the parallel structure of a program and the application code as to 
allow both parts of a parallel program to evolve independently. 
This closely corresponds to the classic tenet of separation of 
concerns [29], applied to specific case of parallel programming. 
Both approaches achieve this separation, though AspectJ enables 
us to go further than Java. The greater ease in uncoupling domain-
specific code from framework features facilitates independent 
development (though there are still problems, as described in 
[40]). Aspects allow for a less monolithic solution. A greater 
independence and uncoupling between framework (and domain-
specific) features can be observed (e.g., skeletons, concurrency 
and distribution features can be used stand alone). The use of 
abstract pointcut hooks instead of template method hooks 
amounts to an easier way to experiment with different skeletons 
(i.e., parallelization) as there are no explicit calls between domain 
specific code and framework API (e.g., it avoids the use of object 
factories to create objects). We consider it a consequence of the 
greater level of modularity and obliviousness achieved with 
AspectJ. 

3.2 Hierarchical resolution of parallelism 
This is the ability to allow patterns to be composed hierarchically, 
refining the computation within a given pattern using another 
pattern [24]. In the limit, this criterion implies the ability to 
compose a framework with another, something that can be hard 
and sometimes impossible with traditional OO. With AspectJ, this 
is more feasible, though it can still be hard, as we report in this 
report. 

With OO, the Composite pattern [17] provides an elegant way to 
hierarchically structure solutions in many cases. However, 
composite structures whose elements are heterogeneous still 
require a common interface to all components. In the specific case 
of skeletons, all skeletons must provide a common interface to be 
hierarchically composed. This can constrain skeleton 
development. In JaSkel we had problems to compose a farm with 
a pipeline, as the pipeline interface requires an additional method 
to connect pipeline elements. This is not necessary with AspectJ. 

We use the term recursive pointcut to refer to the case in which 
advice acting on the joinpoints captured by a pointcut give rise to 
new joinpoints that can be captured by pointcuts within the same 
aspect and/or other aspects. This process can extend to multiple 
levels. This kind of recursion is generally considered a bad thing, 
particularly that involving the same pointcut. However, we 
envision cases in which it may actually be desirable. For instance, 
to hierarchically compose AOP skeletons we need to apply the 
same aspect or a combination of aspects to other aspects, leading 
to recursive pointcuts. It is still not clear whether this solution 
brings more advantages than that based on the Composite pattern. 
Furthermore, AspectJ bears significant limitations to the 
quantification over aspect-originated joinpoints (e.g., it is not 
possible to quantify over a specific aspect advice). Further 
research is required on this front. 



It is generally hard to compose various traditional OO frameworks 
into a single system. One important cause for this limitation is 
inversion of control [13]. This problem can be ameliorated by 
AOP as it can avoid inversion of control. 

3.3 Mutual independence 
According to [24], there should be no rules regarding how 
patterns (meaning features in this context) can be composed, i.e., 
patterns should be context insensitive with respect to one another. 
With OO, this can be partially achieved with upfront design. Our 
experience suggests that the same applies to AspectJ, though to a 
lesser extent. We conclude that the ideal of programmer 
obliviousness proposed in [16] is not (fully) realized by AspectJ. 

Skeletons cannot be considered to be mutually independent in that 
all skeletons must be based on a common interface to enable the 
various compositions. Aspects are more flexible, as it is enough 
for them to define pointcuts that capture the relevant events, 
regardless of interfaces. However, although the AspectJ 
framework attains a greater level of uncoupling between features, 
it also presents problems for the composition of multiple features 
into a single, coherent system. Difficulties in composing multiple 
reusable aspects that capture the same joinpoints force us to resort 
to AspectJ idioms such as anchor pointcuts [19]. Hence the need 
for some upfront design, which harms aspect independence. 

AOP’s mechanisms for quantification and implicit calls to 
sections of behaviour hold the potential to deliver a greater level 
of separation and independence between the framework’s various 
components, as well as between domain specific classes. This 
leads to the possibility that AOP frameworks may not show some 
of the defining characteristics of OO frameworks, such as (1) tight 
coupling between components, (2) inversion of control [13] and 
(3) pattern density [33]. For instance, in the AspectJ framework 
we were able superimpose multiple roles to the same domain 
specific class without interference (e.g., compute and remote 
object behavior) and each aspect could introduce its own defining 
roles in a way that is independent of other aspects (e.g., farm and 
proxy). On all three fronts, the AspectJ implementation is a step 
forward relative to all OO implementations mentioned in this 
report, included the one in Java. 

3.4 Extendibility 
According to [24], a user should be able to incorporate new 
patterns into the tool, in such a way that new patterns are 
indistinguishable from the ones originally supplied with the tool. 
This is a known problem in OO frameworks, as it is hard to deal 
with unanticipated extensions and modifications. AspectJ’s 
pointcut mechanism is advantageous in this regard as it does not 
require explicit framework hooks. To some extent, it is possible to 
extend components not specifically prepared for such extension. 
However, there are limits to this capability due to AspectJ’s 
joinpoint model not covering the aspect space as thoroughly as it 
covers the class space. For instance, it is not possible to capture 
joinpoint originating from a specific advice. Such difficulties 
motivate the use of some aspect-oriented patterns such as Chained 
Advice [19] and the express use of classes and interfaces within 
the advice just to expose the required joinpoints. 

3.5 Large collection of useful patterns 
According to [24], the supplied patterns should cover a broad 
range of applications. With AspectJ, we were able to broaden the 
applicability of various skeletons, some of which could now be 
used stand alone. However, further work is required to assess the 
extent to which AspectJ expands the applicability of components. 

3.6 Openness 
According to [24], the programmer should be able to access low–
level mechanisms, such as the underlying message passing system, 
in their applications. Otherwise, the programmer is limited to 
developing applications that can be expressed using the available 
patterns. 

We believe that the ability and desirability to provide access to 
low-level mechanisms greatly depends on how the system is 
structured. The full impact of aspect mechanism on such 
structures is not well known. The openness brought by AOP 
seems to be an advantage in some situations (e.g., it is easier to 
replace a component of the framework with another). However, 
we defer such study to future work. 

3.7 Correctness guarantees 
According to [24], a good parallel programming system should 
provide some correctness guarantees, for instance against 
occurrences of deadlock, or to ensure that the application matches 
the desired parallel structure, or that the correct type of data is 
sent and received between processes. By MacDonald’s own 
admission, it is not likely that a tool will appear that can fully 
prevent users from introducing logic errors into program code or 
prevent the selection of inappropriate parallel structure. 

The limitations of AspectJ make it ill-suited to deal with this issue 
effectively. This is partly due to the greater level of independence 
of aspects (i.e., not taking into account the effects of other aspects 
on the overall system), combined with poor support to the 
management of aspect interactions. A global view of the 
complete/full system is lacking. 

Generally, framework components need to have some 
assumptions about their surrounding environment. Inversion of 
control provides that, as well as preventing various kinds of client 
errors. For instance, the Template Method pattern [17] provides a 
rigorous mechanism to enforce rules, invariants and contracts. 
That ability is absent in pointcuts, which again pushes back to the 
client of the framework the burden of following them. This 
requires a permanent conscious effort, which may feel too loose 
and error-prone to a developer used to the discipline of traditional 
OO frameworks. Instantiation provides one example. OO 
frameworks often provide ready-made code for the instantiation of 
objects, guaranteeing that are coherent and well-formed. In many 
cases, AOP enables client code to instantiate objects as if the 
aspects were not present. This freedom makes it hard or 
impossible to generate framework instantiation code. This results 
in a style of programming that has a more natural feel, but makes 
the framework more vulnerable to badly-formed objects. 

3.8 Commonly–used language 
According to [24], a system would ideally use an existing, 
commonly–used programming language, with no modifications to 



either syntax or semantics. This way, users would be able to 
directly reuse their existing sequential code in parallel 
applications and the system could take advantage of expertise in 
an existing language. 

Aspects and jointpoint models are relatively novel concepts that 
can pose problems to OO programmers. Clearly, use of AspectJ 
(as opposed of Java) goes against this recommendation. The Java 
system of course follows it, but the traditional composition 
mechanisms present serious disadvantages, as documented in this 
report. Frameworks like JBoss AOP and Aspectwerkz seek to 
have it both ways, by relying on plain Java and separating most 
aspect-specific specifications in separate files. Unfortunately, 
these are usually represented using another language (usually 
XML). All approaches have their followers and it is still not clear 
which approach will emerge as the winner, if any. 

3.9 Language non–intrusiveness 
According to [24], the application code written by a programmer 
should not have to accommodate the programming model 
provided by the system. A negative example is a message–passing 
library that requires the program to be restructured to 
accommodate the extra communication calls that need to be 
inserted by the user. 

The above concept is very close to that of code obliviousness 
[16]. The Java approach is significantly invasive and clearly does 
not meet this criterion. The Java framework presented in this 
report compels programmers to break the various bits of 
functionality throughout multiple classes, according to rules 
dictated by the framework rather than by the characteristics of the 
domain-specific code.  

The AspectJ approach goes a long way to meet the criterion, 
though it also has its limits. With AspectJ, it is often possible – 
though not always – to plug the aspect into the system without the 
need for invasive changes. However, cases arise in which prior 
refactoring is needed. We detect three distinct reasons to refactor: 
(1) to expose the desirable joinpoints, (3) to exposed needed 
context information and (2) to remove dependencies between 
distinct stages of the algorithm to be parallelized. In the latter, it 
may not be a realistic goal to achieve code obliviousness, as many 
modifications are a consequence of the nature of the algorithm. In 
the first two cases, AspectJ’s inter-type declarations are helpful. 
One instance is in the use of class adapters to make a domain 
specific class amenable to quantification (e.g., by providing 
required joinpoints as well as context information [36]) 

3.10 Performance 
According to [24], it should be possible to achieve the best 
possible performance for a program, subject to the selection of the 
parallel patterns. AOP languages such as AspectJ rely on a 
joinpoint model that statically resolves joinpoints in a significant 
number of cases. The AspectJ compiler generates bytecodes 
whose performance is acceptable when compared to that obtained 
from traditional Java compilers In addition, the reduced level of 
coupling between domain specific code and the parallel structure 
allows for an easier way to experiment with alternative 
parallelizations and pick the one with the best performance. 

With Java, various features such as the mechanism associated to 
the synchronized keyword incur overheads even when the 

application runs in a sequential context. This is not a problem in 
the Java framework because additional features such as these are 
provided through source code generation. With AspectJ, it is 
possible to uncouple these features as well. For instance, it is 
possible to define an aspect that performs synchronization on a 
given set method calls so that the synchronized keyword can be 
absent from the base code. When the aspect is not included in the 
build, the system does not incur any additional overhead [8]. 
Similar performance benefits were reported in the context of 
middleware systems [42]. Use of reflection can incur significant 
overheads (e.g., uses of thisJoinPoint) but this problem is more 
acute in systems such as JAC [30] that heavily rely on reflection. 

3.11 Application portability 
According to [24], the system should allow applications to be 
ported to different architectures. The performance of a program 
may suffer on an inappropriate architecture, but the application 
should continue to run. Executable portability is not an issue in 
current AspectJ compilers as they generate standard JVM 
compatible bytecodes. 

The reduced coupling between domain specific code and parallel 
structure in AspecJ allows for an easier way to select the 
parallelization with best performance for a specific platform. 
However, more dynamic AOP approaches that can swap aspects at 
run-time can be helpful to implement frameworks that 
automatically choose the best parallelization for a specific 
platform. 

4. RELATED WORK 
In [20], Hannemann and Kiczales present a comparison of 
implementations in Java and AspectJ of the Gang-of-Four patterns 
[17]. In our previous work [8] we presented a collection of 
reusable AspectJ implementations of well known concurrency 
patterns and mechanisms. Both works focus on how to implement 
each pattern in AspectJ and do not address the composition of 
these implementations. Work in [4] specifically analyses 
composition problems among patterns. In our work, composition 
of patterns as skeletons in the framework is essential. However, as 
the composition takes place in a framework context, we were able 
to use more case specific solutions. 

Constantinides et al. [7]propose an OO framework that provides 
some of the services of aspect-orientation. Though it was 
developed with concurrent applications in mind, the authors hope 
that the underlying ideas are applicable to other a broader range of 
domains. 

Several extensions to AOP where proposed to make it aware of 
distribution issues [28][27]. These are based on the concept of 
remote pointcut, i.e., the ability to intercept a joinpoint in a 
remote machine. With remote pointcuts, it is possible to execute 
an advice on a different machine from the one that originates the 
joinpoint. We did not explore this concept in our work. 
Furthermore, we would need a different perspective on remote 
pointcuts, as we would like to apply a proceed on a specific 
remote machine (to implement a specific object distribution 
strategy) and not the other way around (i.e., a remote machine to 
execute an advice associated to a local joinpoint). We believe that 
it easer to implement such a push model of advice execution than 
a pull method of remote advice, as it involves more localized 



decisions that contribute to scale parallel applications to a high 
number of compute resources. 

Previous works provide AOP solutions to modularize distribution 
related concerns [34][41] and tools to generate source code for 
distribution concerns [5]. Other frameworks support some 
features through AOP [1]. JAC [30] and COOL [23] provide full 
AOP frameworks that also address distribution and concurrency 
related concerns. Our work differs from these systems in that we 
provide a complete AOP framework for parallel computing 
developed using AOP technology (e.g., AspectJ). 

Frameworks for parallel computing built with OO technology 
have been proposed in [24][3][18]. Harbulot [21] was among the 
first to report on the use of aspects to modularize parallel 
structures. 

5. FUTURE WORK 
AOP enables client code to instantiate its objects as if the aspects 
were not present. This makes the framework more vulnerable to 
badly-formed objects. The concept of XPIs [40] may provide a 
contribution to overcome this limitation, by providing contracts 
that serve the same purpose as hooks of traditional OO 
frameworks. Annotations can be an alternative way to provide 
hooks for aspects to compose. They also serve the purpose of 
documenting the base code design decisions when this code 
becomes more oblivious of the framework context. 

Dynamic proxies that were introduced in Java 1.3 remain 
unexplored as a means to simplify distribution related concerns. 
For instance, with dynamic proxies it is no longer required to 
generate an interface per remote object. This could significantly 
simplify aspects for distribution. 

Aspect oriented frameworks, built with AOP technology, are a 
largely unexplored field of research. Longer term experience with 
AOP frameworks is required to fully assess its capacity for 
evolution. Moreover, sets of rules to refactor [25] existing OO 
frameworks can help to bring a broader acceptance of AOP in 
framework development. 

6. CONCLUSION 
This report presents an AspectJ framework and compared it with a 
Java framework that provides equivalent functionality. Both 
frameworks resort to source code generation to conveniently 
implement various framework features, namely to avoid tangling 
and to achieve a greater level of unplugability and obliviousness. 

Use of source code generation tools to implement specific 
framework features is widespread, as it yields important 
advantages relative to traditional library OO approaches. Library 
implementations are generally marred by tangling problems. Code 
generation brings the following advantages: (1) the tool can be 
used stand alone and broadens the range of applicability, (2) a 
given feature does not have to be included when not needed, 
(3) explicit hooks to support the a specific feature are avoided and 
(4) applications not using the feature do not incur extra run-time 
overheads. A library of reusable aspects provides similar benefits 
without the need for source code analysis (see for instance [8]) In 
light of these findings, we conclude that it is advantageous for 
AOP frameworks to be structured around libraries of reusable 
aspects. 

AspectJ avoids use of source code generation in more cases than 
in the Java version, by supporting specific features through an 
aspect library. However, some framework features cannot be fully 
implemented by an aspect library. In those cases, generation of 
AspectJ code rather than Java brings similar advantages and 
allows more independent development and eases framework 
evolution. 

AspectJ allows the superimposition of multiple roles to the same 
domain specific class, without the target object being aware of its 
role in the framework context. This also allows framework roles 
to be implemented in a more independent way. Each aspect can 
introduce its own defining roles in a way that is independent of 
other aspects. However, we noticed interference problems when 
joinpoints originated by the defining roles must be captured by 
multiple aspects, which had to be addressed by upfront framework 
design and by using AspecJ idioms to support composition of 
specific aspects 

Use of abstract pointcuts in framework design instead of template 
methods leads to new ways to design frameworks as they do not  
require explicit framework hooks. However, current AspectJ 
capabilities should be improved to support a more flexible 
composition among aspects. 
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