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ABSTRACT 

Aspect-oriented programming enables software developers to 

augment programs with information out of the scope of the base 

language while not hampering the code readability and thus its 

portability. MATLAB is a popular modeling/programming 

language that can significantly benefit from aspect-oriented 

programming features. Crosscutting concerns include various 

forms of optimization-motivated configurations, namely the 

restriction on allowed data types/values, monitoring of specific 

execution facets, such as dataset sizes and the assignment of 

specific values to variables. This paper describes the main 

concepts of a domain-specific aspect language (DSAL) for 

specifying transformations in MATLAB to facilitate the 

experimentation of alternative variants of a core code. In the 

proposed language Aspect modules are structured in three 

sections: intersections (select) equivalent to AspectJ poincuts, 

actions (apply) equivalent to advice, and conditions (when) that 

control triggering of actions. Two key features proposed are 

aspect composition strategies to support for specifying particular 

sequences of aspects and parameterization of aspects for 

supporting the definition of parameters that specialize aspects. 

Categories and Subject Descriptors 

D.3.3 [Programming Languages]: Language Constructs and 

Features. D.2.3 [Software Engineering]: Coding Tools and 

Techniques. D.1 [Programming Techniques]. 

General Terms 

Performance, Experimentation, Languages. 

Keywords 

Aspect-Oriented Programming, Strategic Programming, Domain-

Specific Languages, MATLAB. 

1. INTRODUCTION 
MATLAB [9] is an interpreted, imperative programming language 

intended to operate primarily on matrix-shaped double precision 

data types. Available MATLAB features and packages help 

programmers to focus on problem solving and allow high 

expressiveness when dealing with matrix computations, thus 

contributing to enhanced productivity. It is widely used in 

scientific computing, control systems, signal processing, image 

processing, system engineering and simulation. MATLAB relies 

heavily on array variables and double precision data types. 

However, the flexibility of its interpretative nature also hinders 

performance, forcing programmers to develop reference versions 

of the program functionality in languages such as C/C++, 

especially when targeting embedded systems. When doing so, 

programmers effectively freeze important decisions relating to 

specific data types and program structure thereby forsaking most 

of MATLAB‟s flexibility. The complexity resulting from 

sophisticated specializations is exacerbated by changing program 

requirements (e.g., power vs. performance) and target architecture 

features (e.g., CPU vs. GPU). 

Available MATLAB features and packages help programmers to 

focus on problem solving and allow high expressiveness when 

dealing with matrix computations, thus contributing to enhanced 

productivity. However, when it comes to evaluate specific 

features, such as exploring non-uniform fixed-point 

representations, monitoring specific variables during a timing 

window, or including handlers to watch specific behaviors, the 

programmer is overwhelmed by cumbersome, error-prone and 

tedious tasks. Each time new features are needed, invasive 

changes on the original code are required, as well as the insertion 

of new code. These problems are felt in issues related to 

implementation criteria, such as those arising in embedded system 

applications (e.g., low instruction counts or memory footprint), as 

MATLAB can be approached as a specification, rather than as an 

implementation language. 

In previous work [4], we proposed aspect-oriented features to 

MATLAB to support monitoring of variable values, testing the 

use of alternative implementations, handling of specific conditions 

and specifying data types. Current efforts focus on augmenting the 

MATLAB programming methodology by using a DSAL with 

richer aspect-oriented concepts as described in this paper. The 

proposed concepts allow the exploration of specific features 

within the system‟s design and implementation space, debugging 

and monitoring, and specification of programmers‟ knowledge 

about an algorithm not directly captured in the MATLAB 

program structure. This approach enables a single manual version 

of the MATLAB specification to be used throughout the entire 

development cycle without the need to maintain multiple versions, 
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as is currently the case. We believe this separation helps the 

development, simulation, exploration and implementation phases. 

This paper describes the use of aspects to convey information 

regarding characteristics of the programming elements, such as 

the actual values of variables, as well as to specify transformation 

to be applied to specific programming constructs. We propose 

aspect modules expressed in a DSAL based on the key concepts 

of joinpoint selection (select) composition/action (apply) and 

conditional binding (when), through which programmers provide 

knowledge of additional facets to a compiler/run-time system that 

otherwise would be hard or impossible to derive from the original 

program. 

A simple use case of the supported aspects relates to shapes of 

array variables and base types, which can be specified through 

aspects for specific points of the program and/or depending on 

specific variable values or execution points. The approach also 

allows the specification of source-level program transformations 

such as loop unrolling or function inlining applied to specific 

input values or sizes of variables. We also propose an abstract 

strategy mechanism to enable programmers to explore the 

optimization space by applying a sequence of program 

transformations subject to values resulting from a specific aspect 

execution. Simple examples include strategies that transform a 

given section of the code only when the shape of an input variable 

has a specific value or the size of one of its dimension exceeds a 

given value. 

The original base program remains free of language enhancements 

and base sources remain syntactically correct. The proposed 

DSAL enables programmers to retain the advantages of a single 

source program representation, while exploring a wide range of 

specific solutions at reduced programming and maintenance costs. 

The rest of the paper is organized as follows. Section 2 describes 

the main concepts and language features proposed. Section 3 

briefly discusses implementation issues. Section 4 compares this 

approach to related work. Finally, we conclude in Section 5. 

2. ASPECT CONCEPTS AND DESIGN 

Aspect modules are the main components of the proposed DSAL. 

Each aspect module is structured as illustrated in Figure 1(a) and 

can have several select-apply-when code sections – all are 

considered when executing that aspect. Aspects may have input 

arguments and return output information. Supported inputs and 

outputs include parameters to specialize an aspect, clauses to 

constrain the scope of an aspect intersection to a set of 

intersections previously specified by another aspect, and 

variables. The aspect programmer can specify the order with 

which aspects are to be executed. Different sequences can be 

structured as strategies. 

Figure 1(b) presents an example of an aspect module, which is 

responsible to insert specific MATLAB code (to report a warning 

message based on the evaluation of a condition) before each use 

of the variables sum and A. Figure 2(b) shows the resulting code 

of applying this aspect to the MATLAB code in Figure 2(a). A 

more generic aspect module is illustrated in Figure 3 producing 

the same result as the aspect in Figure 1(b), if applied as 

warning_too_big({sum,A}, 10000); to the code in Figure 2(a). 

Next, the main concepts are described, namely joinpoint 

selections, advice-like actions, conditions, and strategies. 

aspect <name> 
 

   (input: ...)? 
   (output: ...)? 
 

   (select: ... end 
   apply: ... end 
   (when: ... end)?)+ 
 

end <name> 

aspect warning_too_big 
 

   select:  
      all reads <var a1> in {sum, A} 
 

   apply:  
 insert { if <a1.name> >= 10000 warning 
('<a1.name> too big! %f', <a1.name>); 
end }:: execute before 

 

end warning_too_big 

(a) the structure of an 
aspect module. 

(b) example of an aspect module. 

Figure 1. Aspect module, the main component of the language. 

... 
for j = 1:1:N 
   sum = sum +  
               A(j) *  
               B(j+N);   
end 
outa(i) = sum; 
… 

… for j = 1:1:N 
   if sum>=10000 warning ('sum too big! %f',sum); 
end 
   if A(j)>=10000 warning ('A(j) too big! %f',A(j)); 
end 
   sum = sum + A(j) * B(j+N);  
end 
if sum>=10000 warning ('sum too big! %f',sum); 
end 
outa(i) = sum; … 

(a) piece of 
MATLAB code. 

(b) MATLAB code with logging code 
(underlined and in italic). 

Figure 2. Code inserted for logging if certain variables exceed 

a specific value (10000). 

aspect warning_too_big 
    input: <var *>, <const c1>  
    select: 
         all reads <var a1> in {<var *>} 
    apply: 

insert { if <a1.name> >= <c1.value> warning ('<a1.name> too 
big! %f', <a1.name>); end }:: execute before 

end warning_too_big 

Figure 3. A parameterized aspect component. 

2.1 The Joinpoint Model 
Unlike in other aspect-oriented approaches, including AspectJ [5], 

joinpoints are not restricted to method invocations, object 

instantiations, and variable accesses. Joinpoints can be identified 

by a name bound to an identifier (of a variable or function), a 

broader characteristic (e.g., all variables, all reads of certain 

variables, all invocations of a function), or by an intersection 

pattern. Figure 1(b) illustrates an aspect component that intersects 

MATLAB code in all the read operations of variables sum and A. 

Figure 3 illustrates an aspect with the same functionality but able 

to receive a set of variables for intersection. In addition, we use 

annotation-like tags embedded in MATLAB comments to specify 

joinpoints, through the convention that such tags start with „%@‟, 

e.g., %@here1, %@loop1. The symbol “%” is the beginning of a 

comment line in MATLAB and consequently the resulting 

annotated MATLAB code remains syntactically correct. 

Intersections include a scheme to define intersection patterns by 

allowing lexical matching and exact/approximate syntactic 

matching. Figure 4 shows an example of a pattern matching 

specification of a corresponding intersection that performs loop 

unrolling with an unrolling factor of 2. Here <var a1> matches the 

loop control variable and <body> the set of statements for the 

original loop body. In the transformed code occurrences of the 

parameter variables a1 are replaced by an expression “<a1> + 1”. 



2.2 Actions as Advice 
Actions equivalent to AspectJ advice are associated with one or 

more joinpoints and can be of three usual kinds with respect to the 

action: insert, replace, and remove. At a particular joinpoint, the 

associated action is activated and executed if enabled by its when 

clause The three usual types are supported: “around” (over a 

joinpoint, i.e., the action replaces the code associated to that 

joinpoint), “before” (action is executed before the code in that 

joinpoint), and “after” (action is executed after the code in that 

joinpoint). Recall that this joinpoint can be either a high-level 

construct or a single occurrence of a variable identifier. 

... 
for i=1:1:100 
   A(i) = B(i) + 1; 
end 
... 

aspect loopTransf 
select: {  
 for <var a1> = 1:1: <const integer c1>  
  <body> 
    end 
} :: position innermost 
apply: insert { 
 for <a1.name> = 1:2:<c1.value>-1 
  <body> 
  <body(replace <a1.name> 
   with <a1.name>+1)> 
 end } :: execute around 
when: static { 
 if <c1.value> % 2  == 0 } 

end 

(a) MATLAB base code. 

... 
for i=1:2:99 
 A(i) = B(i) + 1; 
 A(i+1) = B(i+1) + 1; 
end 
... 

(c) resulting code after 
weaving base and aspect 

(b) aspect module with intersection 
pattern. 

Figure 4. Example of an intersection mechanism, using 

pattern matching, and an action controlled by a static 

condition. 

2.3 Triggering Conditions 
Conditions are enablers/disablers of the execution of actions. 

Actions without conditions are always executed. Figure 4 and 

Figure 5 present examples of static and dynamic conditions, 

respectively. In each case, the condition evaluates if the upper 

bound of the iteration range is a multiple of 2. In the static 

condition, the action (i.e., the code transformation) is executed 

only if this condition evaluates to true. The dynamic condition 

instructs the weaver to include the original intersected code in the 

output code and the modified code according to the action, 

selecting between them based on the evaluation of the condition. 

2.4 Aspect Strategies 
We allow programmers to specify a specific sequence for the 

application of the actions associated with through a strategy. For 

example, the aspect strategy “A: aspect1  aspect2  aspect3”, 

specified in Figure 6(a), means that the weaver must first execute 

aspect1, then aspect2, and finally aspect3. Each aspect from the 

sequence may modify code and new modifications may follow 

previous modifications. Although finding the appropriate and 

correct strategy is an interesting research topic, in this work we 

focus on the programming support for aspect strategies. 

We use an imperative style for specifying aspect strategies. 

Mechanisms are provided to perform typical control flow. This 

strategic programming must deal with the following issues: 

 recursive application of an aspect while a given condition 

holds (e.g., an aspect to unroll loops, based on a pattern, can 

be invoked recursively in the nested loop structure until no 

further modification occurs), 

 execution of different sequences in paths enabled by 

conditions,  

 use of loops to repeat sequences of aspects, and 

 passing data between aspects. 

when: 
    dynamic { 
        if <a2.name> % 
        2  == 0 
} 
 

... if N % 2 == 0 
  for i=1:2:N 
    A(i) = B(i) + 1; 
    A(i+1) = B(i+1) + 1; 
  end 
else % if pattern is not matched 
  for i=1:1:N 
     A(i) = B(i) + 1; 
  end 
end ... 

(a) dynamic condition. (b) example of code after weaving. 

Figure 5. A dynamic condition and the result (considering the 

MATLAB code of Figure 4(a)). 

Aspect strategies define possible flows of aspects, defined in 

aspect management units (examples in Figure 6). For each call of 

an aspect, information can be returned to the aspect management 

unit, which may consist of a set of aspect attributes for each 

intersection of the aspect in a given call. 

apply: A 
strategy A 
 aspect1; 
 aspect2; 
 aspect3; 
end A 

apply: B 
strategy B 
 do 
  a1=aspect1; 
 while(a1.modified); 
end B 

(a) strategy for a 
sequence of aspects. 

(b) an aspect repeated while a condition 
holds 

Figure 6. Examples of aspect strategies. 

The scope for intersection of an aspect can be a set of regions of 

code given by the intersection of a previous aspect. This is 

specified by inputting to an aspect the intersection region as 

occurred in a previous aspect, as illustrated in the following 

example: a1=aspect1  aspect2(a1.intersection) 

The two examples in Figure 6 illustrate strategies used by the 

aspect management unit. Example (a) illustrates an aspect strategy 

for defining a sequence of three aspects. Example (b) illustrates an 

aspect strategy where an aspect is repeated while a certain 

condition holds. 

2.5 Reference Variables 
The intersection subsection (select) of aspect modules can define 

variables to be used in the other two sections (apply and when). 

Thus, base code can be modified/specialized by assigning 

different values to variables present in the code. If a code segment 

<body> uses a variable defined as <var a1>, the reference a1 can 

be used to modify or replace the name of the variable referred by 

a1 as illustrated in Figure 4, where the variable name is 

concatenated with “+1”. These variables have attributes that can 

be used in the apply and when sections. Attributes are identified 

by the name of the variable followed by „.‟ and the attribute name 

(e.g., “a.name” for the variable a). 

One important feature of the above variables is that they can 

modify other inner variables. An example is the code 

insert{p1(replace <c1.value> with “100”)} in which “p1” 

identifies a code pattern such as the one in the example in Figure 

4. In this case, code related to pattern “p1” is inserted in joinpoints 

specified by the select section of the aspect, and constant “c1” in 

the pattern is replaced by “100”. 



Reference variables are also a mechanism to manage differences 

in the actions performed by the same aspect module. For instance, 

they allow different values for the same pattern on the basis of the 

point in the program where the pattern intersects. 

2.6 Generalization of Aspects 
Aspect generalization, in the sense of parameterization, is 

supported as in some cases one needs not repeat a specific aspect 

over and over for every “instance” of the original program where 

we would like the specific action to take effect. To address this 

issue, we include a few simple mechanisms for aspect 

parameterization and naming akin to procedure definition and 

arguments. For instance, it is possible to indicate the application 

of a specific aspect (loopTransf(var = j; factor=3)) by invoking it 

in the apply section or by embedding it with the annotation 

%@apply::loopTransf(var = j; factor=3). This invokes the aspect 

“loopTransf” with respect to variable “j” and with its “factor” 

parameter bound to the value 3. Unless otherwise stated in the 

argument list, all other details of the transformation remain as 

defined in the original definition of aspect “loopTransf”. These 

include the location, which is for this particular transformation the 

entire loop construct and/or variables to be affected. This 

instantiation ability also requires that the definition of the aspect 

exists in the aspect code accompanying the MATLAB code or in a 

separate aspect repository. 

The use of parameterized aspects and their instantiation may 

prove to be fundamental when considering reusable and higher-

level aspects. Possibly, helping to structure in a very compact and 

easily maintained form a whole range of transformations. 

Parameterized aspects in turn will enable the definition of design-

space-exploration strategies, e.g., by enabling the evaluation of 

transformations/specializations driven by different values. 

2.7 Inner Aspects 
Inner aspects are aspects that run for each intersection of the 

(outer) aspect that encloses them. This notion allows testing other 

intersection points that can use information defined by a specific 

intersection of the outer aspect. Figure 7 presents more complex 

examples based on the notion of inner aspects. These insert code 

in a function to print the number of iterations of each innermost 

loop with a pre-defined pattern. For each such loop, one needs to 

insert a statement responsible for the counting, a statement that 

initializes the counting variable to zero, and a statement that prints 

the value to the standard output. A generic and reusable way to do 

this is through inner aspects that are executed depending on the 

conditions of the enclosing aspect. 

3. IMPLEMENTATION ISSUES 

Figure 8 outlines the flow of our system implementation currently 

under development. Aspect modules, strategies, and MATLAB 

code are specified in separate source files. A front-end parses the 

input MATLAB code and converts the obtained abstract-syntax 

tree into a specific IR (intermediate representation). The tool used 

is TOM [3], a high-level program rewriting framework that can be 

used to manipulate/transform an intermediate representation of the 

input MATLAB program. TOM accepts the definition of the rules 

and the rewriting strategies [2] and includes a pattern matching 

engine. Tags embedded in MATLAB code to specify joinpoints 

(e.g., %@here) are processed and embedded in the adopted IR 

and passed in this form by the MATLAB compiler front-end to 

the other tools in the compilation flow. 

1. function r=f1(...) 
2. ... 
3. for j = 1:1:N1 
4.    sum = sum + A(j);   
5. end 
6. ... 
7. for j = 1:1:N2 
8.    A(j) = A(j)/sum;   
9. end 
10. … 
11. end 

(a) piece of MATLAB code. 

aspect top 
// locate innermost loops with a given pattern 
select: { for <var> = 1:1:<const integer c1> <body b1> end } :: 
position innermost, <b1> // use of the loop body joinpoint 
identified by b1 
apply: insert { <this.name+this.id> = <this.name+this.id> + 1; } 
 :: execute before // before the loop body  
  inner aspect a1 
 select: {function *} // function header  
 apply: insert {<super.name+super.id> = 0;}:: execute after 
  end a1 
  inner aspect a2 
 select: {function ... <key k1> in {end}} :: position <k1> 
 apply: insert { 
  sprintf('loop executed %d', <super.name+ super.id>); 
 } :: execute before 
  end a2 
end top 

(b) inner aspects. 

1. function r=f1(...) 
2.   top_1 = 0; 
3.   top_2 = 1; 
4.   ... 
5.   for j = 1:1:N1 
6.      top_1 = top_1 + 1; 
7.      sum = sum + A(j);   
8.   end 
9.   ... 
10.   for j = 1:1:N2 
11.      top_2 = top_2 + 1; 
12.      A(j) = A(j)/sum;   
13.   end 
14.   … 
15.   sprintf('loop executed %d', top_1);  
16.   sprintf('loop executed %d', top_2); 
17. end 

(c) Code after weaving. 

Figure 7. The use of inner aspects. 

Data types and shapes are made available as symbol tables to the 

tools in the compilation flow. A transformation engine plays the 

role of aspect weaver, receiving the IR as input and generating a 

modified IR that includes the features specified by the aspect 

modules. The weaver is being implemented using the paradigm of 

strategic programming as provided by TOM. It determines the 

sequences of aspects to execute based on the aspect strategies. 

Other concerns, such as monitoring and code transformations, are 

also composed to the IR of the original MATLAB program 

through the weaver, which yields a modified IR made available to 

the subsequent tools in the compilation flow. This modified IR 

can include, e.g., representations of additional code. 

Code generators in the flow presented in Figure 8 include the 

MATLAB and C generators [8]. Each one is important for 



different facets of the approach. Generation of code also takes 

advantage of the TOM code rewriting capabilities. Ongoing work 

focuses on developing an optimized C generator from MATLAB 

descriptions. We intend the C generator to use certain aspects to 

produce more efficient code with respect, e.g., to memory usage 

or to execution time. 

Front-End 

(MATLAB to IR)

Weaver

Back-End 

(IR to MATLAB)

Back-End 

(IR to C)

MATLAB 

Program

Aspect 

Modules

Aspect 

Strategies

MATLAB 

Program
C Program

Strategies 

Management Unit 

(SMU)

IR + Data Types and Shapes

 

Figure 8. Environment under development. 

4. RELATED WORK 

Irwin et al. [6] describe AML, a system for sparse matrix 

computation that deals with crosscutting concerns such as 

execution time and data representation, using aspect-oriented 

programming principles [7]. AML allows programmers to write 

annotations regarding properties of sparse matrices separately 

from the main functionality. Readability and maintainability of 

the code is not adversely affected by non-functional aspects. The 

authors report that their AML codes have similar speed to a 

standard version, yet they are smaller and less complex. They 

propose an aspect, called “data representation” that is relevant for 

our work. This aspect defines five axes for representing data: 

element type, dimension, representation, ordering, and orientation. 

Aslam et al. [1] describe AspectMatlab, a language inspired on 

AspectJ that extends MATLAB with aspect-oriented features. The 

authors focus on describing the static flow analysis techniques 

used to reduce dynamic checks required in the woven code for 

monitoring, and for tracking the sparsity of manipulated matrices. 

AspectMatlab is thus geared towards scientific codes using aspect 

modules that define patterns-actions that support constructs such 

as loops, loop bodies, array accesses, and function calls.  

The primary difference between AspectMatlab and our approach 

is that we address aspect-oriented features not only able to help 

programmers to monitor runtime features, but also to evaluate 

different implementations of a single MATLAB specification. The 

central characteristics of our approach are powerful pattern-based 

advices and actions, and parameterization capabilities that 

improve aspect reuse. Both approaches need to deal with the 

future evolution of the base language, an issue that is particularly 

relevant in the case of proprietary languages such as MATLAB. 

Evolution can be more flexibly handled when keeping a strict 

separation between a MATLAB base and the aspects. 

Our proposal differs from the above efforts as the proposed 

aspects aim to help developers in exploring different 

implementations of a given MATLAB specification without the 

need to change the original code for each candidate optimization, 

thus avoiding the need to manage multiple hand-written versions 

of the base code. We believe that the majority of the proposed 

aspects are not suitable to be embedded in the original 

specification as annotations. Firstly, that would make the code 

less legible and less maintainable. Secondly, that would still 

require multiple code versions when exploring different data types 

for a given variable. Thirdly, some rules are intended to be 

applied globally, not just to a specific function. In our approach, 

explorations can be performed with the same specifications by 

employing different aspect rules as we use a declarative type of 

aspect that can be applied both locally and globally. 

5. CONCLUSION 

This paper presents an approach for specifying transformations of 

MATLAB programs in an aspect-oriented style, with a focus on 

optimization concerns. We describe a set of features for a domain-

specific language to program strategies, organized as aspect 

modules. Studies conducted so far suggest that the proposed 

features help developers to explore a number of concerns without 

“polluting” the original code and avoiding the need for multiple 

versions of the base program. Keeping a strict separation between 

a MATLAB base and new aspect-oriented features contributes to 

improved maintenance, readability, and reuse of both base 

programs and aspects. Work in progress includes studies about 

additional aspect-oriented features, development of the weaver, 

experiments on the implementation of the transformation engine, 

and implementation of the main concepts in our compiler 

framework. 
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