
A Domain-Specific Aspect Language for
Transforming MATLAB Programs

João M. P. Cardoso
Dep. Engenharia

Informática
Faculdade de Engenharia

(FEUP)
Universidade do Porto

Porto, Portugal

jmpc@acm.org

Pedro C. Diniz
Dep. Engenharia

Informática
UTL/IST/INESC-ID

Lisboa, Portugal

pedro.diniz@ist.utl.pt

Miguel P. Monteiro
CITI, Dep. Informática
Universidade Nova de

Lisboa
Monte de Caparica, Portugal

mmonteiro@di.fct.unl.pt

João M. Fernandes,
João Saraiva

Dep. Informática / CCTC
Universidade do Minho

 Braga, Portugal

{jmf,jas}@di.uminho.pt

ABSTRACT

Aspect-oriented programming enables software developers to

augment programs with information out of the scope of the base

language while not hampering the code readability and thus its

portability. MATLAB is a popular modeling/programming

language that can significantly benefit from aspect-oriented

programming features. Crosscutting concerns include various

forms of optimization-motivated configurations, namely the

restriction on allowed data types/values, monitoring of specific

execution facets, such as dataset sizes and the assignment of

specific values to variables. This paper describes the main

concepts of a domain-specific aspect language (DSAL) for

specifying transformations in MATLAB to facilitate the

experimentation of alternative variants of a core code. In the

proposed language Aspect modules are structured in three

sections: intersections (select) equivalent to AspectJ poincuts,

actions (apply) equivalent to advice, and conditions (when) that

control triggering of actions. Two key features proposed are

aspect composition strategies to support for specifying particular

sequences of aspects and parameterization of aspects for

supporting the definition of parameters that specialize aspects.

Categories and Subject Descriptors

D.3.3 [Programming Languages]: Language Constructs and

Features. D.2.3 [Software Engineering]: Coding Tools and

Techniques. D.1 [Programming Techniques].

General Terms

Performance, Experimentation, Languages.

Keywords

Aspect-Oriented Programming, Strategic Programming, Domain-

Specific Languages, MATLAB.

1. INTRODUCTION
MATLAB [9] is an interpreted, imperative programming language

intended to operate primarily on matrix-shaped double precision

data types. Available MATLAB features and packages help

programmers to focus on problem solving and allow high

expressiveness when dealing with matrix computations, thus

contributing to enhanced productivity. It is widely used in

scientific computing, control systems, signal processing, image

processing, system engineering and simulation. MATLAB relies

heavily on array variables and double precision data types.

However, the flexibility of its interpretative nature also hinders

performance, forcing programmers to develop reference versions

of the program functionality in languages such as C/C++,

especially when targeting embedded systems. When doing so,

programmers effectively freeze important decisions relating to

specific data types and program structure thereby forsaking most

of MATLAB‟s flexibility. The complexity resulting from

sophisticated specializations is exacerbated by changing program

requirements (e.g., power vs. performance) and target architecture

features (e.g., CPU vs. GPU).

Available MATLAB features and packages help programmers to

focus on problem solving and allow high expressiveness when

dealing with matrix computations, thus contributing to enhanced

productivity. However, when it comes to evaluate specific

features, such as exploring non-uniform fixed-point

representations, monitoring specific variables during a timing

window, or including handlers to watch specific behaviors, the

programmer is overwhelmed by cumbersome, error-prone and

tedious tasks. Each time new features are needed, invasive

changes on the original code are required, as well as the insertion

of new code. These problems are felt in issues related to

implementation criteria, such as those arising in embedded system

applications (e.g., low instruction counts or memory footprint), as

MATLAB can be approached as a specification, rather than as an

implementation language.

In previous work [4], we proposed aspect-oriented features to

MATLAB to support monitoring of variable values, testing the

use of alternative implementations, handling of specific conditions

and specifying data types. Current efforts focus on augmenting the

MATLAB programming methodology by using a DSAL with

richer aspect-oriented concepts as described in this paper. The

proposed concepts allow the exploration of specific features

within the system‟s design and implementation space, debugging

and monitoring, and specification of programmers‟ knowledge

about an algorithm not directly captured in the MATLAB

program structure. This approach enables a single manual version

of the MATLAB specification to be used throughout the entire

development cycle without the need to maintain multiple versions,

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that

copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,

requires prior specific permission and/or a fee.

DSAL’10, March 16, 2010, Rennes, France.
Copyright 2010 ACM 1-58113-000-0/00/0004…$5.00.

as is currently the case. We believe this separation helps the

development, simulation, exploration and implementation phases.

This paper describes the use of aspects to convey information

regarding characteristics of the programming elements, such as

the actual values of variables, as well as to specify transformation

to be applied to specific programming constructs. We propose

aspect modules expressed in a DSAL based on the key concepts

of joinpoint selection (select) composition/action (apply) and

conditional binding (when), through which programmers provide

knowledge of additional facets to a compiler/run-time system that

otherwise would be hard or impossible to derive from the original

program.

A simple use case of the supported aspects relates to shapes of

array variables and base types, which can be specified through

aspects for specific points of the program and/or depending on

specific variable values or execution points. The approach also

allows the specification of source-level program transformations

such as loop unrolling or function inlining applied to specific

input values or sizes of variables. We also propose an abstract

strategy mechanism to enable programmers to explore the

optimization space by applying a sequence of program

transformations subject to values resulting from a specific aspect

execution. Simple examples include strategies that transform a

given section of the code only when the shape of an input variable

has a specific value or the size of one of its dimension exceeds a

given value.

The original base program remains free of language enhancements

and base sources remain syntactically correct. The proposed

DSAL enables programmers to retain the advantages of a single

source program representation, while exploring a wide range of

specific solutions at reduced programming and maintenance costs.

The rest of the paper is organized as follows. Section 2 describes

the main concepts and language features proposed. Section 3

briefly discusses implementation issues. Section 4 compares this

approach to related work. Finally, we conclude in Section 5.

2. ASPECT CONCEPTS AND DESIGN

Aspect modules are the main components of the proposed DSAL.

Each aspect module is structured as illustrated in Figure 1(a) and

can have several select-apply-when code sections – all are

considered when executing that aspect. Aspects may have input

arguments and return output information. Supported inputs and

outputs include parameters to specialize an aspect, clauses to

constrain the scope of an aspect intersection to a set of

intersections previously specified by another aspect, and

variables. The aspect programmer can specify the order with

which aspects are to be executed. Different sequences can be

structured as strategies.

Figure 1(b) presents an example of an aspect module, which is

responsible to insert specific MATLAB code (to report a warning

message based on the evaluation of a condition) before each use

of the variables sum and A. Figure 2(b) shows the resulting code

of applying this aspect to the MATLAB code in Figure 2(a). A

more generic aspect module is illustrated in Figure 3 producing

the same result as the aspect in Figure 1(b), if applied as

warning_too_big({sum,A}, 10000); to the code in Figure 2(a).

Next, the main concepts are described, namely joinpoint

selections, advice-like actions, conditions, and strategies.

aspect <name>

 (input: ...)?
 (output: ...)?

 (select: ... end
 apply: ... end
 (when: ... end)?)+

end <name>

aspect warning_too_big

 select:
 all reads <var a1> in {sum, A}

 apply:
 insert { if <a1.name> >= 10000 warning
('<a1.name> too big! %f', <a1.name>);
end }:: execute before

end warning_too_big

(a) the structure of an
aspect module.

(b) example of an aspect module.

Figure 1. Aspect module, the main component of the language.

...
for j = 1:1:N
 sum = sum +
 A(j) *
 B(j+N);
end
outa(i) = sum;
…

… for j = 1:1:N
 if sum>=10000 warning ('sum too big! %f',sum);
end
 if A(j)>=10000 warning ('A(j) too big! %f',A(j));
end
 sum = sum + A(j) * B(j+N);
end
if sum>=10000 warning ('sum too big! %f',sum);
end
outa(i) = sum; …

(a) piece of
MATLAB code.

(b) MATLAB code with logging code
(underlined and in italic).

Figure 2. Code inserted for logging if certain variables exceed

a specific value (10000).

aspect warning_too_big
 input: <var *>, <const c1>
 select:
 all reads <var a1> in {<var *>}
 apply:

insert { if <a1.name> >= <c1.value> warning ('<a1.name> too
big! %f', <a1.name>); end }:: execute before

end warning_too_big

Figure 3. A parameterized aspect component.

2.1 The Joinpoint Model
Unlike in other aspect-oriented approaches, including AspectJ [5],

joinpoints are not restricted to method invocations, object

instantiations, and variable accesses. Joinpoints can be identified

by a name bound to an identifier (of a variable or function), a

broader characteristic (e.g., all variables, all reads of certain

variables, all invocations of a function), or by an intersection

pattern. Figure 1(b) illustrates an aspect component that intersects

MATLAB code in all the read operations of variables sum and A.

Figure 3 illustrates an aspect with the same functionality but able

to receive a set of variables for intersection. In addition, we use

annotation-like tags embedded in MATLAB comments to specify

joinpoints, through the convention that such tags start with „%@‟,

e.g., %@here1, %@loop1. The symbol “%” is the beginning of a

comment line in MATLAB and consequently the resulting

annotated MATLAB code remains syntactically correct.

Intersections include a scheme to define intersection patterns by

allowing lexical matching and exact/approximate syntactic

matching. Figure 4 shows an example of a pattern matching

specification of a corresponding intersection that performs loop

unrolling with an unrolling factor of 2. Here <var a1> matches the

loop control variable and <body> the set of statements for the

original loop body. In the transformed code occurrences of the

parameter variables a1 are replaced by an expression “<a1> + 1”.

2.2 Actions as Advice
Actions equivalent to AspectJ advice are associated with one or

more joinpoints and can be of three usual kinds with respect to the

action: insert, replace, and remove. At a particular joinpoint, the

associated action is activated and executed if enabled by its when

clause The three usual types are supported: “around” (over a

joinpoint, i.e., the action replaces the code associated to that

joinpoint), “before” (action is executed before the code in that

joinpoint), and “after” (action is executed after the code in that

joinpoint). Recall that this joinpoint can be either a high-level

construct or a single occurrence of a variable identifier.

...
for i=1:1:100
 A(i) = B(i) + 1;
end
...

aspect loopTransf
select: {
 for <var a1> = 1:1: <const integer c1>
 <body>
 end
} :: position innermost
apply: insert {
 for <a1.name> = 1:2:<c1.value>-1
 <body>
 <body(replace <a1.name>
 with <a1.name>+1)>
 end } :: execute around
when: static {
 if <c1.value> % 2 == 0 }

end

(a) MATLAB base code.

...
for i=1:2:99
 A(i) = B(i) + 1;
 A(i+1) = B(i+1) + 1;
end
...

(c) resulting code after
weaving base and aspect

(b) aspect module with intersection
pattern.

Figure 4. Example of an intersection mechanism, using

pattern matching, and an action controlled by a static

condition.

2.3 Triggering Conditions
Conditions are enablers/disablers of the execution of actions.

Actions without conditions are always executed. Figure 4 and

Figure 5 present examples of static and dynamic conditions,

respectively. In each case, the condition evaluates if the upper

bound of the iteration range is a multiple of 2. In the static

condition, the action (i.e., the code transformation) is executed

only if this condition evaluates to true. The dynamic condition

instructs the weaver to include the original intersected code in the

output code and the modified code according to the action,

selecting between them based on the evaluation of the condition.

2.4 Aspect Strategies
We allow programmers to specify a specific sequence for the

application of the actions associated with through a strategy. For

example, the aspect strategy “A: aspect1  aspect2  aspect3”,

specified in Figure 6(a), means that the weaver must first execute

aspect1, then aspect2, and finally aspect3. Each aspect from the

sequence may modify code and new modifications may follow

previous modifications. Although finding the appropriate and

correct strategy is an interesting research topic, in this work we

focus on the programming support for aspect strategies.

We use an imperative style for specifying aspect strategies.

Mechanisms are provided to perform typical control flow. This

strategic programming must deal with the following issues:

 recursive application of an aspect while a given condition

holds (e.g., an aspect to unroll loops, based on a pattern, can

be invoked recursively in the nested loop structure until no

further modification occurs),

 execution of different sequences in paths enabled by

conditions,

 use of loops to repeat sequences of aspects, and

 passing data between aspects.

when:
 dynamic {
 if <a2.name> %
 2 == 0
}

... if N % 2 == 0
 for i=1:2:N
 A(i) = B(i) + 1;
 A(i+1) = B(i+1) + 1;
 end
else % if pattern is not matched
 for i=1:1:N
 A(i) = B(i) + 1;
 end
end ...

(a) dynamic condition. (b) example of code after weaving.

Figure 5. A dynamic condition and the result (considering the

MATLAB code of Figure 4(a)).

Aspect strategies define possible flows of aspects, defined in

aspect management units (examples in Figure 6). For each call of

an aspect, information can be returned to the aspect management

unit, which may consist of a set of aspect attributes for each

intersection of the aspect in a given call.

apply: A
strategy A
 aspect1;
 aspect2;
 aspect3;
end A

apply: B
strategy B
 do
 a1=aspect1;
 while(a1.modified);
end B

(a) strategy for a
sequence of aspects.

(b) an aspect repeated while a condition
holds

Figure 6. Examples of aspect strategies.

The scope for intersection of an aspect can be a set of regions of

code given by the intersection of a previous aspect. This is

specified by inputting to an aspect the intersection region as

occurred in a previous aspect, as illustrated in the following

example: a1=aspect1  aspect2(a1.intersection)

The two examples in Figure 6 illustrate strategies used by the

aspect management unit. Example (a) illustrates an aspect strategy

for defining a sequence of three aspects. Example (b) illustrates an

aspect strategy where an aspect is repeated while a certain

condition holds.

2.5 Reference Variables
The intersection subsection (select) of aspect modules can define

variables to be used in the other two sections (apply and when).

Thus, base code can be modified/specialized by assigning

different values to variables present in the code. If a code segment

<body> uses a variable defined as <var a1>, the reference a1 can

be used to modify or replace the name of the variable referred by

a1 as illustrated in Figure 4, where the variable name is

concatenated with “+1”. These variables have attributes that can

be used in the apply and when sections. Attributes are identified

by the name of the variable followed by „.‟ and the attribute name

(e.g., “a.name” for the variable a).

One important feature of the above variables is that they can

modify other inner variables. An example is the code

insert{p1(replace <c1.value> with “100”)} in which “p1”

identifies a code pattern such as the one in the example in Figure

4. In this case, code related to pattern “p1” is inserted in joinpoints

specified by the select section of the aspect, and constant “c1” in

the pattern is replaced by “100”.

Reference variables are also a mechanism to manage differences

in the actions performed by the same aspect module. For instance,

they allow different values for the same pattern on the basis of the

point in the program where the pattern intersects.

2.6 Generalization of Aspects
Aspect generalization, in the sense of parameterization, is

supported as in some cases one needs not repeat a specific aspect

over and over for every “instance” of the original program where

we would like the specific action to take effect. To address this

issue, we include a few simple mechanisms for aspect

parameterization and naming akin to procedure definition and

arguments. For instance, it is possible to indicate the application

of a specific aspect (loopTransf(var = j; factor=3)) by invoking it

in the apply section or by embedding it with the annotation

%@apply::loopTransf(var = j; factor=3). This invokes the aspect

“loopTransf” with respect to variable “j” and with its “factor”

parameter bound to the value 3. Unless otherwise stated in the

argument list, all other details of the transformation remain as

defined in the original definition of aspect “loopTransf”. These

include the location, which is for this particular transformation the

entire loop construct and/or variables to be affected. This

instantiation ability also requires that the definition of the aspect

exists in the aspect code accompanying the MATLAB code or in a

separate aspect repository.

The use of parameterized aspects and their instantiation may

prove to be fundamental when considering reusable and higher-

level aspects. Possibly, helping to structure in a very compact and

easily maintained form a whole range of transformations.

Parameterized aspects in turn will enable the definition of design-

space-exploration strategies, e.g., by enabling the evaluation of

transformations/specializations driven by different values.

2.7 Inner Aspects
Inner aspects are aspects that run for each intersection of the

(outer) aspect that encloses them. This notion allows testing other

intersection points that can use information defined by a specific

intersection of the outer aspect. Figure 7 presents more complex

examples based on the notion of inner aspects. These insert code

in a function to print the number of iterations of each innermost

loop with a pre-defined pattern. For each such loop, one needs to

insert a statement responsible for the counting, a statement that

initializes the counting variable to zero, and a statement that prints

the value to the standard output. A generic and reusable way to do

this is through inner aspects that are executed depending on the

conditions of the enclosing aspect.

3. IMPLEMENTATION ISSUES

Figure 8 outlines the flow of our system implementation currently

under development. Aspect modules, strategies, and MATLAB

code are specified in separate source files. A front-end parses the

input MATLAB code and converts the obtained abstract-syntax

tree into a specific IR (intermediate representation). The tool used

is TOM [3], a high-level program rewriting framework that can be

used to manipulate/transform an intermediate representation of the

input MATLAB program. TOM accepts the definition of the rules

and the rewriting strategies [2] and includes a pattern matching

engine. Tags embedded in MATLAB code to specify joinpoints

(e.g., %@here) are processed and embedded in the adopted IR

and passed in this form by the MATLAB compiler front-end to

the other tools in the compilation flow.

1. function r=f1(...)
2. ...
3. for j = 1:1:N1
4. sum = sum + A(j);
5. end
6. ...
7. for j = 1:1:N2
8. A(j) = A(j)/sum;
9. end
10. …
11. end

(a) piece of MATLAB code.

aspect top
// locate innermost loops with a given pattern
select: { for <var> = 1:1:<const integer c1> <body b1> end } ::
position innermost, <b1> // use of the loop body joinpoint
identified by b1
apply: insert { <this.name+this.id> = <this.name+this.id> + 1; }
 :: execute before // before the loop body
 inner aspect a1
 select: {function *} // function header
 apply: insert {<super.name+super.id> = 0;}:: execute after
 end a1
 inner aspect a2
 select: {function ... <key k1> in {end}} :: position <k1>
 apply: insert {
 sprintf('loop executed %d', <super.name+ super.id>);
 } :: execute before
 end a2
end top

(b) inner aspects.

1. function r=f1(...)
2. top_1 = 0;
3. top_2 = 1;
4. ...
5. for j = 1:1:N1
6. top_1 = top_1 + 1;
7. sum = sum + A(j);
8. end
9. ...
10. for j = 1:1:N2
11. top_2 = top_2 + 1;
12. A(j) = A(j)/sum;
13. end
14. …
15. sprintf('loop executed %d', top_1);
16. sprintf('loop executed %d', top_2);
17. end

(c) Code after weaving.

Figure 7. The use of inner aspects.

Data types and shapes are made available as symbol tables to the

tools in the compilation flow. A transformation engine plays the

role of aspect weaver, receiving the IR as input and generating a

modified IR that includes the features specified by the aspect

modules. The weaver is being implemented using the paradigm of

strategic programming as provided by TOM. It determines the

sequences of aspects to execute based on the aspect strategies.

Other concerns, such as monitoring and code transformations, are

also composed to the IR of the original MATLAB program

through the weaver, which yields a modified IR made available to

the subsequent tools in the compilation flow. This modified IR

can include, e.g., representations of additional code.

Code generators in the flow presented in Figure 8 include the

MATLAB and C generators [8]. Each one is important for

different facets of the approach. Generation of code also takes

advantage of the TOM code rewriting capabilities. Ongoing work

focuses on developing an optimized C generator from MATLAB

descriptions. We intend the C generator to use certain aspects to

produce more efficient code with respect, e.g., to memory usage

or to execution time.

Front-End

(MATLAB to IR)

Weaver

Back-End

(IR to MATLAB)

Back-End

(IR to C)

MATLAB

Program

Aspect

Modules

Aspect

Strategies

MATLAB

Program
C Program

Strategies

Management Unit

(SMU)

IR + Data Types and Shapes

Figure 8. Environment under development.

4. RELATED WORK

Irwin et al. [6] describe AML, a system for sparse matrix

computation that deals with crosscutting concerns such as

execution time and data representation, using aspect-oriented

programming principles [7]. AML allows programmers to write

annotations regarding properties of sparse matrices separately

from the main functionality. Readability and maintainability of

the code is not adversely affected by non-functional aspects. The

authors report that their AML codes have similar speed to a

standard version, yet they are smaller and less complex. They

propose an aspect, called “data representation” that is relevant for

our work. This aspect defines five axes for representing data:

element type, dimension, representation, ordering, and orientation.

Aslam et al. [1] describe AspectMatlab, a language inspired on

AspectJ that extends MATLAB with aspect-oriented features. The

authors focus on describing the static flow analysis techniques

used to reduce dynamic checks required in the woven code for

monitoring, and for tracking the sparsity of manipulated matrices.

AspectMatlab is thus geared towards scientific codes using aspect

modules that define patterns-actions that support constructs such

as loops, loop bodies, array accesses, and function calls.

The primary difference between AspectMatlab and our approach

is that we address aspect-oriented features not only able to help

programmers to monitor runtime features, but also to evaluate

different implementations of a single MATLAB specification. The

central characteristics of our approach are powerful pattern-based

advices and actions, and parameterization capabilities that

improve aspect reuse. Both approaches need to deal with the

future evolution of the base language, an issue that is particularly

relevant in the case of proprietary languages such as MATLAB.

Evolution can be more flexibly handled when keeping a strict

separation between a MATLAB base and the aspects.

Our proposal differs from the above efforts as the proposed

aspects aim to help developers in exploring different

implementations of a given MATLAB specification without the

need to change the original code for each candidate optimization,

thus avoiding the need to manage multiple hand-written versions

of the base code. We believe that the majority of the proposed

aspects are not suitable to be embedded in the original

specification as annotations. Firstly, that would make the code

less legible and less maintainable. Secondly, that would still

require multiple code versions when exploring different data types

for a given variable. Thirdly, some rules are intended to be

applied globally, not just to a specific function. In our approach,

explorations can be performed with the same specifications by

employing different aspect rules as we use a declarative type of

aspect that can be applied both locally and globally.

5. CONCLUSION

This paper presents an approach for specifying transformations of

MATLAB programs in an aspect-oriented style, with a focus on

optimization concerns. We describe a set of features for a domain-

specific language to program strategies, organized as aspect

modules. Studies conducted so far suggest that the proposed

features help developers to explore a number of concerns without

“polluting” the original code and avoiding the need for multiple

versions of the base program. Keeping a strict separation between

a MATLAB base and new aspect-oriented features contributes to

improved maintenance, readability, and reuse of both base

programs and aspects. Work in progress includes studies about

additional aspect-oriented features, development of the weaver,

experiments on the implementation of the transformation engine,

and implementation of the main concepts in our compiler

framework.

ACKNOWLEDGMENTS
This work has been partially supported by FCT (Portuguese

Science Foundation) under grant (POCTI,

PTDC/EIA/70271/2006).

REFERENCES
[1] Aslam, T., Doherty, J., Dubrau, A., and Hendren, L. 2010.

AspectMatlab: An Aspect-Oriented Scientific Programming

Language, in Proc. of the Intl. Conf. on Aspect-Oriented

Software Development (AOSD), March, 2010.

[2] Balland, E., Moreau, P.-E., and Reilles, A. 2008. Rewriting

Strategies in Java, ENTCS vol. 219, Elsevier, pp. 97-111.

[3] Brauner, P., Kopetz, R., Moreau, P.-E., and Reilles, A. 2007

Tom: Piggybacking Rewriting on Java, RTA'07, LNCS

4533, Springer, pp. 36-47.

[4] Cardoso, J. M. P., Fernandes, J., and Monteiro, M. 2006.

Adding Aspect-Oriented Features to MATLAB, in

SPLAT!2006, at AOSD‟06.

[5] Gradecki, J. D., and Lesiecki, N. 2003. Mastering AspectJ:

Aspect-Oriented Programming in Java, Wiley.

[6] Irwin, J., Loingtier, J.-M., Gilbert, J., Kiczales, G., Lamping,

J., Mendhekar, A., and Shpeisman, T. 1997. Aspect-Oriented

Programming of Sparse Matrix Code, ISCOPE‟97, Springer,

pp. 249-256.

[7] Kiczales, G., Lamping, J., Mendhekar, A., Maeda, C., Lopes,

C., Loingtier, J.-M., Irwin, J. 1997. Aspect Oriented

Programming, ECOOP‟97.

[8] Nobre, R., Cardoso, J. M. P., and Diniz, P. C. 2010.

Leveraging Type Knowledge for Efficient MATLAB to C

Translation, Technical Report, Portugal, February 2010.

[9] The Mathworks Inc., http://www.mathworks.com

