

 1

Object-to-Aspect Refactorings for Feature Extraction

Miguel Pessoa Monteiro
Escola Superior de Tecnologia

Instit. Politécnico de Castelo Branco
Avenida do Empresário

6000-767 Castelo Branco PORTUGAL

mmonteiro@di.uminho.pt

João Miguel Fernandes
Departamento de Informática

Universidade do Minho
Campus de Gualtar

4710-057 Braga PORTUGAL

jmf@di.uminho.pt
January 2004

ABSTRACT
This report describes an experiment in using AspectJ to extract a
feature from a Java code base in order to make it unpluggable. We
describe issues and obstacles encountered while performing a
series of code transformations and next present a collection of
manual aspect-oriented refactorings, based on the experience
gained in the process. These are described in detail and
compounded with a self-contained example placing each
refactoring in its proper context.

1. INTRODUCTION
Aspect-oriented programming (AOP) [11] and refactoring both
attempt to cope with the permanent need for evolution of present-
day software. The approach of refactoring aims to facilitate the
continuous change of source code required for software to
continuously adapt to changing environments and requirements.
AOP provides stronger modularisation and software composition
mechanisms than traditional technologies, thus promising to
diminish the impact that changes to the code related to a given
concern have on non-related code.

There is the prospect in the near future of a widespread adoption
of the concepts from aspect-orientation, which begs the question
of how to deal with a large legacy of OO code. Currently there is
no AOP equivalent to the catalogue of object-oriented refactorings
presented in [6]. We aim to fill that gap and this report presents
our first results, using AspectJ [10] as the AOP language. We
present the refactorings in such a way to be directly useful to
programmers in front of the keyboard, editing code. Pertinent
issues include the right order of code transformations, their
mechanics, which transformations are adequate for certain typical
situations, which preconditions should be required for each case,
and we pinpoint situations in which the structure of the legacy
code may influence the choice of the next transformation.

We do not aim to cover techniques for automatic support for
refactoring operations [16], instead we identify and characterise
the operations when performed manually. We recognise that
automatic support for object-to-aspect refactorings is the ultimate
goal, but we believe prior knowledge about the nature and
mechanics of the transformations is beneficial. In order to
discover interesting refactorings we took a non-trivial code base
as a case study and performed a refactoring experiment to gain
useful insights. Here we focus on the extraction of concerns that
cannot be unplugged from the primary code because scattered
across multiple methods and classes. The refactorings presented in
this report stem from that experiment.

The rest of this report is organised as follows. In section 2 we
describe the WorkSCo framework, the subject of our first
refactoring experiment. In section 3 we describe it, mentioning
issues and obstacles encountered and our solutions to them. In
section 4 we present a collection of refactorings based on the
experience we gained. This presentation is completed with a self-
contained example presented in section 5. In section 6 we draw
some conclusions, briefly survey related work and propose future
work. In section 7 we conclude the report.

2. CASE STUDY
WorkSCo (Workflow with Separation of Concerns) is an object-
oriented framework for workflow management systems currently
being developed by the ESW [2] group at INESC-ID, Portugal.
By “object-oriented” (OO) we mean that WorkSCo was
developed using “traditional” technology including design
patterns and component concepts. Until now WorkSCo does not
rely on the infra-structure for specific business environments such
as J2EE. Some of the functionality provided by these
environments (e.g. persistence) is currently being developed as
extension modules.
Having a close contact with the WorkSCo team was a strong point
in favour of selecting it as a case study. Another was that
WorkSCo ’s developers are aware of AOP developments and have
a grasp of related concepts, facilitating the exchange of ideas.
The architecture of WorkSCo was based on micro-workflow, the
architecture developed by Manolescu in his Ph.D. thesis [14],
using Smalltalk technology. Manolescu’s architecture was the first
to target developers of OO software rather than end-users. The
design of micro-workflow relies on a considerable number of
design patterns, most of which are intended to achieve particular
separations of concerns. It comprises a lightweight kernel
providing basic workflow functionalities that are compounded by
extension modules offering more advanced features. Software
developers select the features for their domain-specific workflow
processes and add the corresponding modules through
composition.
One of the kernel’s key abstractions is the concept of procedure
(Figure 1), which models various kinds of activities commonly
performed by workflow systems. The various types of procedures
are organised according to the Composite design pattern [6] to
abstract the concrete types of steps or activities comprising the
workflow definition, thus allowing the easy extension of the
framework with new procedure types. These include both atomic
steps (instances of simple procedure) and composite activities
(e.g. composite procedure). Examples of atomic procedures are

 2

primitive procedure, which model the actions performed by a
single domain-object, and work list procedure, which is an
abstraction of a piece of work carried out by a human element of
the organisation. Composite procedures, namely
SequenceProcedure, ConditionalProcedure and Repeat-
UntilProcedure, model the conditional and iterative control
structures similar to those found in many programming languages.
They include steps (child procedures) that are also procedures
(either simple or composite). Thus a workflow definition has a
tree structure, in which all leaf nodes must be instances of Simple-
Procedure (e.g. primitive procedure or work list procedure) and
all non-leaf nodes must be instances of CompositeProcedure.
The procedure system provides the basic framework for workflow
management, enabling domain objects, which typically change
less frequently than the glue code that models processes, to be
reused as process rules evolve and different process instances are
created. Micro-workflow is capable of holding various workflow
definitions (representations of workflow processes) using a
structure that follows the Type Object pattern [12].
The ESW group adapted the original micro-workflow design for
their project, which is based on Java technology. In the process
they introduced several structural innovations in order to attain
further separations. The primary design change was motivated by
the lack of a standard for workflow definition languages (WfDLs).
This made it highly desirable that WorkSCo be able to support
several differing (and evolving) WfDLs, and also to support more
than one WfDL simultaneously. The adopted solution was to split
the design between two layers – a front-end and a back-end [4].
The back-end layer comprises a Workflow engine, which accepts
and runs low-level graph representations of the workflow
definitions. Each instance of the front-end layer is responsible to
handle the concepts and abstractions of a specific WfDL and to
generate the graph structure the back-end understands. The WfDL

currently supported by WorkSCo is micro-workflow, which thus
became the first instance of the front-end layer.
Each front-end instance is responsible for generating the low-level
graph structure for the back-end. In the case of micro-workflow it
is done though a traversal of the workflow definition’s procedure
tree. The graph generation is done bottom-up, starting with the
leaf nodes and navigates upwards until the root node is reached.
Each node provides a compile operation that generates the graph
representation of the sub-tree from which that node is the root.
Non-leaf nodes (composite procedures) are responsible to bind the
sub-graphs generated by their children, so that the compile
operation of root node produces the graph representation of the
entire workflow definition.

2.1. The data link concern
Although WorkSCo’s front-end model is control-driven it enables
the independent modelling of data flow between procedures,
which is done through data links. These provide the necessary
framework for communication and data passing among
independent domain-nodes. They ensure the independence of the
workflow steps and their reusability, and also enable the system to
provide various services, for example logging and monitoring.
The concept of data link belongs to the front-end, while the back-
end uses a different, lower level, representation.
Data links are defined at the composite procedure level, so that all
control structures have access to it. However front-end rules must
still be enforced, to ensure data link specifications are consistent
with the control flow. For instance, data links can only be placed
in composite procedures specifying some ordering of their
children (e.g. it wouldn’t make sense to establish a link between
the branches of a conditional procedure).

Figure 1 – The WorkSCo frontend procedure hierarchy

 3

3. REFACTORING EXPERIMENT
The initial phase of the work, after acquiring a grasp of the
important domain concepts, was to explore the code in search for
units and fragments related to the target concern. Concern mining
was not our main focus and we did not fully explore sophisticated
mining techniques. We relied on the feedback of the WorkSCo
team, which was helpful in pinpointing the data links as a feature
suitable for extraction, as well as gaining the understanding of
details necessary for writing unit tests.
At the time we took a snapshot of WorkSCo’s code the kernel’s
functionality was stable and several extension modules were in
various stages of development. The kernel classes and interfaces
were deployed in a package containing 40 classes and interfaces
plus a few subpackages providing some accessory functionality.
The kernel presented very few dependencies on the code of the
extension modules, the only exception being a case in which one
of the key classes in the kernel included in its implements clause
an interface declared in one of the modules. This low coupling,
together with the fact that extracting the data links into an aspect
affected only the kernel, enabled us to largely ignore the extension
modules1 and concentrate our analysis on the kernel.
Though generally well structured, the snapshot of the code we
worked on placed a few obstacles. These were mainly (1) the fact
that it did not fully adhere to the style advocated in [6], (2) the
fact that the elements of both the front-end and the back-end were
still bundled together in the same package, which had some
impact on the initial exploration stage, and (3) the lack of unit
tests. Style problems were most noticeable in the very large
methods responsible for generating the back-end graph
representation of workflows (the largest had 110 lines of code)
and long parameter lists in constructors.
The project included a collection of various broader-scoped tests
that fed the system with example workflows. Unfortunately these
were unsuitable for our task, due to their coarse grain. As pointed
out in [6], fine-grained unit tests are crucial to ensure the code
transformations always preserve the original behaviour. From our
experience we can attest the vital importance of unit tests to give
what Kent Beck called “courage” in changing the existing code
[3]. Only after the initial effort of writing tests did we acquire the
confidence necessary to start refactoring the code (before we
reached that point we simply felt “paralysed”).
We used the eclipse’s JDT environment [1] and the FEAT plug-in
[17] to assist in our analysis. JDT’s structure view and search
capabilities were be very useful during the process of searching
the code for units and fragments related to the target concern.
Although we consider FEAT a useful complement to the code
search capabilities of JDT, it was of limited use in our particular
case. That was due to not covering internal details of methods
such as local variables. In other words, FEAT does not capture the
use relation between components, a widely used relationship in
WorkSCo. WorkSCo relies less on structural relationships (i.e.
inheritance) to connect components than more “traditional” OO
frameworks such as the original micro-workflow [14].

1 Another reason for ignoring the extension modules was the fact

that most of them were still under active development and their
functionalities still incomplete.

We wanted to preserve the existing interface of WorkSCo’s kernel
during refactoring. We believe this emulates a situation that
occurs frequently in software projects, when there is client code
that depends on existing interfaces but is out of control of the
developers of the evolving component. It is also the case when it
is convenient to modify first the internal structure of a component,
as one stage of a larger refactoring, leaving any changes to the
interface to later stages.

3.1. Extracting the data link concern
The code related to data links was not modularised, being
scattered throughout all classes of the procedure hierarchy (Figure
1) starting with CompositeProcedure. This was making it
impossible to build a version of WorkSCo devoid of data links,
for those clients that do not require such functionality. Therefore
data links comprised a good candidate for extraction into its own
module.
The data link code comprised 4 types of code sections: fields,
methods, code fragments in constructors and code fragments in
methods. After creating an empty aspect we dealt with each of
these in turn, as prescribed in Extract Feature Into Aspect (see
4.1). Moving fields and methods was straightforward and done
according to Move Field From Class To Inter-type Declaration
and Move Method From Class To Inter-type Declaration (see 4.2
and 4.3 respectively).
The constructors placed a more complex and interesting problem
(Listing 1). Each subclass in the procedure hierarchy adds new
arguments for its initialisation so that constructor signatures keep
increasing as we go down the inheritance chain. Each constructor
makes a super() call passing the arguments defined in the
superclasse’s constructor and next deals with the initialisation of
the data specific to it. Most of these arguments relate to concerns
other than the primary one, the data link concern being one
example. We wanted all initialisation code related to the data link
concern to be placed within the aspect and to keep all other code
in the classes. To complicate things, the constructor received
arguments related to the concern we wanted to modularise and we
were constrained by the decision to maintain its signature for the
sake of preserving existing interfaces.

public abstract class Procedure
implements Cloneable {

Procedure(String id,
String name,
Precondition precondition,
IOMessage input, IOMessage output) {
//initialisation code

}
//rest of Procedure code

}

public abstract class CompositeProcedure
extends Procedure {

protected List _dataLinks = null;
CompositeProcedure(String id,

String name,
Precondition precondition,
IOMessage input, IOMessage output,
ArrayList dataLinks) {

super(id, name, precondition, input, output);
_dataLinks = dataLinks;

}
//rest of CompositeProcedure code

}

 4

public class SequenceProcedure
extends CompositeProcedure {

public SequenceProcedure(String id,
String name,
Precondition precondition,
IOMessage input, IOMessage output,
ArrayList dataLinks,
List steps) {

super(id, name, precondition,
input, output, dataLinks);

//initialisation code
}
//rest of CompositeProcedure code

}

Listing 1 – Example of a chain of procedure constructors

We devised Partition Constructor Signature (see 4.4) to solve that
problem, expecting to apply it the same way as illustrated in the
example of section 5. According to that refactoring the base code
gets a new constructor with a shorter argument list, devoid of the
argument related to the extracted concern, while the aspect
introduces a constructor with the original and longer argument
list. That introduced constructor makes a this() call to the
simplified constructor in the class thus avoiding having code
unrelated to the data link concern (Listing 4 shows this technique
applied to a simpler example).
When we tried Partition Constructor Signature we realised that
we were not considering super() calls. They were needed to
ensure initialisation code in the superclasses would receive their
arguments and run. However, we could not use super() because
we were already using this()! As it stood, either the introduced
constructors would make the super() calls as in Listing 1, in which
case code related to the this() calls would have to be duplicated, or
the this() calls would be made, in which case calls to super() could
not be made and the related code would have to be duplicated.
For this reason Partition Constructor Signature, as presented in
section 4.4, applies only to constructors that not pass arguments to
super(). In the end we solved the problem by keeping the this()
calls in the introduced constructors, just as in Listing 4, and
treating the code related to super() as crosscutting code within the
aspect, which was extracted to its own advice.
Extracting code fragments from methods also presented some
interesting problems, caused by difficulties in capturing the
necessary context. The culprits were the large compile() methods
through which procedures generate the graph representation of
their portions of the workflow. The code responsible for dealing
with the data links in each method was placed at the end and was
actually larger than the preceding part. At this point we found it
useful to apply (JDT’s) Extract Method ([6], p.110]), not just to
ease the way for subsequent refactorings but primarily to isolate
the code related to the target concern, thus making it easier to
reason with.
Each fragment related to data links used several structures created
in the part that preceded it. Those structures were referenced by
local variables and neither stored as fields of some object nor
passed as arguments. This caused a problem of how to capture
them for an advice within the aspect, since AspectJ’s pointcut
protocol does not cover local variables. We did not have the
option of capturing the result of a method because there were
several objects, not just one.
It is theoretically possible to capture all the necessary objects, but
that would require extremely complex pointcuts, resulting in code
hard to understand and error prone. We could obtain through

accessors some of the objects after the end of the execution, but at
least one complex structure would have to be computed a second
time, leading to code duplication (at least performance is not an
issue in workflow applications).
Simply turning the local variables into fields so they could be
easily captured is a very crude mechanism, but Replace Method
with Method Object ([6], p.135) offered an organised way to do it.
We did apply it, after which using Extract Advice (see 4.5) was
straightforward. The classes of the method object were created as
inner classes within each procedure class. A word of caution,
however: contrary to common practice in object programming, we
had to leave the fields of the method objects public so that code
within the advice could have access to arguments-turned-fields.
Otherwise the method objects would need accessor methods,
which would be overkill in these circumstances, or the aspect
would have to be privileged, something we think should be
avoided except as a last resort.
At the start of this experiment we created the aspect in a
subpackage of WorkSCo’s kernel rather than in the kernel
package itself. We regarded the data links functionality as
accessory, and to place it in a subpackage makes that explicit.
However we started having compiler errors due to visibility
violations – several methods and fields referred from code moved
to the aspect had restricted access (protected, private or package).
We temporarily solved these problems by (reluctantly) classifying
the aspect as privileged, until we analysed the various issues and
discovered that none of the methods was private – they had either
package or protected access modes, meaning they were indeed
supposed to be visible, but only within a restricted scope. In the
end we kept the aspect in its own subpackage and solved the
problems by refactoring the base code, by encapsulating a few
fields accessed in the advice code, using Self Encapsulate Field
([6], p.171), and relaxing access clauses of some methods called
from advice. A class from the kernel was used only by the aspect
and it was moved to the data link subpackage.

4. REFACTORINGS FOR FEATURE
EXTRACTION
The refactorings presented here were based on the experiment
described on the previous section. It should be noted the present
collection of refactorings is open ended and does not aim to cover
all possible situations, even relative to the subject of feature
extraction.
To ensure refactorings are readily applicable we chose a format
programmers could recognise, similar to the one used in [6],
including the style of cross-referencing the refactorings and
mentioning in each case the name and the page number. For this
reason we also use an self-contained example that does not
mention WorkSCo. Presentations comprise the following
elements:

• Name of the refactoring
• Brief mention of a typical situation
• Brief description of the recommended action
• Preconditions (when needed)
• Mechanics
• Code Example

The code examples also use a style similar to the one in [6], with
the code fragments subject to the transformations highlighted in

 5

bold. These code fragments are taken from the complete example
presented in section 5. The refactoring presented first is more
high-level than the others. It covers the general feature extraction
algorithm and the remaining refactorings refine its various steps.
The transfer of individual members from classes to an aspect
should not be taken in isolation. In most cases they are part of a
set of transfers that comprise all the implementation elements of a
concern being extracted. Such concerns typically include multiple
code fragments scattered across multiple modular units (e.g.
methods, classes, packages). This is the reason why some of the
refactorings presented next are slightly less self-contained than
many found in [6].
Some procedure guidelines are generally applicable,
independently of the transformation being carried out. These
include:

• Ensure the program is adequately unit tested [3][6]. In
the absence of automatic tool support there is the danger
that transformations will introduce bugs, and the
presence of aspects only compounds the problem.

• Facilities from IDEs including search tools are of course
recommended: indeed, in large systems they are
indispensible.

Keep in mind that most code transformations can potentially
break existing pointcuts (even just changing an access clause from
public to private). Although we warn of some situations we think
it is not feasible to cover them all. Programmers should rely on
their knowledge of the code to check potential trouble spots.

4.1. Extract Feature Into Aspect
Typical situation
There is a feature in the base code that is scattered across several
units of modularity such as methods and classes. You would like
it to evolve separately from the primary code base.

Recommended action
Make the feature unpluggable by extracting all the related code
into an aspect.

Mechanics
• Create an empty aspect in the appropriate package. If

the aspect is placed in a separate package, include the
host class in the aspect’s import section.

• Move the concern's various fields to the aspect with
Move Field From Class to Inter-Type Declaration.
Since fields are usually private you may have to
temporarily declare the aspect as privileged in order to
keep the code compilable and testable.

• Move initialisation code placed within the constructors
using Extract Advice. If some of that code uses some of
the constructor’s parameters and you want to preserve
existing interfaces use Partition Constructor Signature.

• Move the concern’s various methods to the aspect with
Move Method From Class To Inter-type Declaration.

• Move any code fragments that do not comprise a full
method with Extract Advice.

• Change to private the access clauses of all aspect
members that became visible only within the aspect.

• Remove the qualifier privileged from the aspect if it no
longer accesses non-public members in the primary
code.

Example
A complete example of this refactoring is presented in section 5.

4.2. Move Field From Class To Inter-type
Declaration
Typical situation
A field relates to a concern other than the primary concern. An
aspect encapsulating the secondary concern is under construction,
which is planned to harbour all the concern's code.

Recommended action
Move the field from the class to the aspect as an inter-type
declaration.

Mechanics
• If the field is public, consider whether using

Encapsulate Field ([6], p.206) before this refactoring
would be appropriate.

• Move the declaration of the field from the class to the
aspect, including the assignment of an initial value, if
one exists.

• Add the host class’s name and “.” before the name of
the field in the inter-type declaration.

• Check whether a new import statement should be
written in the aspect’s import section, to bring the
field’s type into its scope.

• Change the field's access clause to public. You can
change it to private as soon as all code that deals with
the field is placed in the aspect. If for some reason you
are forced to leave some code related to the field in
class, consider first using Self Encapsulate Field ([6],
p.146).

• Check for any within() pointcut that should be updated
after this refactoring.

• Compile and test.
• For each fragment of code that accesses the field, decide

whether the whole method or just a fragment should be
moved: (a) use Move Method From Class to Inter-Type
Declaration for the whole method, (b) use Extract
Advice for a fragment. You can use declare warning to
signal occurrences of missed members, as shown next:
public aspect WindowView {

//...
declare warning:

get(JTextField TangledStack._text)
&& !within(WindowView):
"Don’t access _text outside aspect.";

//...
}

• Change the field's access clause to private.
• Compile and test.
• Check for any import statements that are no longer

necessary in the original host class.

 6

Example
//...
import javax.swing.*;

public class TangledStack {
private int _top = -1;
private Object[] elements;
private final int S_SIZE = 10;
private JLabel _label =

new JLabel("Stack ");
private JTextField _text =

new JTextField(20);
//...

}

�
public class TangledStack {

private int _top = -1;
private Object[] elements;
private final int S_SIZE = 10;
//...

}

import javax.swing.*;

public aspect WindowView {
public JLabel TangledStack._label =

new JLabel("Stack");
public JTextField TangledStack._text =

new JTextField(20);
//...

}

When all the code related to fields is placed in the aspect, change
their access clauses back to private and compile and test again:
import javax.swing.*;

public aspect WindowView {
private JLabel TangledStack._label =

new JLabel("Stack");
private JTextField TangledStack._text =

new JTextField(20);
//...

}

4.3. Move Method From Class To Inter-type
Declaration
Typical situation
A method in a class belongs to a concern other than the primary
concern.

Recommended action
Move the method into the aspect that addresses the secondary
concern, as an inter-type declaration.

Preconditions
The most straightforward case is when the method is public, there
is only one implementation of its signature throughout the
inheritance chain, and it uses only (1) its parameters, (2) public
members, (3) local variables, (4) members already moved from
the class to the aspect which are (perhaps temporarily) qualified as
public. If these conditions are not met, check for each of the
following cases.
a) Check for uses of non-public members that may not be visible
in the aspect. Consider whether these should also belong to the
aspect's concern. If you think they belong to the aspect, consider
whether they would be best moved together or one at a time. In

some cases several members may be tightly coupled and would be
easier to move together. In case you want to move them one at a
time, start with the fields, applying Move Field From Class to
Inter-Type Declaration, next move initialisation code in the
constructors with Partition Constructor Signature, and then move
the methods with this refactoring.
b) If the method uses non-public members that you think should
remain in the class, check if there are public accessor methods you
can use, or if it is worth to create them now, even if just
temporarily, or if you can relax the access. See also if it is a case
of moving the aspect to the same package. If you are unable or
reluctant to use any of these options, you’ll have to declare the
aspect as privileged.
c) A situation where a method needs to access non-public
members in both the host class and the aspect may be an
indication that the method is addressing more than one concern. If
a second analysis reveals this to be the case, the best solution is
probably to leave the method in the class, keeping the code
relative to the main functionality, and moving the remaining code
with Extract Advice.
d) If the moved method is non-public see if you can move all the
methods that call the moved method also belong to the same
concern, the same way as in a). Of course, this is feasible only
when just a few methods and fields are involved.
e) Search for any implementations of the same signature in sub-
and super-classes. In case you find some, these alternative
implementations should belong to the aspect as well, in order to
make the related functionality unpluggable. A full inheritance
hierarchy in the primary code may be a sign that the concern
already aligns well with the dominant decomposition. Check if
that is the case, or whether it would not be better to leave the
hierarchy in the primary code and extract only a subset of the code
of each of the implementations, using Extract Advice.
Apply Move Method From Class to Inter-Type Declaration to
each of the alternative implementations in turn. Start with the
implementations in the leaf classes, and then move up the
inheritance hierarchy.
If the method’s access is protected you may need to change them
to public, especially if the aspect is placed on a different package
than the class. As soon as all the implementations are in the aspect
you should be able to change the accesses to private.

Mechanics
• Move the method's definition from the class to the

aspect.
• Add the class name and "." before the name of the

method.
• If the access is non-public change it (temporarily) to

public. As soon as all the code using the method is in
the aspect, change it to private.

• Check whether a new import statement should be
written in the aspect’s import section.

• Check for any within() pointcut that should be updated
after this refactoring.

• Compile and test.

Example
public class TangledStack {

private void display() {

 7

_text.setText(toString());
}
//...

}

�
public class TangledStack {

//...
}

public aspect WindowView {
//...
public //private
void TangledStack.display() {

_text.setText(toString());
}

}

Apply Move Method From Class to Inter-Type Declaration first
to the methods of classes placed lower in the inheritance
hierarchy, as they will betray fewer dependencies. Then
progressively apply the refactoring up the inheritance chain until
you reach the top method.

4.4. Partition Constructor Signature
Typical situation
You're extracting from the primary code to an aspect all the code
related to a particular concern. A constructor in the primary code
has initialisation code that uses values coming from some of the
constructor's arguments. These arguments are not required when
the primary code does not include the extracted concern. Note that
this refactoring does not apply exactly as presented to constructors
making calls with arguments to super() (see 3.1).

Recommended action
Create in the class a constructor devoid of any code relative to the
extracted concern, including arguments. Replace all the original
constructor’s code not related to the extracted concern with a call
to the new constructor. Move the original constructor to the
aspect.

Mechanics
• Create a new constructor in the class, with a shortened

argument list, without the arguments related to the
extracted concern.

• Move to the new constructor all the statements not
related to the extracted concern.

• Place a call to this() as the first statement in the original
constructor, passing only the parameters not related to
the extracted concern.

• Move the original, modified constructor to the aspect.
• Append ".new" after the original constructor's name in

the aspect. For instance, suppose arg1 is not related to
the crosscutting concern:
//In the aspect
public
SomeClass.new(Type1 arg1, Type2 arg2) {

this(arg1);
}

• In case the aspect is placed in a separate package, check
if the constructor’s class is declared in the aspect’s
import section. Check also if all imports in the host

class are still necessary: some may have been needed
only for arguments moved to the aspect.

• Check whether some poincut targeting the original
constructor signature should also cover the new one.

• compile and test.

Example
public class TangledStack {

//...
public TangledStack(JFrame frame) {

elements = new Object[S_SIZE];
frame.getContentPane().add(_label);
text.setText("[]");
frame.getContentPane().add(_text);

}
//...

}

�
public class TangledStack {

//...
public TangledStack() {

elements = new Object[S_SIZE];
}
//...

}

public aspect WindowView {
//...
public TangledStack.new(JFrame frame) {

this();
frame.getContentPane().add(_label);
_text.setText("[]");
frame.getContentPane().add(_text);

}
//...

}

4.5. Extract Advice
Typical situation
Part of a method is related to a concern whose code is being
transferred to an aspect.

Recommended action
Create a pointcut that captures the intended joinpoint and move
the fragment of code to the appropriate advice.

Preconditions
Before copying the code fragment a careful analysis of the
method's body should be performed, in order to find a suitable
pointcut to capture the exact set of intended joinpoints. If the
primary code does not offer a suitable joinpoint, one or more
refactorings may have to be performed until the code is ripe for
the extraction.
A situation that may occur from time to time is the need to capture
local variables (either primitives or object references). Such a
situation may be a sign that the method is more complicated than
it should be. Consider whether it would make sense to split it in
various parts, by using Extract Method ([6], p.110]) for each part
in turn. Such a split may provide the joinpoints you need. In the
more complex cases the best option may be to use Replace
Method with Method Object ([6], p.135). This is the refactoring
recommended by Fowler et al to ease the way for Extract Method,
but it may be even more appropriate to the present case, for it is
almost certain to provide you with the missing leverage for

 8

context capture. However keep in mind that the fields of the
method object may need to be public.

Mechanics
• Create a named pointcut that captures the intended set

of joinpoints. If the intended pointcut is already under
construction (from previous uses of Extract Advice),
extend it so that it includes the joinpoint related to the
present fragment.

• Ensure that the pointcut also captures all context
required by the code fragment. In particular, check if the
extracted fragment mentions this or super, or includes
self-calls. In such cases a reference to the executing
object must be captured. The most usual cases involve
the use the target() PCD combined with call(), or the use
of this() combined with execution(), set() or get().
Choose a suitable name for the variable. In some cases
the choice may be straightforward. In others use a
general yet meaningful name such as "_this" or "self":
Example:

pointcut stateChange(TangledStack stack):
execution(public void

TangledStack.push(Object))
&& this(stack);

after(TangledStack _this) returning :
stateChange(_this) {

_this.display();
}

• Create the suitable advice for the pointcut, with an
empty body (if it is not already under construction).

• Move the code to extract from the source method into
the advice's body.

• Add any additional glue code necessary to set up the
advice's context.

• Replace references to the self-variable "this" by the
variable obtained from the context capture.

• Scan the extracted code for references to any variables
that are local in scope to the source method, including
parameters and local variables. Declarations of any
temporary variables used only within the extracted code
can be placed inside the advice's body.

When the advice is meant to replace a large number of scattered
fragments you should check which is simpler: to deal with the
whole set at a single go or to deal with one fragment at a time.
Sometimes the pointcut is complicated to specify when covering
only a subset of all the intended joinpoints. If that is the case you
may consider writing the full, intended pointcut right at the start.
The drawback then is that you'll have to factor all the scattered
fragments to the common advice at a single go before you can
compile and test again. You should avoid this whenever the
scattered fragments are not identical or very similar (e.g. calls to
the same method). In some cases it may be worthwhile to refactor
the various fragments so that they become more alike (e.g. giving
the same names to locals and parameters) and therefore easier to
reason with.

Example
public class TangledStack {

//...
public void push(Object element) {

_elements[++_top] = element;
display();

}

�
pointcut stateChange(TangledStack stack):

execution(public void TangledStack.push(Object))
&& this(stack);

after(TangledStack _this) returning :
stateChange(_this) {

_this.display();
}

5. A COMPLETE EXAMPLE
The small code examples in sections 4.2 to 4.5 illustrate the
lower-level refactorings. Here we provide a small complete
example that illustrates the higher-level refactoring presented in
4.1 and helps to demonstrate how each of these refactorings fit in
the larger picture. Space constraints prevent us from using a more
complex example that would cover absolutely all details and
issues raised in the previous sections, but the example presented
here requires all the refactorings. We also do not present a client
program, but care was taken to ensure that the refactorings are
transparent to any cient code.
It comprises a stack structure plus two crosscutting concerns:
(1) support to a simple window view of stack’s state and
(2) precondition checking. This is a case where the responsibility
for checking preconditions lies in the client, which explains why
the exception used is unchecked2.
import javax.swing.*;

public class TangledStack {
private int _top = -1;
private Object[] _elements;
private final int S_SIZE = 10;
private JLabel _label = new JLabel("Stack ");
private JTextField _text = new JTextField(20);

public TangledStack(JFrame frame) {
_elements = new Object[S_SIZE];
frame.getContentPane().add(_label);
_text.setText("[]");
frame.getContentPane().add(_text);

}
public String toString() {

StringBuffer result = new StringBuffer("[");
for(int i=0;i<=_top;i++) {

result.append(_elements[i].toString());
if(i!=_top)

result.append(", ");
}
result.append("]");
return result.toString();

}
private void display() {

_text.setText(toString());
}
public void push(Object element) {

if(isFull())
throw new PreConditionException(

"push when stack full.");
_elements[++_top] = element;
display();

}
public void pop() {

if(isEmpty())
throw new PreConditionException(

"pop when stack empty.");

2 We do not to present the definition of the runtime exception as it

is quite trivial.

 9

_top--;
display();

}
public Object top() {

if(isEmpty())
throw new PreConditionException(

"top when stck empty.");
return _elements[_top];

}
public boolean isFull() {

return (_top == S_SIZE-1);
}
public boolean isEmpty() {

return (_top<0);
}

}

Listing 2 – Stack with two crosscutting concerns

We start by extracting the “window view” concern from the base
code, by applying Extract Feature Into Aspect. We first create an
empty aspect WindowView and then move all members related to
this concern. These include two fields, _label and _text, so we
start with these, by applying Move Field From Class To Inter-type
Declaration to each in turn.
Both field transfers require similar sequences of steps: (1) copy
the declaration of the field to the aspect, (2) add “TangledStack.”
before the field’s name, (3) delete (or comment out) the field’s
original declaration, (4) when moving the first field include the
declaration “import javax.swing.*;” in the import section of the
aspect, and (5) change the field’s access to public. Compile and
test after moving each field.
The initialisation code for both fields should be transferred next.
The constructor receives an argument (the JFrame object) related
to the extracted concern, so Partition Constructor Signature
should be used. This results in two versions of the constructor: the
first (argumentless) being placed in the host class and dealing with
the remaining concerns (in this case only the primary concern),
the other constructor (receiving the JFrame object related to the
extracted concern) being placed in the aspect and therefore made
unpluggable. As this constructor should not include any code
unrelated to its concern it includes a call to super() rather than
duplicate the other initialisation code.
Next Move Method From Class To Inter-type Declaration is used
to move the method display(), and next use to move the calls to
display() in the push() and pop() methods. The declaration
“import javax.swing.*;” can be removed from the host class at this
point. Finally, we can change to private the access clauses of the
two moved fields and method.
Extraction of the precondition checking concern is similarly
performed according to Extract Feature Into Aspect, though this
case is simpler, comprising three executions of Extract Advice for
the tests in push(), pop() and top(), respectively. After both
aspects are created as described the host class and the two aspects
should look like the following:

public class TangledStack {
private int _top = -1;
private Object[] _elements;
private final int S_SIZE = 3;
public TangledStack() {

_elements = new Object[S_SIZE];
}
public String toString() {

StringBuffer result = new StringBuffer("[");
for(int i=0;i<=_top;i++) {

result.append(_elements[i].toString());

if(i!=_top)
result.append(", ");

}
result.append("]");
return result.toString();

}
public void push(Object element) {

_elements[++_top] = element;
}
public void pop() {

_top--;
}
public Object top() {

return _elements[_top];
}
public boolean isFull() {

return (_top == S_SIZE-1);
}
public boolean isEmpty() {

return (_top<0);
}

}

Listing 3 – Stack cleaned of tangled code
import javax.swing.*;

public aspect WindowView {
private JLabel TangledStack._label =

new JLabel("Stack ");
private JTextField TangledStack._text =

new JTextField(20);
public TangledStack.new(JFrame frame) {

this();
frame.getContentPane().add(_label);
_text.setText("[]");
frame.getContentPane().add(_text);

}
private void TangledStack.display() {

_text.setText(toString());
}
pointcut stateChange(TangledStack stack):

(execution(public void
stack.TangledStack.push(Object))

||
execution(public void

stack.TangledStack.pop()))
&& this(stack);

after(TangledStack _this) returning :
stateChange(_this) {
_this.display();

}
}

Listing 4 – Window view aspect
public aspect PreConditionChecking {

pointcut checkPush(TangledStack stack):
execution(public void

TangledStack.push(Object))
&& this(stack);

before(TangledStack _this): checkPush(_this) {
if(_this.isFull())

throw new PreConditionException(
"push when stack full");

}
pointcut checkPop(TangledStack stack):

execution(public void TangledStack.pop())
&& this(stack);

before(TangledStack _this): checkPop(_this) {
if(_this.isEmpty())

throw new PreConditionException(
"pop when stack empty");

}
pointcut checkTop(TangledStack stack):

execution(public Object TangledStack.top())
&& this(stack);

 10

before(TangledStack _this): checkTop(_this) {
if(_this.isEmpty())

throw new PreConditionException(
"top when stack empty");

}
}

Listing 5 – Precondition checking aspect

6. DISCUSSION
The experiment described in this report illustrates the convenience
of refactoring the (base) code so that it offers the adequate
joinpoints. The most important gap in AspectJ’s joinpoint
protocol seems to be in local variables, and therefore the need to
quantify [5] over local variables led to the most intrusive (if
structured and disciplined) refactorings. In [15] we call code
fashioned this way to be amenable to quantifications aspect
friendly. Aspect friendly code is subtly different from oblivious
code [5] in that programmers are no longer oblivious of aspects
but the code itself does not necessarily betray explicit
dependencies on aspect constructs.
These issues suggest that new rules of good style must be found
for code developed with AOP technology. For instance, we
detected a tension between encapsulation and aspects. Finding the
desirable style is one task we propose to undertake in future
research. The refactorings presented in this report are just the tip
of the iceberg and we plan to develop the catalogue as a way to
acquire an understanding of the desirable style. We encourage
feedback from researchers and practitioners.
It has been noted that standard object-oriented refactorings cannot
apply as-is in the presence of aspects [8][9]: changes to base code
can easily break the quantification of aspects. Several authors give
the name aspect aware to object-oriented refactorings that take
into account the presence of aspects [8][9]. Iwamoto and Zhao [9]
present an analysis of 32 refactorings from [6], concluding that
only 3 can be safely used in the presence of aspects. The reason is
easy to spot: any refactoring affecting existing joinpoints covered
by the pointcut protocol can potentially break aspect code. In [15]
we named this problem the fragile base code problem. We
consider this comprises the strongest case for automatic support
for AOP refactoring.
Some papers and articles recently published relate to AOP
refactoring. Iwamoto and Zhao [9] propose a number of AOP-
specific refactorings but no details are given. Hanenberg et al [8]
also present AOP-specific refactorings for feature extraction,
besides covering other related subjects. Laddad [13] presents
several useful refactorings for extracting various types of concern
into aspects and techniques to ensure programmers do not later
accidentally change its semantics. None of the above mentioned
cover issues with constructors or describe the refactorings in the
detailed and systematic presentation format used here.

7. CONCLUSIONS
This report makes the following contributions:

• It describes an experiment in extracting a feature from a
Java framework into an AspectJ module.

• It presents in detail and in a familiar format a set of
refactorings for extracting crosscutting features into
(un)pluggable aspects.

• It presents a complete and self-contained example
which places each refactoring in its proper context.

Acknowledgements
We thank António Rito Silva and Ron Bodkin for their feedback
and remarks on drafts of this report. Miguel Pessoa Monteiro is
partially supported by PRODEP III (Medida 5 – Acção 5.3 – Eixo
3 – Formação Avançada de Docentes do Ensino Superior).

8. REFERENCES
[1] Eclipse Home Page. http://www.eclipse.org/.
[2] Software Engineering Group home page.

http://www.esw.inesc.pt/
[3] K. Beck, Extreme Programming Explained: Embrace

Change, Addison-Wesley 2000. ISBN 0201616416.
[4] S. Fernandes, J. Cachopo, A. R. Silva, Supporting

Evolution in Workflow Definition Languages, SOFSEM
2004, January 2004.

[5] R. E. Filman, D. P. Friedman, Aspect-Oriented
Programming is Quantification and Obliviousness,
workshop on Advanced Separation of Concerns (OOPSLA
2000), October 2000, Minneapolis.

[6] M. Fowler (with contributions by K. Beck, W. Opdyke
and D. Roberts), Refactoring – Improving the Design of
Existing Code, Addison Wesley 2000. ISBN 0201485672.

[7] E. Gamma; R. Helm, R. Johnson and J. Vlissides Design
Patterns – Elements of Reusable Object-Oriented
Software, Addison Wesley, 1995. ISBN 0201633612.

[8] S. Hanenberg, C. Oberschulte, R. Unland, Refactoring of
Aspect-Oriented Software, Net.ObjectDays 2003, Erfurt,
Germany, September 2003.

[9] M. Iwamoto, J. Zhao, Refactoring Aspect-Oriented
Programs, 4th AOSD Modeling With UML Workshop,
UML'2003, San Francisco, USA, October 2003.

[10] G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten, J. Palm
and W. G. Griswold. An Overview of AspectJ. ECOOP
2001, Budapest, Hungary, 2001.

[11] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C.
Lopes, J. Loingtier and J. Irwin. Aspect-Oriented
Programming. ECOOP'97, Finland, June 1997.

[12] R. Johnson, B. Woolf, Type Object, chapter 4 of "Pattern
Languages of Program Design 3" (R. Martin, D. Riehle
and F. Buschmann, editors), Software Patterns Series,
Addison-Wesley, October 1997.

[13] R. Laddad, Aspect-Oriented Refactoring, parts 1 and 2,
The Server Side, 2003. http://www.theserverside.com/

[14] D-A. Manolescu, A Micro Workflow Architecture
Supporting Compositional Object-Oriented Software
Development, Ph.D. thesis, University of Illinois at
Urbana-Champaign, 2001.

[15] M. Monteiro, J. Fernandes, Some Thoughts On
Refactoring Objects to Aspects, proceedings of the
DSOA'2003 workshop at JISBD 2003, November 2003.

[16] W. F. Opdyke. Refactoring Object-Oriented Frameworks.
Ph.D. thesis, University of Illinois, 1992.

[17] M. Robillard, G. Murphy, Concern Graphs: Finding and
Describing Concerns Using Structural Program
Dependencies, ICSE'2002 (pages 406-416), May 2002.

