
Toward a Token-Based Approach to Concern
Detection in MATLAB Sources

Miguel P. Monteiro1, Nuno C. Marques1, Bruno Silva2, Bruno Palma1, and
Joao Cardoso3

1 NOVA Laboratory for Computer Science and Informatics, DI-NOVA-FCT, Portugal
nmm@fct.unl.pt, mtpm@fct.unl.pt

2 IPSetubal - Escola Superior de Tecnologia de Setubal, Portugal
3 FEUP, Universidade do Porto, INESC-TEC, Portugal

jmpc@acm.org

Abstract. Matrix and data manipulation programming languages are
an essential tool for data analysts. However, these languages are often
unstructured and lack modularity mechanisms. This paper presents a
business intelligence approach for studying the manifestations of lack
of modularity support in that kind of languages. The study is focused
on MATLAB as a well established representative of those languages.
We present a technique for the automatic detection and quantification
of concerns in MATLAB, as well as their exploration in a code base.
Ubiquitous Self Organizing Map (UbiSOM) is used based on direct usage
of indicators representing different sets of tokens in the code. UbiSOM
is quite effective to detect patterns of co-occurrence between multiple
concerns. To illustrate, a repository comprising over 35, 000 MATLAB
files is analyzed using the technique and relevant conclusions are drawn.

Keywords: business intelligence; concern metrics; concern mining; MAT-
LAB; token-based technique; Self-Organizing Maps; Modularity

1 Introduction

This paper presents a Software Engineering Business Intelligence and Knowledge
Discovery approach for advanced exploratory data analysis using Ubiquitous Self
Organizing Maps (UbiSOM) [12]. The UbiSOM main algorithm was initially
proposed in 1982 [7] and has become an established data mining algorithm with
hundreds of applications in many scientific domains. Here, UbiSOM is used for
studying the symptoms of lack of modularity in the source code under analysis.
It is based on a concern metric [4] that is used as an indicator of the intensity of
the presence of a given concern in a code file and provides the foundation for the
exploratory analysis of source code bases. UbiSOM analysis is particularly effec-
tive in detecting and representing patterns of co-occurrence of multiple concerns
in the same file. The technique is scalable to large code bases. The present study
is focused on MATLAB since it is a classical language for matrix manipulation
and of which large repositories are publicly available.

2 M. Monteiro, N. Marques, B. Silva, B. Palma, J. Cardoso

The rest of the paper is structured as follows. Section 2 provides the back-
ground for this work as well as its motivation. Section 3 describes the proposed
concern mining technique and presents a repository of MATLAB code, for which
an illustrating analysis is described in Section 4. Section 5 provides a discussion
and outlines related work. Section 6 concludes the paper and mentions several
opportunities for future work.

2 Background and Motivation

A concern is any abstraction, concept or cohesive set of functionalities that
ideally is enclosed in its own module, for the sake of comprehensibility and ease of
maintenance and evolution. It has long been accepted that existing programming
paradigms have limitations on the ability to enclose all concerns in separate
modules [6]. The root cause is that each programming paradigm provides a single
criterion to decompose a software system. Concerns that do not align with the
primary decomposition tend to cut across the system’s modular structure, even
when developers follow the best practices of design and programming style.

These limitations were the subject of much study in object-oriented (OO)
languages, but less so in the case of Matrix and data manipulation programming
languages, of which MATLAB is an important example. MATLAB’s support for
modularity is less sophisticated than that of OO languages. Modules are mostly
MATLAB files (m-files) and MATLAB functions (m-functions). Our study is
focused on m-files with at least one m-function (i.e., we presently do not consider
MATLAB scripts). UbiSOM analysis is particularly interesting in m-files with
two or more concerns, which we approach as cases of a deficient support for
modularity. We consider that such files contain a core concern plus one or several
”additional” concerns.

Past research on techniques to detect unmodularized concerns in program
code were carried out mainly under the umbrella name of aspect mining [5],
which studies tools and techniques for the automatic or semi- automatic detec-
tion of unmodularized concerns in existing systems. The approach to concern
detection proposed in this paper is a pioneer approach that uses unsupervised
knowledge extraction tools as part of an effort to develop a general approach
for concern detection that can be used equally well to detect modularized con-
cerns enclosed in a single source code file or unmodularized concerns, which are
therefore scattered across multiple files.

3 Concern Mining in MATLAB Systems

Concern detection builds on previous work by Monteiro et al. [11][2] which, to
our knowledge, is the sole previous work on concern mining specifically tailored
for MATLAB systems. The approach is based on the analysis concern metrics [4],
which capture information about concerns present in one of more modules. This
is in contrast to traditional modularity metrics [3], which capture information

Toward a Token-Based Approach to Concern Detection in MATLAB Sources 3

on individual modules. Concern metrics are particularly suitable for supporting
concern mining tasks.

The main information unit are the tokens, i.e., the lexical elements extracted
from a code file by means of some lexical analyser tool. Monteiro et al. base
their work on the hypothesis that specific groups of tokens can be associated
to specific concerns, in which case patterns of occurrence of such tokens can
be used to detect the presence of the corresponding concerns. Individual tokens
must also relate to one concern at most.

This work includes a component that performs a tokenization of all the non-
comment code from each m-file from a given target repository and computes a
number of metrics based on the word tokens obtained. Nonword tokens (e.g.,
symbols and literals, including strings) are not considered in most cases. Treat-
ment of keywords varies according to the specific aims. A final filtering phase
yields just the words that are function names, discarding the rest. Function
names - particularly from standard MATLAB libraries - provide stronger guar-
antees of uniformity than, e.g., local variables. These metrics are then directly
used by an Ubiquitous Self-Organizing Map [12] component for assisting in the
multi-dimensional exploration and analysis of the extracted data.

The proposed technique uses the trial mapping between concerns and func-
tion names shown in Table 1, which was proposed by a domain expert. One of
the aims of the work described here is to test and assess the technique, using
this mapping. The metrics used in this work are (1) Lines of Code (LoC), which
counts all non-comment and non-blank lines of code for each m-file; and (2)
Token Density, which computes, for each m-file, the total count of occurrences
of the tokens from a given set (e.g., 5 occurrences of ‘double’ count as 5), di-
vided by LoC. This metric represents the average number of tokens per LoC,
for a given concern. It parametrises the concern, i.e., the specific set of tokens
considered. The mapping from Table 1 gives rise to 10 instantiations of Token
Density. Figure 1 shows the contents of an m-file (minus blank and comment
lines) whose metrics stand out for a few concerns. With just 9 LoC, it has 2
tokens indicative of Verification of function arguments and return value (Token
Density 0.2(2)), 9 tokens indicative of Data type specialisation (Token Density
1.0) and 5 tokens indicative of Memory allocation/ deallocation (Token Density
0.5(5)). Token Density is sufficient to enable the automatic detection of con-
cerns. However, on a macro-level and just by itself, this technique is not well
suited to provide a broad view of a large repository and provide a panorama of
all concerns and its various co-occurrences.

The Self-Organizing Map (SOM) is an unsupervised learning artificial neural
network model, based on competitive learning [7]. Standard SOM model consists
of a set of topologically ordered data prototypes arranged in a rectangular lattice
(the map). The SOM is widely used as a tool for projecting high-dimensional data
onto the two-dimensional representation map. This projection retains the rela-
tionship between input data as faithfully as possible, thus describing a topology-
preserving projection of input similarities in terms of distances in the output
space. It is this special projection that, when a large enough map is used (also

4 M. Monteiro, N. Marques, B. Silva, B. Palma, J. Cardoso

Verification of function
arguments and return
value

nargchk, nargin, nargout, nargoutchk, varargin, varargout

Data type specialization
double, fi, fimath, int16, int32, int64, int, quantize,
quantizer, sfi, single, ufi, uint16, uint32, uint64, uint

Data type verification
cast, class, intmax, intmin, isa, isboolean, iscell, ischar, · · ·
isquantizer, isreal, isrow, typecast, wordlength

Dynamic properties eval, evalc, evalin, inline, feval

Console messages annotation, assert, disp, display, error, last, lastwarn

Visualization
aaxes, axis, box, clf, close, errorbar, Figure, · · ·
plot, plot3, plotedit, rectangle, title,ylabel, zlabel, zoom

File I/O
diary, fgetl, fgets, fileformats, fopen, fprintf,fread, fscanf,
fwrite, hgload, hgsave, load, save, saveas, uisave

System
batch, break, clear, clock, cputime, date, · · ·
toc, unloadlibrary, wait, weekday, who, whos, xbreak

Memory allocation/
deallocation

delete, global, ones, persistent, zeros

Parallelization
cancel, codistributed, codistributor, createParallelJob,
createTask, defaultParallelConfig, demote, · · ·
sparse, submit, subsasgn,subsref, taskFinish, taskStartup

Table 1. Illustrative mapping between concerns and tokens (some tokens removed due
to space concerns).

known as Emergent SOM), establishes as a valuable data exploratory analysis
tool with special visualizations [13]. This property also makes SOM distinct from
other clustering algorithms. De per si, the traditional k-means clustering is un-
able to compare distinct clusters and a bad setting of the k parameter could
result in too generic clusters, i.e, group sets of data that may have little relation.
By contrast, SOM is less “eager” in clustering together the data it processes,
i.e., it significantly reduces the risk that it will group data too much. That is
one reason we deem SOM more suitable for exploratory data analysis.

The proposed method uses an extension of the SOM technique called Ubiq-
uitous SOM [12] for training maps of Token Density data. This technique has
an easier and better defined parameterization than standard SOM and allows
the detection of meaningful variations among the data, which is approached
as a stream. The classical online SOM decreases learning parameters mono-
tonically throughout time and requires the same observations to be presented
several times, consequently considering the underlying distribution stationary.
UbiSOM [12] also uses the classical online SOM update rule but with different
mechanisms for estimating SOM learning parameters for non-stationary data-
streams. The UbiSOM algorithm switches between an ordering and learning
state. The latter is only achieved when the current distribution of the data
stream is already sufficiently modeled after a previous ordering phase. Preference
for UbiSOM [12] is justified by its dynamic visualization and data exploratory

Toward a Token-Based Approach to Concern Detection in MATLAB Sources 5

advantages over other traditional data mining tools. Moreover, UbiSOM ensures
detection of distinct phenomena if new or too distinct repositories are used. This
is particularly relevant if, as in this case, more code repositories are intended to
be added later on.

The UbiSOM for exploring Token Density relations is composed of units
where each position (or unit) is a vector of average values representing the Token
Density metrics. So, each concern in a similar enough set of m-files (or micro-
cluster) is associated to a particular unit / map position. This way, the method
enables analyses of emergent regions of Token Density, enabling exploratory data
analysis for concern detection and correlation in the map and dissimilar regions
to detect uncommon but relevant correlation patterns.

function fired = nemoStep(fstim, istim_nidx, istim_current)
 if nargin < 1
 fired = nemo_mex(uint32(12), uint32(zeros(1,0)), uint32(zeros(1,0)), zeros(1, 0));
 elseif nargin < 2
 fired = nemo_mex(uint32(12), uint32(fstim), uint32(zeros(1, 0)), zeros(1, 0));
 else
 fired = nemo_mex(uint32(12), uint32(fstim), uint32(istim_nidx), istim_current);
 end
end

[] – Verification of function arguments and return value; [] – Data type specialization; [] – Memory allocation/ deallocation;

Fig. 1. m-file showing high values for Token Density in relation to 3 concerns.

The repository used for this work is one used to test the MATLAB compiler
by Bispo and Cardoso [1], comprising 35,193 files organized by toolboxes and
covering various application domains. 28k m-files were downloaded from Source-
forge and 2k m-files were downloaded from GitHub. Of these, 784 m-files were
discarded due to the lack of useful MATLAB code inside them. For instance, we
found a number of m-files with zero LoC, as they contained only comment text.
After this curating, the repository comprised 34,409 m-files.

We found that in practice, m-files with too low a LoC value tend to hog
results for Token Density. Since such small m-files are usually uninteresting, the
tool was set to discard all m-files with LoC < 5, leaving a little over 30k m-files.
According to the data gathered, only a small percentage of the m-files from the
repository does not contain any of the concerns from Table 1. Out of the m-files
with at least one concern, the biggest chunk is for m-files with two concerns,
followed by m-files with a single concern.

4 Data Analysis and Exploration

The SOM component of our tool processes the Token Density data from each
m-file from the repository. Our method is specifically focused on co-occurrence
patterns among the various concerns from Table 1. Each pattern is formed as a
vector X = [x1k, x2k, · · · , xNk], where each component of this vector is calculated
by equation (1), where xik is the component for concern i for m-file k.

6 M. Monteiro, N. Marques, B. Silva, B. Palma, J. Cardoso

xik =
log(TkDensityik

maxc(TkDensityic)
×N + 1)

log(N + 1)
(1)

Each component of the vector corresponds to a row number i in Table 1,
so i = 1 to NC, where NC=10 is the total number of concerns considered for
analysis. TkDensityik is the corresponding Token Density for concern i and
m-file k and maxc• is the maximum of previous values of concern i for all m-
files. Intuitively, the use of the logarithm of a [0; 1] normalized density (i.e., the
division in the numerator of equation) is needed since the Token Density values
should be made relevant for small values of the metric and zero for zero values
of the metric. The multiplication of this quantity by a factor N is used to ensure
that low-frequency values of Token Density are distinct enough from zero. We
have set N = 6000 after empirically testing several alternatives. The histogram
with frequency analysis of distinct Token Densities for N = 6000 is shown in
Figure 2. Division by the maximum value ensures that each SOM component
value is always normalized between zero and one (as required by SOM).

0 0.2 0.4 0.6 0.8 1.0

...200k

250k
Tokens

Normalized Token Density

Fig. 2. Full repository normalized token density, when N = 6000.

Several distinct UbiSOMs were trained by filtering patterns with three or
more concerns. Note that filtering improves the quality of the map, but reduces
the sample for detecting patterns. Therefore, in a systematic approach, m-files
with less than two simultaneous concerns with above-zero Token Density were
filtered away and several UbiSOMs were trained with the resulting datasets.
Patterns filtered with three simultaneous concerns, i.e., by selecting only the
m-files with three or more above-zero Token Density values, were used to train
a SOM that is used next, to illustrate the technique and the insights it pro-
vides. Final iterations of UbiSOM training used random resampling over the full
repository. The SOM quantization error was convergent with a good reduction
of quantization error during model training (final quantization error = 0.05 per
component). Since no big variations were detected on the final resampling step,
the current repository seems stable enough for model convergence.

The visual outputs from SOM considered in this paper comprise two compo-
nents [12][9]: the Unified Distance Matrix (U-Matrix) and the various Component
Planes (CP). In each CP and the U-Matrix, the same areas in the planes repre-
sent the same units, i.e., regions in the data that tend to have high or low values
together. Throughout the rest of the paper, the regions from Figure 4 denoted
A1 to E2 also refer to the equivalent regions of the various planes from Figure 4.
However, it is important to note that the cells and colours of U-Matrix and CPs

Toward a Token-Based Approach to Concern Detection in MATLAB Sources 7

are interpreted in different ways and that regional commonalities between CPs
must be interpreted in light of the specific colour pattern found in the corre-
sponding region of the U-Matrix. It is the combination of both views that yields
a proper understanding of the full dataset and their underlying patterns. The
U-Matrix provides a general view of the units or patterns found in the data,
while the various CPs provide the details of the various units. Here, each CP
relates to one specific concern.

The average values in both the U-Matrix and the CPs are represented as a
JET colour map [9], meaning that red represents high values, blue represents
low values (down to zero) and green represents intermediate values. In addition
(and consistently), green areas with a blue hue represent values lower than pure
green, while “dirty” green areas with a red hue represent values higher than pure
green. In the U-Matrix, each unit measures the average Euclidean distance of the
correspondent SOM unit vector to the vectors of the eight SOM unit vectors that
are its immediate neighbours. In the CPs, each position represents the density
parameters for its respective concern.

Fig. 3. U-Matrix representing the selected m-files in the MATLAB repository. The
various letter annotations highlight relevant regions.

Figure 3 shows an U-Matrix for the metrics data fed to the SOM, from the
example used in the rest of this paper to illustrate and summarize our analy-
ses. In general, well-separated regions (i.e. the blue “lakes” [9]) in the U-Matrix
represent clearly separated patterns in the data fed to the SOM. The regions la-
belled A1, A2, A3 and C from Figure 3 are good examples. In the U-Matrix, blue
regions represent homogeneous regions in the SOM while red regions (e.g., region
Z from Figure 4) denote high variability among units. Green regions represent
intermediate values for distance among SOM units. Blue regions in a slight green
hue such as B, E1, E2 and D from Figure 3 also represent relatively homoge-
neous regions. Several well-defined blue and light green “lakes” can be discerned
by their colour uniformity regarding neighbourhood units. These various data
regions betray several well-defined concern patterns.

To analyse the data obtained for the various concerns, we look at their re-
spective CPs (Figure 4). For instance, we see that concerns Data type verification
and Verification of function arguments share two common red regions in their
respective CPs (at the bottom, to the left and right). This means that there is a
significant co-occurrence between those two particular concerns. This sharing is

8 M. Monteiro, N. Marques, B. Silva, B. Palma, J. Cardoso

1. Vrf fnc args&ret vals

2. Dt type specialization

3. Dt type verification

4. Dynamic properties

5. Console Messages

6. Visualization

7. File I/O

8. System

9. Mem. alloc/dealloc

10. Parallelization

Fig. 4. Component planes showing the colour maps of the Token Density metric for
concerns from Table 1.

particularly significant, because those regions are blue in the U-Matrix, meaning
that the sharing is particularly uniform across the analysed data. The two con-
cerns co-occur with high densities, though we can also see a significant overlap
with concerns Console messages and Memory allocation/deallocation in regions
A1 and A2.

A sharing of red regions taking place in a red rather than blue region of
the U-Matrix (no such case in the present example) would depict more variable
distances between units and would mean that patterns in such regions would
be much more diverse (with high, low and intermediate densities). The overlap
would probably not be representative of the data as a whole. It is also significant
that no “blue lake” from Figure 4 is devoid of at least one CP with high values
in the same region, i.e., all red zone in the CPs correspond to blue lakes in the U-
Matrix. If such region existed, it would represent some diffuse concept, possibly
meaningless.

The red region in the CP for concern Data type specialization completely
overlaps with that for concern Visualization (region B) though the latter’s region
is wider. This could suggest that in the majority of m-files where Data type
specialization has a significant presence, Visualization‘s presence is significant
as well. There is also a relevant presence of this concern in area A2, jointly
with concerns Data type verification and Verification of function arguments and
return value. However, Data type specialization does not have enough above zero
values to enable a reliable characterization in the CP. For this reason, it was
discarded from subsequent analyses. A similar overlap of red regions also occurs
with Console messages and System (region), though the overlap is less complete
in this case.

We performed several manual checks on several m-files to confirm that red
regions from the various CPs do indeed relate consistently to high values of
Token Density with respect to their respective concerns. One example is m-
file merge options.m (shown in Figure 5 without comment lines) - one the m-
files indicated by the common blue region A1 of the U-Matrix (Figure 3) and
selected as a small representative from a shortlist of m-files with high density
values for more than one concern. As expected, those m-files show several tokens
associated with the concerns found in region A1, particularly Verification of

Toward a Token-Based Approach to Concern Detection in MATLAB Sources 9

function arguments and return value and Data type verification but also Console
messages.

M-file merge options.m is an interesting illustration of the attempt to sep-
arate concern Verification of function arguments and return value from other
concerns. Its sole purpose seems to test the way the function is called and con-
figure a call to another function that provides the functionality proper. However,
that does not prevent merge options.m being a clear case of code tangling in
MATLAB. Throughout our work, we found several examples of this symptom,
in functions that do not separate argument-checking from other concerns.

5 Discussion and Related Work

Token Density is sufficient to directly allow the selection of the top densities on
any individual concern from Table 1. However, it cannot be scaled to provide an
overview of a large repository spanning multiple concerns.

The SOM model presents large distances between many units, which jointly
with the presence of some quantization error, suggests a good enough conver-
gence of the model but does not yet represent some patterns in the data, i.e.,
the boundaries separating clusters in Figure 4 could be “crisper”. Nevertheless,
the observation that most CPs have clear continuous regions in several trained
SOMs, points us to a clear and concise division of the studied concern patterns
under analysis. Overlapping areas in planes from the CPs (Figure 4) are re-
lated primarily with co-occurring concerns. This is a clear indicator that the
groups of tokens from Table 1 are effective in identifying the concerns to which
they are associated and that those groups of tokens cover distinct programming
considerations (i.e., concerns).

SOM use is marred by a high number of zeros in the Token Density data. The
traditional technique for handling sparse data would be Principle Component
Analysis (PCA). However, PCA is not discriminating enough for our purposes,
since it aggregates the several concerns in different variables. Namely, the tests
performed using PCA for our problem did not improve the outcome, be in terms
of the SOM, be in not reducing the quantization error. The high number of zeros
of Token Density seems to be an instance of an exponential law on the token
occurrence. A better alternative would be to use a method such Word2Vec [10],
a natural language method that can build high-quality distributed vector repre-
sentations that capture precise syntactic and semantic relationships. However,
for a more rigorous evaluation we chose to use information provided by an expert
(cf. Table 1).

The N = 6000 parameter used in equation 1 is an efficient way to give proper
relevance to low Token Density values. M-files with one concern occurrence per
60 LoC have a normalized value of 0.5, while one concern occurrence per 200
LoC (normalized value of 0.3). Even in more than 1000 LoC (normalized value
lower than 0.2) are still detectable. Preliminary experiments done without the
exponential normalization (cf. equation 1) showed a large uniform region and few
co-occurring concerns. Indeed, SOM training is known to be sensible to too many

10 M. Monteiro, N. Marques, B. Silva, B. Palma, J. Cardoso

function options = merge_options(default_options, varargin)
 if ~isempty(varargin) && mod(length(varargin),2) == 0
 options = merge_structs(struct(varargin{:}),default_options);
 elseif length(varargin)==1 && isstruct(varargin{1})
 options = merge_structs(varargin{1},default_options);
 elseif ~isempty(varargin)
 error('matlag_bgl:optionsParsing',...
 'There were an odd number of key-value pairs specified');
 else
 options = default_options;
 end
end

[] – Vrf. of func. Args. and return value;

[] – Data type verification;

[] – Console messages;

Fig. 5. m-file with high Token Density values relative to three of the analysed concerns.

zeros. This problem is seen for concerns with a high number of zeros such as,
e.g., Data type specialization, which tends to adjust with high error and therefore
tends to appear opportunistically in several areas of the space. Manual analysis
nevertheless shows that the red and green areas in this concern’s CP (Figure 4)
are related with m-files relevant for this concern. Restricting the selection to
m-files with more co-occurring concerns reduced this problem.

In our illustrative example, a particularly relevant result from the SOM anal-
ysis is the high correlation of the densities for concerns Verification of function
arguments and Data type verification (see Figure 4). An illustrating example
of an m-file with these concerns is shown in Figure 5. The high correlation be-
tween both these parameters is common in many analysed m-files. This result
suggests that MATLAB is somewhat problematic as regards validating and ver-
ifying function arguments or data types. The problem with arguments is caused
by the practice of “schizophrenic functions” that need to test multiple varia-
tions of its parameters to learn in what “mode” they were actually called. In
object-oriented languages, method overloading enables the tackling of the same
problem with better separation of concerns. As regards data types, Cardoso et
al. propose aspect-oriented extensions to MATLAB to enable a precise control
of data types without incurring the symptom of code tangling [2].

Considering the large percentage of m-files from the analysed repository that
betray the presence of multiple concerns, we can conclude that the code tangling
symptom is quite common.

The present work is based on concern metrics and therefore is related to past
research work on that category of metrics [4]. A work with several similarities
to ours is that by Maisikely and Mitropoulos [8], whose purpose is to develop an
aspect mining technique that uses a SOM component to process metrics data
to find similarities. It differs from ours in that the target language is Java and
the mining is specifically tailored to the kind of CCCs that AspectJ is good at
modularizing. As it would be expected, the metrics used are also quite different.
All of those metrics reside at method level and the group seems to be cen-
tered in two dynamic (i.e., captured at runtime) versions of method Fan-In and
method Fan-Out. To complement, other method-level metrics are used, namely:
Information flow (Fan-In*Fan-Out), Method Signature (method name, parame-
ter types and their order, visibility modifiers and return type), Method Internal
Coupling and Method External Coupling. Maisikely and Mitropoulos report pos-
itive results from an experiment with their technique, using as target systems

Toward a Token-Based Approach to Concern Detection in MATLAB Sources 11

JHotDraw 5.41b and a small system comprising 6 classes. The present work uses
token-based metrics because they seem more appropriate for a first experiment
for aspect mining of MATLAB system, as argued in previous work [11].

6 Conclusions and Future Work

This paper makes the following contributions:

1. Proposes the Token Density metric as a direct development of some ideas
proposed by Monteiro et al. [11].

2. Proposes a technique for exploratory analysis of MATLAB code, scalable to
large repositories. The technique provides a precise way to identify patterns
of occurrence and co-occurrence of concerns in (possibly large) repositories
of MATLAB files.

3. The analysis described in this paper serves as a first validation of the Token
Density metric.

We identify some of the opportunities for future work. Next, we highlight a
few of them.

Automatize the development of the concern-token mapping. We can use a distri-
butional representation of tokens [10] as a direct input to the UbiSOM. Finding
out the best way to automatically learn this representation from MATLAB code
bases is an avenue left open by this work. In future, we will further mature
this technique in at least two directions: (1) automatize or semi-automatize the
discovery of new, distinct patterns of occurrence that lead to new concerns and
new entries for Table 1; and (2) automatically or semi-automatically refine ex-
isting entries of the Table, by applying a more fine-grained, token-level analysis
that indicates the tokens that should be kept in the mapping – because patterns
of occurrence confirm their usefulness – and those that should be discarded –
because patterns of occurrence are too sparse and/or do not add meaningful
information.

The results achieved with the proposed method are promising. The interac-
tive and exploratory nature of SOM allows a focused search for specific concerns
in code repositories. In future, this will be part of a tool for finding relevant
code snippets in MATLAB repositories. There is an increasing trend in big data
analytics using matrix based analysis (or N-dimensional matrices, i.e., tensors).
This can be seen by the increasing number of packages and tools for matrix and
data handling, e.g., Google TensorFlow, the numPy package in Python and the
very relevant statistical analysis tools and languages such as SPSS and R. We
plan to make a social collaborative web site with such a tool as a useful way for
reusing and improving previously available code. This site will also be a forum
for exchanging good practices on development of data analysis software. Empir-
ical data collected from this site promises be a powerful means to develop this
line of research.

12 M. Monteiro, N. Marques, B. Silva, B. Palma, J. Cardoso

References

1. Bispo, J., Cardoso, J.M.P.: A matlab subset to c compiler targeting embedded
systems. Software: Practice and Experience 47(2), 249–272 (2017), http://dx.

doi.org/10.1002/spe.2408, sPE-15-0162.R2
2. Cardoso, J.M., Fernandes, J.M., Monteiro, M.P.: Adding aspect-oriented features

to matlab. In: Fifth International Conference on Aspect-Oriented Software Devel-
opment (AOSD 2016) (2006)

3. Chidamber, S.R., Kemerer, C.F.: A metrics suite for object oriented design. IEEE
Transactions on software engineering 20(6), 476–493 (1994)

4. Figueiredo, E., Sant’Anna, C., Garcia, A., Bartolomei, T.T., Cazzola, W.,
Marchetto, A.: On the maintainability of aspect-oriented software: A concern-
oriented measurement framework. In: Software Maintenance and Reengineering,
2008. CSMR 2008. 12th European Conference on. pp. 183–192. IEEE (2008)

5. Kellens, A., Mens, K., Tonella, P.: A survey of automated code-level aspect mining
techniques. In: Transactions on aspect-oriented software development IV, pp. 143–
162. Springer (2007)

6. Kiczales, G., Lamping, J., Mendhekar, A., Maeda, C., Lopes, C., Loingtier, J.M.,
Irwin, J.: Aspect-oriented programming. ECOOP’97—Object-oriented program-
ming pp. 220–242 (1997)

7. Kohonen, T.: Self-Organizing Maps. Springer-Verlag Berlin (2001)
8. Maisikeli, S.G., Mitropoulos, F.J.: Aspect mining using self-organizing maps with

method level dynamic software metrics as input vectors. In: Software Technology
and Engineering (ICSTE), 2010 2nd International Conference on. vol. 1, pp. V1–
212. IEEE (2010)

9. Marques, N.C., Silva, B., Santos, H.: An interactive interface for multi-dimensional
data stream analysis. In: Information Visualisation (IV), 2016 20th International
Conference. pp. 223–229. IEEE (2016)

10. Mikolov, T., Sutskever, I., Chen, K., Corrado, G.S., Dean, J.: Distributed repre-
sentations of words and phrases and their compositionality. In: Advances in neural
information processing systems. pp. 3111–3119 (2013)

11. Monteiro, M., Cardoso, J., Posea, S.: Identification and characterization of cross-
cutting concerns in matlab systems. In: Conference on Compilers, Programming
Languages, Related Technologies and Applications (CoRTA 2010), Braga, Portu-
gal. pp. 9–10. Citeseer (2010)

12. Silva, B., Marques, N.C.: The ubiquitous self-organizing map for non-stationary
data streams. Journal of Big Data 2(1), 1–22 (2015)

13. Ultsch, A., Herrmann: The architecture of emergent self-organizing maps to reduce
projection errors. In: Proceedings of the European Symposium on Artificial Neural
Networks (ESANN 2005). pp. 1–6. Verleysen M. (Eds) (2005)

