
Design Pattern Implementation in Object Teams
João L. Gomes

CITI, Departamento de Informática
Faculdade de Ciências e Tecnologia

Universidade Nova de Lisboa
2829-516 Caparica

PORTUGAL

Miguel P. Monteiro
CITI, Departamento de Informática

Faculdade de Ciências e Tecnologia
Universidade Nova de Lisboa

2829-516 Caparica
PORTUGAL

ABSTRACT

Implementing the 23 Gang-of-Four design patterns in the aspect-

oriented programming language Object Teams/Java (OT/J) yields

modularity and reusability results roughly comparable to those

obtained in a similar study of AspectJ, though not in the same

exact set of patterns. Due to differences in composition

mechanisms, the two languages seem complementary rather than

overlapping. AspectJ is clearly superior to OT/J in terms of

quantification capability while OT/J is clearly superior to AspectJ

as regards extensibility of pattern modules.

Categories and Subject Descriptors

D.2.11 [Software Engineering] Software Architectures –

information hiding, languages and patterns.

D.3.3 [Programming Languages]: Language Contructs and

Features – classes and objects, patterns and polymorphism.

General Terms

Design, Languages.

Keywords

Aspect-oriented programming, modularity, design patterns.

1. INTRODUCTION
Aspect-oriented Software Development is an emerging paradigm

characterized by a systematic approach to the modularization of

crosscutting concerns [6]. Many aspect-oriented languages

(AOLs) were proposed in recent years, providing a significant

variety of mechanisms for module composition. Even in

languages that are backwards-compatible extensions to Java, as is

the case of OT/J and AspectJ (the most popular AOL) we witness

marked differences. Such variety provides a motivation for

comparative analyses of AOLs, namely as regards actual support

for modularity and composability. However, for most AOLs there

is a dearth of studies by independent authors, particularly those

involving dual implementations of common functionalities. This

work contributes to filling this gap by presenting a complete

collection of implementations in OT/J of all 23 Gang-of-Four

(GoF) design patterns [1], as well as a preliminary analysis of the

results obtained, in terms of the modularizations attained.

2. OBJECT TEAMS
This section assumes familiarity with AspectJ and is focused on

presenting OT/J [4]. OT/J adds teams to Java, i.e., modules

capable of enclosing a special kind of inner classes – roles – that

represent the internal concepts of a collaboration of objects. Role

classes are virtual [5], i.e., roles can be overridden and subject to

dynamic dispatch, the same way as methods in mainstream object-

oriented languages. The type system of OT/J supports family

polymorphism [1], i.e., it ensures consistency between role

instances, preventing the mixing of role instances from different

teams. Each role can be bound to a specific class from an

application through a playedBy relation that mimics inheritance.

Most AOLs support to some extent the quantification property,

i.e., the ability to specify assertions over execution events of a

program, so that the intended behavior of aspect modules – teams,

in the case of OT/J – is implicitly called upon reaching any of the

specified events. This way, AOLs such as OT/J and AspectJ

compose additional behavior to existing programs without the

need for invasive changes to the program's source code. However,

OT/J restricts quantifiable events to those of a class bound to a

specific role. Intended role behavior is expressed by the role,

which can specify that its methods be implicitly called whenever

specified events from the bound class occur.

3. APPROACH
Two different existing repositories of pattern implementations by

independent authors were used as basis for this study1, though it is

primarily based on the study by Hannemann and Kiczales (HK),

which comprises dual implementations in Java and AspectJ of the

23 GoF patterns. We reimplemented the HK Java examples in

OT/J. To certify that pattern implementations are reusable, a

second Java repository of GoF patterns was developed in OT/J as

well. For each pattern, only modules we suceeded in using in the

examples from both repositories are classified as reusable. In

addition, we required modules to have non-abstract members to be

taken into account in the analysis of reusability.

4. RESULTS
The HK study distinguishes between two kinds of pattern role,

while acknowledging that the distinction is not always clear-cut:

 Superimposed roles are assigned to classes that have

functionality and responsibility outside the pattern and

contain code pertaining to other sets of responsibilities.

 Defining roles are completely defined by the pattern, with

no functionality outside the context of the pattern.

1 The material used for this study is available at:
http://ctp.di.fct.unl.pt/~mpm/AOLA/

© ACM, 2010. This is the author’s version of the work. It is posted here
by permission of ACM for your personal use. Not for redistribution. The

definitive version will be published in the 25th ACM Symposium on

Applied Computing (SAC), special track on Object-Oriented
Programming Languages and Systems (OOPS) March 22-26 2010.

Results obtained for OT/J are presented next, organized into the

various degrees of success in yielding clean pattern modules and

what compositions can be performed with those modules. We also

comment of language support for specific patterns.

Zero failures to modularize. In HK study, 6 AspectJ pattern

implementations (Façade, Abstract Factory, Bridge, Builder,

Factory Method and Interpreter) failed to attain code locality,

which we consider the minimum requisite for deeming a

modularization successful. By contrast, all OT/J implementations

achieved code locality and thus all 23 patterns can be considered

successful modularizations. This marked superiority of OT/J is

primarily due to the ability to package together participant classes

as roles within a common team. So even when all else fails, this

packaging capability can still yield a successful modularization

within a team. Crucially, such team modules can always be further

extended non-invasively, through the addition of sub-teams.

Identical to Java. Singleton is the sole pattern whose OT/J

implementations resulted identical to those in Java. In the case of

AspectJ it was Façade. The intent of Singleton is to ensure a class

only has one instance, and provide a global point of access to

it [1]. The usual way to implement it in Java is to block access to

constructors through non-public visibility and provide an accessor

method that always returns the same class instance whenever it is

called. The AspectJ implementation of Singleton intercepts calls

to the constructor and makes it return the same class instance in

all cases. In OT/J, roles cannot intercept base constructors and

therefore do not provide the means to emulate a similar outcome.

However, it can be argued that the singleton property is inherent

to a given module, and its Java implementation is already

localized within a single class. Thus, the sole pattern in relation to

which OT/J does not “improve” on Java can, by coincidence, be

still reasonably considered a successful modularization.

Non-reusable modularizations. For OT/J, this group includes 10

patterns: Adapter, Bridge, Builder, Decorator, Façade,

Interpreter, Iterator, Proxy, State and Template Method. For

AspectJ, this group includes 6 patterns: Adapter, Composite,

Decorator, Proxy, State and Template Method. In OT/J, failure to

reuse these patterns is mainly due to pattern instances being very

scenario-specific. In the case of Adapter, Bridge, Decorator and

Proxy, this is due to their common purpose of adapting a given

class. Adaptations of case-specific classes (i.e., glue code) are

non-reusable by their very nature. State is about keeping track of

the state of a given object, which is again case-specific.

Reusable modularizations. This group includes 10 patterns:

Chain of Responsibility, Command, Composite, Flyweight,

Mediator, Memento, Observer, Prototype, Strategy and Visitor.

AspectJ attains reuse for these 10 patterns, plus Iterator and

Singleton. The general implementation approach, similarly to

AspectJ, was to place parts common to different pattern instances

in abstract reusable teams, which were concretized by sub-teams

for the instance-specific part. For OT/J, this group can in turn be

subdivided into (1) those that have only super-imposed roles

(Chain of Responsibility, Mediator, Observer and Prototype), and

(2) those that include defining roles (Command, Composite,

Flyweight, Memento, Strategy and Visitor). As in the AspectJ

study, benefits brought by the new language mechanisms are

primarily felt when dealing with superimposed roles. Code

associated to such roles can be extracted to roles within teams.

However, it is tricky or even non-sensical to attempt a separation

of defining roles. The OT/J approach for the second subgroup was

to either make the team itself represent the defining role, or to use

unbound roles to represent defining pattern roles within a team

module. This way, participant classes became clean of pattern-

specific code.

Direct Language Support. The HK study includes a group of

patterns (Adapter, Decorator, Proxy, Strategy, and Visitor) whose

AspectJ implementations “disappear”, because language

constructs implement them directly, though with some inherent

limitations. Using OT/J, the purposes of Factory method and

Abstract Factory are directly supported by language constructs.

The purpose of Factory Method is to emulate polymorphic

constructors, which is exactly what is obtained from virtual

classes [5]. The purpose of Abstract Factory is to provide an

interface for creating families of related objects and ensure that

instances of a given family are created consistently, avoiding

undesirable mixing between families. That is exactly the purpose

of family polymorphism [1].

5. SUMMARY
In terms of the modularization, reuse and direct language support,

there are advantages on both sides and no language emerges as a

clear winner overall. However, OT/J has a clear advantage in

terms of extensibility and, in general, of what can be done with

the resulting modules. In AspectJ, concrete aspects cannot be

extended, while OT/J teams are always extensible, though in some

specific scenarios the option of extending the team is not

applicable.

To sum up the differences between the two languages, AspectJ

and OT/J seem geared for different purposes. AspectJ is known to

yield very good results when used for applications that perform

“highly crosscutting” tasks of the kind provided by profilers,

monitoring and instrumentation tools. The fine-grained joinpoint

model of AspectJ is suitable for such tasks, which often do not

even yield a product to be shipped to clients. However, AspectJ

seems unsuitable for the support of large architectures and long-

term evolvability. OT/J is the opposite: it seems unsuited for the

former but seems very promising for the latter.

6. ACKNOWLEDGEMENTS
This work was partially supported by project AMADEUS

(POCTI, PTDC/EIA/ 70271/2006), funded by Portuguese

Fundação para a Ciência e Tecnologia.

7. REFERENCES
[1] Ernst E. Family polymorphism. ECOOP 2001, Heidelberg,

Germany, 2001.

[2] Gamma, E., Helm, R., Johnson, R., Vlissides, J., Design

Patterns – Elements of Reusable Object-Oriented Software,

Addison-Wesley, 1994.

[3] Hannemann, J., Kiczales, G., Design Pattern implementation

in Java and in AspectJ, OOPSLA 2002, Seattle, USA, 2002.

[4] Herrmann S., Hundt C., Mosconi, M. ObjectTeams/Java

Language Definition version 1.3 (OTJLD). Technical Report

2009/08, Technische Universität Berlin, 2009.

[5] Madsen O. L., Moller-Pedersen B., Virtual classes: a

powerful mechanism in object-oriented programming.

OOPSLA’89, New Orleans, Louisiana, USA, 1989.

[6] Rashid, A. and Moreira, A. Domain Models Are NOT

Aspect Free. MoDELS 2006, Denver, USA, 2006.

