

On the Use of a Multiple View Interactive Environment

for MATLAB and Octave Program Comprehension

Ivan M.Lessa1, Glauco de F.Carneiro1, Miguel P.Monteiro2, Fernando Brito e Abreu3

1Salvador University (UNIFACS), Salvador/Bahia, Brazil

ivan.lessa@gmail.com, glauco.carneiro@unifacs.br
2Universidade Nova de Lisboa (UNL), NOVA LINCS, Lisbon, Portugal

mtpm@fct.unl.pt
3Instituto Universitário de Lisboa (ISCTE-IUL), ISTAR-IUL, Lisbon, Portugal

fba@iscte-iul.pt

Abstract. MATLAB or GNU/Octave programs can become very large and

complex and therefore difficult to understand and maintain. The objective of

this paper is presenting an approach to mitigate this problem, based upon a

multiple view interactive environment (MVIE) called Octminer. The latter

provides visual resources to support program comprehension, namely the

selection and configuration of several views to meet developers’ needs. For

validation purposes, the authors conducted two case studies to characterize the

use of Octminer in the context of software comprehension activities. The results

provided initial evidences of its effectiveness to support the comprehension of

programs written in the aforementioned languages.

Keywords: software visualization; MATLAB/Octave; software

comprehension.

1 Introduction

MATLAB 1 and its open source “clone” Octave 2 are high-level programming

languages and development environments that are widely used for rapid prototyping

and simulation of scientific applications. As those applications grow in size and

complexity, they face the usual maintenance challenges that are common in the so-

called “legacy systems” [1]. Maintainability depends on our ability to understand

programs, what lead to the creation of a Program Comprehension scientific

community3.

By reviewing the available literature, we found evidence of a lack of support for

the comprehension of programs coded in MATLAB and Octave, as described in a

following section. We tackled this research opportunity by implementing a multiple

view interactive environment (MVIE) named OctMiner. MVIEs provide resources to

1 a registered trademark of The MathWorks© (http://www.mathworks.com/products/matlab)
2 see http://www.gnu.org/software/octave/
3 see http://www.program-comprehension.org/

mailto:glauco.carneiro@unifacs.br
mailto:mtpm@fct.unl.pt
mailto:fba@iscte-iul.pt

support data analyses and unveiling information that otherwise would remain

unnoticed [2] [3]. To validate OctMiner effectiveness, we conducted two case studies

using the tool to support the comprehension of MATLAB/Octave programs. The first

study aimed at characterizing the MVIE support to identify crosscutting concerns

following previous research on this issue [4] [5]. The second study focused on

analyzing to which extent OctMiner can help programmers to understand the

solutions proposed in the StackOverflow community 4, a popular question-and-answer

site for professional programmers, regarding MATLAB and Octave problems.

This paper is structured as follows: section 2 summarizes the main concepts of the

MATLAB/Octave programming languages and describes the key functionalities of

OctMiner and its architecture; section 3 presents two case studies to exemplify how

OctMiner can support MATLAB/Octave program comprehension; section 4 proposes

a set of usage strategies to be performed with OctMiner for comprehension purposes;

section 5 reviews related work; finally, section 6 presents the final considerations and

outlines opportunities for future work.

2 Multiple View Interactive Environments

Visualization provides perceivable cues to several aspects of the data under analysis

to reveal patterns and behaviors that would otherwise remain “under the radar” [6].

Card et al. [2] proposed a well-known reference model for information visualization.

According to them, the creation of views goes through a sequence of successive steps:

pre-processing and data transformations, visual mapping and view creation. Carneiro

and Mendonça [7] extended this model to adapt it to the context of MVIEs. The

extended model is portrayed in Fig. 1 emphasizing that the visualization process is

highly interactive. Moreover, it enables the combined use of resources of a multiple

view interactive environment. The process starts with original (raw) data obtained

from a repository that undergoes a set of transformations, which is then organized into

data structures suitable for information exploration. This process is called data

transformation [3]. Next, the aforementioned data structures are used to assemble

visual data structures. Those structures organize data properties and visual

information properties in ways that facilitate the construction of visual metaphors.

This step defines the mapping from real attributes – which are derived from the data

properties (software attributes, in our case) – to visual attributes such as shapes, colors

and positions on the screen. This process is called visual mapping [3]. It is important

to highlight that these activities do not deal with rendering, but rather with building

suitable data structures from which the views can be rendered. The final step,

presented in Fig. 1, is the visual transformation, aimed at drawing the information on

the screen to produce the views. In this step, a specific visual scene is actually

rendered on the computer screen [3].

Nunes et al. [8] proposed a toolkit implemented as a Java Eclipse plugin from

which MVIEs could be developed. The plugin provides a basic structure that allows

4 see http://www.stackoverflow.com

the creation and inclusion of new resources and functionalities to develop MVIEs.

Fig. 2 presents the way the toolkit was used and extended by other plugins to reify the

SourceMiner MVIE. This MVIE was originally developed to support the

comprehension of Java source code. As can be seen in Fig. 2, the extension points of

the toolkit.aimv plugin enable the inclusion of new plugins to the MVIE. Each of the

conveyed extension points provides an interface with methods and their respective

signatures. In the case of OctMiner, we needed to access and transform raw data – the

Abstract Syntax Tree (AST) of MATLAB/Octave programs – to a format compatible

with the visual data structure. According to the extended reference model for MVIEs,

this is a requirement to feed the views. Fig. 2 presents a set of plugins that comprise

the SourceMiner MVIE.

Fig. 1. An extended reference model for MVIEs [3]

Fig. 2. The SourceMiner MVIE [8]

The goal of the toolkit is to provide an infrastructure to develop MVIEs for

different domains. The domain targeted in this paper comprises programs written in

MATLAB/Octave. The application of the aforementioned toolkit to this domain was

reified through OctMiner, whose architectural overview is depicted in Fig. 3. The

Grid and Treemap views were provided by the MVIE. On the other hand, the List

view, the Filters and the Analyzer were extended from the MVIE specifically for

OctMiner usage.

Fig. 3. OctMiner architectural overview [9]

2.1 The MATLAB and OCTAVE Programming Languages

MATLAB is an interpreted language, very popular among students and researchers of

physics, biomedical engineering and related areas. It is not uncommon that a young

engineer is fluent in using MATLAB, but hardly familiar with C, and even less with

Fortran [10] [11].

MATLAB has been used to teach linear algebra, numerical analysis, and statistics.

Since the MATLAB language is proprietary, a similar language, named Octave was

developed, and is distributed under the terms of the GNU General Public License. It

was originally conceived in 1988 to be a companion programming language for an

undergraduate-level textbook on chemical reactor design. Due to the similarities

between these languages, it is possible to interpret MATLAB programs in the

interpreter of the GNU/Octave with no major problems. The main differences

between the two languages are the following:

i) some similar functions have different names in each language;

ii) comments in MATLAB are written after “%” while in Octave you can use

both “%” and “#”;

iii) in MATLAB the control blocks (while, if and for), as well as the functions

delimiter all finish with “end” while in Octave you can also use

“endwhile”, “endif”, “endfor” and “end-function” respectively;

iv) In MATLAB the not equal to operator is “˜=” while in Octave “!=” is

also valid;

v) MATLAB does not accept increment operators such as “++” and “—“,

while Octave accepts them.

2.2 The OctMiner MVIE

The main motivation for representing concerns manifested in MATLAB/Octave code

in a MVIE is the enhancement of the comprehension activities. The plugin structure

supporting the MVIE toolkit is the same as presented in Fig. 2. The main difference is

that in this case the focus is on MATLAB/Octave rather than Java. Fig. 3 depicts the

main four elements of OctMiner: the Eclipse IDE RAP/RCP (Remote Application

Platform / Rich Client Platform) , the Octclipse plugin5, the Octave interpreter and the

MVIE toolkit proposed in [8]. The Eclipse IDE enables its extension through the use

of plugins. The MVIE toolkit does this to provide its functionalities, as well as

enabling the tailoring of the MVIE for the analysis of data from different domains,

e.g., the data gathered from MATLAB/Octave programs. We implemented an

Analyzer module, as conveyed in Fig. 3, which is analogous to sourceminer.modules

in Fig. 2. It is an extension of the Import Module, whose goal is to import and convert

data from the original data repository to be represented in the multiple views. The

Octclipse plugin also provides an Octave development environment built on top of

Eclipse's Dynamic Languages Toolkit6. This environment enables programmers to

create Octave scripts (*.m files), edit them in a multi featured text editor, run the

Octave interpreter and see the results displayed in the IDE's console. OctMiner is

freely available for download7.

3 Comprehension Activities with OctMiner

This section presents two studies to characterize the use of OctMiner in software

comprehension activities.

3.1 The First Study

The first study investigated the following question: “to which extent OctMiner

provides effective support to identify potential symptoms of crosscutting concerns in

MATLAB programs?” To answer this question we analyzed 22 MATLAB image-

processing routines with OctMiner, to identify the presence of scattering and tangling.

Scattering [12] is the degree to which a concern is spread over different modules or

other units of decomposition. Tangling [13] is the degree to which concerns are

intertwined to each other in the same module. Both scattering and tangling are

indicators of the presence of crosscutting concerns. The basic units of decomposition

(modules) in MATLAB or Octave are functions and files. For cohesion sake, a file

usually contains a set of related functions.

The term “token”, to be used hereinafter, represents a function name from the

MATLAB/Octave systems. This study considers that the distribution of the

occurrence of these tokens can be used as an indicator of scattering and tangling

5 see http://sourceforge.net/projects/octclipse/
6 see http://eclipse.org/dltk/
7 see http://www.sourceminer.org/octminer

http://sourceforge.net/projects/octclipse/

symptoms. The approach is as follows: sets of tokens can be associated to a given

concern, which ideally would be modularized into its own file, with no additional

concerns. When the concern is not modularized, its code is scattered across multiple

files and its associated tokens are found in such files – an indicator of scattering.

Often, such files also betray the presence of tokens categorized under multiple

concerns – an indicator of tangling.

To explore the above approach, participants performed the following activities:

i) Identify tokens most commonly used in the 22 routines;

ii) Characterize the localization among files of the most commonly used tokens to assess

the symptoms of scattering;

iii) Characterize the relationship between the most commonly used tokens and other

tokens in the files to assess the symptoms of tangling;

iv) Determine the category (concern) to which the most commonly used tokens belong;

v) Using the category of each token, identify the main functionalities (concerns) of the

program.

This approach allowed identifying the top most commonly used tokens in the

analyzed routines. These tokens presented evidences of scattering. This study was just

a pilot-test in using OctMiner in comprehension activities and it allowed us to identify

a set of improvements, which were added to OctMiner before the next study took

place.

3.2 The Second Study

The second study had the following research question, based on answers posted at

StackOverflow: “to which extent OctMiner provides effective support to clarify

programmer´s doubts”? The main goal of this study was then to show OctMiner’s

effectiveness in supporting the visualization of target functions as the ones reported at

StackOverflow. In other words, we hypothesized that OctMiner can help programmers

to understand the context of use of a function in routines that serves as examples

supported by the available views. The authors searched for the top questions about the

two selected programming languages and their corresponding best answers. For this

purpose, the search used the StackExchange Data Explorer tool 8 . Applying the

following query, using the mentioned tool, we obtained as a result the top 200

questions related with the keywords “MATLAB” and “Octave”:

SELECT TOP 200 a.creationdate, q.owneruserid, q.title

FROM users u, posts a, (SELECT id, owneruserid, title,

tags, creationdate FROM posts WHERE tags LIKE

'%<KEY_WORD>%') q

WHERE q.id = a.parentid and a.owneruserid=u.id

8 available at http://data.stackexchange.com/

ORDER BY a.creationdate desc

We classified the questions in the following categories:

(a) programming language basic issues – 146 questions;

(b) common mistakes in MATLAB and Octave – 51 questions;

(c) using functions to perform specific work such as numerical calculation and image
processing – 98 questions;

(d) using functions to plot data on the screen – 69 questions;

(e) questions that do not fit into any of the previous categories – 56 questions.

As can be seen, category (a) has the greater number of questions, which indicates a

lack of basic knowledge of the two languages. We considered this fact as the start

point to select the following question: “I want to create a vector without the number

1”. The answer with most votes was “I would use setdiff”. The answer was illustrated

as follows “setdiff(-5:5,1)”.

Configuring OctMiner to Answer the Question. The participant configured

OctMiner according to the goal of the second study. The configuration consists of

editing a XML file as follows. <GroupName> defines the group to which the

function belongs to, whereas <function> contains the list of functions to be

represented in the views.

<group>

 <GroupName title="GroupName" color="color">

 <function>;Function1;Function2;</function>

 </GroupName>

</group>

Table 1. Categories and their Colors in OctMiner

Category Color Name Color

Array and Matrix Creation and Concatenations Concrete

Set Operations Green

Indexing MethodBorder

Parse Strings Size

Logical Operations Blue

Advanced Software Development Class

Mathematics Abstract

We selected 22 MATLAB routines to illustrate the use of the setdiff function, the

target function of the selected doubt. The authors selected these routines searching the

StackOverFlow repository using the string “MATLAB setdiff”. The authors also

registered settdiff function and all the other functions identified in the 22 routines in

the OctMiner configuration XML file. More details regarding the XML file can be

obtained at OctMiner page. Table 1 conveys the categories and their respective colors

to be presented by OctMiner.

Focusing OctMiner on the setdiff Function. Based on our experience, we proposed

a set of steps in Table 2 focusing on the comprehension of setdiff function supported

by OctMiner to clarify a real doubt registered by a programmer at StackOverFlow. In

the next section, we explain how these steps were executed.

Table 2. Proposed Steps in OctMiner

STEPS

Select a question: to clarify a doubt.

Identify the setdiff function in the repository: the programmer should configure

OctMiner to visually identify occurrences of the setdiff function in the repository routines

and the way they are used.

Identify the category that the function belongs to: the programmer should configure

OctMiner to spot other functions that belong to the same category of setdiff to help in the

comprehension tasks.

Identify similar functions from the repository that can replace setdiff: configure

OctMiner to support the identification of similar functions that can replace the target

function.

Verify if the gathered information was enough to clarify the doubt: the user can now be

more confident and can agree why the answer was the one with most votes.

Executing the Steps. In this section, we describe how OctMiner can help

programmers to clarify their doubts about MATLAB and Octave. To this end, we use

Fig. 4 through Fig. 7, which apply one of the following two types of configuration.

Type I, presented in Fig. 4 and Fig. 5, focuses on files and their respective functions.

In these figures, each rectangle from the Grid view (part D) represents a file together

with the number of function categories found there one. Each rectangle from the List

view (part E) represents the complete name and path of each file. In the case of the

TreeMap view – part G of Fig. 4 – all rectangles together convey a panoramic visual

representation of the files. In fact, the TreeMap view conveys a 2D visualization that

maps a hierarchical structure into rectangles with each rectangle representing a file. In

that case, files and functions are represented as nested rectangles, where the innermost

rectangles are functions and the outermost rectangles are files. In the configuration

type I, the size of each innermost rectangle corresponds to the number of functions

implemented in each file and the color is associated to the category of the function.

Configuration type II (Fig. 6 and Fig. 7) is focused on the functions. Each rectangle

from the Grid view (part D) represents a function together with their number of

occurrences in the repository, in which multiple occurrences in the same file are

counted. Each rectangle from the List view (part E) represents the complete name of

function from the repository. The rectangles from the TreeMap view represent

functions and the size of each rectangle is proportional to the number of times a

function appears in the repository. The colors represent the category of each function.

When the user executes OctMiner and selects the option “Visualize with

OctMiner”, the tool conveys a typical visual scenario like the one presented in Fig. 4.

This scenario uses the configuration type I, which focus on the analyzed repository

files and their respective functions. In a first step, the user can understand the way the

functions are distributed in the repository based on the information provided by the

views as described in the following sentences. The Grid view (part D of Fig. 4)

provides an overview of how many types of functions are implemented in each file

(rectangle) of the repository (all rectangles). The List view (E) lists each files name

and location in the repository. The TreeMap view (G) provides an overview of the

files from the repository. Using this visual metaphor, functions found in a file are

represented in the rectangle representing that file. A single screen shot can show all

functions and files in accordance with its position in the file structure. We adapted the

TreeMap visual paradigm to use colors to represent categories to which each specific

function belongs. The difference of Fig. 4 and Fig. 5, is that in Fig. 5 we apply a filter

(indicated by a red ellipse in part F) to highlight the files that implement setdiff. As a

result of the filter, part G of the same figure highlights the functions where setdiff

occurs by painting the rectangles in green.

The next step is the configuration of OctMiner to present the visual scenario of Fig.

6 that applies the configuration type II focusing on functions. The List view (part E of

Fig. 6) enables checking the exact name of the routine, as well as the category to

which the function belongs by looking at the color of the rectangles. The green color

indicates that setdiff belongs to category "Set Operations". The user can access and

read the code of specific routines (Part C) and analyze the various ways in which the

function is used.

Using the type II configuration, focusing on functions, it is possible to spot the

Treemap view displaying the largest green rectangle to represent the setdiff function.

On the other hand, the Grid view complements this information by reporting that there

are eleven occurrences of this function in the analyzed repository. The second largest

rectangle from the Treemap view belongs to the same category and refers to function

isMember. Interestingly, that function can replace setdiff: to find out if a vector is a

subset of another, we can use isempty(setdiff(a, b)) where a and b are arrays – but we

will get the same result using all(isMember(a, b)). Based on information provided by

OctMiner, we could identify an alternative function to setdiff if necessary. Different

functions, like those already mentioned from the same category, are indications of the

dominant category of the repository under analysis. The function setdiff belongs to the

group “set Operations” but the category with more distinct features is “Array and

Matrix Creation and Concatenations”, which includes a large number of functions to

deal with arrays and matrices. In Fig. 7, this category is highlighted to emphasize that

a high number of distinct functions in a given category is a possible indicator of

auxiliary functions, which may be of interest for the user.

The aforementioned conclusions can be confirmed from the replies registered at

StackOverFlow. The user now can be more confident to understand the answers

provided by the repository, considering both the target and similar functions, their

utility, as well as the way they can be used to solve the stated problem.

Fig. 4. OctMiner panoramic views for the initial analysis

Fig. 5. Using filters to identify setdiff function occurrences

Fig. 6. Visual representation of functions from the repository

Fig. 7. Visual representation of functions in OctMiner

Even though this example is simple, it illustrates the benefits from using OctMiner

to support comprehension. The combined use of the configuration types I and II can

be an effective way for the comprehension of particularities of MATLAB and Octave

programming that would be difficult to notice through non-visual, non-interactive

approaches.

In the second study, one of the potential threats related to external validity (to

which extent results can be generalized) is that just one question from StackOverflow

was evaluated in OctMiner. The environment might not easily fit other issues

registered at StackOverflow. However, we do not expect that the case studies

presented in this paper should to be generalizable to all types of issues and questions

from StackOverflow. The purpose of both studies was to provide insights about the

potential of OctMiner as support for the comprehension of MATLAB/Octave

programs. The first study had the goal to use OctMiner to support the detection and

characterization of crosscutting concerns [5], as well as to characterize the use of

OctMiner and improvement opportunities of its use. The second study explored two

configuration types to use OctMiner for supporting comprehension of issues posted at

StackOverflow.

We recognize that OctMiner may not be able to provide support for all kinds of

comprehension needs. To better characterize and validate its range of applicability,

we plan additional studies. Another potential threat to validity is that both the design

and the execution of the study were performed by the same person. To overcome this

issue, further independent experiments should be carried out to better compare results.

4 A Comprenhension Strategy based on OctMiner

The results from the two studies enabled us to propose a set of usage strategies based

on OctMiner for comprehension purposes. The set has a comprehension question that

drives the strategy steps as a starting point. The question of the first study was related

to tangling and scattering, using a set of tokens from programs of a repository as a

basis. The second study focused on questions posted at StackOverflow by program-

mers. Table 3 presents the steps proposed from evidences collected from the two case

studies presented in this paper.

Table 3. A proposed set of usage strategies

SUGGESTED STEPS

1 - Select a question: the programmer needs to identify an issue relevant for his daily

activities. Answers to the question should be available considering that the functions used in

the code should be registered in the OctMiner configuration file. A repository of questions

and answers, such as StackOverFlow, may be used for this purpose, as illustrated in the

second study.

2 – Identify a target function: it should be the function that plays a relevant role in the code

of the primary solution to the selected question. In repositories such as the StackOverFlow,

the best ranked answers usually indicate the relevant function to solve the problem.

3 – Locate repositories that use the target function: since OctMiner aims at assisting the

comprehension of a given target function, it is desirable that routines using the target

function provide good examples and be the subject of analysis.

4 – Identify the functions and their respective categories available in the official

documentation: alternative functions used in the repository selected in Item 3 must also be

identified. MATLAB and Octave functions are categorized in the official language site of

MATLAB and Octave.

5 – Register the target function as well as other function from the repository in the

OctMiner configuration file: the functions should be registered in OctMiner configuration

file using their specific group, identified according to Item 4.

6 – Create a To-Do list for identification through visualization: activities that the user must

perform should be described so that the study is conducted as well as possible within

OctMiner. In the example from the second preliminary study, the user is directed through

four comprehension tasks centred on the setdiff function.

7 – Implementation of the proposed activities: the user must run OctMiner according to the

activities set out in Item 6.

8 - Answer the original question: to prove the effectiveness of the tool, the user should be

able to answer the question that started the process.

5 Related Work

Research on MATLAB and Octave program comprehension is in its infancy. A

simple proof of this claim can be obtained with Google Scholar. While the search

string “Java program comprehension” returns a considerable number of hits9, at the

time of writing this paper, similar searches with MATLAB 10 or Octave11 did not

match any articles. Therefore, we enlarged our search to include related aspects such

as static analysis, code refactoring, reverse engineering or program transformation

and optimization.

The oldest reference found was from V. Menon and K. Pingali, where the authors

proposed three kinds of source-to-source transformations for optimizing MATLAB

programs and show their effectiveness [14]. They claim that transformations yield

performance benefits additional to those obtained by (optimizing) compilation, and

may be useful for other DSLs that are high-level, untyped, and interpreted.

In spite of MATLAB’s popularity, and the need for static analysis (e.g. for

program optimization, code smells detection, refactoring), Jesse Doherty claimed that

there was no publicly available framework for creating static analyses for that

language, until he created the McLAB Static Analysis Framework (McSAF) [15] [16].

The goal of this framework was to make new analyses easy to write and to extend to

new language features.

Soroush Radpour, also at McGill University [17], developed a tool named

McBench12 that is claimed to help compiler writers understand the language better, by

giving some insight about how programmers use MATLAB. He also proposed a suite

9 https://scholar.google.pt/scholar?q="Java+program+comprehension"
10 https://scholar.google.pt/scholar?q="MATLAB+program+comprehension"
11 https://scholar.google.pt/scholar?q="Octave+program+comprehension"
12 see https://github.com/isbadawi/mcbench

of semantic-preserving refactoring for MATLAB functions and scripts including:

function and script inlining, converting scripts to functions, extracting new functions,

and converting dynamic feval (function evaluation) calls to static function calls.

Last, but not the least, Anton Dubrau and Laurie Hendren, again from the McLab

Project13 team at McGill University, claim that MATLAB users often want to convert

their programs to a static language such as Fortran [18]. They developed an object-

oriented open source toolkit, called Matlab Tamer14, for supporting the generation of

static programs from dynamic MALTAB programs.

6 Conclusions and Future Work

MATLAB and Octave are popular languages for numerical computations used by

scientists, engineers and students worldwide. As their programs grow in size and

complexity, they face the usual maintenance challenges that originated the emergence

of the program comprehension domain in Computer Science. Software visualization

techniques can mitigate those maintenance challenges, but as far as we could devise,

their use has not yet been adopted by the MATLAB and Octave communities.

This paper presents the following contributions: a) the provision of an environment

called OctMiner for the comprehension of MATLAB/Octave routines supported by

multiple views; b) Evidences of the effectiveness of OctMiner to support the

identification of symptoms of code tangling and code scattering as discussed in the

first study; c) Evidences of the effectiveness of OctMiner to understand the solutions

proposed in a popular question-and-answer site for professional programmers,

regarding MATLAB and Octave languages as discussed in the second study; d) a set

of usage strategies of OctMiner for comprehension purposes.

We now plan to conduct a controlled experiment where engineering undergraduate

students will perform comprehension activities with and without the support of

OctMiner. We also plan to include collaborative resources in OctMiner to enable

programmers to communicate and cooperate among themselves to more effectively

achieve software comprehension activities related to MATLAB and Octave software

development.

References

1. Seacord, R., Plakosh, D., Lewis, G.: Modernizing legacy systems: software technologies,

engineering processes, and business practices. Addison-Wesley Professional (2003)

2. Card, S., Mackinlay, J., Shneiderman, B.: Readings in Information Visualization Using

Vision to Think. Morgan Kaufmann, San Francisco, CA (1999)

3. Carneiro, G., Silva, M., Mara, L., Figueiredo, E., Sant’Anna, C., Garcia, A., Mendonça, M.:

Identifying code smells with multiple concern views. In : proceedings of the XXIV

Brazilian Symposium on Software Engineering (SBES'2010), pp.128–137 (2010)

13 see http://www.sable.mcgill.ca/mclab/
14 see http://www.sable.mcgill.ca/mclab/projects/tamer/

4. Cardoso, J., Fernandes, J., Monteiro, M., Carvalho, T., Nobre, R.: Enriching MATLAB

with aspect-oriented features for developing embedded systems. Journal of Systems

Architecture, 412–428 (2013)

5. Monteiro, M., Cardoso, J., Posea, S.: Identification and characterization of crosscutting

concerns in MATLAB systems. In : proceedings of the Conference on Compilers,

Programming Languages, Related Technologies and Applications (CoRTA'2010), Braga,

Portugal, pp.9-10 (2010)

6. Spence, R.: Information Visualization: Design for Interaction 2nd edn. Prentice Hall (2007)

7. Carneiro, G., Mendonça, M.: SourceMiner: Towards an Extensible Multi-perspective

Software Visualization Environment. In Hammoudi, S., Cordeiro, J., Maciaszek, L., Filipe,

J., eds. : Enterprise Information Systems 1st edn. Springer International Publishing (2014)

242-263

8. Nunes, A., Carneiro, G., David, J.: Towards the Development of a Framework for Multiple

View Interactive Environments. In : proceedings of the International Conference on

Information Technology: New Generations (ITNG'2014), Las Vegas, USA, pp.23-30

(2014)

9. Lessa, I., Carneiro, G., Monteiro, M., Brito e Abreu, F.: A Multiple View Interactive

Environment to Support MATLAB and GNU/Octave Program Comprehension. In :

proceedings of the International Conference on Information Technology: New Generations

(ITNG), Las Vegas, USA (2015)

10. Chaves, J., Nehrbass, J., Guilfoos, B., Gardiner, J., Ahalt, S., Krishnamurthy, A., Unpingco,

J. ., Warnock, A., Samsi, S.: Octave and Python: High-Level Scripting Languages

Productivity and Performance Evaluation. In : proceedings of the HPCMP Users Group

Conference'06 (2006)

11. Stenroos, M., Mäntynen, V., Nenonen, J.: A MATLAB library for solving quasi-static

volume conduction problems using the boundary element method. Computer methods and

programs in biomedicine (2007)

12. Robillard, M., Murphy, G.: Representing Concerns in Source Code. ACM TOSEM (2007)

13. Tarr, P., Ossher, H., Harrison, W., Jr., N. I.: Degrees of Separation: Multi-Dimensional

Separation of Concerns. In : proceedings of the ICSE'99 (1999)

14. Menon, V., Pingali, K.: A case for source-level transformations in MATLAB. In :

proceedings of the DSL'99, pp.53–66 (1999)

15. Doherty, J.: McSAF: An extensible static analysis framework for the MATLAB language.

MSc dissertation, McGill University, Montréal, Canada (September 2011)

16. Doherty, J., Hendren, L.: McSAF: A Static Analysis Framework for MATLAB. Sable

Technical Report sable-2011-01, McGill University, Montréal, Canada (December 2011)

17. Radpour, S.: Understanding and refactoring the MATLAB language. MSc dissertation,

McGill University, Montréal, Canada (August 2012)

18. Dubrau, A., Hendren, L.: Taming MATLAB. Sable Technical Report sable-2011-04,

McGill University, Montréal, Canada (December 2011)

