
Using Design Patterns as Indicators 
of Refactoring Opportunities (to Aspects) 

Miguel P. Monteiro 
Escola Superior de Tecnologia – Institituto Politécnico de Castelo Branco 

Avenida do Empresário 6000-767 Castelo Branco 
Portugal 

 
 

ABSTRACT 
In this position paper, we argue that traditional object-oriented 
design patterns can be regarded as workarounds for limitations in 
current programming languages, including crosscutting concerns. 
Aspect-oriented programming (AOP) is able to modularise 
crosscutting concerns and overcomes many of the limitations. To 
illustrate, we mention a few examples. We describe several 
situations in which patterns are used to cope with the presence of 
crosscutting concerns. Such solutions are inferior to solutions 
make possible by AOP and on this basis we hypothesize that 
patterns can provide clues to improve existing systems by 
refactoring to aspects. We briefly outline an approach to derive a 
deeper understanding of how patterns can be used as indicators of 
refactoring opportunities. 

Keywords 
Aspect-Oriented Programming, Design Patterns, Refactoring. 

1. INTRODUCTION 
In this paper, we focus on the problem of identifying refactoring 
opportunities in object-oriented (OO) legacy systems, in the light 
of aspect-oriented programming (AOP). Our position is based on 
the premise that design patterns comprise an important technique 
used by developers of OO systems to cope with crosscutting. We 
argue that such efforts would benefit of a more systematic 
knowledge of the uses that developers make of design patterns in 
such circumstances. Such knowledge promises to yield useful 
catalogues of refactoring opportunities, i.e., descriptions of 
situations in OO code that can be improved using AOP’s superior 
compositional capabilities. For the purposes of this paper, the 
concept of refactoring opportunity is akin to that of code smell as 
proposed in [6]. 

This paper is intended to be approached as a true “position 
paper”: we do not present concrete results; rather, we limit 
ourselves to a general presentation of a hypothesis and propose an 
approach to assess whether it can be proven. The paper is 
structured as follows. Section 2 presents our position. To better 
support it, we present a few illustrative examples in section 3. 
Section 4 outlines the approach we propose to meet our goals. 
Section 5 concludes the paper. 

2. PATTERNS AS INDICATORS OF 
REFACTORING OPPORTUNITIES 
In the last decade, design patterns became increasingly popular as 
a way to express design solutions to recurring problems [7]. The 
1990s witnessed a veritable industry of “pattern hunting” and as a 

result we now have a rich repository of object-oriented (OO) 
patterns. Patterns are currently regarded as an essential 
component of the skills of any programmer involved in 
developing, maintaining and evolving object-oriented systems. 
Patterns are often presented as solutions to attain greater 
flexibility in a system for a given requirement. 

However, it is also possible to view patterns in a more negative 
light. Patterns are problem-solution pairs [14], meaning that 
whenever we use a pattern, there is problem that the pattern is 
supposed to solve, or at least circumvent. In a significant number 
of cases, the problem stems from limitations in the OO language 
used. When a feature or composition capability is not directly 
available in a language, the solution often lies in implementing 
some pattern that achieves the intended effect, usually at some 
cost in flexibility and added complexity. Often, patterns are used 
as workarounds for limitations that theoretically need not exist. In 
such a light, the existence of such a large variety of patterns 
seems to suggest that existing OO languages are rather limited. 

Let us give some examples: (1) Abstract Factory (pages 87-96 of 
[7]) proposes a way to emulate co-variance, (2) Factory Method 
(pages 107-116 of [7]) describes a way to emulate polymorphic 
construction of objects (directly supported in languages such as 
Objective C), (3) Prototype (pages 117-126 of [7]) is a way to 
emulate the prototype-cloning effect found in prototype-based 
languages such as Self [13] (4) Decorator (pages 175-184 of [7]) 
describes a way to emulate mixins [3] and (5) Visitor (pages 331-
344 of [7]) proposes a way to emulate multiple dispatch. Many 
other examples could be given, though an extensive list lies out of 
the scope of this paper. 

Despite its limitations, OO is a rich paradigm that sometimes 
enables multiple variants to achieving a given effect. Many design 
problems can be addressed by a plethora of different solutions, 
each one providing its unique set of specific advantages and 
trade-offs. This richness makes it likely that different 
programmers working in different contexts may select different 
solutions to deal with the same problem. 

It has been noted that some of the motivations for implementing 
patterns has its roots in crosscutting, such as those that can be 
effectively tackled using aspect-oriented languages. Some 
patterns are known to “disappear” when implemented using AOP, 
while other patterns witness a significant simplification in their 
implementations [8]. As with other design problems, we observe a 
rich variety of different OO design solutions in relation to 
crosscutting. As a consequence, symptoms of the presence of 
crosscutting concerns in OO legacy systems can take many 
different forms and patterns. In the next section, we mention a 



few testimonies that can be found in the literature. We believe 
that patterns may offer a rich set of clues of when to refactor well-
formed OO systems to aspects. 

Why do we focus on patterns? In the context of this paper, we’re 
referring to well-formed OO code, developed by experienced and 
knowledgeable programmers. Such programmers are more likely 
to use patterns well (in an OO sense) than novice programmers 
and be aware that “duplication is evil” [6]. Therefore, they take 
great effort to remove such duplication, by keeping their code 
clean through refactoring. It seems reasonable to assume that 
many such programmers resort to patterns to deal with such 
issues, both when designing [7] and when refactoring [10]. 

On the other hand, the compositional capabilities of OO – 
currently the dominant programming paradigm – do not seem to 
be sufficient to cope with all demands of modern software, 
namely crosscutting. There seems to be a conflict between the 
stated aims of the test-driven and refactoring communities and 
what can be achieved with the programming paradigm that most 
people from those communities (currently) use. Most testimonies 
from these communities suggest that all forms of duplicated code 
can be eliminated from OO code. And yet, this claim is likely to 
raise eyebrows from among the AOP community, given the close 
link between crosscutting and duplication. Note that crosscutting 
is not generally mentioned in [7][10] as a reason to use patterns. 

In our view, what explains this apparent conflict is the use of 
elaborate design structure, namely patterns, to mask the symptoms 
of duplication. Developers that “mercilessly refactor” a given OO 
code base until all manifestations of duplication are removed, are 
really trading one problem with another: they merely remove the 
semblance of duplication, replacing it with increased structural 
complexity and inflexibility. There is a risk that the refactored 
structure proves to be almost as hard to evolve and reason with as 
the original one. By contrast, AOP promises to provide 
developers with more acceptable trade-offs. That is the claim 
suggested by Isberg in [9], which analyses the structure of the 
JUnit framework [2]. Isberg discusses trade-offs of the current 
design decisions for JUnit and proposes re-implementations of 
some parts of the framework using pointcuts and advice, pointing 
out that most of what he proposes to re-implement is, to current 
thinking, well-modularised. 

3. A FEW ILLUSTRATIVE EXAMPLES 
In this section, we describe a few examples of the use of OO 
design patterns that are used to cope with crosscutting. We 
suggest hypothetical refactorings that yield better AOP 
alternatives. Throughout the descriptions, we assume the reader 
has a general knowledge of the Gang-of-Four patterns [7] and 
refrain from providing descriptions of the patterns. 

3.1 Decorator 
In [5], Feathers describes various techniques to deal with cases in 
which additional logic must be added to the core logic of a 
system. Feathers mentions as a typical case a situation in which 
the new logic to be added happens to execute at the same time as 
the one in a method, giving raise to temptation to place it in the 
same method. However, the new logic is otherwise unrelated and 
there is a chance that in future someone will want to use one 
without the other. Feathers mentions logging as an example of 

such an additional logic. People familiar to AOP recognise the 
favourite example of crosscutting (though in recent times it has 
been challenged by the Observer pattern). To address this 
problem, Feathers proposes a few techniques that include Wrap 
Method (pages 67-70 of [5]) and Wrap Class (pages 71-76 of [5]). 
There are a few variants to implementing Wrap Method, but it 
basically entails wrapping the method with the original logic with 
a new method that simply performs the additional logic (before or 
after, depending on the specific problem) and forwards it to the 
old method. Wrap Class is, by Feathers’ own admission, really an 
instance of Decorator. 

The two above techniques suggest two new AOP refactorings: 
Replace Wrap Method with Pointcut and Advice and Replace 
Decorator with Aspect. We envision Replace Wrap Method with 
Pointcut and Advice as creating a pointcut that captures the points 
in the execution of the program where the wrap method is called 
and adding an advice acting on those joinpoints that provides the 
logic formerly provided by the wrap method. Next, the wrap 
method can be removed. Replace Decorator with Aspect is about 
creating an aspect that captures joinpoints where the behaviour 
that the decorator decorates is called, and placing in the aspect an 
advice acting on those joinpoints that provides the logic of the 
decorator. The decorator class can probably be removed 
afterwards. In the simplest cases, using an AOP implementation 
of Decorator proposed in [8] may be sufficient. 

3.2 Template Method 
Template Method (pages 325-330 of [7]) looks very promising as 
a signal of refactoring opportunities. It comprises one of the 
design backbones of many OO frameworks and frequently 
features in APIs. Classes java.applet.Applet and 
java.lang.Thread from Java’s API include widely-known 
examples of Template Method. 

It is possible to view Template Method as a crude technique to 
emulate pointcuts and advice. The template method performs a 
role that bears some similarities to pointcuts in that it serves to 
control the moments when some desired logic executes. The 
concrete classes that override and concretise the hooks exposed 
by the template method perform a role similar to that of advice: in 
both cases, the blocks of code execute reactively, or implicitly. 
This suggests a Replace Template Method with Pontcut and 
Advice refactoring. 

3.3 Singleton 
The Singleton pattern (pages 127-134 of [7]) is one of the patterns 
that attracted most criticisms. There are many testimonies of the 
excessive use of singletons, some of which can be found in the 
refactoring mailing list at Yahoo1. Overuse of singletons is 
troublesome, as it scatters multiple dependency points to the 
singleton throughout the system. Singletons also create specific 
problems when creating unit tests for classes that depend on them 
[12][5]. The pattern is considered prone to misuse, often by 
programmers that have yet to fully absorb the fundamental 
principles of OO and that lean on singletons to write “procedural-
style OO code”. Such programmers tend to create too many 
singletons that are really procedural-style global variables. 

                                                                 
1 http://groups.yahoo.com/group/refactoring/ 



Such bad uses of Singleton can be addressed in a number of ways 
and a few of them are suggested in [10][5]. However, in cases, 
turning the singleton into an aspect may be the appropriate 
solution. Aspects can have global access to the remaining 
elements of the system, but can also compose behaviour in a 
controlled way. Aspects can compose the behaviour equivalent to 
that provided by the singleton in an implicit way, thus avoiding 
the kind of dependencies that result from scattered calls to 
singleton logic. This suggests a Replace Singleton with Aspect 
refactoring. Such a refactoring entails moving to an aspect the 
singleton logic that is called from multiple places and ensuring 
that the aspect is able to capture all those points. The logic 
provided by the singleton is next moved to advices within the 
aspect that act on those joinpoints. 

4. PROPOSED APPROACH 
In order to build a catalogue of refactoring opportunities such as 
the ones mentioned above, we propose an approach similar to the 
one we took in [11]: use existing object-oriented systems as case 
studies to derive insights. We plan to analyse the source code of 
selected systems to assess whether there is a link between 
crosscutting concerns and the use of design patterns. Refactoring 
experiments should also be performed, such as those suggested in 
[9]. Ideal case studies are pattern-rich code bases, e.g. 
frameworks. Open-source OO systems such as JUnit [2] and 
JHotDraw [1] comprise good candidates and have the advantage 
of some previous work being already available [9][4]. 

Any refactorings derived from such a study must address various 
issues, including the one that follow: 
• What are the preconditions for the refactorings? Are there any 

special situations that prevent its use or do not make it 
advisable to apply it? For instance, it is likely that some 
instances of Singleton remain desirable: documentation 
should be derived that clearly states when the refactoring is 
applicable. 

• What are the detailed mechanics of the refactorings? Do the 
refactorings require the use of other, preparatory, 
refactorings? 

• What impact do the refactorings have on the remaining code 
base? Can some designs be simplified? Can the extraction of a 
crosscutting concern remove the motivation to use a pattern in 
some situations? 

5. CONCLUSION 
In this paper, we argue that in order to identify refactoring 
opportunities to aspects, we need to go beyond the more 
superficial manifestations of crosscutting, such as duplicated (and 
scattered) code. The efforts of well-meaning and experienced 
programmers and designers may mask such superficial 
manifestations behind less obvious ones such as elaborate 
structures and use of design patterns. We argue that patterns 
comprise a primary candidate to build a deeper base of knowledge 

for identifying opportunities to evolve legacy systems using AOP. 
To illustrate, we describe uses of a few patterns whose motivation 
stems from either the presence of crosscutting effects or 
limitations of OO relative to AOP. We suggest a few refactorings 
that address the same problems more effectively. 

6. ACKNOWLEDGMENTS 
Miguel P. Monteiro is partially supported by project PPC-VM 
(POSI/CHS/47158/2002) and by FCT under project SOFTAS 
(POSI/EIA/60189/ 2004). 

7. REFERENCES 
[1] JHotDraw home page. http://www.jhotdraw.org/ 
[2] JUnit home page. http://www.junit.org/ 
[3] Bracha G., Cook W., Mixin-Based Inheritance, 

ECOOP/OOPSLA 1990, Ottawa, Canada, October 1990. 
[4] van Deursen, A., Marin, M., Moonen, L., AJHotDraw: A 

showcase for refactoring to aspects. LATE 2006 workshop 
at AOSD 2005, Chicago, USA, March 2005. 

[5] Feathers, M., Working Effectively with Legacy Code, 
Prentice Hall 2005. 

[6] Fowler, M. (with contributions by K. Beck, W. Opdyke and 
D. Roberts), Refactoring – Improving the Design of Existing 
Code, Addison Wesley 2000. 

[7] Gamma, E., Helm, R., Johnson, R., Vlissides, J., Design 
Patterns – Elements of Reusable Object-Oriented Software, 
Addison-Wesley, 1994. 

[8] Hannemann, J., Kiczales, G., Design Pattern Implementation 
in Java and AspectJ, OOPSLA 2002, Seattle, USA, 
November 2002. 

[9] Isberg, W., Design with pointcuts to avoid pattern density, 
online article at Developerworks (AOP@Work series), June 
2005. www-128.ibm.com/developerworks/java/library/ j-
aopwork7/index.html 

[10] Kerievsky, J., Refactoring to Patterns, Addison-Wesley, 
2004. 

[11] Monteiro, M. P., Refactorings to Evolve Object-Oriented 
Systems with Aspect-Oriented Concepts. Ph.D. thesis, 
Universidade do Minho, Portugal, March 2005. 

[12] Rainsberger, J., Use your Singletons Wisely, online article at 
Developerworks, July 2001. www-128.ibm.com/ 
developerworks/webservices/library/co-single.html 

[13] Ungar D., Smith, R., Self:the power of simplicity, 
OOPSLA’87, Orlando, USA, October 1987. 

[14] Venners, Patterns and Practice – A Conversation with Erich 
Gamma, Part IV, Artima developer, June 2005. 
www.artima.com/lejava/articles/patterns_practice.html

 


