
Comparison of Two Frameworks for Parallel Computing in
Java and AspectJ

João L. Sobral
Departamento de Informática

Universidade do Minho
Campus de Gualtar

4710-057 Braga
PORTUGAL

Miguel P. Monteiro
Departamento de Informática
Universidade Nova de Lisboa

Faculdade de Ciências e Tecnologia
2829-516 Caparica

PORTUGAL

Carlos A. Cunha
Escola Superior de Tecnologia

Instit. Politécnico de Viseu
Campus de Repeses

3504-510 Viseu
PORTUGAL

ABSTRACT
This report presents an AspectJ framework for parallel computing
and compares it with a Java framework providing equivalent
functionality (concurrency/parallelization, distribution, profiling
and optimizations). We detect several relative benefits in the
AspectJ implementation, namely greater levels of uncoupling
among framework features, a greater level of obliviousness from
framework code (avoidance of adapters and concern specific
hooks) and possibility of framework features to be used stand
alone. The downsides are that composition of aspects can be
tricky, which has a strong influence of the overall framework
design. Generation of source code for some features remains a
convenient implementation technique. AspectJ avoids it in more
cases than in the Java version, but not in all.

Keywords
Aspect-oriented frameworks, AspectJ, parallel programming

1. INTRODUCTION
Most reported aspect-oriented frameworks fall into two
categories: (1) existing object-oriented (OO) frameworks that
were extended from a certain point on with additional
functionality by means of aspect technology [1][2] and
(2) existing OO frameworks, in which various crosscutting
concerns were identified and extracted to aspects [11]. In both
cases, the original, OO architecture is kept largely in place, with
no significant redesign. Such relatively minor tweaking risks
missing the full benefits that aspect-oriented programming (AOP)
can bring to framework design.

We believe that fully leveraged AOP can yield simpler, less
coupled designs than those that can be obtained through plain OO
technology. Presently, aspect-oriented frameworks fully
developed from the ground up with aspect technology are
virtually non-existent. It is desirable that such frameworks be
reported to the research community, as they can provide a clearer
picture of the implications of AOP on framework design, as well
as provide a means to better characterize and assess its advantages
over traditional, OO frameworks [14]. To date, this area of
research remains largely unexplored.

In this report, we contribute to the understanding of AOP
frameworks by describing and comparing two frameworks for
parallel programming that were separately developed, using Java
and AspectJ technology, respectively. We provide a comparative
analysis of both systems and report on various hurdles we felt

during development that have a bearing on the evolution of
AspectJ systems. To organize the analysis, we use the majority of
the 13 criteria proposed in [35] for frameworks in field of parallel
computing.

The focus of this report is on frameworks developed with AOP
technology, not frameworks whose purpose is provide support for
AOP as an alternative to AOP languages, as is the case with [7].
In addition, the comparison and analysis provided in this report is
tailored to the specific field of parallel computing. However, we
believe that many of our findings can be beneficial to other
domains.

The rest of this report is structured as follows. Section 2 presents
an overview of the functionality provided by both frameworks and
describes how this functionality is implemented in Java and
AspectJ. In section 3, we compare both systems on the basis of the
13 criteria proposed in [35]. Section 4 compares this work against
other efforts and section 5 presents future work. Section 6
concludes the report.

2. FRAMEWORKS FOR PARALLEL
PROGRAMING
In our previous work, we developed a collection of reusable
abstract aspects, coded in AspectJ, that in practice comprise an
AOP framework for concurrency [8]. In addition, we developed a
collection of pluggable aspects that can help the programmer to
convert a sequential application into a parallel equivalent [36]. In
earlier work [15][37][38], we developed equivalent functionality
using traditional OO framework (coding in C++, Java and C#).

Our previously implemented OO frameworks for parallel
computing (i.e., C++ and C# [37][38]) include support for object
distribution and automatic optimizations. The latter aim to relieve
the programmer from manual optimizing work associated to
specific architectures. The goal is to obtain code that is more
platform-independent without losing efficiency across a wide
range of platforms. The Java implementation [15] is the most
recent and complete OO implementation and benefited from the
experience gained in developing the previous (C++ and C#) ones.
It provides all the features previously implemented, plus an
additional feature, based on parallel skeletons [6] (see 2.1), which
helps the programmer to structure parallel applications.

Previous OO framework implementations suffer from classic
tangling problems as concurrency/parallelization, distribution and
optimization concerns cut across multiple framework components.

One of our aims in developing an AspectJ implementation of the
previous frameworks was to avoid this tangling, providing the
complete set of functionalities in a way that is also easier to use,
maintain and evolve. AspectJ was selected due to its wide
acceptance, maturity and tool support, as well as for its support
being based on static weaving, as parallel computing is a
performance-centric field that requires the generation of efficient
executables.

2.1 Framework overview
The purpose of all frameworks covered in this report is to ease
development of parallel applications by providing the basic
support infrastructure for parallel programs. Such infrastructure is
implemented through skeleton composition. The term skeleton
[6][9][32] is widely used by the parallel computing community –
a skeleton implements a common parallelization mechanism and
encapsulates design decisions concerning the structure of a
parallel application. Skeletons are akin to design patterns [17],
though the term is generally used in the context of parallel
programming and is more low level, as a skeleton is generally
associated to some concrete implementation. In this context, we
regard specific implementations of design patterns, including
AspectJ aspects, to be instances of skeletons. To develop a
parallel application, the programmer selects a set of skeletons that
best fits application requirements and fills the hooks provided by
the skeletons with domain specific code. Usually, it must also
develop new code to instantiate the selected skeletons and to start
skeleton activity, though in same cases the instantiation code can
be automatically generated.

Several well-known skeletons exist from some time [6][9]. These
include Farm, Pipe, Divide/Conquer and Heartbeat. One
important feature of skeleton approaches is the ability to compose
skeletons [10] – either to achieve a more efficient execution or to
obtain more complex parallelizations. For instance, a Farm can be
combined with a Pipe to yield a Pipeline of Farming (a Pipe in
which each element is a Farm). Another example is the
composition of two Farms to yield a two-level Farm. This type of
structure closely matches an architecture composed by several
machines (i.e., a cluster) in which each node is composed by
multi-core processors.

Distribution is an important concern that, due to its nature, must
be considered early in the design of the framework. Distribution
concerns include remote creation of objects, remote method
invocation and access to distributed data structures. Each of the
framework skeletons must be suitably structured so that they can
be deployed in distributed machines. The framework must provide
efficient implementations of each skeleton on shared memory
machines (e.g., multi-core) as well as on distributed memory
machines (e.g., clusters).

In all frameworks discussed in this report, distribution stands
apart from the other features in that it is implemented through
code-generation techniques rather than skeletons. Thus, we avoid
the need to provide distribution-specific hooks, as well as
providing a more efficient implementation – distribution
operations are inlined into the source.

Performance and scalability to a large numbers of processing
resources are fundamental concerns in all parallel applications.
We address the scalability issue by supporting fine-grained
parallelism and by incorporating mechanisms into the framework

that reduce the excess of parallelism whenever necessary. Thus,
two mechanisms are used to control parallelism grain-size:
computation agglomeration and communication aggregation.
Computation agglomeration combines parallel tasks into larger
tasks by executing inter-object method calls synchronously.
Communication aggregation aggregates messages by (delaying
and) combining several inter-object method calls into a single call
message. Implementations of these mechanisms require the
gathering of application execution profile during run-time.

2.1.1 Farm skeleton
For illustration purposes, in this report, we use the Farm skeleton,
one simple and popular parallelization mechanism. The Farm
skeleton comprises a master entity and multiple workers (Figure
1). The master decomposes the input data in smaller independent
data pieces and sends a piece to each worker. After processing the
data, the workers send their partial results back to the master,
which merges them to yield the final result.

Figure 1: Farm skeleton

A farm skeleton risks being marred by parallelism overheads in
cases the task grain-size proves to be too small. Such overheads
are due to communication costs and thread/process management.
The solution lies in mechanisms to reduce excessive parallelism.
A significant gain can be accomplished by incorporating a
mechanism that automatically tunes the grain-size of tasks and the
number of workers to use on each platform. Automation frees the
developer from dealing with these concerns directly.

A single master can be a bottleneck in the presence of a large
number of workers (i.e., computing resources). Composition of
farm skeletons can address this issue as well, as a farm skeleton
can use several masters to improve performance (e.g., by yielding
a two level farm).

2.2 Java implementation
Development of the Java framework (JaSkel, see [15]) relied on 3
independent techniques/tools. This decomposition was motivated
by the requirement that use of the different bits of functionality
should be possible in a broad range of contexts. These tools are:

1. A skeleton library based on Java classes structured
according to the template method pattern [17];

2. A source code generator which supports distribution of
selected object classes;

3. A run-time system that performs adaptive grain-size
control and run-time load and data scheduler.

The independence between these tools allows programmers to
develop, test and run structured applications in a non-distributed
environment, by using the skeleton library. It also allows the use
of the distribution generation tool as a stand-alone tool to generate
distributed applications on the basis of sequential Java code, or
combine this tool with the skeleton library to yield structured
parallel applications that run on distributed systems. The run-time
system is an additional tool that collects run-time execution
profile information and performs run-time optimizations to adapt
the application to specific platforms. We chose to provide this
functionality as an additional tool to avoid execution overheads,
when grain-size control is not required (e.g., when the
programmer is in charge of this task or when the application does
note require this feature).

2.2.1 Skeleton library
The JaSkel framework includes several common skeletons for
parallel computing. We will focus on the implementation of the
Farm skeleton (Figure 2) to illustrate how skeletons are
implemented in this framework. In JaSkel, skeleton composition
is supported by means of OO composition and polymorphism: the
Farm class also extends the Compute abstract class (see Figure 2).
Thus, it is possible to build a farm where each worker is also a
farm.

+compute(in : Object) : Object
+clone() : Object

Compute

+Farm(in : Compute, in : int, in : Object)
+split(in : Object) : Collection
+join(in : Collection) : Object
+getResult() : Object
+eval() : void
+compute(in : Object) : Object

Farm Skeleton

«uses»

Figure 2: JaSkel farm skeleton

The farm constructor gets a reference for a cloneable Compute
worker, the number of workers (an optional parameter) and the
initial data to process. Methods split and join are hooks to plug
domain specific code. These methods perform the partition of the
input data into pieces that can be processed in parallel and join the
collection of processed data pieces. The eval method starts the
skeleton activity. It calls the split method to get a collection of
pieces of data, calls the compute method on each worker to
process each datum and calls the join method to merge the
processed data. method getResult provides access to the processed
data. Methods eval and getResult are separate methods to allow
other tasks to execute while the farm is computing (i.e., executing
the method eval). Figure 3 presents a simple farm in JaSkel.

The JaSkel Farm class does not include concurrency related code.
FarmConcurrent provides this functionality by extending a Farm,
overriding eval and getResult methods to perform concurrent calls
to workers compute methods. The eval method spawns a thread
per worker to call the compute method and the getResult method
waits until all workers complete their tasks. Extending the Farm
to a FarmConcurrent requires complete new implementations of

methods eval and getResult. This is due to the limitation of the
Java (as well as most other OO languages) to effectively
modularize concurrency related code. Code in Figure 3 can extend
the FarmConcurrent instead of Farm to use a concurrent farm.

public class Worker extends Compute {
 ... // other local data

 public Object compute(Object obj) {
 return(/* processed obj */);
 }
}
class Farmer extends Farm {

 public Collection split(Object initialTask) {
 return(/* split initialTask */);
 }
 public Object join(Collection partialResults) {
 return(/*merge partialResults*/);
 }
}
public class Main {
 public static void main(String[] args) {

 Worker worker = new Worker();
 Object task = ... // new task to process
 Farmer f = new Farmer(worker, numberOfWorkers, task);
 f.eval();
 ... // other processing may be included here
 Object result = f.getResult();
 }
}

Figure 3: Simple farm in JaSkel

The Farm skeleton is used mostly in the initial development
stages as it avoids the introduction of concurrent execution in the
farm (and the consequent non-deterministic behaviour). This
provides an easier way to trace an incorrect behaviour either to
sequential or to concurrency code.

2.2.2 Distribution tool
Although distribution could be implemented by extending
skeletons to address distribution concerns, as in [3][18], we opted
for a tool that generates source code. This brings several
advantages: (1) the distribution tool can be used stand alone,
which broadens the range of applications to cover applications
that do not rely on skeletons, (2) distribution does not have to be
included into the application if it is not needed, (3) explicit hooks
to support distribution are avoided and (4) applications that do not
use distribution do not incur any extra run-time overhead.

The purpose of the distribution tool is to support object
distribution among multiple JVMs. A remote object is an object
that may reside in another Java Virtual Machine. A system that
transparently distributes objects among several JVM is known as
a distributed JVM. A tool that implements a distributed JVM must
provide three basic services: remote object creation, remote
method invocation and access to remote data. Our tool is based on
a well known process [31][37][38] that performs a source code
transformation. It is based on 3 classes: proxy objects (PO),
implementation objects (IO) and object managers (OM). The code
generator analyses source classes retrieving information about
each class interface. Each class is renamed to an IO class and a
new PO class with the same interface as the original class
transparently replaces it. Each node has an OM that implements
local object factories to enable remote object creations. A similar

strategy implemented through a bytecode rewriter is presented in
[12].

 JVM 0 JVM 1

IO 1

c)

b)

Call through RMI

Method call

IO

IO 2
a)

d)

PO 1

Object creation

OM OM

a)

PO 2

a)

Figure 4: Run-time system for object distribution

Figure 4 presents an example of how PO, IO and OM collaborate
to implement remote object creation and remote method calls.
Whenever an object was created in the original code a new PO
object is created instead. This PO requests the IO creation to the
local node OM (JVM 0, call a) in the figure), which may locally
create the IO object or forward the request to a remote OM, which
locally creates the requested object (example shown in the figure,
call a)). After remote object creation the PO transparently
redirects local method calls to the remote IO (call b) in the
figure).

public class Server {
 public void process(int[] num) {
 ... // method implementation
 }
}

Figure 5: Server class

01 public interface IServer {
02 public void process(int[] num) throws RemoteException;
03 }
04
05 public class ImplementionServer implements IServer { // IO class
06 public void process(int[] num) {
07 ... // original method implementation
08 }
09 }
10
11 public class ObjectManager { // OM class
12 IServer factoryServer() {
13 return(new ImplementationServer());
14 } … // register server as OM is externally visible
15 }
16
17 public class Server { // PO class
18 IServer myRemoteServer;
19
20 Server() { // request remote object creation
21 ObjectManager remoteOM = ... // get reference to OM
22 myRemoteServer = remoteOM.factoryServer();
23 }
24 public void process(int[] num) { // remote method invocation
25 myRemoteServer.process(num);
26 }
27 }

Figure 6: Generated code for simple Server class

Figure 6 presents a simplified example of Java RMI generated
code for a Server class (Figure 5). The interface IServer (lines 01-
03) is created due to Java RMI requirements. The original Server
class is rewritten to ImplementationServer class (lines 05-09). The
ObjectManager is an object that implements a remote

ImplementationServer factory (lines 11-15). The original Server
class is replaced by a PO (lines 17-27) that transparently requests
the remote object creation to OMs (lines 20-23) and redirects the
process calls for remote execution (lines 24-26).

2.2.3 Run-time system
The run time system is in charge of performing load distribution
by selecting the most adequate JVM for the creation of each
object. It also performs several optimizations to support grain-size
control of parallel tasks.

public class Server { // PO class
 IServer myRemoteServer;
 ImplementionServer myLocalServer;

 Server() {
 if (agglomerateComputation()) { // locally create server object
 myLocalServer = new ImplementationServer();
 } else {
 ObjectManager remoteOM = ... // get a reference a remote OM
 myRemoteServer = remoteOM.factoryServer();
 }
 }
 public void process(int[] num) { // performs local/ remote invocation
 if (agglomerateComputation() {
 myLocalServer.process(num);
 } else {
 myRemoteServer.process(num);
 }
 }
}

Figure 7: Generated code for computation agglomeration

public class ImplementionServer implements IServer { // IO class
 …
 public void processN(Vector args) { // performs N calls to process
 for(int i=0; i<args.size(); i++) {
 process((int[]) Vector.elementAt(i))
 }
 }
}
public class Server { // PO class
 … //
 Vector args = new Vector();

 public void process(int[] num) {
 if (agglomerateComputation()) {
 myLocalServer.process(num);
 } else {
 If (aggregateComunication()) {
 args.add(num);
 if (args.size() == callsPerMessageLimit) {
 myRemoteServer.processN(args);
 args.clear();
 }
 } else myRemoteServer.process(num);
 }
 }
}

Figure 8: Generated code for communication aggregation

The first optimization is computation aggregation, which locally
creates an object, without OM involvement. This is implemented
by allowing the PO object to directly create an IO without
performing a request to the local OM (call c) in Figure 4). Latter
calls to this object are also performed directly, as in standard Java
objects (call d) in Figure 4). Java RMI also performs a similar
optimization in RMI calls to local objects.

The implementation of local object creation requires minor
changes to the distribution tool. It mainly involves changes into
the PO generated code to implement local IO creation and to
implement direct calls this local IO. Figure 7 presents these
changes in shaded. The generated code includes a test to
determine when to apply agglomeration. In those cases it performs
direct IO creations and method calls to myLocalServer.

Communication aggregation aims to reduce communication costs
by packing several method calls into a single network message (a
similar functionality is provided by ARMI [39]). This
optimization can take advantage of the increase in network
bandwidth (e.g., 10 Gbit/s Ethernet) and reduce penalties due to
network latencies, by using a smaller number of larger messages.
The framework implements communication aggregation by
packing several remote method calls, performed on the same
target object, into a single method. This is implemented by
introducing a new method into the IO class and by calling this
method in the PO class (Figure 8 in shaded).

2.2.4 Limitations of the OO implementations
Experience acquired during several years of evolution of the
parallel computing framework exposed several weaknesses of this
type of approach, most of which are related to framework
limitations and excessive complexity to develop and maintain the
proposed tools. The first limitation is related to the introduction of
concurrency concerns into JaSkel skeletons. These concerns are
introduced by providing skeleton implementations that support
concurrent execution. Current implementation overrides specific
skeleton methods, leading to a considerable increase in code size
and harming skeleton implementation understandability. A serious
problem is that skeleton base classes must be designed upfront
(e.g., to include hooks) to allow concurrent execution to be
composed through inheritance. Another limitation is that it is not
possible to use concurrency as stand alone framework feature.
This could be overcome through the use of an external tool to
generate concurrency related code. However, this would increase
the complexity of the tools that generate source code.

Generative patterns are an alternative implementation strategy to
the skeleton library. Generating pattern code can avoid method
overriding as application specific code can be included by
modifying the implementation of specific methods, supports more
flexible skeleton configurability (by means of template
parameters) and can also generate concurrency related code.
However, this strategy has two limitations: it introduces another
source code generator and the changes to the generated code are
non-reversible, which can lead to problems when, for some
reason, the pattern code must be re-generated.

Implementation of the distribution tool requires the use of a parser
generator tool that analyses source code and generates new case
specific classes. The tool must traverse the abstract syntax tree
(built by the parser) several times to generate PO, IO and OM
classes. A similar strategy is required to implement the run-time
system (including generation of code to tune grain size of parallel
tasks) and to implement code to collect execution profiling.

These code generator tools are independent from the user point of
view. However, at the level of the framework implementation,
they are tightly coupled. Programmers extending the code
generator tools must learn how to parse Java code and how to
traverse the generated syntax tree to generate the required code. It
also requires knowledge of all the generated code (e.g., run-time

system implementations must be aware of minute details related to
distribution generated code, see Figure 8). To add support for a
new feature, the programmer must identify and edit all points
where code related to new features should be placed. One of the
main sources of complexity is the generation of tangled code that
mixes distribution, profiling and optimization concerns. This
imposes a limitation to independent development (evolution of the
distribution code and run-time system). Code generation tools
also have problems to trace errors into the original code since they
rewrite the original code to new classes. This makes it hard to
debug generated code and to trace errors to the corresponding
location in the original code.

A minor problem arose in the Java implementation. Java does not
include multi-inheritance, which makes it more complex to
generate RMI code. The application specific classes must extend
both skeleton classes and RMI classes.

In summary, introducing new features requires careful planning to
ensure non interference with current framework features that
requires knowledge about source code generation and about the
structure of generated code. This is a consequence of the
generation of tangled code, where distribution, profiling and
optimization concerns are mixed in the generated code. Using
code generation tools instead of libraries pushes the tangling
effect from framework template classes to the generated code.

2.3 AspectJ implementation
The AspectJ implementation framework combines libraries of
reusable aspects [8][20] with generation of AspectJ source code
[5]. AspectJ enables the modularization of more framework
features than its Java counterpart. However, some framework
features are not conveniently implemented by a library of reusable
aspects. In some cases, that would entail extensive use of
reflection and in others a library based approach is simply not
feasible. For instance, distribution related code requires the
remote creation of an object, implemented by a remote object
factory. The factory must be generated, since it is not possible to
remotely create objects in AspectJ.

A library of reusable aspects brings the same benefits as a tool
that generates source code to implement a specific framework
feature. In cases where an approach based on a library is not
feasible, generation of AspectJ (rather than Java) code yields a
solution that is more modular. Generation of AspectJ code can
also have a performance advantage over reusable aspects, as it
avoids two of the three main costs of an aspect library: retrieval of
joinpoint context and management of global joinpoint history. See
[8] for a discussion of the performance costs involved in a library
of reusable aspects. The source code generator can generate an
aspect tailored for the specific case (for instance, Figure 12
presents an aspect generated specifically for the Server class).

2.3.1 AspectJ Skeletons
An important issue is how to provide functionality similar to a
farm skeleton (Figure 2 and Figure 3) in AspectJ. The skeleton is
based on a Compute class and a Farm class. Our experience with
the JaSkel framework revealed that the Farm class usually has a
defining role [20] in the pattern (i.e., the class only exists in the
context of the pattern and must be written from scratch), as it
plays a role of interfacing between domain specific code and the
skeleton implementation. On the other hand, Compute has a

superimposed role, as it usually results from an adaptation of a
class that already plays a role in the domain specific code.

public abstract aspect Farm {
 public abstract Collection split(Object initialTask);
 public abstract Object join(Collection partialResults);

 public abstract pointcut computeCall(Object task, Object tgt);
 public abstract pointcut objectCreation();

 Object around() : objectCreation() {
 workers = … // clone target object numberOfWorkers times
 }
 Object around(Object initialTask,Object target) :
 computeCall(initialTask,target) {
 workers = … // get array of workers of target object
 Collection tasks = split(initialTask);
 Iterator i = tasks.iterator();
 Collection oTasks = new Vector();
 int taskId = 0;

 while (i.hasNext()) {
 int workerIndex = taskId % numberOfWorkers;
 oTasks.add(proceed(i.next(), workers[workerIndex],));
 i.remove();
 taskId++;
 }
 return(join(oTasks));
 }
}

Figure 9: Farm AOP skeleton

public aspect Farmer extends Farm {
 public Collection split(Object initialTask) {
 return(/* split initialTask */);
 }

 public Object join(Collection partialResults) {
 return(/*merge partialResults*/);
 }

 public pointcut objectCreation() :
 call (SomeCoreClass.new()) && within(Main);

 public pointcut computeCall(Object initialTask, Object tgt) :
 call(* SomeCoreClass.someMethodCall(..)) &&
 args(initialTask) && target(tgt) && within(Main);
}

public class Main {
 public static void main(String[] args) {
 SomeCoreClass worker = new SomeCoreClass();
 Object task = ... // new task to process
 Object result = worker.someMethodCall(task);
 }
}

Figure 10: Sample use of a farm AOP

In light of the above considerations, the Farm mechanism is
implemented by an abstract aspect, with abstract methods to
provide split and join functionality. The Compute functionality is
implemented by adapting a class from the domain specific code to
which the farm parallelization applies. The skeleton compute
method becomes becomes an abstract pointcut that indicates the
point in the core functionality where the skeleton activity should
start. Association between the class that implements the Compute
functionality and the farm aspect is provided by another pointcut
that captures the joinpoints in which instances of that class are
created. Whenever the domain specific code does not expose

joinpoints suitable to superimpose the Compute role, an approach
similar to JaSkel must be used (i.e., a class Compute must be
created). Figure 9 presents a sketch of the AspectJ implementation
of farm.

In the advice associated to pointcut objectCreation, the farm
aspect clones an object (numberOfWorkers times). In the advice
associated to pointcut computeCall, the aspect calls method split
to partition the original data into pieces that are sent to workers.
Partial results are merged by calling method join.

Application of the farm AspectJ skeleton to a specific case entails
the implementation of split and joins methods by a concrete
aspect, as well as the specification of pointcuts computeCall and
objectCreation (see example in Figure 10). In AspectJ,
composition of skeletons is a bit tricky, as it requires another
aspect to capture proceed calls performed in an advice, something
that is not currently covered by the AspectJ joinpoint model. This
was implemented by resorting to Chained Advice idiom [19] to
allow a reusable aspect to explicitly expose this joinpoint.

Implementation of a concurrent farm entails creating a thread per
each call to a worker object, to obtain concurrent processing. This
must be performed in advice acting on pointcut computeCall.
Extending the Farm abstract aspect to yield a concurrent farm is
not feasible in AspectJ as it is not possible to override an advice.
The alternative and more effective way is to provide an additional
aspect to plug concurrency into the farm skeleton. In [8], we
presented an AspectJ collection of concurrency patterns and
mechanisms. This collection includes the FutureReflectProtocol
aspect that can be plugged into the Farm aspect to yield a
concurrent farm. FutureReflectProtocol requires the definition of
two pointcuts: futureMethodExecution and useOfFuture. The
former defines the points where the computation methods are
invoked and the latter defines the joinpoints where the result of
the computation is needed. . Unfortunately it is also too tricky to
plug this functionality directly into the Farm reusable aspect,
again due to AspectJ limitations, as now we need to capture two
different joinpoints (one is the proceed, the second requires an
explicit joinpoint inside the abstract join method). Figure 11
presents an outline of an aspect that achieves a concurrent farm
but it advises joinpoints from code functionality (i.e., it is a case
specific aspect).We can also use aspect FutureReflectProtocol to
provide functionally similar to methods eval and getResult (i.e., to
perform other processing while the farm is computing, see section
2.2.1)

public aspect ServerConcurrency extends FutureReflectProtocol {

 protected pointcut methodCall(Object servant) :
 call(* SomeCoreClass.someMethodCall (..)) &&
 target(servant);

 protected pointcut useValuePoint(Object servant) :
 call(/* some join specific hook*/) &&
 withincode(Object Farmer.join(Collection)) &&
 target(servant);
}

Figure 11: Introduction of concurrency into farm skeleton

There are two important advantages of AspectJ implementations
relative to Java. First, concurrency can be used as a stand alone
framework feature (our concurrency library was previously
presented and applied to several cases). Second, it avoids code

duplication present in Java implementation (and other OO), since
concurrency can be plugged into the Farm without rewriting
aspect code.

2.3.2 AspectJ distribution
In the OO distribution tool we introduced proxy objects,
implementation objects and object managers (Figure 4) that
collaborate to transparently implement object distribution. Proxy
objects and object managers play defining roles in this
collaboration, as they are used only in the context of distribution.
On the other hand, distribution-aware objects (i.e.,
implementation objects) that provide domain-specific
functionality are generated by the tool, based on the original
classes. Thus, they have a superimposed role in the context of
distribution.

Following a procedure similar to that of the previous section, the
proxy object becomes an aspect that must intercept all domain-
specific object creations and method calls, to make a class
separate (i.e., distributed). Proxy object is the core of the
distribution concern as it implements the code to transparently
distribute objects to remote machines. Implementation objects are
no longer required, as we can use an aspect to superimpose that
role into domain specific classes. Object managers have a defining
role in the distribution context. However, these are not visible
outside the distribution aspect, which is why these objects were
implemented as plain Java classes.

Implementation of distribution using Java RMI requires the
generation of one interface per each remote class. We also need to
create a remote object factory (i.e., object manager) to implement
remote creation of objects. Thus, we still need to use a source
code parser and a source code generator. Figure 12 presents the
code equivalent to Figure 6 in the AspectJ implementation. The
most significant differences between these versions are shaded.

01 public interface IServer {
02 public void process(int[] num) throws RemoteException;
03 }
04
05 declare parents Server implements IServer; // replaces OM class
06
07 public class ObjectManager { // OM class
08 IServer factoryServer() {
09 return(new Server());
10 }
11 }
12
13 public aspect ServerDistribution { // replaces PO class
14 IServer myRemoteServer;
15
16 Object around() : call (Server.new(..)) && /* … */ {
17 ObjectManager remoteOM = ... // get a reference to OM
18 myRemoteServer = remoteOM.factoryServer();
19 return new Server(); // return a fake local
20 }
21 void around(int[] num): call(void Server.process(..))
 && args(num) && !within(*Distribution)) {
22 myRemoteServer.process(num);
23 }
24 }

Figure 12: Generated AspectJ code for simple Server class

The code of the implementation object was simply replaced by an
AspectJ intertype declaration (line 5). We still need to generate
code for the IServer interface and for ObjectManager class. Proxy

objects were replaced by an aspect that intercepts local calls and
forwards them to the remote object (lines 16–23).

In spite of still requiring a source code generation tool, the
AspectJ implementation has the advantage of generating
modularized distribution code. As such, we do not need to change
any of the class implementations from the domain specific code.

2.3.3 AspectJ run-time
The run-time system implements application profiling,
computation agglomeration and communication aggregation. In
this section, we do not provide details concerning profiling since
there are several well known AspectJ implementations [22]. The
point is that profiling can be provided as a library of reusable
aspects that can also be used in a stand alone way, outside the
context of the framework’s run-time system.

Computation agglomeration is based on local creation of specific
object instances instead of requesting these creations to remote
JVMs (see Figure 7). To implement this feature the distribution
aspect should not be applied when the object is intended to be
created locally (e.g., to locally create a Server object we just need
to avoid the execution of both around advices in Figure 12, lines
16-23). Thus, we can generate an aspect that executes on the same
joinpoints as the distribution aspect, but that has higher
precedence and this way it can avoid the execution of the
distribution related advices of Figure 12 (see Figure 13). In this
framework is not a problem for an aspect to perform proceed only
in some cases, since the distribution aspect never proceeds the
original call. However, it can pose problems in other cases if we
need to have an aspect with lower precedence. A similar problem
was reported when trying to compose a cache aspect with a cache
profiling aspect [26], as the cache aspect does not always perform
a proceed.

01 public aspect ServerAgglomeration {
02 Object around() : call (Server.new(..)) {
03 if (! agglomerateComputation()) {
04 return(proceed()); // proceed to distribution concern
05 } else {
06 return(new Server()); // avoids distribution concern
07 }
08 … //

Figure 13: Alternative implementation of agglomeration

Communication aggregation must generate an aspect that also
specifically acts on the distribution aspect. It must introduce the
method processN into IServer and Server class. It also must
overwrite implementation of both distributions advices.

2.3.4 Discussion of AspectJ implementation
Although AspectJ implementations attain greater levels of
modularity, some hurdles are felt when trying to compose these
aspects together. Aspect composition is an important issue in the
design of the framework, as features can be plugged into the same
core functionality (e.g., they must share joinpoints in domain
specific code). One solution to this composition problem is to
provide anchor pointcuts that are captured by multiple aspects.
Aspect precedence is another important issue. Advices must
execute in a specific order: farm, concurrency, computation
agglomeration, communication aggregating and distribution. To
ensure this order, all advices are of type around, since AspectJ
implements different execution orders for before, around and after
advices.

Some aspects depend on other aspects, which require the design
of specific hooks in aspect code to support aspect composition
(e.g., composition of concurrency into the farm aspect). Some
framework features simply can not be implemented by a library of
reusable aspects (e.g., communication aggregation requires the
introduction of a new method in the target class). In other
features, we resorted to code generation to avoid the use of
refection and to provide maximum efficiency (e.g., in Figure 12
we could provide a single advice to intercept all calls, as proposed
in [34]). Framework extension hooks must be designed upfront,
just as with OO frameworks (by providing abstract methods and
abstract pointcuts). This is a consequence of limitations in
AspectJ’s joinpoint model as regards aspect-specific joinpoints. In
addition, in AspectJ we can extend abstract aspects but cannot
override advice implementation, which is proving to be an
important constraint to framework evolution, since evolution
paths must be anticipated.

Even if AspectJ does not fully support independent development
of all framework features (e.g., the case with computation
agglomeration) we nevertheless think that AspectJ enables a
higher level reasoning about features than when code is tangled
(as is the case with OO). To understand this AspectJ framework, it
is vital to understand the collaborations among aspects. Since
joinpoints in domain-specific code are captured by multiple
aspects in a very specific order, understanding and extension of
this framework requires a grasp of this advice execution chain. To
correctly compose new functionality into the framework, new
aspects must be plugged in the correct points of this advice
execution chain.

3. DISCUSSION
We base our discussion on the set of criteria proposed in [35]
which were adopted by MacDonald for an ideal pattern–based
parallel programming system [24]. Conceptually, MacDonald
treats patterns as modular units, in a way that is akin to skeletons
[6] (and as we of course do with aspects), which facilitates the
comparison presented in this section. In [24], MacDonald uses the
following 13 criteria:

1. Separation of specification

2. Hierarchical resolution of parallelism

3. Mutual Independence

4. Extendibility

5. Large collection of useful patterns.

6. Openness.

7. Correctness guarantees.

8. Commonly–used language

9. Language Non–Intrusiveness

10. Performance

11. Tool Support

12. Tool Usability

13. Application Portability

In the remainder of this section, we discuss the various
approaches to framework development on the basis of the
aforementioned criteria and in the light of the experience gained
when developing the frameworks mentioned in this report.

However, as criteria 12 and 13 are out of scope of the report, they
are covered. The order of the criteria is the same as above. Each of
the sub-sections that follow deals with one criterion, starting with
brief a description of it.

3.1 Separation of specification
MacDonald states that there should be a clean separation between
the parallel structure of a program and the application code as to
allow both parts of a parallel program to evolve independently.
This closely corresponds to the classic tenet of separation of
concerns [29], applied to specific case of parallel programming.
Both approaches achieve this separation, though AspectJ enables
us to go further than Java. The greater ease in uncoupling domain-
specific code from framework features facilitates independent
development (though there are still problems, as described in
[40]). Aspects allow for a less monolithic solution. A greater
independence and uncoupling between framework (and domain-
specific) features can be observed (e.g., skeletons, concurrency
and distribution features can be used stand alone). The use of
abstract pointcut hooks instead of template method hooks
amounts to an easier way to experiment with different skeletons
(i.e., parallelization) as there are no explicit calls between domain
specific code and framework API (e.g., it avoids the use of object
factories to create objects). We consider it a consequence of the
greater level of modularity and obliviousness achieved with
AspectJ.

3.2 Hierarchical resolution of parallelism
This is the ability to allow patterns to be composed hierarchically,
refining the computation within a given pattern using another
pattern [24]. In the limit, this criterion implies the ability to
compose a framework with another, something that can be hard
and sometimes impossible with traditional OO. With AspectJ, this
is more feasible, though it can still be hard, as we report in this
report.

With OO, the Composite pattern [17] provides an elegant way to
hierarchically structure solutions in many cases. However,
composite structures whose elements are heterogeneous still
require a common interface to all components. In the specific case
of skeletons, all skeletons must provide a common interface to be
hierarchically composed. This can constrain skeleton
development. In JaSkel we had problems to compose a farm with
a pipeline, as the pipeline interface requires an additional method
to connect pipeline elements. This is not necessary with AspectJ.

We use the term recursive pointcut to refer to the case in which
advice acting on the joinpoints captured by a pointcut give rise to
new joinpoints that can be captured by pointcuts within the same
aspect and/or other aspects. This process can extend to multiple
levels. This kind of recursion is generally considered a bad thing,
particularly that involving the same pointcut. However, we
envision cases in which it may actually be desirable. For instance,
to hierarchically compose AOP skeletons we need to apply the
same aspect or a combination of aspects to other aspects, leading
to recursive pointcuts. It is still not clear whether this solution
brings more advantages than that based on the Composite pattern.
Furthermore, AspectJ bears significant limitations to the
quantification over aspect-originated joinpoints (e.g., it is not
possible to quantify over a specific aspect advice). Further
research is required on this front.

It is generally hard to compose various traditional OO frameworks
into a single system. One important cause for this limitation is
inversion of control [13]. This problem can be ameliorated by
AOP as it can avoid inversion of control.

3.3 Mutual independence
According to [24], there should be no rules regarding how
patterns (meaning features in this context) can be composed, i.e.,
patterns should be context insensitive with respect to one another.
With OO, this can be partially achieved with upfront design. Our
experience suggests that the same applies to AspectJ, though to a
lesser extent. We conclude that the ideal of programmer
obliviousness proposed in [16] is not (fully) realized by AspectJ.

Skeletons cannot be considered to be mutually independent in that
all skeletons must be based on a common interface to enable the
various compositions. Aspects are more flexible, as it is enough
for them to define pointcuts that capture the relevant events,
regardless of interfaces. However, although the AspectJ
framework attains a greater level of uncoupling between features,
it also presents problems for the composition of multiple features
into a single, coherent system. Difficulties in composing multiple
reusable aspects that capture the same joinpoints force us to resort
to AspectJ idioms such as anchor pointcuts [19]. Hence the need
for some upfront design, which harms aspect independence.

AOP’s mechanisms for quantification and implicit calls to
sections of behaviour hold the potential to deliver a greater level
of separation and independence between the framework’s various
components, as well as between domain specific classes. This
leads to the possibility that AOP frameworks may not show some
of the defining characteristics of OO frameworks, such as (1) tight
coupling between components, (2) inversion of control [13] and
(3) pattern density [33]. For instance, in the AspectJ framework
we were able superimpose multiple roles to the same domain
specific class without interference (e.g., compute and remote
object behavior) and each aspect could introduce its own defining
roles in a way that is independent of other aspects (e.g., farm and
proxy). On all three fronts, the AspectJ implementation is a step
forward relative to all OO implementations mentioned in this
report, included the one in Java.

3.4 Extendibility
According to [24], a user should be able to incorporate new
patterns into the tool, in such a way that new patterns are
indistinguishable from the ones originally supplied with the tool.
This is a known problem in OO frameworks, as it is hard to deal
with unanticipated extensions and modifications. AspectJ’s
pointcut mechanism is advantageous in this regard as it does not
require explicit framework hooks. To some extent, it is possible to
extend components not specifically prepared for such extension.
However, there are limits to this capability due to AspectJ’s
joinpoint model not covering the aspect space as thoroughly as it
covers the class space. For instance, it is not possible to capture
joinpoint originating from a specific advice. Such difficulties
motivate the use of some aspect-oriented patterns such as Chained
Advice [19] and the express use of classes and interfaces within
the advice just to expose the required joinpoints.

3.5 Large collection of useful patterns
According to [24], the supplied patterns should cover a broad
range of applications. With AspectJ, we were able to broaden the
applicability of various skeletons, some of which could now be
used stand alone. However, further work is required to assess the
extent to which AspectJ expands the applicability of components.

3.6 Openness
According to [24], the programmer should be able to access low–
level mechanisms, such as the underlying message passing system,
in their applications. Otherwise, the programmer is limited to
developing applications that can be expressed using the available
patterns.

We believe that the ability and desirability to provide access to
low-level mechanisms greatly depends on how the system is
structured. The full impact of aspect mechanism on such
structures is not well known. The openness brought by AOP
seems to be an advantage in some situations (e.g., it is easier to
replace a component of the framework with another). However,
we defer such study to future work.

3.7 Correctness guarantees
According to [24], a good parallel programming system should
provide some correctness guarantees, for instance against
occurrences of deadlock, or to ensure that the application matches
the desired parallel structure, or that the correct type of data is
sent and received between processes. By MacDonald’s own
admission, it is not likely that a tool will appear that can fully
prevent users from introducing logic errors into program code or
prevent the selection of inappropriate parallel structure.

The limitations of AspectJ make it ill-suited to deal with this issue
effectively. This is partly due to the greater level of independence
of aspects (i.e., not taking into account the effects of other aspects
on the overall system), combined with poor support to the
management of aspect interactions. A global view of the
complete/full system is lacking.

Generally, framework components need to have some
assumptions about their surrounding environment. Inversion of
control provides that, as well as preventing various kinds of client
errors. For instance, the Template Method pattern [17] provides a
rigorous mechanism to enforce rules, invariants and contracts.
That ability is absent in pointcuts, which again pushes back to the
client of the framework the burden of following them. This
requires a permanent conscious effort, which may feel too loose
and error-prone to a developer used to the discipline of traditional
OO frameworks. Instantiation provides one example. OO
frameworks often provide ready-made code for the instantiation of
objects, guaranteeing that are coherent and well-formed. In many
cases, AOP enables client code to instantiate objects as if the
aspects were not present. This freedom makes it hard or
impossible to generate framework instantiation code. This results
in a style of programming that has a more natural feel, but makes
the framework more vulnerable to badly-formed objects.

3.8 Commonly–used language
According to [24], a system would ideally use an existing,
commonly–used programming language, with no modifications to

either syntax or semantics. This way, users would be able to
directly reuse their existing sequential code in parallel
applications and the system could take advantage of expertise in
an existing language.

Aspects and jointpoint models are relatively novel concepts that
can pose problems to OO programmers. Clearly, use of AspectJ
(as opposed of Java) goes against this recommendation. The Java
system of course follows it, but the traditional composition
mechanisms present serious disadvantages, as documented in this
report. Frameworks like JBoss AOP and Aspectwerkz seek to
have it both ways, by relying on plain Java and separating most
aspect-specific specifications in separate files. Unfortunately,
these are usually represented using another language (usually
XML). All approaches have their followers and it is still not clear
which approach will emerge as the winner, if any.

3.9 Language non–intrusiveness
According to [24], the application code written by a programmer
should not have to accommodate the programming model
provided by the system. A negative example is a message–passing
library that requires the program to be restructured to
accommodate the extra communication calls that need to be
inserted by the user.

The above concept is very close to that of code obliviousness
[16]. The Java approach is significantly invasive and clearly does
not meet this criterion. The Java framework presented in this
report compels programmers to break the various bits of
functionality throughout multiple classes, according to rules
dictated by the framework rather than by the characteristics of the
domain-specific code.

The AspectJ approach goes a long way to meet the criterion,
though it also has its limits. With AspectJ, it is often possible –
though not always – to plug the aspect into the system without the
need for invasive changes. However, cases arise in which prior
refactoring is needed. We detect three distinct reasons to refactor:
(1) to expose the desirable joinpoints, (3) to exposed needed
context information and (2) to remove dependencies between
distinct stages of the algorithm to be parallelized. In the latter, it
may not be a realistic goal to achieve code obliviousness, as many
modifications are a consequence of the nature of the algorithm. In
the first two cases, AspectJ’s inter-type declarations are helpful.
One instance is in the use of class adapters to make a domain
specific class amenable to quantification (e.g., by providing
required joinpoints as well as context information [36])

3.10 Performance
According to [24], it should be possible to achieve the best
possible performance for a program, subject to the selection of the
parallel patterns. AOP languages such as AspectJ rely on a
joinpoint model that statically resolves joinpoints in a significant
number of cases. The AspectJ compiler generates bytecodes
whose performance is acceptable when compared to that obtained
from traditional Java compilers In addition, the reduced level of
coupling between domain specific code and the parallel structure
allows for an easier way to experiment with alternative
parallelizations and pick the one with the best performance.

With Java, various features such as the mechanism associated to
the synchronized keyword incur overheads even when the

application runs in a sequential context. This is not a problem in
the Java framework because additional features such as these are
provided through source code generation. With AspectJ, it is
possible to uncouple these features as well. For instance, it is
possible to define an aspect that performs synchronization on a
given set method calls so that the synchronized keyword can be
absent from the base code. When the aspect is not included in the
build, the system does not incur any additional overhead [8].
Similar performance benefits were reported in the context of
middleware systems [42]. Use of reflection can incur significant
overheads (e.g., uses of thisJoinPoint) but this problem is more
acute in systems such as JAC [30] that heavily rely on reflection.

3.11 Application portability
According to [24], the system should allow applications to be
ported to different architectures. The performance of a program
may suffer on an inappropriate architecture, but the application
should continue to run. Executable portability is not an issue in
current AspectJ compilers as they generate standard JVM
compatible bytecodes.

The reduced coupling between domain specific code and parallel
structure in AspecJ allows for an easier way to select the
parallelization with best performance for a specific platform.
However, more dynamic AOP approaches that can swap aspects at
run-time can be helpful to implement frameworks that
automatically choose the best parallelization for a specific
platform.

4. RELATED WORK
In [20], Hannemann and Kiczales present a comparison of
implementations in Java and AspectJ of the Gang-of-Four patterns
[17]. In our previous work [8] we presented a collection of
reusable AspectJ implementations of well known concurrency
patterns and mechanisms. Both works focus on how to implement
each pattern in AspectJ and do not address the composition of
these implementations. Work in [4] specifically analyses
composition problems among patterns. In our work, composition
of patterns as skeletons in the framework is essential. However, as
the composition takes place in a framework context, we were able
to use more case specific solutions.

Constantinides et al. [7]propose an OO framework that provides
some of the services of aspect-orientation. Though it was
developed with concurrent applications in mind, the authors hope
that the underlying ideas are applicable to other a broader range of
domains.

Several extensions to AOP where proposed to make it aware of
distribution issues [28][27]. These are based on the concept of
remote pointcut, i.e., the ability to intercept a joinpoint in a
remote machine. With remote pointcuts, it is possible to execute
an advice on a different machine from the one that originates the
joinpoint. We did not explore this concept in our work.
Furthermore, we would need a different perspective on remote
pointcuts, as we would like to apply a proceed on a specific
remote machine (to implement a specific object distribution
strategy) and not the other way around (i.e., a remote machine to
execute an advice associated to a local joinpoint). We believe that
it easer to implement such a push model of advice execution than
a pull method of remote advice, as it involves more localized

decisions that contribute to scale parallel applications to a high
number of compute resources.

Previous works provide AOP solutions to modularize distribution
related concerns [34][41] and tools to generate source code for
distribution concerns [5]. Other frameworks support some
features through AOP [1]. JAC [30] and COOL [23] provide full
AOP frameworks that also address distribution and concurrency
related concerns. Our work differs from these systems in that we
provide a complete AOP framework for parallel computing
developed using AOP technology (e.g., AspectJ).

Frameworks for parallel computing built with OO technology
have been proposed in [24][3][18]. Harbulot [21] was among the
first to report on the use of aspects to modularize parallel
structures.

5. FUTURE WORK
AOP enables client code to instantiate its objects as if the aspects
were not present. This makes the framework more vulnerable to
badly-formed objects. The concept of XPIs [40] may provide a
contribution to overcome this limitation, by providing contracts
that serve the same purpose as hooks of traditional OO
frameworks. Annotations can be an alternative way to provide
hooks for aspects to compose. They also serve the purpose of
documenting the base code design decisions when this code
becomes more oblivious of the framework context.

Dynamic proxies that were introduced in Java 1.3 remain
unexplored as a means to simplify distribution related concerns.
For instance, with dynamic proxies it is no longer required to
generate an interface per remote object. This could significantly
simplify aspects for distribution.

Aspect oriented frameworks, built with AOP technology, are a
largely unexplored field of research. Longer term experience with
AOP frameworks is required to fully assess its capacity for
evolution. Moreover, sets of rules to refactor [25] existing OO
frameworks can help to bring a broader acceptance of AOP in
framework development.

6. CONCLUSION
This report presents an AspectJ framework and compared it with a
Java framework that provides equivalent functionality. Both
frameworks resort to source code generation to conveniently
implement various framework features, namely to avoid tangling
and to achieve a greater level of unplugability and obliviousness.

Use of source code generation tools to implement specific
framework features is widespread, as it yields important
advantages relative to traditional library OO approaches. Library
implementations are generally marred by tangling problems. Code
generation brings the following advantages: (1) the tool can be
used stand alone and broadens the range of applicability, (2) a
given feature does not have to be included when not needed,
(3) explicit hooks to support the a specific feature are avoided and
(4) applications not using the feature do not incur extra run-time
overheads. A library of reusable aspects provides similar benefits
without the need for source code analysis (see for instance [8]) In
light of these findings, we conclude that it is advantageous for
AOP frameworks to be structured around libraries of reusable
aspects.

AspectJ avoids use of source code generation in more cases than
in the Java version, by supporting specific features through an
aspect library. However, some framework features cannot be fully
implemented by an aspect library. In those cases, generation of
AspectJ code rather than Java brings similar advantages and
allows more independent development and eases framework
evolution.

AspectJ allows the superimposition of multiple roles to the same
domain specific class, without the target object being aware of its
role in the framework context. This also allows framework roles
to be implemented in a more independent way. Each aspect can
introduce its own defining roles in a way that is independent of
other aspects. However, we noticed interference problems when
joinpoints originated by the defining roles must be captured by
multiple aspects, which had to be addressed by upfront framework
design and by using AspecJ idioms to support composition of
specific aspects

Use of abstract pointcuts in framework design instead of template
methods leads to new ways to design frameworks as they do not
require explicit framework hooks. However, current AspectJ
capabilities should be improved to support a more flexible
composition among aspects.

7. REFERENCES
[1] JBoss AOP. http://jboss.com/products/aop.

[2] Spring AOP. http://www.springframework.org/.

[3] Aldinucci M., Danelutto M., Teti P., An advanced
environment supporting structured parallel programming in
Java, Future Generation Computer Systems, vol.19 n.5,
Elsevier, July 2003.

[4] Cacho N., Sant'Anna C, Figueiredo E, Garcia A., Batista T,
Lucena C., Composing design patterns: a scalability study of
aspect-oriented programming. AOSD 2006, Bonn, Germany,
March 2006.

[5] Ceccato M., Tonella P., Adding Distribution to Existing
Applications by means of Aspect Oriented Programming, 4th
IEEE SCAM, Chicago, USA, September 2004.

[6] Cole D., Algorithmic Skeletons: structured management of
parallel computation, Pitman/MIT press, 1989.

[7] Constantinides, C. A., Bader, A., Elrad, T. H., Netinant, P.,
Fayad, M. E. Designing an aspect-oriented framework in an
object-oriented environment. ACM Computing Surveys,
32(1es): 41 (2000).

[8] Cunha C., Sobral J., Monteiro M., Reusable Aspect-Oriented
Implementation of Concurrency Patterns and Mechanisms,
AOSD'06, Bonn, Germany, March 2006.

[9] Darlington J., Field, A., Harrison, P., Kelly, P., Sharp, D.,
Wu, Q., Parallel Programming using Skeleton Functions, 5th
Conference on Parallel Architectures and Languages Europe
(PARLE’93), LNCS vol. 396, Springer 1993.

[10] Darlington J., Guo Y., To H., J. Yang, Parallel Skeletons for
Structured Composition, ACM PPoPP’95, Santa Clara,
USA, 1995.

[11] van Deursen A., Marin M., Moonen L., AJHotDraw: A
showcase for refactoring to aspects. In Linking Aspect
Technology and Evolution Workshop (LATE), March 2005.

[12] Factor M., Schuster A., Shagin K., JavaSplit: a runtime for
execution of monolithic Java programs on heterogenous
collections of commodity workstations, IEEE Cluster
Computing, Hong Kong, December 2003.

[13] Fayad M., Schmidt D., Object-Oriented Application
Frameworks, Communications of the ACM, 40(10):32–38,
1997.

[14] Fayad M., Schmidt D., Johnson R., Building Application
Frameworks: Object-Oriented Foundations of Framework
Design, Wiley 1999.

[15] Fernando J., Sobral J., Proenca A., JaSkel: A Java Skeleton-
Based Framework for Structured Cluster and Grid
Computing, CCGrid'2006, Singapore, May 2006.

[16] Filman R., Friedman D., Aspect-oriented programming is
quantification and obliviousness, Aspect-Oriented Software
Development, pages 21–35. Addison-Wesley, 2005.

[17] Gamma, E., Helm, R., Johnson, R., Vlissides, J., Design
Patterns – Elements of Reusable Object-Oriented Software,
Addison-Wesley, 1995.

[18] Gorlatch S., Dunnweber J. From Grid Middleware to Grid
Applications: Bridging the Gap with HOCs. In Future
Generation Grids, Springer, 2006.

[19] Hanenberg S., Schmidmeier A., Idioms for Building
Software Frameworks in AspectJ; 2nd AOSD Workshop on
Aspects, Components, and Patterns for Infrastructure
Software (ACP4IS), Boston, MA, March 17, 2003.

[20] Hannemann, J., Kiczales, G., Design Pattern Implementation
in Java and AspectJ, OOPSLA 2002, November 2002.

[21] Harbulot, B., Gurd, J., Using AspectJ to Separate Concerns
in Parallel Scientific Java Code, AOSD 2004, Lancaster, UK,
March 2004.

[22] Laddad R., AspectJ in Action – Practical Aspect-Oriented
Programming, Manning 2003.

[23] Lopes C. V., D: A Language Framework for Distributed
Computing, Ph.D. thesis, College of Computer Science,
Northeastern University, Boston, USA, November 1997.

[24] MacDonald S., From Patterns to Frameworks to Parallel
Programs, PhD thesis, Department of Computing Science,
University of Alberta, 2002.

[25] Monteiro M. P., Fernandes J. M., Towards a Catalogue of
Aspect-Oriented Refactorings. AOSD 2005, Chicago, USA,
March 2005.

[26] Mortensen M., Ghosh S., Creating Pluggable and Reusable
Non-functional Aspects in AspectC++, The 5th AOSD
Workshop on Aspects, Components, and Patterns for
Infrastructure Software (ACP4IS’06), Bonn, Germany,
March 2006.

[27] Navarro L., Südholt M., Vanderperren W., Fraine B., Suvée
D., Explicitly distributed AOP using AWED, AOSD'06,
Bonn, Germany, March 2006.

[28] Nishizawa M., S. Shiba S., Tatsubori M., Remote pointcut -
a language construct for distributed AOP, AOSD’04, 2004.

[29] Parnas D. L., On the criteria to be used in decomposing
systems into modules. Communications of the ACM 15 (12),
pp. 1053-1059, December 1972.

[30] Pawlak R., Seinturier L., Duchien L., Florin G., Legond-
Aubry F., Martelli L., JAC: an aspect-based distributed
dynamic framework, Software: Practice and Experience, vol.
34, no. 12, Oct. 2004.

[31] Philippsen M., Zenger M., JavaParty – transparent remote
objects in Java. Concurrency: Practice and Experience,
vol.19 n.11, November 1997.

[32] Rabhi F., Gorlatch S., (ed), Patterns and Skeletons for
Parallel and Distributed Computing, Springer, 2003.

[33] Riehle D., Brudermann R., Gross T., Mätzel K., Pattern
Density and Role Modeling of an Object Transport Service.
ACM Computing Surveys, 32(1es): 10, (March 2000).

[34] Soares S., Eduardo Laureano E., Borba P., Implementing
distribution and persistence aspects with aspectJ. OOPSLA
02, Seattle, USA, November 2002.

[35] Singh A., Shaeffer J., Szafron D., Experience with parallel
programming using code templates, Concurrency: Practice
and Experience, vol.10, n.2, February 1998.

[36] Sobral J., Cunha C., Monteiro M., Aspect-Oriented
Pluggable Support for Parallel Computing, VecPar'2006, Rio
de Janeiro, Brasil, June 2006.

[37] Sobral J., Fernando J., ParC#: Parallel Computing in .Net,
Parallel Computing Technologies 2005 (PaCT'05), Russia,
September 2005, LNCS vol. 3606, Springer 2005.

[38] Sobral J., Proença A., A Run-time System for Dynamic
Grain Packing, Euro-Par'99, Toulouse, France, September
1999, LNCS vol. 1685, Springer 1999.

[39] Saunders S., Rauchwerger L., ARMI: an adaptive, platform
independent communication library, ACM PPoPP 03, San
Diego, USA, 2003.

[40] Sullivan, K. J., Griswold, W. G., Song, Y., Cai, Y., Shonle
M., Tewari, N., Rajan, H., Information Hiding Interfaces for
Aspect-Oriented Design, ESEC/FSE 2005, Lisbon, Portugal,
September 2005.

[41] Tilevich E., Urbanski S., Smaragdakis Y., Fleury M.,
Aspectizing Server-Side Distribution, IEEE ASE 2003,
Montreal, Canada, October 2003.

[42] Zhang C., Jacobsen H., Resolving Feature Convolution in
Middleware Systems, OOPSLA’04, Vancouver, Canada,
October 2004.

