
A Parser and a Software Visualization Environment to Support the
Comprehension of MATLAB/Octave Programs

Thiago de Lima Mariano1, Glauco de Figueiredo Carneiro1, Miguel Pessoa Monteiro2,
Fernando Brito e Abreu3 and Ethan Munson4

1Universidade Salvador (UNIFACS), Salvador, Bahia, Brazil
2Universidade Nova de Lisboa (NOVALINKS), Lisbon, Portugal

3Instituto Universitario de Lisboa (ISCTE-IUL), Lisbon, Portugal
4University of Wisconsin Milwaukee (UWM), Milwaukee, Wisconsin, U.S.A.

Keywords: MATLAB/Octave, Parser, Abstract Syntax Tree (AST), Knowledge Discovery Metamodel (KDM), Software
Comprehension, Software Visualization.

Abstract: Software comprehension and analysis of MATLAB and Octave programs are not trivial tasks. Programmers
have to devote considerable effort to obtain relevant data from source code and related artifacts. Tools that
provide support for software comprehension activities usually rely on parsers to obtain data from source code.
The problem in the MATLAB/Octave case is the limited number of available parsers and the difficult to build
an extensible solution with them. In this paper, we describe the development of a parser that converts MAT-
LAB and Octave program codes into instances of the Knowledge Discovery Metamodel (KDM), which can
subsequently undergo static analyses to feed different visual representations. The goal of these representations
is to support software comprehension. We describe our experience in the use of this parser to build a software
visualization environment to support the comprehension of MATLAB and Octave programs.

1 INTRODUCTION

Software visualization has supported programmers
and designers to discover information that are hidden
in standard parsing processes (Munzner, 2014)(Seriai
et al., 2014). In this paper, we focus on the parser
implementation and a visualization environment for
two programming languages. The first is MATLAB, a
very popular dynamic scripting language for numeri-
cal computation and matrix processing used by scien-
tists, engineers and students (Radpour et al., 2013).
The second is Octave 1, a (mostly compatible) open
source MATLAB clone. Both languages provide re-
sources for solving common numerical linear alge-
bra problems, e.g., computing the roots of nonlinear
equations, integrating ordinary functions, manipula-
ting polynomials, as well as integrating ordinary dif-
ferential and differential-algebraic equations. In most
cases, programs written in those languages are of-
ten developed incrementally using a combination of
scripts and functions and frequently build upon exis-
ting code.

1https://www.gnu.org/software/octave/about.html

The execution of Octave programs uses its own
interpreter that is available in the project website 2.
This interpreter is a parse-tree library developed in
C++ that generates the code’s Abstract Syntax Tree
(AST). Although it covers all the features of Octave,
it does not include documentation or references regar-
ding its source code. Comprehension of the parser is
not trivial, especially considering the effort to under-
stand the attributes and methods. To illustrate, some
methods found in the parser source code include:
yypull parse, yypstate new, yyparse, yyalloc
and yytnamerr. The MATLAB interpreter also in-
cludes a parser, but it is not possible to verify the type
of output generated, since this language is proprietary
and does not make its source code publicly available.
Our initial aim was to use one of the options men-
tioned above, but this did not prove feasible due to
the aforementioned limitations. Considering the vari-
ations between the MATLAB and Octave languages,
adjustments must be done to the source code of the
parse-tree to cover the programs developed in both
programming languages.

2https://ftp.gnu.org/gnu/octave/

Mariano, T., Carneiro, G., Monteiro, M., Abreu, F. and Munson, E.
A Parser and a Software Visualization Environment to Support the Comprehension of MATLAB/Octave Programs.
In Proceedings of the 20th International Conference on Enterprise Information Systems (ICEIS 2018) - Volume 2, pages 179-186
ISBN: 978-989-758-298-1
Copyright © 2018 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

179



We have identified a set of parsers developed
for the MATLAB and Octave programming langua-
ges: Octclipse3, GNU Octave4, ANTLRv45, McSAF
(Doherty and Hendren, 2012), Magica tool (Joisha
and Banerjee, 2003) and MaJIC (Almási and Padua,
2002). However, we have observed that they are not
suitable nor provide appropriate conditions to be ex-
tended and adapted to provide data to software com-
prehension tools. For example, none of them produce
or export KDM representations to be further used in
such tools. Octclipse is an Eclipse plugin that sup-
ports the development of Octave applications. It has
no development activity since 2015 and according to
its documentation, is compatible to Octave only until
version 3.6. Therefore, some features found in more
recent versions of Octave are not covered by its cor-
responding parser. Similar limitations are reported in
the ANTLRv4 documentation, as regards the capabi-
lity of generating the AST from MATLAB programs.
Updates to this parser were not made since 2015 and
likewise does not support the more recent language
features. In addition, the parser does not cover fe-
atures such as switch statements, structures and cell
arrays. McSAF is a compiler analysis framework that
is intended to enable compiler research by providing
both an intermediate representation and an intraproce-
dural analysis framework which can be used both for
MATLAB and language that are extensions of MAT-
LAB (Doherty and Hendren, 2012). However, the
main limitation of McSAF is the significant effort it
requires to produce or export KDM representations.

The Magica tool (Joisha and Banerjee, 2003) de-
als with type inference for matrix operations and
functions. In addition to inferring the intrinsic type
of matrices, such as int32, double, or char, it also in-
fers matrix sizes and shapes. Magica has the goal to
perform code optimization. Another compiler project
for MATLAB is MaJIC (Almási and Padua, 2002).
It uses a Just-In-Time (JIT) compiler component to
achieve speedups. The main difference of focus bet-
ween these two projects and the parser presented here
is that their main goal was to improve the performance
of MATLAB programs. They do not have the main
goal to provide data to tools that support the compre-
hension of programs coded in the two aforementioned
languages.

Although tools are available to support the deve-
lopment of MATLAB and Octave applications, to the
best of our knowledge just a few seem to be geared to
source code analysis and comprehension. We could

3https://sourceforge.net/projects/octclipse/
4https://www.gnu.org/software/octave/
5https://github.com/ericharley/matlab-parser

perhaps mention MATLAB Online 6, Octave Online
7, JDoodle 8 and Coding Ground 9. MATLAB Online
is a web version of the Mathworks software develop-
ment tool. In this release, source code files are stored
in MATLAB Drive. Octave Online is a web tool used
in the development of Octave applications. JDoodle
and Coding Ground are web tools for developing ap-
plications in various programming languages, inclu-
ding MATLAB and Octave. However, these tools lis-
ted before mainly provide an online programming en-
vironment where programmers can type and run their
code. They lack sophisticated support for software
comprehension and analysis such as the use of visua-
lization resources to identify the entities that comprise
code and their relationship (Storey, 2006) or traceabi-
lity between functional requirements of the program
and the correspondent piece of code that implements
it (Chen, 2010).

In previous work, we implemented an Eclipse
plug-in to support MATLAB and Octave pro-
grams comprehension through visualization resources
(Lessa et al., 2015b)(Lessa et al., 2015a). The plug-in
relied on a parser provided by the GNU Octave pro-
ject. The tool was dependent on Eclipse IDE and it
was not possible to export or import data from/to the
tool. Moreover, the visual metaphors that represented
code entities and possible relationships between them
were implemented using the Draw2d layout and ren-
dering toolkit building on top of SWT in Eclipse (The
Standard Widget Toolkit), which does not provide vi-
sualization resources such as those used by some web
pages currently available. From the users perspective,
this has an impact on the attractiveness of the visual
metaphors.

The rest of this paper is organized as follows.
Section 2 presents the parser implemented to con-
vert MATLAB/Octave source code to instances of the
Knowledge Discovery Metamodel (KDM). Section 3
describes how the proposed parser was integrated to
a visual interactive environment aimed at supporting
the comprehension of MATLAB/Octave programs.
Section 4 conclusions and directions of future work.

2 PARSER IMPLEMENTATION

The goal of the proposed parser is to support different
kinds of tasks, including the provisioning of data to

6https://www.mathworks.com/products/matlab-
online.html

7https://octave-online.net/
8https://www.jdoodle.com/execute-octave-matlab-

online
9https://www.tutorialspoint.com/codingground.htm

ICEIS 2018 - 20th International Conference on Enterprise Information Systems

180



feed visual metaphors to represent MATLAB/Octave
programs. The literature has already called attention
to this need. For example, in (Monteiro et al., 2010),
the authors provide a short review of the state-of-the-
art of aspect mining and particularly the identification
and localization of crosscutting concerns (CCCs) as
latent aspects. They conclude that until that time, not
enough attention was paid to this topic in the context
of MATLAB systems.

In the context of compilers in programming lan-
guages, a parser aims at analyzing the given sequence
of tokens to build a hierarchical data structure ac-
cording to previously established syntactic rules. In
most cases, the output of this transformation is a tree
structure, whose building process is carried out either
through top-down or bottom-up approaches. In the
first case, the tree is built from the root to the leaf
nodes, while in the bottom-up approach the flow is
in the opposite way (Aho et al., 2007). One of the
main advantages of the parser presented in this paper
is the conversion of source code of MATLAB/Octave
programs to KDM instances that can be subsequently
used to provide data to support the analysis and com-
prehension of target systems. In our case, we use the
data converted by the proposed parser to feed a soft-
ware comprehension visualization environment.
Parser Steps. Having this in mind, we developed the
parser in two steps. Step 1 comprises an intermedi-
ate parser capable of generating the AST of MAT-
LAB/Octave programs from its source code (parts A,
B and C of Figure 1). Step 2 comprises another partial
parser to generate KDM instances from AST (parts C,
D and E of Figure 1). In this case, part E shows the
data to be provided to software comprehension tools
to support program analysis.

To deal with several small differences between
MATLAB and Octave, we performed a prior analysis
of their grammars (Version 4.2.0 of the GNU Octave)
10, the packages that comprise the KDM metamodel
and how the KDM metamodel can effectively repre-
sent MATLAB/Octave programs. This is a key issue
for the proposed parser presented in this paper.

During the language analysis phase (part A of Fi-
gure 1), the set of operations is identified, how they
work and which operators can be used. This inclu-
des arithmetic operators, comparison operators, bool-
ean expressions, function calls, assignment expressi-
ons, increment operators, and role definitions. Mo-
reover, several control structures (e.g., if, switch,
while, etc) and statements such as continue, break,
unwind, protect, try and continuation lines are also
considered. The ASTOctave library recognizes each

10www.gnu.org/software/octave/doc/v4.2.0/
index.html#SEC Contents

of these operations, creates an element to represent
them and registers them as an AST node (part C of
the Figure 1). The version 4.2.0 of the GNU Octave
documentation11 was used as a support for this imple-
mentation.

The analysis of the KDM metamodel was a requi-
rement to implement part D of Figure 1. More speci-
fically, we identified twelve packages from the KDM
metamodel whose elements aimed at representing a
specific part of the system under analysis. Packa-
ges from the KDM metamodel are defined in layers.
The Code package is the main package upon which
all the others provide their respective services. In
the Parser implementation described here, we use
elements from the five lower packages: Core, kdm,
Source, Code and Action. These elements where
then selected to be part of the XMI file to describe
the target system.

Considering all the steps presented in Fi-
gure 1 to convert MATLAB/Octave programs
to KDM instances, we implemented the follo-
wing five libraries ASTOctave, ASTOctaveToKDM,
OctaveKDMStructure, OctaveKDMToJSON and
OctaveKDMToXMI.

The first library of the pipeline is
ASTOctaveToKDM whose goal is to scan all the
source files from an Octave or MATLAB target
project. Library ASTOctaveToKDM is the central
mediator of the proposed set of libraries, being
responsible for instantiating the KDM representation
of the project to be parsed. It is also responsible
for controlling when and how other libraries are
instantiated and used. In this scenario, it instantiates
and calls library ASTOctave aimed at reading a MAT-
LAB or Octave file and generating the corresponding
AST. Library ASTOctave also creates the project’s
KDM metamodel. Library OctaveKDMStructure
represents the KDM structure of MATLAB and
Octave applications.

KDM Packages Description (OMG, 2016). Core:
Defines the basic elements to be used by all other
packages, including the entities, their relationships,
and the basic data types, such as String, Boolean,
and Integer. Therefore all other packages depend
on it but Core does not depend on any of them. These
basic data types are used to represent the KDM attri-
butes, their operations, and their parameters.

KDM: Defines key environment elements setting
the standards for building KDM views on the target
system. The elements described in this package, to-
gether with the elements described in Core, comprise
the KDM framework.

11www.gnu.org/software/octave/doc/v4.2.0/
index.html#SEC Contents

A Parser and a Software Visualization Environment to Support the Comprehension of MATLAB/Octave Programs

181



Figure 1: Parser Steps: from the Source Code to the KDM Instance.

Figure 2: Hierarchical structure of the KDM objects.

Source: Defines elements that are used to repre-
sent the physical artifacts of existing software, e.g.,
images, source files, configuration files. For instance,
if the target system has ten files, each file will be re-
presented by an element defined in Source.

Code: Has an extensive set of elements used to re-
present the implementation of the target system. Each
instance of a Code element corresponds to a region of
the source code of an artifact from the target system.
Action: Defines a set of elements representing be-
havior determined by programming languages, e.g.,
declarations, operators, conditions.

The KDM elements used to represent MAT-
LAB/Octave programs, with their respective hierar-
chy, is represented in Figure 2. Finally, libraries
OctaveKDMToXMI and OctaveKDMToJSON scan the
data stored under the project’s KDM structure and re-
spectively generate the XMI and JSON files of that
structure. We decided to use the JSON format for the
parser output, to allow native manipulation of the data
using NoSQL database. The goal is to facilitate infor-
mation retrieval from the data stored in NoSQL data-
bases. This was the motivation for developing library
OctaveKDMToJSON.

Parser Execution. The execution of the proposed
parser entails using library ASTOctaveToKDM as the
central point and reference for the other libraries. The
method parseProjectToKDM is responsible for crea-
ting the KDM structure to be located in the path indi-
cated as a parameter.

After the process is initiated, library
ASTOctaveToKDM traverses all the project’s source
code files. For each file found, it calls library
ASTOctave through method generateAST, passing
the file as parameter. Library ASTOctave reads the
contents of the file and generates the corresponding
AST, returning it to library ASTOctaveToKDM. Library
ASTOctaveToKDM scans all nodes and converts each
AST element into a KDM element through the use of
library OctaveKDMStructure. When all within AST
nodes are converted, library ASTOctaveToKDM passes
the KDM instance to libraries OctaveKDMToXMI and
OctaveKDMToJSON. In fact, these instances represent
the project under analysis. The last mentioned two
libraries (OctaveKDMToXMI and OctaveKDMToJSON)
read all KDM elements and respectively generate the
corresponding XMI and JSON files.

3 BUILDING A SOFTWARE
VISUALIZATION
ENVIRONMENT

In this section, we report on the experience gained
during development of the software visualization en-
vironment -whose main goal is to support the compre-
hension of MATLAB/Octave programs based on visu-
alization resources using data provided by the parser.
Its architecture is presented in Figure 4, which high-
lights the role of the proposed parser to convert data
from part A to part B of the Figure.

The technologic solution is comprised of the Apa-
che Tomcat web container, the CouchDB NoSQL data-
base management system, the REST Java API to cre-
ate the services, the jQuery Ajax, and D3.js, a Java
Script library to manipulate DOM objects based on
JSON data. These technologies are used to imple-

ICEIS 2018 - 20th International Conference on Enterprise Information Systems

182



ment parts B, C, D, and E of the visualization pipeline
shown in Figure 4.

3.1 The Persistence Level

One of the main reasons for selecting a NoSQL do-
cument oriented database is its native flexible schema
functionality. As a result, two or more documents can
have very different schema and data values, unlike in
the relational model, where each row in a table will
have same columns (Li and Manoharan, 2013). For
example, data related to different MATLAB and Oc-
tave programs can be stored in a document-oriented
database where each document can contain the soft-
ware entities of a specific file and their respective re-
lationship. Each software entity has a set of attributes
that may vary from one entity to another. In that case,
a relational model would not be suitable to deal with
this variation.

Considering the four options of NoSQL database
templates available, we decided to use the model that
best fits the way data is stored within the application
source code is document-oriented. The suitability of
the data structure of document-oriented databases to
the data structure of the JSON files (a tree, where a
code block can have one or more blocks inside it in
a nested form) created by the parser presented in this
paper influenced the adoption of a document-oriented
database.

We decided to adopt the document-oriented
NoSQL CouchDB database (Cluster of Unreliable
Commodity Hardware12) for the environment, as it
is a distributed schema database providing a ResTful
JSON (Java Script Object Notation) to manage do-
cuments stored through HTTP calls. The CouchDB-
based HTTP mechanism is scalable to heavy loads of
requests by responding to HTTP calls using the GET,
POST, PUT, or DELETE http methods (Anderson et al.,
2010).

3.2 Parsing Raw Data

Part A of the environment described in Figure 4 cor-
responds to the raw data - the code of the projects to
be analyzed in this case. We chose the Github repo-
sitory, mainly due to the number of MATLAB and
Octave designs available. In addition, Github is a
world-renowned public repository, widely used and
respected by free software developers. Part B of the
environment from Figure 4 represents the transforma-
tion from code to data structures - to be stored in a
database - performed by the parser. See section 2 for

12https://goo.gl/mtnk

details on the transformation steps of the original data
(program code).

The data is stored in the database as KDM ele-
ments, which represent the entities that comprise the
projects and their respective information, such as their
relationship with other elements of the program. We
needed to map these elements to documents in the
JSON format, a task that was also carried out by the
parser. The resulting JSON files are illustrated in part
B of Figure 4. The first element found in the KDM
structure is the KDMSegment object, which represents
the project itself and is converted into a JSON docu-
ment with the following attributes: id, type and name.
In attributes id and name, the project name was en-
tered and the String ”kdm:Segment” was inserted into
attribute type. The attribute of all other documents
is generated automatically by the database. Figure 3
shows a section of this document.

Figure 3: A JSON Document Sample Representing the
KDMSegment Object.

The next element found is object CodeModel. In
addition to the attributes created in the KDMSegment,
two new attributes are created: idParent and idPro-
ject, which will have the same value corresponding
to attribute id of object KDMSegment. The same
goes for object InventoryModel. Attribute type en-
tered in the document that represents the CodeMo-
del receives as value the String ”code:CodeModel”.
In the case of the InventoryModel object, the String
”source:InventoryModel” is assigned to the attribute
type. All other documents have the idProject attribute
and the id of the document that represent the KDM-
Segment is added to this attribute.

InventoryModel objects can contain Directory and
SourceFile objects. It is a part of the KDM instance
environment. As a general rule, each instance of the
inventory model represents a file or a set of files in a
given KDM instance.

This meta-model element is a container of instan-
ces of other inventory meta-model elements. In ad-
dition to the attributes already mentioned, the do-
cuments that represent these objects also have the
attributes path and language. The String ”MAT-
LAB/Octave” is assigned to the language attribute,
whereas the path attribute receives the directory path
in which these files or folders are located within the
project. The type attribute of the SourceFile object
receives the String ”source:SourceFile”. In the case

A Parser and a Software Visualization Environment to Support the Comprehension of MATLAB/Octave Programs

183



Figure 4: Environment to Support the Visual Analysis of MATLAB/Octave Programs.

of the Directory object, the type attribute receives the
String ”source:Directory”. The idParent attribute of
these documents receives the id of the document that
represents the InventoryModel object.

Each CompilationUnit object found in the Code-
Model object is converted to a different JSON docu-
ment with the attributes id, name, type, idProject, and
idParent. The name attribute is given the name of the
source file that this element represents. The type attri-
bute receives the String ”code:CompilationUnit” and
idParent receives the id of the document that repre-
sents the CodeModel element. We decided to convert
the CodeModel object to different JSON documents
due to performance reasons. The memory storage ca-
pacity of CouchDB does not accept a single document
containing multiple CodeModel objects. We obser-
ved that carrying out queries targeting multiple docu-
ments, one for each object, also provided better per-
formance results. Element CallableUnit is converted
into a document with attributes id, type, name, idPa-
rent, idProject, idCompilation and compilation. At-
tribute type receives the String ”code:CallableUnit”.
Attribute name is given the name of the function re-
presented by this element. Attribute idParent receives
the id of the document that represents the Compilati-
onUnit to which this function belongs. Attribute id-
Compilation receives the id of the document that re-
presents the CompilationUnit element to which this
function is part and attribute compilation is given the
name of the file itself.

The documents representing the Blockunit, Co-
deElement and StorableUnit elements have attribu-
tes id, kind, name, idParent , idProject, idCom-
pilation, and compilation. These documents can
also receive attributes idCallable and nameCalla-
ble, if the elements they represent are inside an ele-
ment that represents a function. Attribute type of
the documents that representing elements BlockUnit,
CodeElement and StorableUnit respectively receive
values ”action:BlockUnit”, ”action:ActionElement”
and ”code:StorableUnit”. Attribute kind is populated

with the value stored in variable kind of the KDM ele-
ment. The same thing happens with attribute name.
The rule for filling in the remaining attributes is ex-
actly the same as that used in the document represen-
ting element CallableUnit.

Figure 5 shows an example of a JSON file repre-
senting the CallableUnit element of the KDM of a
MATLAB/Octave program. Attributes id and rev cor-
respond to the unique identifier of this document in
the database. They are generated automatically by
CouchDB. The rev attribute indicates the version of
the document. The same document may have multi-
ple versions in the CouchDB. The value assigned to
attribute type signals that this element matches the
function within a MATLAB/Octave program. Attri-
bute name has the name of this function. Attribute
idParent indicates the id of the parent document of
that element representing a function. In this case, the
parent document represents the BlockUnit element of
the KDM. This BlockUnit corresponds to the code
block of a program code file. Attribute idProject has
the id of the document that represents the KDMSeg-
ment element of the KDM, represented in Figure 3.
This element identifies the project under analysis. At-
tributes idCompilation and compilation identify the
code file that contains this function. The KDM ele-
ment that represents a code file is CompilationUnit.
Attribute idCompilation has the id of the document
that represents CompilationUnit and attribute com-
pilation stores the name of the code file. Attribute
signature stores the signature of a MATLAB/Octave
function along with its parameters.

Through Figures 3 and 5, it is possible to verify
that, in the KDM structure, the CallableUnit element
represented in Figure 5 is hierarchically below ele-
ment BlockUnit. Element BlockUnit is hierarchically
below element CompilationUnit. Element Compila-
tionUnit is hierarchically below element CodeModel
and element CodeModel is hierarchically below ele-
ment KDMSegment represented in Figure 3. This ve-
rification can be verified by linking attributes idParent

ICEIS 2018 - 20th International Conference on Enterprise Information Systems

184



and id of each of these elements.
To find information about MATLAB/Octave pro-

jects stored inside DBMS, CouchDB provides a fea-
ture for accessing data called view. Views are created
within CouchDB itself as a JSON document and are
defined through Java Script functions. Figure 6 repre-
sents a view created inside the CouchDB. This view
is able to return all documents stored in the database
whose attribute type has the value ”kdm:Segment”.

Figure 5: Data Structure of a JSON File Representing a
KDM CallableUnit Element.

Figure 6: CouchDB View Sample.

The view displayed in Figure 6 was executed
through the Futon tool, which corresponds to a web
application used to manage CouchDB. This tool al-
lows one to create databases, documents and views. In
addition, these can be modified or removed. It is also
possible to manage the CouchDB settings through Fu-
ton. This view functionality of CouchDB was used
to loop through the set of documents that make up
the KDM structure of a given project and mount a
JSON file with the information needed for visualiza-
tion. This process of transforming the original data
into a new file in the format required for visualization
is illustrated in part C of the environment described
in Figure 4.
The Server Side of the Environment. The server
side of the application, represented in part D of Fi-
gure 4, consists of Java classes that are responsible

for containing the business rules of the application,
the access to the CouchDB database and the servi-
ces to access the data. It is also the responsibility of
the server to use the library ASTOctaveToKDM to ge-
nerate the KDM metamodel of the MATLAB/Octave
programs and store it in the database.

We developed some methods in the server appli-
cation controller that are responsible for traversing all
the elements contained in the created KDM structure
and converting them into JSON documents, which
were subsequently saved in CouchDB. After mapping
the KDM elements in the corresponding JSON do-
cument, a feature was developed to store it in the
database through the use of the Java library Light-
couch, which corresponds to a Java Application Pro-
gramming Interface (API) for communication with
the CouchDB database.
The Client Side of the Environment: Imple-
menting the Visualization Resources. The client
side of the view environment represented in part E
of Figure 4 corresponds precisely to the joining of the
html pages with their Java Script functions and style
sheets. It is at this stage that the visual metaphors,
containing the MATLAB/Octave program data, are
displayed. The visual metaphors available in the envi-
ronment use the D3.js, which is an open source Java
Script library that provides resources for manipula-
ting HTML documents. It uses Java Script as the lan-
guage for implementing data mapping for documents
(Bostock et al., 2011).

The first visual metaphor indicated to be used in
the proposed environment is Treemap 13. This visual
metaphor is capable of representing large volumes of
hierarchical data through recursively nested rectang-
les representing domain-relevant entities also known
as real attributes. Examples of these attributes are the
number of source lines, the source code files, their re-
spective functions, and other real attributes that can be
visually represented by visual attributes such as rec-
tangle, color, and size (Shneiderman, 1992). The se-
cond visual metaphor indicated to be used in the pro-
posed environment is chord 14. The chord view is ca-
pable of displaying a set of arcs forming a circle and
a set of lines connecting each of these arcs to repre-
sent their relationships. The size of the arcs in the cir-
cle varies according to the number of connections you
have with the other arcs of the circumference. While a
small amount of data could be represented in a circu-
lar diagram using straight lines to show interconnecti-
ons, a diagram with numerous lines would quickly be-
come unreadable. To reduce visual complexity, chord

13https://bl.ocks.org/mbostock/4063582
14http://bl.ocks.org/NPashaP/ba4c802d5ef68f70c019a97

06f77ebf1

A Parser and a Software Visualization Environment to Support the Comprehension of MATLAB/Octave Programs

185



diagrams employ a technique called hierarchical edge
grouping (Holten, 2006). The chord view has been
mapped to contain in each arc of the circumference
a source code file of a MATLAB/Octave project and
the lines thet connecting the arcs represent the afferent
and efferent couplings between each of these files.

The communication between the client side of the
application and the server side is done through of calls
by the Java Script functions to services available on
the server side by the REST technology. Rest is an
architectural style that allows the development of ser-
vices that can be accessed via calls by url.

4 CONCLUSION AND FUTURE
WORK

The main goal of the parser is to generate KDM in-
stances of programs developed in languages MAT-
LAB/Octave, which in turn can be used as input to
support processes of analysis and understanding.

In short, the advantages of the proposed parser
in comparison with the related work are summari-
zed as follows. The proposed parser convert MAT-
LAB/Octave programs in KDM instances and these
instances can be manipulated by tools and APIs that
know the KDM metamodel.

REFERENCES

Aho, A. V., Sethi, R., and Ullman, J. D. (2007). Compilers:
principles, techniques, and tools, volume 2. Addison-
wesley Reading.

Almási, G. and Padua, D. (2002). Majic: Compiling mat-
lab for speed and responsiveness. In ACM SIGPLAN
Notices, volume 37, pages 294–303. ACM.

Anderson, J. C., Lehnardt, J., and Slater, N. (2010). Cou-
chDB: the definitive guide. ” O’Reilly Media, Inc.”.

Bostock, M., Ogievetsky, V., and Heer, J. (2011). D3 data-
driven documents. IEEE transactions on visualization
and computer graphics, 17(12):2301–2309.

Chen, X. (2010). Extraction and visualization of traceabi-
lity relationships between documents and source code.
In Proceedings of the IEEE/ACM international confe-
rence on Automated software engineering, pages 505–
510. ACM.

Doherty, J. and Hendren, L. (2012). Mcsaf: a static analy-
sis framework for matlab. In European Conference
on Object-Oriented Programming, pages 132–155.
Springer.

Holten, D. (2006). Hierarchical edge bundles: Visualiza-
tion of adjacency relations in hierarchical data. IEEE
Transactions on visualization and computer graphics,
12(5):741–748.

Joisha, P. G. and Banerjee, P. (2003). The magica type in-
ference engine for matlab R©. In International Con-
ference on Compiler Construction, pages 121–125.
Springer.

Lessa, I. M., Carneiro, G. d. F., Monteiro, M. P., and
e Abreu, F. B. (2015a). On the use of a multiple
view interactive environment for matlab and octave
program comprehension. In International Conference
on Computational Science and Its Applications, pages
640–654. Springer.

Lessa, I. M., de Figueiredo Carneiro, G., Monteiro, M. P.,
and e Abreu, F. B. (2015b). Scaffolding matlab and
octave software comprehension through visualization.
In SEKE, pages 290–293.

Li, Y. and Manoharan, S. (2013). A performance com-
parison of sql and nosql databases. In Communica-
tions, Computers and Signal Processing (PACRIM),
2013 IEEE Pacific Rim Conference on, pages 15–19.
IEEE.

Monteiro, M., Cardoso, J., and Posea, S. (2010). Identi-
fication and characterization of crosscutting concerns
in matlab systems. In Conference on Compilers, Pro-
gramming Languages, Related Technologies and Ap-
plications (CoRTA 2010), Braga, Portugal, pages 9–
10.

Munzner, T. (2014). Visualization analysis and design.
CRC press.

OMG, O. M. G. (2016). Architecture-driven moderniza-
tion: Knowledge discovery meta-model (kdm). No
Informado.

Radpour, S., Hendren, L., and Schäfer, M. (2013). Refacto-
ring matlab. In International Conference on Compiler
Construction, pages 224–243. Springer.

Seriai, A., Benomar, O., Cerat, B., and Sahraoui, H. (2014).
Validation of software visualization tools: A systema-
tic mapping study. In Software Visualization (VIS-
SOFT), 2014 Second IEEE Working Conference on,
pages 60–69. IEEE.

Shneiderman, B. (1992). Tree visualization with tree-maps:
2-d space-filling approach. ACM Transactions on
graphics (TOG), 11(1):92–99.

Storey, M.-A. (2006). Theories, tools and research methods
in program comprehension: past, present and future.
Software Quality Journal, 14(3):187–208.

ICEIS 2018 - 20th International Conference on Enterprise Information Systems

186


