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Matrix and datamanipulation programming languages are
anessential tool for data analysts. However, these languages
are often unstructured and lack modularity mechanisms.
This article presents a knowledge discovery approach for
studying manifestations of the lack of modularity support
in that sort of languages. The study is focused onMatlab, as
a well established representative of those languages. We
present a technique for the automatic detection and quan-
tification of concerns in Matlab and their exploration in a
code base. The Ubiquitous Self OrganisingMap (UbiSOM)
is used to perform exploratory data analysis over concerns
detected in a, possibly changing, repository ofMatlab files.
The UbiSOM is quite effective in detecting patterns of co-
occurrence of multiple concerns. To illustrate the technique,
a repository comprising over 35 000Matlab files is analyzed.
The results show that the use of Token Density metrics in
conjunction with UbiSOMenables the detection of patterns
of co-occurrence of multiple concerns in m-files.
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1 | INTRODUCTION
This article presents a Software Engineering Business Intelligence and KnowledgeDiscovery approach for advanced
exploratory data analysis using the Ubiquitous Self-Organising Map (UbiSOM) (Silva and Marques, 2015). Human-
computer interaction is used for tunning UbiSOM to the analysis of a source code base, resulting in an expert systems
technique for applying concern mining to studymanifestations of lack of modularity support inMatlab code bases (m-
files). The developed technique is based on a concern metric that is used as an indicator of the intensity of the presence
of a given concern in each source code file.

The present study is focused onMatlab, since it is a classical language for matrix manipulation, and of which large
repositories are publicly available. The concernmetric provides the foundation on which exploratory analyses of source
code bases can be performed— in this case, using the UbiSOM. UbiSOM’s underlying algorithmwas initially proposed
in Kohonen (1982) and became an established datamining algorithmwith hundreds of applications in many scientific
domains (Kohonen, 2001). The technique is scalable to large code bases. The UbiSOMmodel analyses proved to be
particularly effective in detecting and representing patterns of co-occurrence of multiple concerns in the same source
file.

The remaining sections of this article are structured as follows: Section 2 provides the background andmotivation
for this work. Section 3 describes the proposed concernmining technique and presents a repository ofMatlab code.
Section4presents theUbiSOMand its interactive interface,MultiSOM.Next, an illustrating analysis using theMultiSOM
tool over theMatlab repository is described in section 5. Section 7 provides a discussion and outlines related work.
Section 9 concludes the article andmentions several opportunities for future work.

2 | BACKGROUND AND MOTIVATION
A concern is any abstraction, concept or cohesive set of functionalities that ideally is enclosed in its ownmodule, for the
sake of comprehensibility and ease of maintenance and evolution. It has long been accepted that existing programming
paradigms have limitations on the ability to enclose all concerns in separatemodules (Kiczales et al., 1997). The root
cause is that each programming paradigm provides a single criterion to decompose a software system (Tarr et al., 1999).

Concerns that do not align with the primary decomposition tend to cut across the system’s modular structure, even
when developers follow the best practices of design and programming style. Such non-aligning concerns are known
as crosscutting concerns (CCCs) (Kiczales et al., 1997; Tarr et al., 1999). In modern software such as object-oriented
systems, the usual symptoms of the presence of a CCC in source code are scattering and tangling. Scattering usually
takes the form of code fragments scattered across multiple source files, often corresponding to repeated instances
of “boiler plate code”. Tangling is found in themodules that the CCCs overlap: code pertaining to the primary concern
appears intertwined with code pertaining to other concerns. Tangling is particularly harmful to the comprehensibility of
all concerns found in themodular unit, including the primary concern.

Past research on techniques to detect unmodularised concerns in program code were carried out mainly under
the umbrella name of aspect mining (Kellens et al., 2007), which studies tools and techniques for the automatic or
semi-automatic detection of unmodularised concerns (as latent aspects) in existing systems. Though such techniques
were the subject of much research in the context of object-oriented systems and systems coded in C, they were less so
in the case ofMatrix and data manipulation programming languages, of whichMatlab is a prominent example. Matlab’s
support for modularity is less sophisticated than that of object-oriented languages. Modules aremostlyMatlab files
(m-files) andMatlab functions (m-functions).
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An m-file that encloses zero m-functions is a Matlab script. Our study is focused on m-files with at least one m-
function, as we presently do not consider scripts. Whenever more than one concern is found in a givenm-file, it contains
a core concern plus one or several secondary concerns, which are the equivalent of CCCs in Matlab. Such "additional
concerns" give rise to the Matlab versions of scattering and tangling, which can take extreme forms in some cases
(Cardoso et al., 2006). The UbiSOManalysis is particularly interesting inm-files with two ormore concerns, which we
approach as cases of a deficient support for modularity.

The approach to concern detection proposed in this article is a pioneer approach that uses unsupervised knowledge
extraction tools as part of an effort to develop a general approach for concern detection that can be used equally well
to detect modularised concerns enclosed in a single source code file or unmodularised concerns, which are therefore
scattered across multiple files.

Many instances of the past work on aspect mining were carried out with the aim of subsequently migrate the
identified CCCs into aspect modules. The present work is not related to any existing aspect-oriented extension of the
Matlab language, though such extensions have been proposed in the past (Cardoso et al., 2006; Aslam et al., 2010;
Cardoso et al., 2013). In fact, the approach proposed here can be used to detect any kind of concern, crosscutting or
not. Work is also presently being carried out to develop the technique into a general approach for concern detection
that can be used equally well to detect concerns enclosed in a single source code file (e.g., anm-file) or CCCs scattered
across multiple files.

It should be noted that the idea of aspect mining can serve purposes other than concernmining, as the information
obtained through such techniques is useful and interesting in its own right and it can form the basis for a number of
other tasks, namely assessments of the target system in terms of e.g., architectural soundness, quality of design and
good programming style. For instance, certain aspect mining techniques are based onwell-knownmetrics, which retain
the usefulness associated to their original purpose (Marin et al., 2004).

3 | CONCERN MINING IN MATLAB SYSTEMS
Concern detection builds on previous work byMonteiro et al. (Monteiro et al., 2010; Cardoso et al., 2006) which, to our
knowledge, is the sole previous work on concernmining specifically tailored forMatlab systems. The approach is based
on the analysis concern metrics (Figueiredo et al., 2008), which capture information about concerns, whether they are
modularised or not. This is in contrast to traditional modularity metrics (Chidamber and Kemerer, 1994), which capture
information on themodules themselves. Concernmetrics are particularly suitable for supporting concernmining tasks.

The main information unit are the tokens, i.e., the lexical elements extracted from a code file by means of some
lexical analyzer tool.Monteiro et al. base their work on the hypothesis that specific groups of tokens can be associated
to specific concerns, in which case patterns of occurrence of such tokens can be used to detect the presence of the
corresponding concerns. In this approach, individual tokensmust be associated to one concern at most.

The present work is based on a tool that includes a lexical analyzer for Matlab, plus components for extracting
metrics from repositories of m-files, as well as an analysis component that uses Ubiquitous Self-Organising Maps
for assisting in its multi-dimensional exploration and analysis of the extracted data. The tool materialises the above
approach for concernmining by performing a tokenisation of all the non-comment code from eachm-file from a given
target repository and computes a number of metrics based on the word tokens obtained. All non-word tokens (e.g.,
symbols and literals, including strings) are discarded. The treatment of keywords varies according to the specific aims,
though as a general rule they are discarded.

For the current study, the tool is also set to filter out all names that are not function names (mostly variable names
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in practice). In addition to a lexical analyser, the tool was also providedwith basic parsing functionality to identify the
lvalue part of assignments, which comprise the standard way to create variables inMatlab. At present, all names tagged
as lvalues are discarded and the remaining names are assumed to be function names. Function names, particularly from
standardMatlab libraries, comprise themost useful tokens because they are common tomost or all Matlab systems,
thus providing a measure of guarantee that the technique will operate uniformly in most Matlab systems. Variable
names are discarded because they look less promising: a given variable name found in different systems, created by
different teams, is likely tomean different things.

The proposed technique uses the trial mapping between concerns and function names shown in Table 1, which
was proposed by a domain expert. One of the aims of the work described here is to test and assess the technique,
using this mapping. Themetrics computed by the tool and used in this work are: (i) Lines of Code (LoC), which counts all
non-comment and non-blank LoCs for eachm-file; and (ii) Token Density, which computes, for eachm-file, the total count
of occurrences of each instance of the tokens from a given set (e.g., 5 occurrences of ‘double’ count as 5), divided by LoC.
This metric represents the average number of tokens per LoC, for a given concern. Note this metric parameterises the
concern, i.e., the specific set of tokens considered. The mapping from Table 1 gives rise to 10 instantiations of Token
Density.

Figure 1 shows the contents of an m-file (minus blank and comment lines) whose metrics stand out for a few
concerns. With just 9 LoC, it has 2 tokens indicative of Verification of function arguments and return value (Token Density
0.2(2)), 9 tokens indicative ofData type specialisation (Token Density 1.0) and 5 tokens indicative ofMemory allocation/
deallocation (Token Density 0.5(5)).

The Token Densitymetric is sufficient to directly allow the selection of the top densities on any individual concern
from Table 1. However, it cannot be scaled to provide an overview of a large repository spanning multiple concerns,
though it can be used as a direct selection criteria on m-files based on a single concern. This simple method already
proved effective in tasks such as e.g., spotting examples such as those shown in Figure 1. However, on amacro-level
and just by itself, a technique based on Token Density is not well suited to provide a broad view of a large repository and
provide a panorama of all concerns from Figure 1 and its various co-occurrences.

F IGURE 1 m-file showing high values for Token Density in relation to 3 concerns.

4 | ADVANCED DATA EXPLORATION WITH THE UBIQUITOUS
SELF-ORGANISING MAP

TheUbiquitous Self OrganisingMap (UbiSOM) is a variant of thewell-known Self-OrganisingMap algorithm (SOM)
(Kohonen, 2001). While the later was conceived for static data, the former is tailored for real-time analysis of streaming
data (Silva andMarques, 2015).

The UbiSOM reported in this article is used to obtain models of Token Density data. UbiSOM also ensures detection
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Concern Tokens
Verif. func. args
& return values

nargchk, nargin, nargout, nargoutchk, varargin, varargout

Data type specialisation double, fi, fimath, int8, int16, int32, int64, int, quantize, quantizer, sfi, single, ufi, uint16,
uint32, uint64, uint

Data type verification

cast, class, intmax, intmin, isa, isboolean, iscell, ischar, iscolumn, isempty, isfi, isfield,
isfimath, isfixed, isfloat, isinf, isinfinite, isinteger, islogical, isnan, isnumeric, isobject,
isquantizer, isreal, isrow, isscalar, isstr, isstruct, isvector, length, ndims, numel, range,
realmax, realmin, size, typecast, wordlength

Dynamic properties eval, evalc, evalin, inline, feval
Console messages annotation, assert, disp, display, error, last, lastwarn

Visualisation

aaxes, axis, box, cla, clabel, clf, close, datacursormode, datetick, errorbar, figure,
figurepalette, fplot, gca, gcbf, gcbo, gco, getframe, gplot, grid, gtext, hist, histogram,
hold, imfinfo, ishold, legend, line, loglog, mesh, meshgrid, newplot, pan, plot, plot3,
plotbrowser, plotedit, plottools, plotyy, polar, propertyeditor, rectangle, reset, rgbplot,
scatter, semilogx, semilogy, showplottool, subplot, surf, texlabel, text, title, xlabel,
ylabel, zlabel, zoom, set, rotate, rotate3d, imformats,imread, imwrite, movie, image,
frame2im, im2frame, VideoReader, VideoWriter

File I/O diary, fgetl, fgets, fileformats, fopen, fprintf, fread, fscanf,
fwrite, hgload, hgsave, load, save, saveas, uisave

System

ans, echo, exist, inmem, input, inputname, inputParser, isglobal, iskeyword, isvarname,
mexext, mfilename, namelengthmax, pcode, symvar, who, whos, systems, slist, where,
loadlibrary, mex, calllib, libisloaded, unloadlibrary, libfunctionsview, onCleanup,
clearvars, rehash, pack, memory, clear, addtodate, now, weekday, date, calendar, tic,
toc, dbcont, dbquit, dbstop, dbmex, ba, bafter, break, ebreak, nanbreak, rbreak, tbreak,
run, xbreak, zcbreak, wait, stop, batch, spmd, pause, step, next, mlock, munlock,
mislocked, clock, cputime, etime, start, startat, timerfind, timerfindall, profile, profsave

Mem. alloc./dealloc. delete, global, ones, persistent, zeros

Parallelisation

gplus,gather,distributed, poolStartup, mpiSettings,promote, psave,
gpuArray, gpuDevice, gpuDeviceCount, importParallelConfig, isreplicated, jobStartup,
labBarrier, labBroadcast, labindex, labProbe, matlabpool, mpiLibConf, mpiprofile,
numlabs, parfor, pctconfig,pctRunDeployedCleanup, pctRunOnAll, pload, pmode, . . .

TABLE 1 Illustrativemapping between concerns and tokens.
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of distinct phenomena if new or too distinct repositories are used; this is particularly relevant if, as in this case, more
code repositories are intended to be added later on.

4.1 | The Ubiquitous Self-OrganisingMap
The UbiSOM is used as a tool for projecting high-dimensional input data onto a two-dimensional representation
map. This projection retains the relationship between input data as faithfully as possible, thus describing a topology-
preserving projection of input similarities in terms of distances in the output space.

The UbiSOM retains all the properties of the original SOM algorithm, and, therefore, its visualisation capabilities
for exploratory data analysis. It is an unsupervised learning artificial neural network algorithm, whosemodel consists of
a fixed rectangular grid of data prototypes— themap, that form the projection layer for input data. Starting from a set
of random initialised data prototypes, the algorithm continuously processes input patterns: for each input pattern a
competitive learning rule selects the "closest" prototype — the "winner" or best matching unit (BMU), and both the
BMU and its neighbouring prototypes are adjusted toward the input pattern by a gradient descent mechanism. Upon
presentation of a sufficient number of diverse input patterns, a topological featuremap is formed by the algorithm.

What distinguishes the UbiSOM from its original counterpart is its capability to adjust the model to new input
patterns without the need to rebuild the entiremodel. Although it still uses the original online SOMupdate rule, the
annealing learning parameters used in the gradient descent mechanism are estimated based on the error of the current
model against the new input patterns, as opposed to simply monotonically decreasing them. This allows for a more
"natural" and rapid convergence to stationary streams, while incorporating a form of neural plasticity to deal with new
information, i.e., non-stationarity.

Comparison to K-means Clustering
The competitive learning scheme and gradient descent should resonate with those familiar with the k-means algorithm,
although, and this is a critical difference, k-means only adjusts the centroid. Despite this close relation, the best way of
using both algorithms in datamining is different.

In the k-means clustering algorithm the number of K clusters should be chosen according to the number of clusters
present in the data. However, k-means clustering is unable to compare distinct clusters and a bad setting of the K
parameter could result in too generic clusters, i.e., data groupings that may have little relation.

On the other hand, in the UbiSOM (and in the SOM, in general) the number of data prototypes should be chosen to
bemuch larger, irrespective of the number of clusters (Ultsch, 1995). Doing so, the cluster structures and descriptions
can become visible bymeans of special powerful visualisation techniques to perform exploratory data analysis (Ultsch
andHerrmann, 2005).

Hence, these capabilities for data clustering and pattern analysis without any prior assumptions on data form the
reasonwhywe deem the UbiSOMmore suitable for our exploratory data analysis.

4.2 | Data Visualisations
UbiSOM visualisations are only possible due to the topological ordering of the prototypes, input density matching and
the fixed-sized lattice of the UbiSOM. UbiSOM visualisations use colours as a visual representation of specific values —
different colour scales can be used. This makes them available not only to experts, but laymen, when analysing them and
can be easily understood if one is familiar with the representation. The basic visualisations that can be derived from an
UbiSOMmodel are the following:
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Component Planes. By component plane representation, we can visualise the relative component distributions of
the input data. Component plane representation can be thought as a sliced version of the UbiSOMmodel. Each
component plane (CP) has the relative distribution of the values of one feature. In this representation, and using a
temperature-like colour scale, “cooler” colours represent relatively small values while “warmer” colours represent
relatively large values. Using the analogy with the JET colour map of Matlab1, “cooler” colours are encoded as
blue and “warmer” colours are encoded as red. Correlations between features (components) can be inferred by
visual inspection, e.g., if the outlook of two CPs is similar, the corresponding features correlate; if they seem like the
“negative” of each other, then they are inversely correlated. Several examples of this method are given in section 5.

UnifiedDistanceMatrix. The unified distance matrix, or simplyU-Matrix, presents distances between data prototypes.
The distances between adjacent data prototypes are calculated and presentedwith different colourings between
the adjacent data prototypes. Following the same temperature-like colour scale, a warmer colouring between data
prototypes corresponds to a large distance and thus a gap between the prototype values in the projected space;
a cooler colouring means prototypes are close to each other in the input space. Cooler areas can be thought as
clusters and warmer areas as cluster separators. This is specially powerful to understand the underlying structure
of data, i.e., when one tries to find clusters in the input data without having any a priori information about the
clusters. Consequently, the detection of complex clusters is achieved not by regarding single units, but by regarding
the topological structuremap.

Hence, while CPs allow discovery of relationships among features, the U-Matrix allows the visual discovery of
clusters of data. Used in conjunction, onemay infer which features best describe the detected clusters, i.e., a description
of the clusters.

It must be emphasised that this knowledge discovery through visual exploration is themainmotivating factor for
using the UbiSOM in this article, as these visualisations are leveraged to perform data analysis of the cluster structure
of detected concerns and the co-occurrence of concerns.

5 | METHODOLOGY FOR DATA ANALYSIS AND EXPLORATION
The token densitymetric was calculated for all files in an available m-file code repository and then values for distinct sets
of concerns were prepared for UbiSOManalysis. Several possible relevant combinations of the concerns from Table 1
were repeatedly tested with the available repository.

5.1 | Matlab Code repository under analysis
The repository used for this work is the one used to test theMatlab compiler by Bispo and Cardoso (Bispo and Cardoso,
2017), comprising 35 193 files organised by toolboxes and covering various application domains. 28 000m-files were
downloaded from Sourceforge and 2 000m-files were downloaded fromGitHub. Of these, 784m-files were discarded
due to the lack of usefulMatlab code inside them. For instance, we found a number of m-files with zero LoC , as they
contained only comment text. After this curating, the repository comprised 34 409m-files. We found that in practice,
m-files with too low a LoC value tend to hog results for Token Density. Such small m-files are usually of limited interest
but even one or two tokensmake them yield a relatively high value for themetric. For this reason, the tool was set to
discard all m-files with LoC < 5, leaving a little over 30 000m-files.

1https://www.mathworks.com/help/matlab/ref/jet.html
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Only about 9%of them-files from the curated repository does not contain any of the concerns from Table 1. Out of
them-files with at least one such concern, the biggest chunk is for m-files with two concerns, followed bym-files with
a single concern. Figure 2 compares the number of m-files with Token Density greater than zero. Each bar represents
the number of m-files having each concern. Note that three concerns (Data type specialisation,Dynamic properties and
Parallelisation) are representative of less than 3000m-files (i.e., less than 10%of them-files under analysis).

5.2 | Experimental Setting
Our tool processes the Token Density data from eachm-file from the repository. Ourmethod is specifically focused on
co-occurrence patterns among the various concerns from Table 1. So, there is one input pattern per different m-file.
The data fed to the UbiSOM comprises a sequence of lines, with each line (or pattern) being an instance of the vector
defined asX = [x1k , x2k , · · · , xNk ]. Each component of this vector is obtained by computing Equation 1 for every xi k ,
which is the component for concern i andm-file k .

xi k = l og

(
T kDensi t yi k

maxc (T kDensi t yi c )
× N + 1

)
× 1

l og (N + 1) (1)

Each component (feature) of the vector corresponds to a row number i in Table 1, so i = 1 to NC , where NC = 10 is
the total number of concerns considered for analysis.T kDensi t yi k is the corresponding Token Density for concern i and
m-file k andmaxc• is themaximumof previous values of concern i for all m-files. Intuitively, the use of the logarithm of a
[0; 1] normalised density, i.e., the division in the numerator of Equation 1, is needed since the Token Density values should
bemade relevant for small values of themetric and zero for zero values. Themultiplication of this value by a factor N is
used to ensure that low-frequency values of Token Density are distinct enough from zero. We have set N = 6 000 after
empirically testing several alternatives. The histogramwith frequency analysis of distinct Token Densities for N = 6 000

is shown in Figure 3. Division by themaximum value ensures that each UbiSOM component value is always normalised
between zero and one (as required by UbiSOM).

We used the baseline parameterisation for the UbiSOM algorithm provided in Silva (2016), namely map size of
20 × 40, ηi = 0.1, ηf = 0.08, σi = 0.6, σf = 0.2 and (

T = 2 000, β = 0.7
) .
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As the UbiSOM algorithm processes these input patterns of token densities per m-file, it generates a model
consisting of a topologically orderedmapof prototype patterns. Hence, each prototype (mapunit) is a vector of averaged
Token Density values obtained across all processed patterns. This topological ordering of prototype patterns —within a
sufficiently largemap, enables exploratory data analysis through the type of model visualisations described in Section
4.2, i.e., the detection of direct and inverse correlations between token densities (by the Component planes visualisation),
and therefore concerns, as well as the detection of clusters of similar patterns (by theU-Matrix visualisation).

6 | RESULTS
Due to the stream based nature of UbiSOM, after proper model convergence, each newly presentedm-file will result in
a new valid UbiSOMmodel. By processing the available repository a valid stable model is obtained. The results of our
work include both the newly developed visual tools for concern analysis and the observed stablemodel representing
the selectedm-file repository.

6.1 | AnAdvancedData Analysis Tool based on the UbiSOM
Wepreviously developedmultiSOM (Marques et al., 2016), an interactive visualisation tool that uses the UbiSOMas
the underlying datamining algorithm. For the purposes of the analysis reported in this article, the previously available
tool received a few improvements, including commands providing new visualisation functionalities. All aremeant to
allow better control and exploration of the training process by an expert data analyst, who should be able to better tune
the UbiSOM algorithm’s parameters to a given particular analysis purpose. The relevant details are given next.

Multidimensional projection of an UbiSOM
The first improvement is the capability of either simulate the data stream as a random presentation of them-files from
the code repository, or to directly feed themapwith fresh data received from the input data stream, e.g., if new files
are added or updated in aMatlab toolbox (a set of m-files) or even if a newMatlab toolbox is inserted. This addition
comprises an effective way of seeing the effect of a particular datastream input change, for example by considering
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F IGURE 4 MultiSOM visualisation of the UbiSOMgrid with primary projection on Console messages vs. Data type
verification concerns.Memory allocation& deallocation and Verification of function arguments are usedwith weaker
relevance.

the toolbox order of m-files in the training process. Also, the system developed for the present case study is capable of
dynamically include or exclude different model concerns (features) through an explicit request from the data analyst.
When a given concern is excluded from themodel, all future m-file values for the corresponding concern metric are
returnedwith a value that is equal to the average value of thatmetric in all units of the current UbiSOMmodel. This way,
the data analyst can easily explore different configurations and see how training is influenced by the various concern
metrics in the target code repository (by excluding or re-including features).

The newly added interactive commands that influence the UbiSOM training are feasible, because the UbiSOM can
dynamically adapt its model to shifting concepts. Thus, the current interface formultiSOM is able to dynamically change
the trainingmode upon each data analyst request. This way, it paves the way for an easier assessment of the relevance
of each training feature (namely the concernmetrics) during UbiSOM training. Moreover, since the dynamic change
of the model being learned is possible, it is also particularly important to continuously monitor the learning process
of the model. For that purpose, the data analyst can continuously see a n-Dimensional projection of all patterns (or
m-files) in the feature space to the 2D output screen. For the present case study, the n-dimensional projection system
proposed in (Marques et al., 2016) was further improved to present the input streammost recent m-file names and
their BMU projections in the UbiSOMmap. The data analyst can continuously change the relevance of each projection
axis by visually dragging the projection weight of each concern. Also important is the continuous monitoring of two
UbiSOMerror measures: the average topological error and average quantisation error presented in (Silva andMarques,
2015; Silva, 2016). Both are continuously updated and presented to the data analyst regarding the last 5000UbiSOM
iterations by using two standard error graphs.

Figure 4 shows an illustrative value of the current trainingUbiSOM’s interactivemonitoring dashboard. Most recent
patterns (m-files) are projected by small circles from n-dimensions to the two-dimensions of on-screen visualisation
where the larger circles represent themost recent points. Then UbiSOM grid is visualised as connections among all
prototype values, also projected into the output screen.

This allows an immediate relation with the U-Matrix: nearby neurons (in the projection) naturally correspond
to near-by neurons (or similar points) in the U-Matrix, so the areas where there are more sample points are usually
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corresponding to clusters. Online rotation of themulti-dimensional projection (by dragging the projection axis) allows
an interactive zoom to such specific areas. Theway theUbiSOMmodel (i.e., the projected grid)models the global dataset
enables a synergy between the trained data analyst and the UbiSOM algorithm. Finally, each input pattern can also
be associatedwith each filename and the corresponding concernmetric values. At any time, the user can see current
values of both error rates on a second screen (not shown).

Tensor Visualisationwith an U-Matrix and Component Planes
Two additional visual outputs for a given UbiSOMmodel are considered in this article and comprise the two types
of model visualisations described in Section 4.2: the U-Matrix and the various CPs. Both of these visual tools are
extensively applied in the analysis of the concerns under study and are later presented both using U-Matrix and CPs
(Sections 6.2 and 6.3).

At any given instant, a tensor visualisation can be used to inspect the UbiSOMmodel (Figure 4), which can be seen as
composed of several CPs, i.e., a three dimensional matrix where lines and columns correspond to the traditional 2D
SOM and depth corresponds to the several features. So a slice of this tensor represents a CP: an individual map for each
input feature.

6.2 | Analysis of All Concerns
Several distinct UbiSOMswere trained by filtering patterns with three or more concerns. Note that filtering improves
the quality of themap, but reduces the sample size for detecting patterns. Therefore, in a systematic approach, m-files
with less than two simultaneous concerns with above-zero Token Densitywere filtered away and several UbiSOMswere
trained with the resulting datasets. Patterns filtered with three simultaneous concerns, i.e., by selecting only them-files
with three ormore above-zero Token Density values, were used to train a UbiSOMwhose analysis is presented next, to
illustrate the technique and the insights it provides. Final iterations of UbiSOM training used random resampling over
the full repository. The UbiSOMquantisation error was convergent with reduction of quantisation error duringmodel
training (final quantisation error of 40%). Since no big variations were detected on the final resampling step, the current
repository seems stable enough for model convergence.

The U-Matrix illustrated in Figure 5 and its various CPs illustrated in Figure 6 will be used to illustrate the UbiSOM
results for this experiment. As usual, throughout the rest of the article, the regions from Figure 5 denotedA1 to E2 also
refer to the equivalent regions of the various planes from Figure 6.

In our case study, the features are the concerns, so in the CPs, each position represents the Token Density for its
respective concern. In addition, we can alsomeasure the average distance among eachmap position to its immediate
neighbours. That measure is represented in the U-Matrix.

In the U-Matrix, each unit measures the average Euclidean distance of the correspondent UbiSOMunit vector to
the vectors of the eight UbiSOMunit vectors that are its immediate neighbours. Thus, in each CP and the U-Matrix,
the same areas in the planes represent the same units, i.e., regions in the data that tend to have high or low values
together. However, it is important to note that the cells and colours of U-Matrix and CPs are interpreted in different
ways and that regional commonalities between CPsmust be interpreted in light of the specific colour pattern found in
the corresponding region of the U-Matrix. It is the combination of both views that yields a proper understanding of the
full dataset and their underlying patterns. The U-Matrix provides a general view of the units or patterns found in the
data, while the various CPs provide the details of the various units. Here, each CP relates to one specific concern.

As previously explained, the average values in both the U-Matrix and the CPs are represented as a JET colour
map (Marques et al., 2016), with red representing high values, blue representing low values (down to zero) and green
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Z

E2

A3

B CDE1

A2 A1

F IGURE 5 U-Matrix representing the relations among concerns in theMatlab repository. The various letter
annotations highlight relevant regions.

 Verify func. args & return values

   Mem allocation/deallocation

 
    Dynamic properties     Console messages

  Data type verification

    Visualisation

  Data type specialisation

File I/O System

Parallelisation

F IGURE 6 Component planes showing the colour maps of Token Density for concerns from Table 1.
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representing intermediate values. In addition (and consistently), green areas with a blue hue represent values lower
than pure green, while “dirty” green areas with a red hue represent values higher than pure green.

Figure 5 shows an U-Matrix for the metrics data fed to the UbiSOM, from the example used in Section 6.2 to
illustrate and summarise the analyses. In general, well-separated regions (i.e. the blue “lakes” ofMarques et al. (2016)) in
theU-Matrix represent clearly separated patterns in the data fed to theUbiSOM. Individual lakes are semi-automatically
labeled using a derivation of themethod described inMatos et al. (2015). During analysis, the user can select a given
neuron on the U-Matrix, in which case all the units that are similar enough (up to a given user predefined threshold) will
be automatically selected for the same region. The regions labeled A1, A2, A3 and C from Figure 5 in Section 6.2 are
good examples.

In theU-Matrix, blue regions represent homogeneous regions in theUbiSOM.Blue regions in a slight green hue such
as B,E1 ,E2 andD fromFigure 5 also represent relatively homogeneous regions. Red regions (e.g., region Z fromFigure 5)
denote high variability among units. Green regions represent intermediate values for distance among UbiSOMunits.
Several well-defined blue and light green “lakes” can be discerned by their colour uniformity regarding neighbourhood
units. These various data regions expose several well-defined concern patterns.

To analyze the data obtained for the various concerns, we look at their respective CPs (Figure 6). For instance, we
see that concerns Data type verification and Verification of function arguments share two common red regions in their
respective CPs (at the bottom, to the left and right). This means that there is a significant co-occurrence between those
two particular concerns. This sharing is particularly significant, because those regions are blue in the U-Matrix, meaning
that the sharing is particularly uniform across the analyzed data. The two concerns co-occur with high densities, though
we can also see a significant overlap with concerns Console messages andMemory allocation/ deallocation in regionsA1

andA2.
A sharing of red regions taking place in a red rather than blue region of the U-Matrix (no such case in the present

example) would depict more variable distances between units and would mean that patterns in such regions would
be much more diverse (with high, low and intermediate densities). In such cases, an overlap would probably not
be representative of the data as a whole. If such region existed, it would represent some diffuse concept, possibly
meaningless. It is also significant that no “blue lake” from Figure 5 is devoid of at least one CPwith high values in the
same region, i.e., all red zone in the CPs correspond to blue lakes in the U-Matrix.

The red region in the CP for concernData type specialisation completely overlaps with that for concern Visualisation
(region B) though the latter’s region is wider. This could suggest that in themajority of m-files whereData type specialisa-
tion has a significant presence, Visualisation‘s presence is significant as well. There is also a relevant presence of this
concern in area A2, jointly with concerns Data type verification and Verification of function arguments and return value.
However,Data type specialisation does not have enough above zero values to enable a reliable characterisation in the CP.
For this reason, it was discarded from subsequent analyses. A similar overlap of red regions also occurs with Console
messages and System (region), though the overlap is less complete in this case.

We performed several manual checks on several m-files to confirm that red regions from the various CPs do indeed
relate consistently to high values of Token Densitywith respect to their corresponding concerns. One example is m-file
merge_options.m (shown in Figure 9 without comment lines) - one them-files indicated by the common blue regionA1

of the U-Matrix (Figure 5) and selected as a small representative from a shortlist of m-files with high density values for
more than one concern. As expected, thosem-files show several tokens associated with the concerns found in regionA1 ,
particularly Verification of function arguments and return value andData type verification but also Console messages.

M-file merge_options.m is an interesting illustration of the attempt to separate concern Verification of function
arguments and return value fromother concerns. Its sole purpose seems to test theway the function is called and configure
a call to another function that provides the functionality proper. However, that does not prevent merge_options.m



14 MARQUES ET AL.

being a clear case of code tangling in Matlab. Throughout our work, we found several examples of this symptom, in
functions that do not separate argument-checking from other concerns.

6.3 | Analysis of Selected Concerns
In previous results all concern metrics were approached as equally interesting features and therefore no feature
selection was carried out. However, further analysis revealed that some concerns appear in very distinctive patterns,
meaning that their presence was potentially dividing the whole data set into two big chunks as well as hiding less
distinctive, but also potentially more interesting patterns. For example, in Figure 4, the UbiSOMgrid is clearly divided
in two by the Console messages concern. De per si, such division is not particularly interesting and the high-low values
division for themetric seems to hide several high density areas of points that are similar on both low values and high
values of the Console messagesmetric. A similar behaviour was also found on theVisualisation, File I/O and Systemmetrics.
So, although the relations among some of thesemetrics may be interesting for future work, we used the exclude feature
command of ourmultiSOM tool (Section 6.1) to look for relations among the remaining concerns under study2.

The various experiments used the multiSOM on the available repository and yielded a subset of concerns from
Table 1. However, for better comparison, the results presented in this articlewere acquired starting theUbiSOMtraining
from a randomly initialisedmap using the subset of concerns since the first iterations of UbiSOM. that corresponds to
the component planes in Figure 8 added with a (meta-)measure called norm Count0. This new (meta-)measure was
inserted since the number of zeros was a potentially relevantmeasure of howmany concerns are being used in the same
Matlab file. So, norm,Count0 is a normalised counter of howmany concernmetrics are different from zero in a given
Matlab file. Sincem-files with a concernmetric smaller than 2 had already been excluded from our dataset, a zero in this
normalisedmetric corresponds to three concernmetrics. M-files with up to 8 of the concerns from Table 1 can be found
in the repository under study and so, have a value of norm,Count0 = 1.0 (this includes the concerns that were excluded
for this experiment).

Once again, the UbiSOM algorithm used a sequential presentation of all available input samples for 7 000 iterations,
and a random sampling over available repository during 36 000 iterations. Similarly to the previous experiment, both
themeasures and visual inspection of themap grid were stable from iteration 10 000 up to iteration 43 230 (when the
training of UbiSOMwas stopped). We have selected the snapshot at iteration 43 230 as a representative of the full
Matlab code repository. The UbiSOM selected snapshot has a quantisation error of 8.3% and a topological error of 4.6%.

All UbiSOM component planes (Figure 8) and the corresponding U-Matrix (Figure 7) are presented for the UbiSOM
snapshot. We can immediately notice four main clusters in the U-Matrix, corresponding to blue regionsM ,N ,O , P eQ
of Figure 7. Those regions mostly correspond to clear representative and non-representative values for Token Density of
the concerns under analysis. The characterisation of each cluster is described in Table 2.

From the analysis of Table 2, it is noticeable that region N has a very well defined behaviour (i.e., it forms a clear
cluster). In this cluster, the joint co-occurrence of high values for Token Density of concerns Verification of function
arguments and return values,Memory allocation/ deallocation andData type verification are observable. Moreover, this
region has some distinct low values for the normalised count for zerosmetric (norm Count0 CP of Figure 8) in the top
right of this region (i.e. there is a small overlap of the blue/green area in norm Count0 CPwith the U-Matrix top left of
blue area N ). So, depending on the region N sub-area, there are bothm-files with few concerns on the top right part of
the region (probably just the identified constraints) andm-files with many simultaneous concerns (remaining part of the
region).
2Themanual feature selection ofmultiSOMcould have been done a priori to training and directly on the input data, butwith an exponential number of possible
combinations for excluding features, the graphical interface was indeed a valuable tool for testing different feature combinations.
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F IGURE 7 U-Matrix representing the selected concerns components. The various letter annotations highlight
relevant regions.

10 Mem Alloc/Dealloc. norm Count0 3 Data Type Vrf.

11 Parall. 2 Data Type Spec. 1 Vrf. Func. Args. & Ret. Vals.

F IGURE 8 Component planes showing the colour maps of the Token Densitymetric for selected concerns.

Concern M N O P Q R S1 S2 U

Parallelisation N N N N N R N R N
Data type specialisation N N N N N N R S N
Verify func. args & return values N R N R N S S R S
Memory allocation/deallocation R R N N R S R R N
Data type verification R R R R N R R R N

TABLE 2 Relation among representative values of Token Density (R), partially representative (P) and
non-representative values (N) by U-Matrix region for the concerns under analysis.
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RegionsM , P ,Q andO are also well defined clusters representing similar phenomena to cluster N , but with the
lack of one of the other concerns. For instance, regionO presents an area where, among the concerns in analysis in this
experiment, only the concernData type verification has a representative enough value for Token Density. Regions R , S1,
S2 andU have less marked patterns in the U-Matrix. For example, looking at the component plane area representing the
region S2, the concernmetric density forData type specialisation is found in only part of the region (and even there with
not so representative values). RegionU seems to have a somehow complementary nature for the junction of regions S1
and S2, but the only meaningful pattern foundwas a neuron representing the lack of other patterns under study.
In another case, region R also presents a less well marked co-occurrence of representative values in the U-Matrix, but,
in its CPs, has of the Parallelisation andMemory allocation/ deallocationwith high values for Token Density in the whole
region. Nevertheless, R occurs jointly (though, just partially) with other concerns.

7 | DISCUSSION

The usefulness of SOM-based analysis becomes obvious whenmore than two concerns are considered. In such cases,
the SOMmodel replaces the simplistic use of sorting by Token Density. In the first experiment described in Section 6.2,
the UbiSOMmodel presents large distances betweenmany units, which jointly with the presence of some quantisation
error, suggests a good enough convergence of themodel. Nevertheless it does not yet represent some patterns in the
data, i.e., the boundaries separating clusters in Figure 5 could be “crisper”. Even so, the observation that most CPs
have clear continuous regions in several trained UbiSOMs, points us to a clear and concise division of the concern
patterns under analysis. In the second experiment, after the use of multiSOM (Section 6.1), for the selection of themost
relevant features, a very representative analysis with a very good convergencewas achieved (as described in the second
experiment— Section 6.3). So, this focus onmore representative features not only solved the slight instability observed
in the first experiment, but also confirms its results and further relates it with theMemory allocation/ deallocation concern.

Overlapping areas in the CPs (Figures 6 and 8) are related primarily with co-occurring concerns. This is a clear
indicator that the groups of tokens from Table 1 are effective in identifying the concerns to which they are associated
and that those groups of tokens cover distinct sets of functional responsibilities (i.e., concerns).

Use of UbiSOM is marred by high numbers of zeros in the Token Density data. The traditional technique for handling
sparse data would be Principle Component Analysis (PCA). However, PCA is not discriminating enough for our purposes,
since it aggregates the several concerns in different variables. Namely, the tests performed using PCA for our problem
did not improve the outcome, be it in terms of the UbiSOM, be it in terms of not reducing the quantisation error.

The feature selection used in the second experiment (Section 6.3) solvesmost observed problemswith the high
number of zeros of Token Density for the global dataset. Nevertheless, such high number of zeros of Token Density
seems to be an instance of an exponential law on the token occurrence. A promising alternative is to use a method
such as Word2Vec (Mikolov et al., 2013), a natural language method that can build high-quality distributed vector
representations that capture precise syntactic and semantic relationships. However, for a more rigorous and replicable
evaluation in these experiments we choose to keep just the information provided by an expert (cf. Table 1).

TheN = 6 000 parameter used in Equation 1 is an efficient way to give proper relevance to low Token Density values.
M-files with one token occurrence per 60 LoC have a normalised value of 0.5, while one token occurrence per 200 LoC
(normalised value of 0.3). Even values corresponding to less than one token per 1, 000 LoC (normalised value lower than
0.2) are still detectable. Preliminary experiments done without the exponential normalisation (cf. Equation 1) showed a
large uniform region and few co-occurring concerns. Indeed, UbiSOM training (and SOM, in general) is known to be
sensible to toomany zeros. This problem is observed for concerns with a high number of zeros such as, e.g.,Data type
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function options = merge_options(default_options, varargin) 
  if ~isempty(varargin) && mod(length(varargin),2) == 0 
    options = merge_structs(struct(varargin{:}),default_options); 
  elseif length(varargin)==1 && isstruct(varargin{1}) 
    options = merge_structs(varargin{1},default_options); 
  elseif ~isempty(varargin) 
    error('matlag_bgl:optionsParsing',... 
     'There were an odd number of key-value pairs specified'); 
  else 
    options = default_options; 
  end 
end 
 

 
[  ] – Vrf. of func. Args. and return value; 
 
[  ] – Data type verification; 
 
[  ] – Console messages; 

 

 
 
 

 

F IGURE 9 m-file with high Token Density values relative to three of the analyzed concerns.

specialisation, which tends to adjust with high error and therefore tends to appear opportunistically in several areas of
the space. Manual analysis nevertheless shows that the red and green areas in this concern’s CP (Figure 6) are related
with m-files relevant for this concern. Restricting the selection to m-files with more co-occurring concerns reduced this
problem.

In our illustrative example, a particularly relevant result from the UbiSOM analysis is the high correlation of
Token Density values for concerns Verification of function arguments andData type verification (see Figures 6 and 8). An
illustrating example of an m-file with these concerns is shown in Figure 9. The high correlation between both these
parameters is common inmany analyzedm-files. This result suggests thatMatlab is somewhat problematic as regards
validating and verifying function arguments or data types. The problemwith arguments is caused by the practice of
“schizophrenic functions” that need to test multiple variations of its parameters to learn in what “mode” they were
actually called. In object-oriented languages, method overloading enables the tackling of the same problemwith better
separation of concerns. As regards data types, Cardoso et al. propose aspect-oriented extensions toMatlab to enable a
precise control of data types without incurring the symptom of code tangling (Cardoso et al., 2006).

Considering the large percentage of m-files from the analysed repository that betray the presence of multiple
concerns, we can conclude that the code tangling symptom is quite common.

8 | RELATED WORK
The present work is based on concern metrics and therefore is related to past researchwork on that category of met-
rics (Figueiredo et al., 2008, 2012). These range from uses specifically meant as a preamble for subsequent refactoring
to an AOP language (Ceccato and Tonella, 2004; Lopez-Herrejon and Apel, 2007), metrics with broader applicability
but whose computation is manual rather than automated (Eaddy et al., 2007; Sant’Anna et al., 2007) and approaches
that are both automated and broadly applicable (Ducasse et al., 2006; Baldi et al., 2008). The work presented here
develops the idea of using data derived from token-basedmetrics, as initially proposed by (Monteiro et al., 2010). In the
intervening years, a separate development of this work was presented Lessa et al. (2015b,a), which proposes a software
visualisation tool whose visual metaphors are also based on tokenmetrics. Themetrics covered are counts of tokens of
various kinds, as proposed by (Monteiro et al., 2010).

Aworkwith several similarities to ours, is that byMaisikely andMitropoulos (Maisikeli andMitropoulos, 2010), whose
purpose is to develop an aspectmining technique that uses a SOMcomponent to processmetrics data to find similarities.
It differs from ours in that the target language is Java and themining is specifically tailored to the kind of CCCs that
AspectJ — an aspect-oriented extension of Java, is good at modularising. As it would be expected, themetrics used are
also quite different. All of those metrics reside at method level and the group seems to be centered in two dynamic
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(i.e., captured at runtime) versions ofmethod Fan-In andmethod Fan-Out. To complement, other method-level metrics
are used, namely: Information flow (Fan-In*Fan-Out),Method Signature (method name, parameter types and their order,
visibility modifiers and return type),Method Internal Coupling andMethod External Coupling.Maisikely andMitropoulos
report positive results from an experiment with their technique, using as target systems JHotDraw 5.41b and a small
system comprising 6 classes. The present work uses token-basedmetrics because they seemmore appropriate for a
first experiment for aspect mining ofMatlab system, as argued in a previous work (Monteiro et al., 2010).

FutureWork

We also identify some of the opportunities for future work. Next, we highlight a few of them.

• Automatise the development of the concern-token mapping. We can use a distributional representation of to-
kens (Mikolov et al., 2013) as a direct input to the UbiSOM. Finding out the best way to automatically learn this
representation fromMatlab code bases is an avenue left open by this work. In future, wewill further mature this
technique in at least two directions: (i) automatise or semi-automatise the discovery of new, distinct patterns of
occurrence that lead to new concerns and new entries for Table 1, and; (ii) automatically or semi-automatically
refine existing entries of this table, by applying amore fine-grained, token-level analysis that indicates the tokens
that should be kept in the mapping – because patterns of occurrence confirm their usefulness — and those that
should be discarded, because patterns of occurrence are too sparse and/or do not addmeaningful information.
The results achieved with the proposedmethod are promising. The interactive and exploratory nature of UbiSOM
allows a focused search for specific concerns in code repositories. In future, this will be part of a tool for finding
relevant code snippets inMatlab repositories. There is an increasing trend in big data analytics using matrix based
analysis (or N-dimensional matrices, i.e., tensors). This can be seen by the increasing number of packages and tools
for matrix and data handling, e.g., Google TensorFlow, the numPy package in Python and the very relevant statistical
analysis tools and languages such as SPSS and R. We plan tomake a social collaborative web site with such a tool as
a useful way for reusing and improving previously available code. This site will also be a forum for exchanging good
practices on development of data analysis software. Empirical data collected from this site promises be a powerful
means to develop this line of research.

• Derive further concernmetrics. Themetrics used in the present work only scratch the surface of themetric space
that can be used to feed the UbiSOM analysis. Even without going beyond the token level, further concernmetrics
can be derived, which will enable more precise identification of concerns, as well as broaden the scope of concerns
that can be (semi-) automatically discovered. The results achievedwith the proposedmethod are promising. The
interactive and exploratory nature of multiSOM allows a focused search for specific concerns in code repositories.
In future, this will be part of a tool for finding relevant code snippets inMatlab repositories. There is an increasing
trend in big data analytics usingmatrix based analysis (or N-dimensional matrices, i.e., tensors). This can be seen
by the increasing number of packages and tools for matrix and data handling, e.g., Google TensorFlow, the numPy
package in Python and the very relevant statistical analysis tools and languages such as SPSS andR.Weplan tomake
a social collaborative web site with such a tool as a useful way for reusing and improving previously available code.
This site will also be a forum for exchanging good practices on development of data analysis software. Empirical
data collected from this site promises be a powerful means to develop this line of research.
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9 | CONCLUSION
This article makes the following contributions:

1. Proposes the Token Densitymetric as a direct development of some ideas proposed byMonteiro et al. (Monteiro
et al., 2010).

2. Proposes a technique for exploratory analysis ofMatlab code, scalable to large repositories. The technique provides
a precise way to identify patterns of occurrence and co-occurrence of concerns in arbitrarily large repositories of
Matlab files.

3. Presents the first representative case-study of amulti-modal interactive interface for theUbiSOM— themultiSOM.
The improvements reported in the experiment of Section 6.3 where possible due to the usage of that interface. This
paper presents a first, hands-on use case of themultiSOMuser interface.

4. The analysis described in this paper serves as a first validation of the Token Densitymetric.

This article shows how the UbiSOM’s output can provide viewers with a panorama of the concern’s co-occurrence
patterns in the Matlab file input repository. It provides a first reported use of several tools relevant for an expert
systems method using the UbiSOM in a sound and systematic way for analyses of Matlab code repositories. The
reported analyses provide the first step for a tool enabling a systematic approach for analysing code repositories.

This work also provides the basis for a framework that is planned to integrate and support evolution tasks (devel-
opment and re-engineering) ofMatrix-oriented code bases. SinceMatlab is a well establishedmember of the family
ofMatrix oriented programing languages, more recent languages such as R or the numP y Python library are likely to
directly benefit from this research.
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