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This article presents an approach to enrich the MATLAB1 language with aspect-oriented modularity fea-
tures, enabling developers to experiment different implementation characteristics and to acquire runtime
data and traces without polluting their base MATLAB code. We propose a language through which program-
mers configure the low-level data representation of variables and expressions. Examples include specifi-
cally-tailored fixed-point data representations leading to more efficient support for the underlying
hardware, e.g., digital signal processors and application-specific architectures, without built-in floating
point units. This approach assists developers in adding handlers and monitoring features in a non-invasive
way as well as configuring MATLAB functions with optimized implementations. Different aspect modules
can be used to retarget common MATLAB code bases for different purposes and implementations. We val-
idate the proposed approach with a set of representative examples where we attain a simple way to explore
a number of properties. Experiment results and collected aspect-oriented software metrics lend support to
the claims on its usefulness.

� 2013 Elsevier B.V. All rights reserved.
1. Introduction

In MATLAB, features such as configuration of the low-level nu-
meric representation of variables, assignment of specific data types
and dynamic type specialization are directly supported by the lan-
guage. In simulation tasks, such features provide significant sup-
port for developers that need to explore non-uniform fixed-point
representations, monitor specific variables throughout a timing
window and include handlers to observe specific behaviors. How-
ever, these features are also extremely cumbersome, error-prone
and tedious to use. Each time they are used, developers are forced
to perform invasive changes on the base code, namely adding
‘‘temporary’’ new code that must subsequently be removed before
delivering the final version.

As MATLAB is typically used as a specification rather than an
implementation language, tools to translate MATLAB code to the
target programming language are important to achieve high-lev-
els of productivity and efficiency. However, in order to attain a
given desired efficiency level, the high abstraction level provided
by MATLAB requires that tools be guided by users. In fact, the
issues described above arise often in relation to automatic syn-
thesis of MATLAB specifications to a software language [1,2] or
a hardware description language [3]. In the steps for finding effi-
cient implementations, users have to conduct customized profil-
ing schemes, monitoring techniques, and data type and word-
length exploration, mostly through the invasive insertion of
new code.

In the past, multiple research efforts attempted to automate
specific implementation issues. For instance, the transformation
from floating- to fixed-point data types was conducted with
some restrictions to MATLAB specifications [3,4]. However, it is
usually claimed that the developer should have full control of
the development process. Data type conversions are not trivial
and usually require the intervention of the developers. Devising
data types and word-lengths requires complex precision and
accuracy analyses, which tend to become even more complex
when considering customized data types and word-lengths. Typ-
ically, developers of MATLAB models rely on the default MATLAB
data type (i.e., double precision floating-point) when often the
full precision is not required. In the implementation stages of
an embedded system, developers need to analyze the data type
and word-length trade-offs in order to produce efficient solu-
tions. Furthermore, when using customized word-lengths, devel-
opers may also have to explicitly define type conversions and the
resulting word-lengths for the operations dealing with those
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types, as the associated type conversion semantic rules are not
built-in in the programming language2. Even when this process
is assisted by tools, developers must explore and evaluate different
data type representations, often by modifying the base MATLAB
code and by simulating their effects on the precision of the system.
In addition, according to the system being targeted, the same
MATLAB code base may have different final implementations, forc-
ing the developers to maintain different code bases pertaining to
the same core functionality.

Since MATLAB is commonly used as a modeling/specification
language, most MATLAB code aims to maximize its scope of appli-
cability and dynamic configurability but at the price of unaccept-
able overheads for most common embedded computing
implementations. In addition, developers often need to evaluate
multiple algorithm implementations for a specific function, and
each of those evaluations requires modifications to the MATLAB
base code. An approach to provide different MATLAB versions from
the same input MATLAB code would provide an important mecha-
nism to avoid cumbersome, error-prone, code conversions and the
maintenance of different MATLAB versions.

The root cause of the aforementioned problems is lack of mod-
ularity for dealing with secondary concerns. Ideally, core functional-
ities would be represented in the MATLAB code while secondary
concerns, such as verification of the type and the number of the
arguments for a given call of a function, should be kept in separate
aspect modules as proposed in the context of aspect-oriented pro-
gramming (AOP) [5,6]. Such concerns are not supposed to be
implemented in the target embedded system and the developer
needs to remove (or unplug) them in the process of translating
the MATLAB code to the target programming language. Modular-
ization of such concerns allows us to keep the core MATLAB code
ready for translation to the target programming language, and thus
to be implemented in the target embedded system and to automat-
ically generate the generic MATLAB code used as a model. The gen-
eration of this generic MATLAB code is the responsibility of an
aspect weaver – a tool or compiler component that composes as-
pect modules to the other parts of the system.

Hence, an approach is needed to generate and maintain a clean
version of a MATLAB code. By clean (or unpolluted), we mean a
version of the MATLAB code that includes just the core functional-
ity, necessary for the system implementation. Clean code does not
include configuration code or secondary concerns needed only dur-
ing development, which should be kept in separate aspect
modules.

Specialization is important when implementing the MATLAB
application in the embedded system. This specialization can be lev-
eraged by an AOP approach to MATLAB. The removal of the afore-
mentioned secondary concerns can be approached as a
specialization. Examples include data type specialization – assign-
ing non-default data types to variables – and array size and shape
specialization – defining statically the size and the shape of an ar-
ray instead of including MATLAB code to get those parameters
dynamically.

In this article, we propose aspect-oriented extensions to MAT-
LAB to assist developers in system modeling and exploration of
specific features related to embedded systems’ implementations.
Our approach, which builds on our previous work [7], relies on
the principle of separation of concerns [8–10] to separately handle
data types and behaviors. One of the ensuing advantages is that a
single version of the specification (i.e., a MATLAB code base) can
be used throughout the entire development cycle without the need
for maintaining multiple versions – as is the case with existing
2 Even if they are part of the programming language, it is an advantage to make
possible the exploration of those rules, as for a specific implementation, we may
prefer to reduce accuracy and to use less costly operations and word-lengths.
technology. This separation facilitates the development, simula-
tion, exploration and implementation phases. The extensions we
propose can be used in other languages as well, namely ‘‘MATLAB
clones’’ such as GNU Octave3 [11] and Scilab [12]. Furthermore, pre-
liminary studies show that the use of aspect modules in the MATLAB
context improves the quality of MATLAB programs [13].

The main contributions of this article are:

– An aspect-oriented language to extend MATLAB models with
features for supporting aspect modules that separately enclose
concerns related to specialization, configuration, and
monitoring.

– An aspect-oriented approach to enable programmers to flexibly
explore a range of data type specializations, which includes
aspect-oriented rules to specify the semantic rules for data type
conversions and word-length assignments in operations using
different, possibly customized, data types.

– An approach designed to tackle the problem of managing multi-
ple implementations that depend on the target system, without
forgoing a ‘‘clean’’ version of the MATLAB high-level model.

The rest of the paper is organized as follows. Section 2 provides
a short introduction to the MATLAB programming language. Sec-
tion 3 describes the main motivation for our work. Section 4 pre-
sents the approach and describes the domain-specific aspect
language. In Section 5 we present a number of test cases per-
formed. Section 6 compares our approach to related work. Con-
cluding remarks are presented in Section 7.
2. The MATLAB programming language

MATLAB is a dynamic, interpreted, imperative programming
language mainly based on array data types and operations on those
types. It is widely used in scientific computing, control systems,
signal processing, image processing, system engineering, simula-
tion, etc. Mathworks – the company that developed and holds
the language’s rights – provides a complete integrated environ-
ment to develop MATLAB projects. The environment includes a
number of suitable debugging features. It includes Simulink, a vi-
sual, component-based environment suitable for simulation of dis-
crete and continuous systems. Several toolboxes (packages) are
available that include special functions and features in a number
of domains. Such packages make the language one of the preferred
choices to model and simulate complex systems. Over 1500 books4

dedicated to MATLAB attest to its wide adoption.
Like most interpreted languages (e.g., Perl and Python), MATLAB

does not require the declaration of variables. By default, the nu-
meric representation used is the floating-point data type with dou-
ble precision (64 bits, according to the IEEE standard 754 format).
Other supported numeric data types include integers (with 8, 16,
32 and 64 bits) and single precision floating-point numbers. MAT-
LAB supports other numeric representations by using specific tool-
boxes. They enable the assignment of specific data types and
operation properties (e.g., overflow mode) to MATLAB variables.
Useful features of MATLAB include operator overloading, function
polymorphism and dynamic type specialization. Function poly-
morphism enables the same function to be called with different
number and types of arguments. Dynamic type specialization en-
ables variables to represent different data types during runtime.
For instance, developers can simulate the same code by applying
stimulus with different data types.
3 GNU Octave: http://www.gnu.org/software/octave/.
4 http://www.mathworks.com/support/books/.

http://www.gnu.org/software/octave/
http://www.mathworks.com/support/books/


Fig. 1. MATLAB data types (known in MATLAB as classes) (source: Mathworks (http://www.mathworks.com)).
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MATLAB5 provides a number of features suitable for fast model-
ing such as the vast set of supporting packages (toolboxes), the
Mathworks simulation environment (including also Simulink) and
the expressiveness of the language as regards specifying operations
on array variables (e.g., matrix manipulations and operations).

MATLAB is a dynamic language, i.e., variables are not explicitly
declared and data types of the elements, size, and shape of array
variables are dynamically defined based on the runtime context.
By default, all data types are N-arrays using double precision (64
bits) data types. Arrays may have different dimensions, forming
the shape of the array variable. Arrays can store a single element,
vectors of elements, and matrixes of elements. Additional data
types supported by MATLAB (see Fig. 1) include arrays with heter-
ogeneous elements (known as cells), structures, strings, booleans,
and function-handlers. In addition to the double-precision float-
ing-point data type, MATLAB also supports single-precision data
types and integer (signed or unsigned) representations (with 8,
16, 32, and 64 bits).

A MATLAB program comprises functions (known as M-files)
and scripts. Functions have a name, arguments, and may have
zero or more return variables. Functions can be called without
passing all the arguments. Semantically, in MATLAB all function
arguments are passed by value. To save memory, MATLAB execu-
tion environments pass by value only those arguments that a
function modifies and by reference all the others. Scripts corre-
spond to files with MATLAB code and without specifying inputs/
outputs. Scripts can be also called in other scripts and in
functions.

With the exception of the variables declared as global, MATLAB
variables have local scope (function or script). A particular name
(identifier) may refer to a variable or to a script or a function (a
sub-function, a private function, or a function in the search path).
In some cases, a MATLAB execution environment or compiler
may have to postpone name resolution to runtime.

MATLAB also allows the definition of new classes. MATLAB clas-
ses can fall either in value classes or in handle classes. Both include
two sections: properties (where attributes are declared) and meth-
ods (where functions are located). Handle classes also include an
additional section named events. In this paper we do not consider
features relating to classes as most MATLAB code is not developed
according to the object-oriented paradigm.

Fig. 2 shows a MATLAB function that receives as argument an N-
array identified as x and returns an N-array identified as y. It rep-
5 http://www.mathworks.com/products/matlab/.
resents an algorithm to perform the Discrete Fourier Transform
(DFT) – a function widely used in signal processing systems. The
statement in line three creates an array identified as y with the size
of the array x and with all elements equal to zero – represented in
double-precision. This statement is not strictly needed as MATLAB
dynamically reallocates memory space to store the elements of y
during runtime, i.e., during the assignments in line 9. The state-
ment in line 6 creates an array named t with N values starting with
zero and equally spaced by 1/N. The for loop in lines 8 and 9 com-
putes and assigns a value to each k element of y, considering values
of k from 1 to N. The calculations performed in the expression serv-
ing as the argument to the function sum in the loop body (line 9)
are matrix-based calculations.

Fig. 3 illustrates in a first example a function to add two vari-
ables x, y. Depending on the input variables, the sum operation per-
forms an addition of two numbers or additions of the elements of
two arrays. Thus, the result can be a simple number or an array of
numbers resulting from the addition of the elements of the x and y
arrays in equivalent positions. Fig. 3 shows two further examples
to add two variables. Note that the three examples may accomplish
the same result but that depends on the shapes of the variables x
and y.

MATLAB does not distinguish between accesses to variables and
function invocations, e.g., sin(1) can be an invocation to the sin
function with one as argument or an access to the first element
of the array variable sin. When there is an assignment to sin, i.e.,
a statement defining sin as a variable (e.g., sin = 2;), before the ac-
cess sin(1), a plain reference to sin represents the access to the first
element of the array variable sin. In some cases, we can distinguish
between the two by performing static name resolutions. Other-
wise, a name can only be resolved dynamically.

Fig. 4 illustrates an example that uses function handlers (de-
noted by @) where an argument may refer to a function or to a var-
iable. Function handlers can be also used to define functions
embedded in the MATLAB code as in the following MATLAB state-
ment: sqr = @(x) x.^2;. In this case, one can use sqr as the function
to calculate the square of each element in the array variable passed
as argument.

3. Motivation

Uses of MATLAB in embedded systems range from the modeling
of specific system components to the development of entire appli-
cations. Usually, developers start by modeling the core parts of the
application in MATLAB, leveraging its high-level matrix-oriented

http://www.mathworks.com
http://www.mathworks.com/products/matlab/


Fig. 2. Simple MATLAB example (function to perform a Discrete Fourier Transform,
source: [1]) – original code.

Fig. 3. Three different possibilities to add two variables.

Fig. 4. Example where an identifier refers to an array variable or to a function
depending on the path taken.
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and data type abstractions. The MATLAB environment is next used
to simulate those core parts of the applications. The simulation
may involve the interface of the cores to models of other system
components or to real data traces previously provided. When work
on the MATLAB model is over, developers need to translate the
MATLAB code (or the parts to be mapped to the target system) to
a native programming language (such as C). Although many efforts
were carried out to automate this process, there is usually the need
to allow developers to evaluate different specializations (e.g., of
data types). These evaluations are much easier to do by simulation
than by hand-coding. For efficiently supporting specialization, it is
important to monitor variables and to evaluate different data type
assignments. At the end of this process, an optimized MATLAB code
version is used for implementation. Approaches that assist in this
process comprise important contributions to increases in
productivity.

There are many cases relating to the presence of code associated
to secondary concerns that needs to be removed before the final
implementation. This code can be encapsulated in aspect modules
that can be composed through an aspect weaver. Multiple versions
of the core, or base, code can be generated, e.g., one with the sec-
ondary code, another with type specialization for the final imple-
mentation. Our analysis of crosscutting concerns over MATLAB
code repositories [14] discusses the intensive use of MATLAB
built-in functions and variables responsible for acquiring runtime
information about the size of arrays, verification of arguments of
a function, data type conversions, etc. In a previously study [14]
we conclude that the most common MATLAB secondary function-
alities include:

� Messages and monitoring: messages to the user, warnings,
errors, graphics visualization, monitoring, etc.
� I/O data: reading data from file, writing data to file, saving an

image, loading an image, etc.
� Verification of function arguments and return values: default

shapes and values for the arguments that may not be passed
in certain function calls
� Data type verification and specialization: check whether a var-

iable is of certain type, configuring the assignment of data types
to variables, etc.
� System: code that verifies certain system environment proper-

ties, to pause execution, etc.
� Memory allocation/deallocation: The use of the ‘zeros’ function

is most of times used to allocate a specific array size. This avoids
the reallocation for each new item to be stored in an array. Use
of the ‘clear’ instruction that appears in some MATLAB functions
is another example.
� Parallelization: use of parallel primitives such as ‘parfor’;
� Design space exploration: code to explore different specializa-

tions, different algorithms to solve the same problem, to find
the number of iterations needed (e.g., to be above a certain
precision).
� Dynamic properties: constructing inline function objects

(inline), executing a string containing MATLAB expressions
(‘eval’), etc.

Secondary functionalities such as monitoring, data type special-
izations, and configuration features have an important role when
developing models and code for embedded systems. Based on that,
we centered our approach on those secondary functionalities with-
out, however, loosing its applicability to other ones. The following
subsections briefly describe monitoring, data type, and configura-
tion concerns.

3.1. Monitoring

Monitoring can be used during the analysis phase enabling
developers to acquire additional information to the typical infor-
mation provided by profiling tools. Monitoring specific aspects of
a MATLAB program can be important to analyze behaviors, value
ranges of variables, number of accesses to matrix elements, con-
trol-flow paths taken during program execution, to acquire the
accuracies when using specific data types, etc. Some monitoring
aspects can be also important to acquire more information when
dealing with legacy MATLAB code. An analysis of the resulting
behaviors and execution characteristics can be of paramount
importance to optimize code, to attain efficient implementations,
and even to detect coding errors. However, sophisticated tracing,
logging, and monitoring need some sort of code injection.

The monitoring capabilities assist developers in verifying the
MATLAB models and to enrich profiling with customized informa-
tion. The two following examples, presented in Figs. 5 and 6, illus-
trate monitoring for the two previous contexts.

Fig. 5 presents an example taken from a MATLAB model of a
Proportional Integral Derivative (PID) controller previously used



Fig. 5. Example of MATLAB code for monitoring.

Fig. 6. Monitoring range values: (a) original MATLAB code; (b) MATLAB code after
code insertion for monitoring value ranges (inserted code in italic).

Fig. 7. Example of a MATLAB script – Test of dft function: (a) with double-precision
data types; (b) with a uniform fixed-point representation.
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in [15], for monitoring by plotting signal variables (y and ref) and
displaying parameters (kc, ti, td, ts). This monitoring code was used
by the developer when designing the model for the PID controller.
It helped him/her to verify the behavior of the controller.

For example, computing the range (minimum and maximum
values) of variables in MATLAB code can be important to acquire
information that can be used to define the word-lengths of vari-
ables. Fig. 6 shows an example for monitoring the range for vari-
ables top and bottom in the MATLAB code in Fig. 6(a). As
illustrated in Fig. 6(b), a call to the range_find function is inserted
after each assignment to the target variable.
3.2. Data types and shapes

As a default, MATLAB uses a matrix-oriented floating-point
number representation with double precision. Thus, we need to
specialize data types and shapes to avoid the runtime overhead
of generic implementations. MATLAB does not support the notion
of a scalar variable, just arrays of a single element. Representing
this information in aspect modules may be important to comple-
ment techniques for type and shape inference, allowing a flexible,
developer-guided, translation to native programming languages as
well as yielding more efficient solutions – both in terms of code
size and execution time.
Some implementation requirements entail the use of case-spe-
cific bit-widths to represent numeric data (integer and real num-
bers) so as to obtain the required accuracy. Non-standard bit-
widths can be exploited, e.g., to save resources and to speedup per-
formance through specialized and lower latency arithmetic opera-
tors [16] or through sub-word level parallelism [17]. In several
digital signal-processing systems, the use of fixed-point arithmetic
is common practice, due to the resulting efficient support, e.g.,
when targeting Digital Signal Processors (DSPs) devoid of hardware
floating-point units or specific hardware. Examples include imple-
mentations based on Field-Programmable Gate Arrays (FPGA). Spe-
cific architectures may also use specialized data types (e.g.,
floating point arithmetic over data types not defined by the IEEE
754 standard). Such implementations require multiple tests to
identify the bit-widths that yield the required accuracy (acceptable
quantization errors) and behavior. Several authors proposed meth-
ods to automatically translate floating- to fixed-point representa-
tions (see, e.g., [3,4,18–21]). Some methods rely on profiling,
while others rely on static schemes. Although this is an important
topic, the translation usually serves just to assist the designer,
since no method is fully automatic and none can be applied with-
out restrictions. In certain cases, designer experience and knowl-
edge of the system requirements (which may go beyond
accuracy, e.g., relating to dynamic range or precision) is the key
factor to the success of the final implementation. Therefore, refine-
ment of simulation and specification play an important role at both
the data and the behavioral levels.

The MATLAB environment includes special packages to manage
fixed-point representations. MATLAB provides two toolboxes for
fixed-point computations: Filter Design Toolbox and Fixed-Point
Toolbox. Filter Design provides functions (quantizer and quantize)
to quantize values represented as, e.g., doubles in fixed-point rep-
resentations. Fixed-Point provides fixed-point data types and func-
tions. Fi objects can be defined to represent a number of fixed-
point properties and can be associated to variables and to arithme-
tic operations.

Certain exploration features require specific changes in the code
to be implemented. Such changes are error-prone, tedious, and dif-
ficult to maintain. In many cases, producing each new instance of
the space being explored requires manual adaptations of large sec-
tions of code. Typical changes include insertion of statements,
addition of function arguments, configuration of different data
types, and definitions of global variables. Often, the developer must
manage multiple versions of the same core specification.

To illustrate, consider as an example the MATLAB code from
Fig. 2. A simple MATLAB script to test it is shown in Fig. 7(a). To
use uniform fixed-point data types in the test, we merely add a line
of MATLAB to the test program – see Fig. 7(b). In this test, we use
fi(x, 1, 9, 5), which constructs a numeric fixed-point object with va-
lue x, signed representation, 9-bit word length, and 5-bit fraction
length. However, to test the function using fixed-point representa-
tions with specialization of every variable and operation, we need
to modify the original function, as shown in Fig. 8. Note that the
fixed-point representations used in the example are included here
as a general example and have not been necessarily exploited to
fulfill a specific accuracy or behavior.

During the design phase, we usually need models that closely
resemble implementation details. As an example, it may be neces-
sary for computation results to be with fixed-point numeric repre-
sentations, to validate the final implementation using a
comparison between Hardware Description Language (HDL) and
MATLAB simulations. Modeling with specialized fixed-point repre-
sentations is important because such implementations are usually
needed to satisfy requirements such as low power dissipation, low
energy consumption, better performance and fewer hardware
resources.



Fig. 8. Simple MATLAB example – code needed to model specialized fixed-point
bit-widths.
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Note that this kind of data type specialization is also needed
when object-oriented programming is used. Even if specific
built-in class support for fixed-point data types is used, there is al-
ways the need to directly specify the required data type specializa-
tions. Though we do not focus on the object-oriented case, we
believe our approach can be used in that context as well. Testing
that hypothesis is left for future work.

3.3. Configuration features

The configuration features targeted by our approach often
arises when multiple, different implementations of a given func-
tion must be stored and managed. As an example, consider arith-
metic division that can be implemented with look-up tables,
iterative algorithms, or a combinatorial divisor. Each implementa-
tion may affect the overall system accuracy differently. Such sys-
tems require modeling prior to implementation, which entails
changes in the original code giving rise to multiple versions of
the code. Configuration features ameliorate the management
problem. For instance, it would be helpful if developers could
specify the implementation used by a simulation in a given devel-
opment phase without changing the base MATLAB code. Using
the modularity provided by an AOP approach, at a specific devel-
opment stage, developers can opt to the use of a certain algo-
rithm implementation by specifying that option through an
aspect.

4. Aspect-oriented approach

Our approach envisages the usage of two separate groups of
source files to model a given system: (1) MATLAB code represent-
ing the primary behavior and (2) rules written in our aspect-
oriented language. Aspect-oriented rules are mainly used to (a)
reassign data types to variables in the MATLAB code, (b) introduce
handlers and monitoring features, and (c) configure a function with
a given implementation. A rule aims to facilitate development of
embedded systems that require refinement of specific features re-
quired for implementation of the original specification. The pro-
posed rules have declarative semantics as opposed to the
imperative semantics of MATLAB. In our language, an aspect en-
closes one or several such rules, i.e., one rule is part of an aspect
module. The proposed rules can be divided in the following groups
according to their semantics:
� Monitor/logging rules: Help users observe the runtime character-
istics of MATLAB variables. They include special behavior
related to monitoring, such as returning the maximum value
of a specific variable during the simulation period.
� Handler rules: Are a kind of assertions that ensure certain condi-

tions hold during the simulation period.
� Type assignment rules: Are used to bind different types to the

variables of the MATLAB specification, to specify type semantic
rules in expressions, and to deal with name resolution.
� Configuration rules: Are used to statically bind a different imple-

mentation to a given function or operator.

The above rules are proposed based on observed needs while
developing and implementing real embedded systems. The rules
are represented by new specific constructs, e.g., to specify type
assignments and to insert MATLAB code segments in specific loca-
tions. Usually, these segments add behavior rather than modifying
existing functionality and can be, e.g., instructions for data alloca-
tion or display. Concerns from other categories may be proposed,
but are out of scope of the present article. Note, however, that
although we focused our current approach on the support to the
rules previously described, the approach can be used to represent
other concerns that can be expressed through insertion of sections
of code.

Fig. 9 presents the outline of the proposed system. As referred
previously, aspect-oriented rules and MATLAB code are specified
in different, separate files. A transformation engine – the aspect
weaver – is responsible for generating new MATLAB code that in-
cludes the features composed according to the rules added to the
system. The current implementation of the weaver uses the MAT-
LAB compiler framework previously presented in [2]. The frame-
work makes use of a strategic programming approach – Tom
[22,23] in this case – to transform the intermediate representation
(IR) of the input MATLAB code. The weaving process presented in
this paper is static, i.e., applied at compile time and consists of
three stages. A first stage, named mat2tir, is responsible for trans-
forming MATLAB input code into a Tom-based IR (tir) [22,23]. A
middle stage named tir2tir modifies the input tir into according
to the aspect rules fed into the system at this stage. Finally, a stage
named tir2mat produces a MATLAB representation of the modified
tir.

A library of MATLAB functions is fed into the system, compris-
ing custom MATLAB functions that may be used in aspect rules.
Although we consider here a MATLAB to MATLAB weaver, our
approach can also be used to control the translation of MATLAB
to other programming languages such as C, or hardware descrip-
tion languages such as VHDL or Verilog. An example is the cur-
rent C code generation support provided by a stage, named as
tir2c [2].

4.1. The aspect-oriented language

The aspect-oriented language supports the specification of join
points by means of specific patterns of code, code locations and
specific events traceable to specific code constructions, such as
function calls and accesses to array elements. An excerpt of the
grammar of the language is presented as an appendix to this arti-
cle. According to the classification proposed by Stein et al. [24], the
conceptual model for join point selections is based on control
flows.

The pattern language includes a number of keywords to iden-
tify some properties (see Table 1). Some of those keywords just
require simple pattern matching at the source code level. How-
ever, to identify calls to functions in the MATLAB code, a dy-
namic analysis must be performed to distinguish between
function calls and array accesses. We use a set of simple rules



Fig. 9. Outline of the MATLAB-based system enhanced with aspect-oriented rules.

Table 1
The properties currently considered.

Property Description

<var> Identify variables in the MATLAB code
<call> Identify function calls in the MATLAB code
<function> Identify functions in the MATLAB code
<tag> Identify tags (e.g., @label) in the MATLAB code using MATLAB

line comments (they start with %)
<program> Identify all the MATLAB files of a given program
<key> Identify MATLAB reserved keywords in the code
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and delegate such distinctions to the runtime identification ([25]
uses a similar approach). The resolution is based on the follow-
ing rules:

� Assignments to identifiers require those identifiers to refer to
array variables or functions if the identifier in the right hand
side is preceded by ‘@’.
� Use of identifiers is considered to refer to variables if there are

only definitions (assignments to the variable, declaration of that
variable as global) of that identifier reaching that particular use.
In the case of multiple definitions without name resolution
reaching an use, the identifier may refer to a function or a var-
iable depending on the specific branches taken.
� Uses of identifiers followed by ‘(‘. . .’)’, where non-integer con-

stants and strings are used as arguments, always refer a func-
tion call.

Fig. 10 illustrates the use of the property key to identify
specific MATLAB keywords in the code. They are specified as
a set of keywords: {for, while, if, end, else}. The aspect rule pre-
sented in Fig. 10 drives the weaver to insert fprintf statements
for each keyword of the set in the code being analyzed. Those
fprintf statements will trace blocks of MATLAB code during
runtime.
The join point model supported by the language was designed
with the aforementioned tasks in view (e.g., monitoring, logging,
handling, type-assignment and configuration). Its constructs –
call, function, key, program, type and var – are static in nature.
Nevertheless that does not preclude future work extending them
so that they can be used as clauses constraining the set of join
points captured by the other part of a pointcut expression. This
would be similar to what happens to, e.g., the args clause of As-
pectJ, which can be used both to specify argument types and to
constrain the join points to just those whose number of argu-
ments match the args clause. In this paper, the clauses are used
in ‘‘static mode’’ only.

Our aspect-oriented language uses the identifier (id) attribute
to pinpoint where each join point occurred. Fig. 10 shows an
example of an aspect rule using indexing. This rule allows the
weaver to insert code to trace the code blocks where each pro-
gram execution passes (this can be helpful for debugging pur-
poses and for detecting and localizing faults). The statement in
line 2 of Fig. 10 produces as many key elements as the number
of join point shadows related to the elements in the join point
selectors in the set {for, while, if, end, else, elseif}. The use of
the attribute id (line 3) allows the weaver to insert a distinct
number corresponding to each occurred join point shadow. This
is helpful to represent the particular join point. For instance,
Fig. 11(a) shows an aspect rule which results in the insertion of
MATLAB code to count the number of times the execution of
the program passes in the body of each FOR-type loop in the
code. The attribute id (line 5) is used in this aspect to allow the
inclusion of a different variable for each join point of type for (line
2). Fig. 11(b) shows a simple example highlighting the code
resulting from the weaving process when this aspect rule is
applied.

Other attributes being currently used are the get and set attri-
butes of the var join point selector. They can be used to select
uses (reads) or definitions (writes) of variables, respectively.
Extending the support of other attributes will increase the
potential of the language to express customized monitoring
rules.

Fig. 12(a) shows an aspect rule that results in the insertion of
MATLAB code to count the number of times the execution of the
program passes in two specific locations defined with the tags
‘‘@lab1’’ and ‘‘@lab2’’ in the code. As the counting must take into
account the initialization of each variable, the rule uses the
dependent constructions to specify the locations of each initiali-
zation (‘‘@lab3’’ and ‘‘@lab4’’). This example also includes the
insertion of two statements to print the information related to
the values stored in each counter variable. These two print state-
ments are placed after the tags ‘‘@lab5’’ and ‘‘@lab6’’.

As illustrated in the example of Fig. 12(b), a different variable is
used for each count and each variable is initialized, incremented,
and reported in three different locations. To preserve the names
of the variables in each of these locations, we need to use the
dependent construction and tag identifiers (Fig. 12(a)). Note, how-
ever, that this aspect rule can be replaced by two different aspect
rules (each one similar to the aspect rule illustrated in Fig. 11(a)),
one per counter variable. However, the expressiveness of the syn-
thetic mechanism proposed by the aspect rule in Fig. 12(b) would
be lost.
4.2. Aspect-oriented rules

Type assignment and configuration comprise one of the most
important categories of functionality for the aspect modules
from the proposed approach. Using MATLAB, users start with a



Fig. 10. Aspect rule to insert code to trace executed code blocks.

Fig. 11. (a) Aspect rule to insert code to count executed code blocks; (b) example of
MATLAB code showing (in italic) the code statements inserted according to the
aspect rule.

Fig. 12. (a) Aspect rule to insert code to count the number of times the execution
passes in two different locations; (b) example of MATLAB code (with tags) showing
in italic the code statements inserted according to the aspect rule.
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specification using double precision floating-point data types (the
default MATLAB numeric data type).

To illustrate, the following MATLAB code represents a multipli-
cation of two variables, previously assigned to constants. All the as-
signed and calculated values of this example are represented as
doubles.
a = . . .;

b = . . .;

. . .

c=a⁄b;

Note that in MATLAB an operation using two int16 type oper-
ands produces a result represented by a int16 type. If we wish to
test the code with integer data types, e.g. of 16 bits, the original
code must be changed to the following:

a=int16(. . .);

b=int16(. . .);

. . .

c=a⁄b;

Using our approach the original code is kept as it is and we only
need to add an assignment rule in an aspect file:

foreach var in program do set type = int16; end

This rule provides the transformation engine with the code
needed to assign the type int16 for each variable from the original
code. In case we need to simulate the original code using differ-
ent data types for each variable, we just need to use the rules
below.

foreach var in program:{a,b} do set type=int16; end

foreach var in program:{c} do set type=int32; end

In this case we are specifying the following MATLAB code:

a=int16(. . .);

b=int16(. . .);

. . .

c=int32(a)⁄int32(b);

In such cases, applying aspect-oriented rules may entail the
decomposition of arithmetic expressions into sub-expressions in
order to apply different rules to each sub-expression. Suppose we
have the following statement in a MATLAB specification:

a=b⁄c+d;

To bind different specialized fixed-point representations to the
sub-expressions computed by this statement, we need to change
the original code to:

v1=b⁄c;
a=v1+d;

Then, each variable in the above assignments can be bound to
a specific fixed-point data representation. Although this step is
relatively straightforward, it requires changes in the original
code, making it significantly less legible – and possibly less gen-
eral. To address this problem, we provide a decomposition rule
telling the transformation engine to decompose a given expres-
sion into the specified sub-expressions. An example of this kind
of rule is:

with statement=00a=b⁄c+d;00 do
decompose {v1=b⁄c; v2=v1+d; a=v2;};

end

This way, we can now provide type assignment rules to each
variable (a, b, c, d, v1 and v2). Note that the statements within



Fig. 14. Quantification rule applied to the function from Fig. 2 for variable
(specialized) fixed-point representation.
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brackets in the decompose command must be correct MATLAB
code with the same behavior as the original expression.

Monitor type rules may help developers by including observing
behavior without changing the original MATLAB code. Examples
range from monitors to the data sent to a file during a write to
the values of specific variables during simulations. For instance:

foreach var in program do

insert.after: print(file:0<var>.dat0, <var>);

end

In some cases, we may want to register the maximum and min-
imum values assigned to a variable, e.g., when exploring bit-width
analysis. This exposes the number of bits needed to represent cer-
tain values. Adding this behavior to the original code may require
the use of global variables and the insertion of specific code to
compute the maximum and minimum values for each assignment.
This behavior is usually needed only during the development
stages and must be latter removed. With our aspect-oriented rules,
such behavior is kept separate from the original MATLAB code and
rendered (un)pluggable. For instance:

foreach var in program do

insert.after: print(screen, <var>:0max0);

end

Handler rules can also help developers to expose the occurrence
of specific values in variables. Example:

if func1:a > 100

print(screen, 0warning: value of func1:a exceeds:

0,100);

end

Note that handler rules are similar to assertions.
Finally, configuration rules are used to assign a different imple-

mentation to an (arithmetic or logical) operator or a function. For
instance:

with func1 = f1 use configuration my_f1; end

Using the example from Fig. 2 as a basis, Fig. 13 illustrates a rule
to bind all variables of the original ‘‘dft’’ function to a fixed-point
uniform representation of <1,10,5> (10-bit signed fixed-point rep-
resentation, using 5 bits in the fractional part). Fig. 14 shows an
example of a rule to bind each operand of the ‘‘dft’’ function with
a specialized fixed-point representation according to the result
shown in Fig. 8. Note that expressions already decomposed in
the original code do not need decomposition commands in the as-
pect-oriented rules.

Variables can be identified by their name preceded by the name
of the function as in func1:a for variable a or as func1:{a,b} for vari-
ables a and b. The with construct obviates the use of the function
name. It is illustrated in the example with function = dft do in
Fig. 14.
Fig. 13. Quantification rule applied to the function presented in Fig. 2 for uniform
fixed-point representation.
Each rule may have one or more commands. The commands for
each aspect rule are executed in the sequential order in which they
appear in the aspect. In the case of conflicts due to overlapping
commands, the last command prevails. Fig. 15 shows some exam-
ples of the proposed rules. To modify the ordering by which the
rules are evaluated, one can use an apply statement (Fig. 15, line
1), which allows a particular order to be specified.

The Monitor1 rule in lines 4–23 of Fig. 15 illustrates the moni-
toring. The rule starts by defining a set consisting of variables a,
b, and c (line 5). The first foreach (lines 6–9) specifies the insertion
of a print to the screen of the value of each variable in the set each
time there is a write (attribute set in line 6) to that variable. The
second foreach (lines 10–12) expresses an insertion of a print to
the file ‘‘data.txt’’ of the value of each variable, each time there is
a write to the variable. The last two foreach constructs (lines 17–
22) specify the insertion of a print to the screen of the maximum
and minimum values, respectively, of the variables, each time
there is a read (attribute get in lines 17 and line 20) of the variable.

Rule assignment3 (lines 25–34) starts by defining the data type
fixed1 (line 26) which represents signed fixed-point values with 10
bits of word-length and having four bits of fraction. Line 27 defines
the real data type as a single precision floating-point data type. The
three foreach constructs of the rule express the assignment of all
variables in the program as real (lines 28–33), all vars in the mod-
ule2 function as fixed1 (lines 30–31), and all variables in module3
function as fixed1 (lines 32–33).

Rule handler1 (lines 36–40) monitors variable A in function
func1 and specifies the output of a warning in case the value of A
exceeds 100 (lines 37–39). Note that in the current version of the
weaving, it is up to the user to apply this rule to MATLAB variables
representing scalars (i.e., matrices of 1 � 1).

Rule configuration1 (lines 42–47) shows two configuration ac-
tions. The first action (lines 43–44) specifies the use of function
f3 for the calls to f2 from function f1. The second action (lines



Fig. 15. Examples of aspect-oriented rules.

Table 2
Data types and the corresponding parameters.

Types Parameters Description

int w Wordlength
s Signed or unsigned

fixed s Signed or unsigned
w Wordlength
f Fraction length

float s Signed or unsigned
m Mantissa length
e Exponent length

all max Maximum value represented
min Minimum value represented
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45–46) specifies calling function myDIV for the division operators
(‘‘/’’) from f2. Although the current accepted configuration rules
are simple, they are helpful when one needs to evaluate different
implementations of specific functionalities, be they represented
as functions or operators.

4.3. Type conversion rules for expressions

Usually, when using customized data types, it is the responsibil-
ity of the user to express the data types resulting from operations
involving customized data types. This burden can be avoided by
using built-in data type conversion rules. However, it is important
to allow subexpressions to specify specific data types, which gives
users the option of using lower accuracy types when maximum
accuracy is not needed. This is common when using fixed-point
customized data types as the word-lenghts needed to preserve
accuracy may impose a large software and/or hardware overhead.

In the presence of expressions with more than one operation,
one way to specify specific data types for the results of the subex-
pressions is to resort to expression decomposition and assign a
specific data type to each subexpression that results from the
decomposition. This is illustrated in Fig. 14. This achieves the in-
tended effect but entails modifying the expressions and references
to auxiliary variables. It is, however, the scheme to apply when in
some expressions one needs to specify particular data type assign-
ments, not possible to address with the considered generic data
type conversion rules.

An additional option is the specification of generic data type
conversion rules. This is by default the preferable option. Our pro-
posed aspect language includes a scheme to specify the semantic
rules to be applied to each operation in expressions based on the
data types presented in Table 2. Note that the floating point data
types only consider the single and the double precision representa-
tions specified by the IEEE Standard for Floating-Point Arithmetic
(IEEE 754). The semantic rules expressions considered are of the
following type:

<operation> 00<op>00 <type> <id>:: = (<type> <id>)

[<type> <id>, <type> <id>]

The following statement is an example of the header of a
semantic conversion rule to be associated to ‘‘+’’ operations involv-
ing a float and a fixed operand. It specifies that the resulting data
type should be represented as a float:

operation 00+00 float f1:: = (float f2) [float i1,

fixed f3]

The identifiers in the expressions are used in the semantic rules
and the parameters (illustrated in Table 2) can be used as fields of a
given identifier as in the examples: f3.w, i1.max, and f1.e.

Fig. 16 illustrates a simple set of semantic rules to deal with a
number of arithmetic operations. The main idea is to allow the
developer to use semantic rules defined in the library of an aspect
or to define and evaluate custom semantic rules. The rules include
the possibility to specify commutative operations. This avoids the
specification of all possible combinations having two different data
types as operands. Fig. 17(b) shows an example of applying the
semantic rules presented in Fig. 16 to the expression and data
types shown in Fig. 17(a).

Fig. 18 shows two different semantic rules for multiplications
involving fixed-point data types. In the first case (Fig. 18(a)) the
multiplication of two operands in fixed-point representation does
not loose precision because the resulting value is represented by
a fixed-point representation with integer and fraction bit-widths
given by the sums of the respectively bit-widths used in the input
operands. In the second case (Fig. 18(b)) the precision used to store
intermediate results (i.e., results of the sub-expressions in an
expression) is the same as the precision used to store the result
of the expression. With this approach, the developer can explore
different semantic rules involving operations and data types. Note,
however, that this approach assumes all arrays involved are homo-
geneous as regards element types.

Fig. 19 illustrates the assignment of fixed-point data types to
variables of the dft function presented in Fig. 2 considering the
use specific semantic rules (sentence use semantic1;) defined with
our aspect-oriented language. In this case, the semantic rules are
the ones partially specified in Fig. 16. Note this is a distinct case
from that presented in Fig. 14, where a decomposition of the
expressions ‘‘y(k) = sum(. . .);’’ is carried out to assign customized
data types to each subexpression.



Fig. 16. Examples of semantic rules for data type conversions.

Fig. 17. Semantic rules example: (a) MATLAB code with an expression; (b) resulting
code after applying semantic rules.

Fig. 18. Two examples of different semantic rules for fixed-point multiplications:
(a) intermediate results with the precision required to store the result of the
multiplication; (b) intermediate results using the precision used to store the result
of the expression.

Fig. 19. Quantification rule applied to the function from Fig. 2 for variable
(specialized) fixed-point representation using semantic rules defined with the
aspect-oriented language.

6 A copy of the MAT2C benchmarks, previously existent at http://www.ece.
northwestern.edu/cpdc/pjoisha/MAT2C/, can be downloaded from: https://svn.
strategoxt.org/repos/octave/octave-xmpl/mat2c-benchmark/.
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The aspect-oriented extensions we propose also allow to
‘‘clean’’ MATLAB code by migrating code related to non-functional
concerns (e.g., code to make a function more generic, code for mon-
itoring, code to print results) to aspect rules. This yields less ‘‘pol-
luted’’ MATLAB code and adds functionality required when using,
e.g., a MATLAB to C compiler for mapping to an embedded system.
5. Validating examples

To validate our approach, we applied it to a number of MATLAB
programs. We focused on the following five aspects:

� Monitoring for range value computation. This can be used to
acquire the minimum word length of variables, e.g., the word
length of the integer part of fixed-point representations;
� Tracing function calls, executed code blocks, number of itera-

tions in loops, etc. This can be used to identify and locate soft-
ware faults;
� Counting occurrences of specific operations, calls to a given

function, number of times a variable is read or written, accounts
of floating/point multiplication executions, etc.
� Data type conversion, e.g., to convert double precision to single

precision or to fixed-point representation.
� Exploration of different configurations for a function. This can be

used to evaluate trade-offs between implementation character-
istics (e.g., precision vs. execution time).

In the following sections, we illustrate our approach with the
following MATLAB codes: a program (pid) [15], three functions (lat-
nrm, fft, dft) translated to MATLAB from codes taken from [26,27]
and a repository with 26 MATLAB functions – mat2c6.

5.1. Monitoring and instrumenting

Profiling is an important task for optimizing applications. In
addition to the computation of the percentage of overall execution
time spent per function in the application (obtained by current
profiling tools such as gprof or profiling), there are many other sit-
uations in which profiling is useful. For instance, finding the range
for each variable in the program, as used by tools previously pro-
posed [18]. Here, we use our MATLAB aspect-oriented approach
to insert monitoring points that compute the range (minimum
and maximum values) of variables in MATLAB code.

With a simple aspect description such as that shown in Fig. 20,
it is possible to specify the monitoring of the range of each variable
in a program run. Applying this rule to the code of latnrm (32nd-or-
der Normalized Lattice filter processing 64 points) – see Fig. 6(a) –
yields the code shown in Fig. 6(b). Fig. 21 shows the trace obtained
after weaving and running the function latnrm.

Table 3 presents the metrics of a number of examples in which
the proposed approach was applied. It includes the number of join

http://www.ece.northwestern.edu/cpdc/pjoisha/MAT2C/
http://www.ece.northwestern.edu/cpdc/pjoisha/MAT2C/
https://svn.strategoxt.org/repos/octave/octave-xmpl/mat2c-benchmark/
https://svn.strategoxt.org/repos/octave/octave-xmpl/mat2c-benchmark/


Table 3
Results of applying aspects for a number of benchmarks (#LOC represents the number
of lines of effective code statements).

Metric MATLAB code

range
finder

Data type
assignment

latnrm dft fft mat2c
repository

latnrm pid

1. #join point
shadows

20 19 44 386 19 89

2. #LOC before
weaving

19 24 56 506 19 268

3. #LOC after
weaving

31 43 100 892 33 519

4. #variables
monitored

13 13 30 254 n/a n/a

5. #functions
affected

1 1 1 26 1 13

6. #transition
points

39 37 86 760 56 119

7. aspectual
bloat

1.50 2.38 5.50 48.25 2.33 5.98

8. tangling
ratio

2.05 1.54 1.55 1.50 2.95 0.44

Fig. 20. Aspect rule to insert code for determining in runtime the range values for
each variable in the code.

Fig. 21. Report results of range values obtained for each variable in function latnrm
after executing the woven code.
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point shadows [28] – points in the source code that relate to a join
point during program execution – when considering the aspect re-
lated to the insertion of code for ‘‘range finder’’, the number of lines
of MATLAB code (LOC), respectively before and after the weaving,
the number of variables monitored in each of the examples. Line
(7) in Table 3 shows the reduction in bloat due to tangling – a metric
proposed by Kiczales et al. [28] and called aspectual bloat in this pa-
per. It compares the AOP and non-AOP versions of a system, using
Eq. (1). It measures the degree to which the aspects are more con-
cisely coded in the AOP-based implementation than in a non-AOP
based implementation. Any number greater than 1 indicates a po-
sitive outcome of applying AOP. Aspect code is the code inserted
due to aspects.

aspectual bloat ¼ LOCðcode after weavingÞ � LOCðoriginal codeÞ
LOCðaspect codeÞ

ð1Þ

The tangling ratio metric was proposed by Lopes [29] and is based
on the idea that the parts of the code associated to crosscutting con-
cerns are ‘‘shadowed’’7. The metric counts the transition points, i.e.,
the points in the source code where there is a transition from a shad-
owed area to a non-shadowed area and vice-versa. Tangling ratio is
calculated using equation (2).

tangling ratio

¼ #transition points between aspect code and original code
LOCðoriginal codeÞ

ð2Þ

Tangling ratio gives an idea of both the relative efforts a developer
may need to add the code to the application and of the ‘‘code pollu-
tion’’ degree. Values for this metric start from zero (no tangling) and
have no theoretical upper bound. A value above one means there
are more than one transition point per LOC on average.

The aspect module used for this experiment is the one pre-
sented in Fig. 20, which has eight lines of code. The results are pre-
7 Note there is no relation between this code ‘‘shadowing’’ and the notion of joint
point shadow.
sented in the ‘‘range finder aspect’’ section of Table 3. For these
experiments we have an increase of about 74% of lines of MATLAB
code on average. With individual increases from 19 to 31, 24 to 43,
56 to 100, 506 to 892 for latnrm, dft, fft, and for mat2c repository,
respectively. These experiments show an average of 24.5 join point
shadows per MATLAB function. This is a clear indicator of the pol-
lution degree and work effort that a simple instrumenting concern
may originate. In our approach, this is achieved by automatic as-
pect weaving that avoids invasive changes on the original, core
MATLAB code which is kept as it was.

Table 3 also shows the aspectual bloat (1), which ranges from
1.50 to 48.25 for these examples. These values also support the
claim that our approach brings benefits. The aspectual bloat is high
when considering the MATLAB code of mat2c and pid. The reason is
that one aspect is applied to more extensive MATLAB code. In fact,
the aspectual bloat of the mat2c represents the effect of reusing the
same code over multiple MATLAB functions.

Finally, the tangling ratio (2) ranges from 1.50 to 2.05 for these
examples and aspects and once again strongly suggests there are
benefits from using our approach. Note that tangling ratio values
near or above one indicate the insertion of one secondary concern
or more in each line of MATLAB code, on average.

In a second monitoring example, we consider the report of the
number of accesses to each variable. Fig. 22 shows the resulting
output after executing the latnrm MATLAB code woven with as-
pect code to determine the number of accesses (read or write)
to each variable in the original latnrm code. In this case, the wea-
ver identified 36 join point shadows (1.8 �more than for the pre-
vious range find example to which 20 join point shadows were
identified), which result in an even more ‘‘polluted’’ MATLAB
code.

In a third example, we consider the report of the class of
identifiers used in the MATLAB code. The analysis needs to deal
with the case of MATLAB identifiers corresponding to multiple
classes (e.g., an array and a function). This report can be impor-
tant in MATLAB applications to acquire the identifiers corre-
sponding to functions, classes, structs, and their types. For
instance, this dynamic analysis may guide compilers or addi-
tional weaving with respect to name resolution. We show in
Fig. 23 the report output after executing the woven code of
the latnrm example.



Fig. 22. Report results of variable accesses obtained for each variable in function
latnrm after executing the woven code.
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5.2. Data type specialization

Regarding data type conversions, we show two examples where
we have explored the fixed-point representations, specialized or
uniform. The ‘‘data type assignment’’ section of Table 3 presents
the results. The examples include the previous latnmr function
and a MATLAB model of a PID (Proportional Integral Derivative)
controller previously used in [15].

For the latnrm example, an aspectual boat of 2.33 and a tangling
ratio of 2.95 confirm a positive outcome of our approach. In this
example, there are transition points in almost every line of code.
By coincidence, the number of join point shadows and the number
of LOCs before weaving is the same (19). This is indicative of a
highly polluted and difficult to read code.

The original MATLAB code of the pid has 268 lines of code. After
weaving with the aspect rules defining fixed-point specialized data
types, a MATLAB code with 519 lines has been produced
(1.93 �more lines of code). The aspectual bloat is 5.98 and the tan-
gling ratio is 0.44. The tangling ratio in this example is lower than 1
as most MATLAB code related to data type assignments is relatively
well localized and thus yields a much lower ratio of transition
points per line of code. Nevertheless the number of code modifica-
tions again suggests there are benefits in using the aspect-oriented
approach.

5.3. Discussion

The previous examples illustrate some of the uses of the aspect-
oriented language to extend MATLAB code with specific features as
monitoring calls or data type specializations. In addition to the
timing savings, the use of automatic features reduces the likeli-
hood of manual code insertion errors. Thus, the proposed aspect
features seem to provide valuable help to MATLAB programmers
and system developers.

It is worth noting that even in the presence of some statements
that appear just once in a function with many lines of code, there is
justification for using the proposed approach in some cases.
Through the aspect rules and aspect weaving, we acquire the op-
tion to generate multiple, case-specific configurations of a core
Fig. 23. Report results of classes obtained for each variable in function latnrm after
executing the woven code.
code base. The verification of the number of arguments passed to
a function is an example. These options are not implemented when
translating the function to C code for the embedded target system.
There are also cases where the code output by the aspect weaver
has fewer lines of code but is ‘‘polluted’’ with calls to type
conversions.

Although MATLAB was extended to support classes and objects,
the use of these features remains almost totally absent from typical
MATLAB systems. That is what can be concluded from the code
repositories we have analyzed [14] and from the MATLAB indus-
trial applications to which we had access.

Although our approach provides users with helpful mechanisms
for monitoring, type assignment and configuration, it can be fur-
ther extended in a number of ways:

� Providing extensions to deal with control-flow aware monitor-
ing schemes. For example, one may need to specify monitoring
actions dependent on particular sequences of function calls.
� Providing analysis of aspect rules in terms of conflicts that may

exist between rules. For example, there might be more than one
type assignment to the same variables and this reassignment
may be intentional or accidental. Identifying those reassign-
ments can help users.
� Extending the current simple statements accepted for code

insertion, and thus avoiding in most cases the use of explicit tar-
get language code and the % {and} % tags as in the approach in
[42]. This will provide a more neutral approach as the code to be
inserted can be specified in a language that is then translated to
the target language by the weaving process.

Although our approach has been used in the context of MATLAB,
it is also applicable to ‘‘MATLAB clones’’ such as Octave [11] and
Scilab [12]. However, further analysis on this topic is required to
assess how adequate to those ‘‘MATLAB clones’’ is our approach.
This may call for more target-independent constructs to deal with
possible mismatches between the various languages – possibly by
using mapping rules.

We also believe that the approach can be also used in the con-
text of other imperative programming languages. In future, we in-
tend to perform further studies to assess the applicability of this
approach as regards monitoring and type assignment so that it
can be used on top of the LARA approach [42].
6. Related work

Most aspect-oriented approaches target general-purpose soft-
ware programming languages, such as Java and C/C++, often in
the context of general-purpose applications [9]. However, the spe-
cifics of embedded systems, regarding specific implementation
properties and programming models, provide new use cases for as-
pect-oriented programming. Previous uses of AOP for debugging,
instrumentation and monitoring retain their importance in the
development for embedded systems. Other uses of AOP – such as
type specialization – acquire greater importance in embedded sys-
tems. Below we describe the approaches related to that proposed
in this paper.

In [6], Irwin et al. present AML, a system for sparse matrix com-
putation that deals with crosscutting concerns (such as execution
time and data representation) using AOP principles [28]. In AML,
the primary behavior is written with a MATLAB-like language.
AML allows the programmer to write annotations that represent
properties of sparse matrices, in a completely separated way from
the main functionality. Thus, readability and maintainability of the
behavioral code is not negatively affected by non-functional con-
cerns. The AML system seems to have brought satisfactory results,
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as the authors report that their code in AML has similar speed as a
standard version, yet it is smaller and less complex. They propose a
‘‘data representation’’ aspect module that is relevant for our work.
This aspect module defines five dimensions for representing data:
element type, dimension, representation, ordering, and orienta-
tion. AML was first described as an aspect-oriented system but
some authors do not consider it as such [30].

Mück et al. [31] present a design methodology, based in Sys-
temC and aspects, which allows components of operating system
to be implement in hardware platforms. To validate the methodol-
ogy, the authors discuss the implementation of a task scheduler
and an aspect program. Aspects are used for on-chip debugging
and define the following debugging features: (1) Watched dumps
the state of a component whenever it is modified; (2) Traced sig-
nalizes every operation execution; and (3) Profiled counts the
number of clock cycles needed by the component for a given oper-
ation. This approach also adopts the idea of having two different
specification parts (main functionality and aspects), but differs
from ours in several issues, namely in the adopted language (Sys-
temC vs. MATLAB) and the focus (debugging vs. development).

Other researchers also propose the combined use of model-dri-
ven and aspect-oriented principles, concepts and techniques tar-
geted for the embedded field. One common theme found in
several research works is the use of the model-driven approach
compounded with aspect-oriented techniques to improve separa-
tion of concerns at earlier phases in the software life cycle – mod-
eling in the case of the works by Linehan et al. [32,33], Gray et al.
[34] and Oliveira et al. [35]. In the case of Oliveira et al., require-
ments as well as modeling are subject to this approach.

Linehan et al. [32,33] propose an approach specially targeted for
generating verification purposes, permitting the development of
hardware verification testbenches, which the authors claim is eas-
ier to maintain, adapt and reuse. Gray et al [34] discuss the use of
the model-driven approach for generating quality-of-service (QoS)
adaptation rules within the simulation and implementation of dis-
tributed real-time embedded systems. This approach creates high-
level graphical models representing QoS adaptation policies. The
models are specified in a domain-specific modeling language
(AQML) that helps in the separation of common concerns of an
embedded system through different modeling views. Their pri-
mary contribution is an aspect-oriented weaver that performs
model transformations across higher level abstractions to separate
policy decisions that were previously scattered and tangled across
the model. Oliveira et al. [35] also present a method for design
space exploration of embedded systems that uses model-driven
engineering and aspect-oriented concepts. The authors claim that
their method provides better reusability, complexity management,
and design automation by exploiting both MDE and AOD ap-
proaches in the earliest stages of the life cycle, including
requirements.

To the best of our knowledge, our approach – initially proposed
in [7] – is one of the first approaches to consider aspect-oriented
extensions to MATLAB, especially aspect-oriented rules to specify
code injection and assignment of numeric data types to a MATLAB
specification. Our proposal differs from [6] in that although type
refinement may help compilers to produce optimized code, the as-
pects we present are intended to help developers to model and to
explore multiple possible implementations of a given core MATLAB
specification. It does that without changing the original code and
without the need to manage multiple versions of the same under-
lying specification. Moreover, most of the proposed aspect mod-
ules would be unsuitable to embed in the original specification
in the form of annotations. There are various reasons for that. First,
that would result in less legible code and would be cause of various
kinds of hurdles whenever the original code needs to evolve. Sec-
ond, it would still entail managing more than one version of the
MATLAB specification when different data types for a given vari-
able need be explored. Third, some of the rules are intended to
be applied globally, not just to specific functions. With our ap-
proach, explorations can be performed with the same base MAT-
LAB specifications by simply employing different aspect-oriented
rules. Our approach uses a declarative type of aspect semantics
suitable to be applied both locally and globally.

More recently, AspectMatlab was proposed [25] as an approach
to extend MATLAB with aspects. AspectMatlab does not consider
type assignments. The design of AspectMatlab is instead geared
to the support of scientific computing, which is typically computa-
tion-intensive. For this reason, the join points supported cover ele-
ments that play important roles in computing-intensive
applications, namely array accesses and loops. Though our pro-
posed language also supports advices over loop constructs, its fo-
cus is on simulation, monitoring, and data type exploration.

Hendren [36] proposed the addition of typing aspects to MAT-
LAB. The approach is based on a new kind of uses statement – atype
– that captures runtime type information of variables and verifies
their types. This is a specific case of monitoring and instrumenta-
tion that can be controlled by a weaver as the one proposed in
AspectMatlab [25] or the one proposed in this paper. As with
AspectMatlab, the primary motivation for proposing typing aspects
is performance: modern MATLAB systems support JIT compilers,
which require type information to produce efficient code.

Complementing the work presented in this paper, we have re-
cently proposed a domain specific aspect language to enrich MAT-
LAB with code transformations [37]. Those code transformations
can be used to implement the aspect rules given in the approach
presented in this paper. However, that approach addresses addi-
tional code transformations that can be used to optimize the MAT-
LAB applications while our approach provides specific support to
the exploration of data types and configurations and to the moni-
toring of specific program artifacts.

Approaches to code transformations have been extensively pro-
posed in recent years. Pattern matching transformations have been
proposed by some authors. An example was given by Bodin et al.
[38] as a way to allow the user to specify specific code
transformations.

It can be argued that the aspect rules presented in our approach
could be specified using code transformation tools such as TXL
[39]. That approach would also need the specification of the MAT-
LAB grammar as well as the rules presented here. Note, however,
that by using a strategic programming approach at the intermedi-
ate representation (we use Tom [22,23]), we isolate the compiler
front-end and back-ends from the weaver and contribute to an
extensible compiler framework in terms of compiler optimizations,
code transformations and code generation. Nevertheless we be-
lieve there is no additional reason not to use TXL as the trans-
former and code insertion engine, e.g., by translating our aspect
rules to TXL rules.

Our approach to data type specializations also promotes the use
of active libraries [40] in the context of MATLAB. In this approach,
MATLAB libraries can be delivered to a specific implementation
by using aspect rules that automatically produce woven MATLAB
code with the required specializations.

Our approach to data type specialization is also being used in
the compiler framework to generate C code from MATLAB specifi-
cations [2]. Thus, the approach presented in this paper not only as-
sists in the early development phases but the implementation
phases as well, by providing data type and shape information for
the subsequent code generation steps. As our kind analysis stage
is not so powerful than recent analysis techniques applied to MAT-
LAB [41], it may need more intervention from the user to resolve
some MATLAB names. Future work is expected to integrate more
advanced kind analysis techniques.



426 J.M.P. Cardoso et al. / Journal of Systems Architecture 59 (2013) 412–428
The development of LARA [42], a domain-specific aspect-ori-
ented language, has been also inspired by some of our ideas pro-
posed in the context of extending MATLAB with aspects. LARA
has been designed to be as agnostic to the target language as pos-
sible – though its main application has been to C programs – and is
a more complex language as it addresses many concerns, such as
code instrumentation, compiler optimizations, mapping decisions,
type and code specialization and design space exploration strate-
gies. The AOP language proposed in this paper is distinct from
LARA in a number of ways. It is focused on a narrower set of con-
cerns than LARA, uses an imperative semantic while LARA uses
both declarative and imperative semantics and it is focused on
MATLAB, while LARA has been proposed for multiple languages.
Being specially focused to a particular set of concerns makes the
language easy to use and easy to support by tools. We have plans
to generate LARA aspects from the aspect rules proposed in this
paper.
7. Conclusions

This paper presents an approach to add aspect-oriented rules
to MATLAB specifications to assist developers of embedded
systems in the exploration of implementation features – namely
numeric data type configurations. MATLAB core behavior and as-
pect-oriented rules (e.g., numeric data type assignments) are
specified and maintained in separate modules. Our approach
allows developers to insert MATLAB code that is helpful for
debugging, monitoring, and exploring numeric data type
representations without changing the original MATLAB code.
With this approach, the core MATLAB specifications are kept free
from code dependent on the implementation and target system/
architecture.

Our approach allows users to explore multiple, different imple-
mentations of embedded systems based on MATLAB specifications.
We are able to maintain a base MATLAB code and to achieve differ-
ent specializations, code insertions to trace and to acquire dynamic
properties, through the use of aspects. This certainly contributes to
modularity and code maintenance. In addition, our approach can
be used as a support to some advanced MATLAB type and shape
inference analysis systems as the results of those analyses can be
represented by aspect-oriented rules.
Start::= (<APPLY> <IDENTIFIER> (00:00 <IDENTIFI
Rule::= <RULE> <IDENTIFIER> (Use)⁄ (Statem
InjectCode::= <IF> IfRule (TargetCode) + <END>
Set::= <SET> ((<IDENTIFIER>00=00((00{00<IDENTIF

(<FIXED>00=0000{00FixedPointProperties00=00V
0ValuesFixedPointProperties)⁄00}00))00;00

FixedPointProperties::= <OVERFLOW> | <ROUND>
ValuesFixedPointProperties::= <WRAP> | . . . | <FLOOR>
TypeDef::= <TYPEDEF> <IDENTIFIER>00=00Types00;00
Use::= <USE> <IDENTIFIER>00;00
Types::= <INT8> | <INT16> | . . . | <DOUBLE> | <
Fixed::= <FIXED> (00<00<NUMBER>00,00<NUMBER>0
Float::= <FLOAT> (00<00<NUMBER>00,00<NUMBER>
Int::= <INT> (00<00<NUMBER>00,00<NUMBER>)?
Statement::= ForEachStatement | Insert | Set | With
ForEachStatement::= (<FOREACH> (<KEY> | <TAG> | Var) (<

<FUNCTION>) (00=00SetOfJPs)?) (00:00SetOf
(<DEPENDENT>00:00(DependentStmt) +

Var::= <VAR> (00.00(<SET> | <GET>))?
One of the difficulties we found is the lack of MATLAB code con-
sidering some of the secondary concerns such as the ones including
customized data types and monitoring. Most MATLAB code found
in repositories represent generic, target independent, models. The
use of MATLAB models considering custom data types is more re-
lated to subsequent stages of the design cycle, e.g., for embedded
systems products. It is understandable that those models may
not be public. The monitoring concerns occur during the entire de-
sign cycle and most of them are concerns that typically are not
present in the end.

Although the current version of our approach provides useful
mechanisms to express monitoring and data type assignments, it
can be enhanced by considering other types of aspect rules and
more sophisticated patterns to express join point selections. Exten-
sions to the support of parameters would make rules more
reusable.

From the derived results, it is advantageous for our approach if
other metrics are also considered. In future, other metrics that have
no correlation (see the aspectual bloat and the tangling ratio values
presented for latnrm and pid in the previous section) should be
used as well.

Complementary work in progress includes studies about other
aspect-oriented rules, a more powerful pattern language, and a tool
to manage strategies (the possibility to apply different sequences
of aspect rules). In addition, we expect that our ongoing work on
aspects related to complementary information can help a MATLAB
compiler to map more efficiently MATLAB computations and data
structures to the target architecture. One interesting research ave-
nue is the automatic extraction of secondary concerns from MAT-
LAB code to aspect modules.
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Appendix A.

Below is an excerpt of the LL(1) grammar of the aspect-oriented
language.
ER>)⁄00;00)⁄ (Rule)⁄
ent | InjectCode | TypeDef)⁄ (DataTypeConvRules)⁄ <END>

IER>(00,00<IDENTIFIER>)⁄ 00}00) | Types | <IDENTIFIER>)) | . . . |
aluesFixedPointProperties(00,00FixedPointProperties00=0

SINGLE> | Fixed | Float | Int
0,00<NUMBER>00>00)?
00,00<NUMBER>00>00)?

Statement
IDENTIFIER>)? <IN> ((<IDENTIFIER> | ((<PROGRAM> |
JPs)?)? (00{00JPList00}00)?) <DO> ((Insert | Set)
<END>)?) + <END>)



SetOfJPs::= <IDENTIFIER> | (00{00(<IDENTIFIER> (00,00<IDENTIFIER>)⁄)00}00)
WithStatement::= <WITH> ((((<FUNCTION> | <MODULE>)00=00<IDENTIFIER>) ((<DO>(Statement

(<DEPENDENT>00:00(DependentStmt) + <END>)?) + <END>) | ((00,00((<CALL>00=00<IDENTIFIER>) |
(<OPERATION>00=00OpsForConfigRules)))?(<USE>(<CONFIGURATION> <IDENTIFIER>00;00) + <END>)))) |
(<STMT> 00=00<STRING> <DO> Decompose <END>) | (Var00=00SetOfJPs <DO> (Statement) + <END>))

DependentStmt::= <FOREACH> (<KEY> | <TAG> | Var) (<IDENTIFIER>)? <IN> ((<IDENTIFIER> | ((<PROGRAM> |
<FUNCTION>) (00:00<IDENTIFIER>)?)) | 00{00JPList00}00) <DO> ((Insert | Set) +) <END>

JPList::= (((00@00)<IDENTIFIER>) | Keys)(00,00(((00@00)?<IDENTIFIER>) | Keys))⁄
Insert::= <INSERT>00.00(<BEFORE> | <AFTER> | <AROUND>) (00.00(<END> | <BEGIN>))?00:00(TargetCode) +
Keys::= <END> | <IF> | <ELSE> | <FOR>
TargetCode::= <TARGETCODE>
| <FPRINTF>00(00Arg(00,00Arg)⁄00)0000;00
| <IDENTIFIER>((Param00=00((<IDENTIFIER>ParamOp<NUMBER>)00;00 | (<NUMBER>)00;00)) |

(00(00(Arg(00,00Arg)⁄)?00)0000;00))
| <PRINT>00(00(<SCREEN> | (<FILE>00:00((<IDENTIFIER>00.00<IDENTIFIER>) | (<QUOTED>))))00,00Arg(00,00Arg)⁄00)0000;00
| <WARNING>00(00<QUOTED>00)0000;00
Decompose::= <DECOMPOSE><TARGETCODE>00;00
Op::= 00+00 | 00�00 | . . . | 00⁄00
Arg::= <NUMBER>
| <IDENTIFIER> (Param)?
| <QUOTED> (Param00:00<QUOTED>)?
| Param(00:00<QUOTED>)?
| 00n000 Param (00:00<QUOTED>)? 00n000
Param::= 00<00(<KEY> | <IDENTIFIER> | <VAR>) (00.00<IDENTIFIER>)?00>00
DataTypeConvRules::= (<COMMUTATIVE>)? <OPERATION> OpsForConvRules TypesOnCOnvRules (<LHS> | <IDENTIFIER>)

00::=00 00(00TypesOnCOnvRules(<IR> | <IDENTIFIER>)00)00 00[00TypesOnCOnvRules <IDENTIFIER>
(00,00TypesOnCOnvRules <IDENTIFIER>)?00]00 00:00 (IfConvRule | SimpleStatement) + <END>

IfConvRule::= <IF> 00(00(<LHS> | CompleteIdentifier) (00>=00 | 00<=00 | 00>00 | 00<00 | 00==00 | 00!=00) (CompleteIdentifier |
BuiltInFunctions 00(00(CompleteIdentifier (00,00CompleteIdentifier)⁄)?00)00)00)00(SimpleStatement | IfConvRule)
+ (<ELSE> (SimpleStatement | IfConvRule)+)? <END>

SimpleStatement::= (<IR>00=00(<LHS> | BuiltInFunctions 00(00(CompleteIdentifier (00,00CompleteIdentifier)⁄)?00)00 |
CompleteIdentifier)00;00)

| (CompleteIdentifier00=00(CompleteIdentifier | BuiltInFunctions
00(00(CompleteIdentifier(00,00CompleteIdentifier)⁄)?00)00)
(Op (CompleteIdentifier | BuiltInFunctions 00(00(CompleteIdentifier (00,00CompleteIdentifier)⁄)?00)00))?00;00)

BuiltInFunctions::= <MAX> | . . . | <MIN>
OpsForConvRules::= <STRING>
OpsForConfigRules::= <STRING>
CompleteIdentifier::= <IDENTIFIER> (00.00(<IDENTIFIER> | BuiltInFunctions))?
TypesOnCOnvRules::= (Types | <FLOAT> | <INT>)
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