

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies

are not made or distributed for profit or commercial advantage and that

copies bear this notice and the full citation on the first page. To copy

otherwise, to republish, to post on servers or to redistribute to lists,

requires prior specific permission. A preliminary version of this paper

was presented in a writers' workshop at the 1st Annual Conference on

Parallel Programming Patterns (ParaPLoP).

ParaPLoP '10, March 30 - 31st, 2010, Carefree, AZ.

Copyright 2010 is held by the author(s). ACM 978-1-4503-0127-5.

Conference’10, Month 1–2, 2010, City, State, Country.

Copyright 2010 ACM 1-58113-000-0/00/0010…$10.00.

A Pattern Language for Parallelizing
Irregular Algorithms

Pedro Monteiro
CITI, Departamento de Informática

Faculdade de Ciências e Tecnologia Universidade
Nova de Lisboa

2829-516 Caparica, Portugal
+351 212 948 536

pmfcm@fct.unl.pt

Miguel P. Monteiro
CITI, Departamento de Informática

Faculdade de Ciências e Tecnologia Universidade
Nova de Lisboa

2829-516 Caparica, Portugal
+351 212 948 536

mmonteiro@di.fct.unl.pt

ABSTRACT
In irregular algorithms, data set’s dependences and distributions
cannot be statically predicted. This class of algorithms tends to
organize computations in terms of data locality instead of
parallelizing control in multiple threads. Thus, opportunities for
exploiting parallelism vary dynamically, according to how the
algorithm changes data dependences. This paper presents the first

part of a pattern language for creating parallel implementations of
irregular algorithms and applications. Four patterns are proposed:
Amorphous Data-Parallelism, Data-Parallel Graph, Optimistic
Iteration and In-Order Iteration.

1. INTRODUCTION
Gustafson’s law [25] states that any sufficiently large problem can
be efficiently parallelized and has proven that parallelization is an
effective way to accelerate the processing of massive data.
However, in practice not all applications are easily parallelized
and finding the right programming model and architecture for a
given algorithm is quite challenging in the multicore era. Issues
such as race conditions, communication, scalability, load
balancing, data distribution, and locality further add to the effort of
achieving efficient parallel programs.

The parallelization of irregular algorithms [6, 35] is constrained
by irregular accesses to dynamic pointer-based data structures
whose data-dependence set can only be uncovered at run-time. To
date, not much attention has been paid to this class of algorithms.
By developing the pattern language presented here, we aim to
increase the knowledge base of best practices in parallel
programming of irregular algorithms and reduce the effort of
producing new core synchronization concepts and other

parallelism related components.

Irregular problems arise often in the scientific domain as most
algorithms betray unpredictability and irregularity. Examples of

such algorithms include sparse matrix computations,
computational fluid dynamics, image processing, molecular

dynamics simulations, galaxy simulations, climate modeling and
optimization problems [26]. These represent some of the Irregular
algorithms that could potentially benefit from this pattern
language.

Patterns capture formal solutions to specific problems, while
maintaining a level of abstraction above design models (e.g.,
UML) and source code. This way, patterns support a high-level
form of reuse, which is independent from language, paradigm and

hardware. Identifying and documenting patterns of complex
concurrent software problems is one of key practices that will
allow concurrent software development to be established as an
engineering discipline – one which requires thorough systematic
understanding and documentation of successful practices [52].

The rest of this paper is organized as follows: Section 2 discusses
algorithmic irregularity and proposes a definition. Section 3
describes four patterns for our pattern language. Section 4

discusses related work and section 5 concludes the paper.

2. IRREGULAR ALGORITHMS
To date, the programming community did not reach a consensus
on the definition of irregular algorithm, though algorithm
irregularity is frequently considered in the literature. Most
references to irregularity stressing the problem of indirect access

to data [2, 14] are found in articles published until around the mid
1990s, roughly when object-oriented programming became
widespread in the programming community [8]. Hereafter,
object-orientation, and essentially pointer-based programming,
became the tool of choice for the implementation of most
algorithms, including irregular algorithms, giving rise to the
definition of irregularity as a function of the dynamism of
pointer-based data structures [28, 48, 66]. Other definitions arise

from the fact that, in pointer-based data structures, data growth
can be unpredictable, resulting in irregular distributions of data
among partitions [45] and input dependent communication
patterns [57].

We propose that the problem of irregularity be defined in a more
abstract way as a problem of unpredictability of data
dependences. Having stated that, we further observe that
traditional approaches to parallelization cannot be efficiently

mapped to the unpredictable run-time behavior of irregular
algorithms and applications.

Figure 1 – Explicit relationships among patterns.

3. PATTERN LANGUAGE
The patterns in this paper are part of a pattern language, a set of
closely related patterns that provide a solution to the
parallelization of irregular algorithms. The set of patterns
described here covers a subset of the entire parallelization methods
available for irregular algorithms. This paper is focused on

describing patterns for the parallelization of worklist-based
irregular algorithms, using optimistic or speculative
techniques [24].

The pattern language is divided in three separate design spaces
that follow a hierarchical structure representing the order in which
the programmer must consider the implementation.

1. Structural patterns consider how to structure irregular
algorithms in terms of their algorithmic properties and

data-structures and how these will be affected by optimistic
parallel execution. This set of patterns is the most important
of the pattern language, since the two underlying design
spaces build directly upon its properties. If the programmer
cannot conform to these patterns, then using patterns from
this language is discouraged.

2. Execution patterns effectively take into account how the
actual execution of the algorithm is handled and how to

guide the algorithm to explore the maximum amount of

parallelism. Not taking these patterns into consideration
may lead to lower performance benchmarks.

3. Optimization patterns are designed to present the final
phase of implementation and essentially focus on some
optimizations that, when applied over structural patterns,
contribute to further increase the performance of
irregular parallel algorithms.

Additional considerations as to the actual application of the
patterns are worth pointing out, since there are relationships and

dependences among the patterns that might provide further
insight to their applicability to a particular context. Figure 1
further describes these relationships.

Note that Figure 1 presents a broad-brush overview of the
relationships among patterns: not every relationship is explicitly
represented as an arrow – the different levels of the patterns also
imply dependences. Every optimization and execution pattern
builds upon structural patterns and, while their implementation is

not strictly necessary, execution patterns should at least be
considered prior to any optimization.

This paper describes four of the patterns from the pattern
language: Amorphous Data-Parallelism (section 3.2), Data-
Parallel Graph (section 3.3), Optimistic Iteration (section 3.4)
and In-Order Execution (section 3.5). The full set of patterns is
documented in an MSc thesis [43].

3.1. Pattern-specific Terminology
An abstract terminology is used in the pattern descriptions to free

the reader from algorithm and implementation specific jargon, thus
allowing the patterns to be applied to a wider range of irregular
algorithms. It is up to the implementer to decide how our pattern
terminology maps to the algorithm being implemented.

Data element – a data element is a well-identified, describable
unit of data that may be indivisible or consist of a set of data items.
Additionally, data elements can be individualized from the overall
data set. The identification of such data elements is algorithm-

specific and usually comprises on an often repeated name whose
meaning is associated to the algorithmic metaphor.

Data Set – a set of data elements or data-structure.

Iteration – an iteration represents the basic unit of a processing
step in the solution of an algorithmic problem. Executing an
algorithm entails repetitively executing the step a finite number of
times, i.e., repeatedly applying the same operation over a set of
data until de algorithm terminates. Execution often involves using

the output of an iteration as the input of its predecessor.

Set of neighbors or neighborhood – represents the set of data
elements that will be read or written by an iteration while it is
being executed.

Operator – Algorithm operators can have either read or write
semantics. If each iteration performs a set of operations, then the
semantics of operators is defined by degree of influence:

 A Writer algorithm has at least one write operation. Writes

are operators that introduce some sort of data-dependence by
updating the data structure.

 Reader algorithms are composed of strictly reader
operations and do not influence the set of data dependences
in any way. These are infrequent in irregular algorithms and
as such can be handled by regular data-parallel methods.

 Available parallelism – number of iterations available for
concurrent execution at any single instance in time.

3.2. Amorphous Data-Parallelism

Problem

How to exploit concurrency in the presence of unpredictable data
dependences?

Context

Traditional data parallelism exploits the decomposition of data-
structures as a way to attain concurrent behavior. This entails
dividing the data structure into independent sets and distributing
them among processing units in a way that allows for the parallel
application of a stream of operations.

However, when dealing with irregular algorithms, the nature of
data dependences is unpredictable and dynamic and the amount of
parallelism that can be achieved varies according to how the
algorithm changes its data dependences. As such, the
decomposition of the data-structure cannot be statically defined.

Amorphous data-parallelism is a particular form of data-
parallelism that arises when the underlying data-structure has no

fixed shape or size, i.e. is amorphous, implying that the amount
of available opportunities for concurrency-free parallelism is
unpredictable.

How then can we decompose an algorithm’s data in a way that
allows for data-parallel execution, when:

1. The occurrence and location of data accesses can only be
properly estimated at runtime.

2. Concurrent computations may modify the structure of
underlying data.

Forces

• Data Granularity

Coarse-grained data may imply less communication but
will introduce larger computational overhead and reduce
the amount of available parallelism opportunities. If on

the other hand the grain is fine, communications will
represent the major overhead but will introduce a greater
amount of available parallelism.

• Sequential to Parallel Traceability

If the pattern is correctly applied, there must be a simple
and convenient mapping between the sequential and
parallel versions of an implementation. This allows
programmers to easily check the correctness of their

implementation.

• Concurrent access

Concurrent access must be carefully considered. Coarse
locks might ensure mutual exclusion but data
dependences between locked elements might at the same
time create deadlock opportunities and reduce the amount
of available parallelism.

Solution

In irregular programs, an intimate knowledge is needed of how
the different parts of the program interact and what part the data
plays in the overall solution design. This is the basic context for
the exploitation of data parallelism. In this context however, one
must consider how the concurrent behavior will operate over the
data and how to ensure the independence of computations in the
overall parallelization strategy.

As such, the general solution for this problem entails being able
to, at each iteration:

1. Identify the independent sets of data suitable to be
executed in parallel

2. Decide which shared data elements need to be locked to
avoid concurrent access

3. Ensure that the computational cost of independent sets
remain balanced

A decomposition based on Amorphous Data-Parallelism must
ensure that:

• Data dependent computations drive parallelism.

• Computations are performed in a way that introduces

opportunities for independent parallel execution over the
data.

The general solution of this pattern is comprised of the following
steps:

SStteepp 11 -- Define a valid data-parallel decomposition based on

the concept of basic data element and determine the

operator

The basic data element represents the smallest independent set of
data around which the parallelism will be driven. Defining this
abstraction allows the programmer to consider how to apply
locking mechanisms to ensure concurrency.

The definition of the type of operator allows the programmer to

understand of how each iteration changes the structure of data.

Furthermore, being aware of these two concepts and how they
influence one another allows the identification the set of
independent data elements at each iteration.

SStteepp 22 -- Express computations in terms of the data-structure

elements.

The programmer must choose how the data-structure will be
iterated and reify an abstraction of the data for the computation as

a call to DataStructure.get(index) or some similar

instruction. This step is highly influenced by the choice of parallel
programming language.

SStteepp 33 -- Repeatedly apply the computation algorithm to each

data block.

This means not only iterating over the data-structure and applying
the computation but also checking for the constraints of
Amorphous Data-Parallelism:

The foreach loop iteratively traverses the dataStructure and
performs the algorithm-dependent computation. The atomicity of
the operation is ensured by locking mechanisms which restrict the
ways in which concurrent access can invalidate the computation.

Example

Delaunay Triangulation is an irregular algorithm for generating a
mesh of triangles from a given set of points [54]. In order to
generate valid triangulations, every triangle in the generated mesh
must fulfill the Delaunay property, which states that for a
circumference that intersects the vertex points of a triangle, no

other point belonging to the mesh is located inside the
circumference. When a violation of the Delaunay property is
detected, the common edge is flipped to produce a valid
triangulation. An example of the execution of Delaunay
Triangulation is shown in Figure 2.

Delaunay Triangulation takes an input set of points in 2D space
and as a first step surrounds all points with a single triangle (A).
Then, it iteratively picks a single point (B and C), determines its

surrounding triangle and splits the triangle in three new triangles,
with the selected point as focal vertex. It then follows by checking
the Delaunay property (D) and flipping when needed (E).

The underlying problem in Delaunay Triangulation can be
parallelized in an amorphous data-parallel way by considering
each triangle as the data block that drives parallelism. The
repeated application of an activity to the various triangles exposes
the parallelism inherent to the algorithm.

Delaunay Triangulation is irregular, i.e., there is a high degree of
unpredictability in data-dependences. As the actual triangle mesh
is created by iteratively selecting random points to be added to

the mesh, its resulting structure cannot be estimated statically.
Furthermore, when a point is added to the mesh, it might
invalidate the Delaunay Property for a number of triangles,
whose edges must be flipped. A flip operation incurs in additional
overhead, since every adjoined triangle will need to be locked.
The general Amorphous Data-Parallell solution to the Delaunay
Triangulation example consists in:

SStteepp 11 On a first analysis, defining a point as the basic data

element is the most straightforward choice. However,
a better approach to this algorithm is to consider a
triangle as the data element. This is true if considering
that to ensure mutual exclusion we will always need
to lock at least one triangle.
Delaunay’s has two basic operations: triangulation
and edge flipping, both of which change the data
structure by changing the structure of data

dependences. Therefore this is writer algorithm.

SStteepp 22 In this step, we need to know how the data structure is
built in order to be able to retrieve the data elements
we need. For Delaunay Triangulation, this entails
accessing the mesh and retrieving the triangle that
surrounds the point we are currently triangulating.

mesh.getSurroundingTriangle(point);

SStteepp 33 The general amorphous data-parallel form of

Delauney Triangulation is consistent with the
pseudo-code described in Figure 3.

Figure 2 – Execution of the Delaunay Triangulation.

1 foreach element in dataStructure do

2 dataElements = // identify neighbors

3 lock dataElements;

4 compute(dataStructure.get(dataElements));

5 unlock dataElements;

6 endForeach

Related Patterns

• Data Decomposition

Amorphous Data-Parallelism can be considered as a more
specific form of data-parallelism [32] or Data
Decomposition [41].

Known Uses

Amorphous Data-Parallelism in irregular algorithms was first
described by Kulkarni [34], although, to the best of our
knowledge, we are the first to call it a pattern. We know of no
other classifications of this type of parallelism. Recently,
Lublinerman et al [38] presented Chorus, a high-level parallel
programming model for irregular applications which uses the
concept of amorphous data-parallelism. We know of no other

parallel classification of this type of parallelism.

3.3. Data-Parallel Graph

Problem

How does a graph abstraction influence the opportunities for

Amorphous Data-parallelism and the structure of the algorithm?

Context

On implementing an algorithm, much of the effort is spent on

deciding what is the best underlying data structure on which to
represent data to process and what are the characteristics that make
it valuable on a concurrent environment.

Irregular algorithms are mostly characterized by pointer-based
graph data-structures, which contribute significantly towards the
algorithm’s irregularity [48]. Nonetheless, graphs are mature data-
structures with wide functionality and adaptability, over which it is
possible to efficiently implement some, if not all, irregular

algorithms present in the scientific community.

In this context, we present a list of some of the reasons why graphs
are used:

1. Graphs are a generally used and accepted metaphor for
describing structure and behavior. Examples of this can be
as varied as state machines, flowcharts, UML diagrams,
BPMN diagrams, EBNF diagrams, circuits, etc.

2. There are a large number of algorithms for graph traversal
and search. The list includes Depth-First and Breadth-
First traversal, Iterative In-Order and Post-Order [37],
Dijkstra's Shortest Path [18] and Kruskal and Prim’s
algorithm [13], just to name a few.

3. Graphs represent structure and introduce constraints and
properties such as hierarchy, connectivity, edge direction
and weight, as defined in Graph Theory[23].

4. Complex graphs are composed of sub-graphs with similar
structural properties. This allows for additional
opportunities for divide-and-conquer strategies.

5. Graphs can be reconfigured with little or no effort, simply
by loosening or tightening the connectivity constraints.

6. Graph nodes and edges can be associated with a variety
of meanings and be of varying complexities.

7. Graphs can be used to represent virtually every data

structure used in computation. The most common
examples are:

Trees – are a form of specialized bipartite, connected,
acyclic and undirected graphs with one of its element
distinguished as the root element [23]. Trees have many
specialized forms (like the Binary-tree, Red-black tree,
B-tree, AVL tree, etc) and can be used to represent other
structures like hashtables and heaps.

Lists – represent path graphs[23], acyclic graphs where
every node is connected to at most 2 other nodes. Lists
can be used to represent stacks, pipes and queues.

Grids – are special distance-regular graphs that can be
represented in two-dimensional space. Grids can be easily
transformed into cubes (in three-dimensional space) or
hypercubes (above the three-dimensional space). Grids
can also be used to represent N-dimensional matrices.

Aside from the advantages stated above, programmers should

take into consideration whether the graph abstraction actually
benefits the implementation of the algorithm. Some data-
structures, like trees and lists, are just as mature data-structures as
graphs and are more attuned to some problems than others.
Nonetheless, a Graph abstraction remains a perfectly good option.

Achieving efficient parallel implementations of irregular
algorithms based on graph data-structures is a problem in itself.
Data Parallel Graph is focused on amorphous data-parallel
graph algorithms, i.e., graph algorithms that have an inherent

amorphous data-parallel structure.

The focus of this pattern is not to provide specific implementation
solutions, merely to allow us to understand how graph
characteristics influence irregular parallel problems.

Forces

 Specific vs. Reusable Implementation

A more specific graph implementation can provide
additional performance to the algorithm but will make it
inherently more difficult to implement and will hamper
reusability. One must weigh the cost of implementation
against the expected benefits. This force can also
represent the decision of implementing a graph

1 Set pointSet = //initialize set of points

2 TriangleMesh mesh;

3

4 foreach point in pointSet atomically do

5 Triangle tri

6 tri = mesh.surroundingTriangle(point)

7 adjacent = //get triangles adjacent to tri

8 lock adjacent and tri;

9 Triangle tri2 = triangulate(tri);

10 while tri2.isNotValid(){

11 flip(tri2);

12 }

13 mesh.addTriangle(tri2, adjacent);

14 unlock adjacent and tri;

15 endForeach

Figure 3 – Delaunay Triangulation with Amorphous
Data-Parallelism.

specifically tailored for the problem at hand or using an
available graph library.

 Optimization vs. Portability

If the data structure is tailored to a specific hardware, then
performance will be greatly optimized but portability will
be reduced by a similar proportion. This also reduces the
chance of reproducing highly optimized benchmarks.

 Update Cost vs. Performance

There must be a careful balance between the cost of
dynamically updating the graph structure and the
performance of the algorithm. If updates are
computationally expensive, then performance will be
directly impacted in a negative way.

Solution

A graph is the preferred data-structure to be used in the majority of
irregular algorithms. Implementing efficient irregular parallel
graph-based algorithms is a question of being able to identify and
extract potential data-parallelism inherent to graph data-structures.
This means taking advantage of the relationships between node
elements (characterized by edges) to identify which elements

might be accessed and updated at each iteration. These same
elements will be locked as part of amorphous data-parallelism.

The general instantiation of a Data-Parallel Graph requires the
following steps:

SStteepp 11 -- Identify algorithm-specific graph characteristics

A graph data-structure can have several different characteristics,
which can be sorted in three distinct classes:

 Edge characteristics

Direction: By default, an edge between two nodes is
considered bidirectional or undirected. This means that there
is a reciprocal relation between the connecting nodes and the

graph can be traversed in any direction. However, there are
some instances where edges can be one-way, i.e., traversing is
restricted to a specific direction. In this case, the edges are said
to be directed. An example of a directed graph is a street map,
since some streets are one-way and others are two-way, while
a social network represents an undirected graph.

Weight: Edges can have weights, i.e., there can be a cost
associated with traversing a given edge. For instance, given a

map of cities modeled as a graph where every edge has a cost
associated with the distance between those same cities, we
could use Dijkstra's Shortest Path Algorithm [18] to discover
the shortest path between two cities.

Direction and weight characteristics are orthogonal and we can
be used in any combination.

 Node characteristics

Label: A node can have a label that distinguishes it from all
other nodes. This is the case of the root node in trees or the
source and sink nodes in the maximum flow problems [13].

Value: nodes can have values that provide some contextual
reference to the algorithm in question. For instance, boolean
values that indicate whether a node has been visited before or
color values, typical of graph coloring algorithms.

Both label and value characteristics are completely
orthogonal and we can have, for a given graph, any
combination of the above two characteristics.

 Structural characteristics

Structural characteristics of graphs infer a sense of how data
is organized and help realize how special structural attributes
are to be handled.

Completeness: If every node is connected to every other
node, then we say the graph is complete. Complete graphs are
difficult to handle because they cannot be efficiently
partitioned due to the absence of sub-graphs.

Independence: A node is independent or isolated if it has no
edges connecting it to other elements in the graph. A set is
independent if it constitutes a sub-graph not connected by any
edge to the main graph. The programmer must consider these
characteristics when designing traversing and partitioning
strategies for the algorithm.

Connectivity: A graph is connected if for every two distinct
nodes there is a path connecting them. This characteristic
influences the amount of independence present in the graph.

Cycles: A cycle exists if starting from a given node, there is a
path through the graph that leads back to that same node.
Most of the graphs contain cycles and this important
characteristic requires the programmer to pay special
attention so that the algorithm doesn’t get caught in an
endless loop around a cycle.

Self-loops: A self loop happens when a node has an edge
connecting to itself. This is a special instance of cycles since

the algorithm can be caught in a closed loop, never leaving
the same node. Self-loops must also be taken into account
when partitioning the graph so that there is no node
duplication.

SStteepp 22 -- Define the graph data-structure

The vast majority of programming languages don’t provide built-
in graph data-structures. However, there are a few libraries
available. This is due to the fact that a generic graph library can
be quite complex and can be implemented in n-number of ways
(typically as adjacency lists or matrices but there are some purely
object-oriented implementations available).

On deciding which implementation of graph data-structure to use,

the programmer must take into account the following two factors:

 Reusability factor

On choosing or implementing a graph data-structure one must
take care to identify the nature and reusability aspects of the
problem at hand. If the problem is small and there is little
probability that a full-fledged graph data structure will be
needed, then an implementation using an adjacency list or

matrix is a good option. This type of rough implementation is
ideal when the cost of learning how to use a third-party
library or of implementing a more generic and complex graph
data-structure is considerably higher than the cost of
implementing the overall algorithm.

 Optimization factor

More than the cost of learning how to use a graph library, the

programmer must take care to consider if and how the

algorithm can be optimized and how this optimization can be
achieved with a wide-spectrum graph library.

If the algorithm is intended to be run on a specific
computational environment and is expected to achieve
maximum performance in that environment, then the data-

structure needs to be closely attuned to the underlying
hardware configuration or operation system. This means that
the data-structure should be designed with these specific
characteristics and trade-offs in mind. For instance, a
third-party graph library doesn’t have many considerations for
partitioning concerns.

On the other hand, if an ideal performance can be achieved by
fine-tuning the algorithm instead of the data structure, then

probably the learning curve of using a third-party graph library
has a lower cost than implementing a brand new data-
structure.

SStteepp 33 -- Determining how the algorithm traverses the

data-structure

This factor is important in this context because in the case of
parallel implementations of algorithms, the graph traversal is what
drives parallelism, i.e., the algorithm progresses through traversal
of the elements of the graph and by performing the specified

computations on each element. The traversal strategy is also very
dependent on the way data is partitioned.

SStteepp 44 -- Determine how amorphous data-parallel

computations can be composed

Graphs are ideal representations for amorphous data-parallel
problems essentially because they represent a natural abstraction
to the constraints of Amorphous Data-Parallelism. Let us consider
the terminology used to describe Amorphous Data-Parallelism:

Data element: using a graph abstraction, the smallest
independent data element is a node in the graph.

Iteration: in most irregular computations, choosing the next
iteration is equivalent to retrieving the next node via one of the
adjacent edges of the current node. One example is maximum-
flow algorithms [13].

Operator: reader operators are equivalent to traversal
operations while write operators conform to graph coarsening
operations.

Neighbors: in graphs, the smallest neighborhood is composed
by all nodes adjacent to the node currently being processed.

Furthermore, a graph can be seen as if composed of computational
nodes connected by edges encoding computational dependences.
This means that where we have a data node, we can assume that
there is a corresponding computation. In addition, to every edge
connecting two nodes, and therefore representing data
dependences, we can assume that there is a corresponding edge in

the computation that relates to computational dependences, that is,
data derived from other computations.

SStteepp 55 -- Determine the need for data partitioning

At this point, it is necessary to identify if and how to partition the

graph data-structure in a way that promotes further Amorphous
Data-Parallelism. This entails Data-Oriented Graph Partitioning.

Example

As previously stated, using graphs as primary data-structures
usually brings some useful advantages. This is the case of the

Sparse Cholesky Factorization Algorithm a linear algebra method
that transforms a matrix into a factor of a unique lower triangular
matrix. The traditional Cholesky algorithms are implemented
with a matrix-like data-structure. In this case however, since the
matrix is sparse, that is, the majority of its elements are zero, the
matrix can be mapped into a graph without compromising
efficiency.

In Figure 4, a matrix (a) is mapped to a graph representation (b)

where r nodes represent rows and c nodes represent columns.

Edges between the nodes map the actual values presented in the

matrix. Another, more efficient mapping (c) is obtained by
creating one node per index value. This means that for an NxN
matrix, there will be only N nodes. In this case, the main diagonal
is represented as self-edges, while other edges are duplicated due
to the matrix’s symmetry. The mapping from matrix (a) to graph
(c) can be accomplished by the code in Figure 5.

After this point, the programmer should adapt the algorithm to
use this new graph representation of the sparse matrix.

Related Patterns

 Amorphous Data-Parallelism

Amorphous Data Parallelism is used to provide an
underlying graph representation to the data required by
the Amorphous Data Parallelism pattern.

1 Graph g;

2 Matrix [rows][columns] m;

3 for (int col in columns){

4 for(int row in rows : row <= col){

5 if(m[row] [col] != 0){

6 Node ncol = g.addNode(col);

7 Node nrow = g.addNode(row);

8 //create edge and add its value

9 g.addEdge(nrow,ncol,m[row][col]);

10 }

11 }

12 }

Figure 5 – Matrix to Graph Transformation.

Figure 4 - Graph representations of a sparse symmetrical

matrix.

 Graph Partitioning

The graph data-structure influences partitioning which in
turn will influence parallelization opportunities.

Known Uses

The Lonestar benchmark suite [35] offers a number of irregular

applications designed with graph data-structures. Additionally, the
literature for scientific problems is widely populated with parallel
implementations of irregular algorithms [5, 29, 31].

3.4. Optimistic Iteration

Also Known As

Data-Driven Speculation, Speculative Execution, Optimistic

Execution

Problem

How to efficiently parallelize an algorithm that presents an
amorphous data-parallel structure?

Context

When considering how to efficiently parallelize irregular
algorithms, a more traditional approach using locks to synchronize
concurrent accesses to data is possible, but would undoubtedly
reduce the amount of available parallelism. Alternatives like static
analysis techniques – such as points-to and shape analysis – or
semi-static approaches – based on the inspector-executor model –
fail to uncover the full set of potential parallelism, since they

either only check data dependences at compile time or do not
acknowledge dynamic dependence changes in data-structures.

To overcome the dependence chain under these conditions,
programmers must take into account the advantages of speculative
or optimistic parallelization techniques [34]. For this specific case,
speculative execution of Amorphous Data-Parallelism implies
being able to execute parts of the code without complete
knowledge of the data dependences.

Forces

• Implementation Cost vs. Benefit

Implementing an optimistic execution technique from
scratch can be costly. The main disadvantage of these
techniques lies in the complexity of handling miss-
speculation problems, such as state saving and rollback
actions. These can be quite challenging and if not done

properly can increase the memory and computational cost
of an algorithm to the point that there is no added benefit
in using Optimistic Iteration.

• Available Parallelism vs. Number of Conflicts

While finer-grained computations can yield a greater
amount of available parallelism, it will also increase the
likelihood of conflicts. The programmer should consider
how many independent computations can take place

simultaneously and find the optimal grain size.

• Grain of Parallelism vs. Cost of Locking

If the cost of locking is not influenced by grain size,
executing many fine-grained computations might be worse

than executing a single coarser one.

• Grain of Parallelism vs. Cost of Miss-Speculation

The cost of miss-speculation can be measured as the sum
of the cost of corrective action with the cost of re-
executing the work, added with the cost of acquiring and

releasing locks for both the conflicted and re-executed
iteration. Therefore, the cost of miss-speculation
increases as the grain coarsens, as does the amount of
wasted work due to rollbacks.

Solution

The idea behind Optimistic Iteration is to execute an algorithm in

parallel while assuming that data dependences are never violated,
i.e., that there is no concurrent access to the data elements being
processed. This does not mean that data is guaranteed to be
independent but merely that the system must check for and take
appropriate corrective actions when a dependence violation
occurs. When no violations are detected, the results of iterations
can be committed and the resulting data elements are added to the
data dependence set.

Optimistic Iteration techniques are widely used in the parallel
programming community and there are several different
strategies for the implementation of speculative mechanisms. In
this paper, we lack the space to describe all the different
techniques in detail. For this reason, we have selected what we
consider to be the main application-independent focal points of
Optimistic Iteration.

The following steps describe how to speculatively

execute an algorithm in an Amorphous Data-Parallelism way:

SStteepp 11 -- Determine the type of algorithm operator

As regards to the type of interaction with the data-structure,
algorithm operators can have either read or write semantics.
Strictly-reader algorithms don’t have much to gain from
Amorphous Data-Parallelism, since the structure of data
dependences never changes.

SStteepp 22 -- Build data dependence graph

Optimistic Iteration uses the speculative execution of iterations as
a way to break the highly coupled dependence chain around data
elements. To create a valid mapping from data to iterations, the
programmer needs to build the data dependence set for the
specific algorithm under consideration. To this end, a graph can

be seen as if composed of computational nodes connected by
edges encoding computational dependences. Where we have a
data node, we can assume there is a corresponding iteration. To
every edge connecting two nodes, and therefore representing data
dependences, we can assume there is a corresponding edge
between iterations representing computational data dependences,
i.e., data output from one iteration provides the input to another.
This abstraction allows us to consider the various iterations of the
algorithm as a traversal of data dependences.

SStteepp 33 -- Anticipate special ordering restrictions between

iterations

The programmer must consider how strict the data dependences
between the different iterations are. If iterations must be
committed in a sequential-like order, then In-Order Iteration
applies.

SStteepp 44 -- Predict the set of neighbors of each iteration

This is probably the most important and difficult step. For most
irregular algorithms, the neighborhood can be predicted with a
certain degree of accuracy. The prediction entails understanding
what data elements will be read or written on each iteration. If the
computations never change the structure of data dependences, the
neighborhood can be determined in a straightforward manner. In
matrix based algorithms, for example, the values of the matrix
might change with every iteration but its structure remains the

same. On the other hand, if the structure is dynamically changed,
neighborhoods are harder to predict and while we can predict that
a neighborhood is a set of data elements, another parallel

executing iteration might add a new element to the structure
(say element) which will in fact increase the neighborhood to

 . In this case, the neighborhood cannot be properly
estimated and we are clearly in a situation where Optimistic
Iteration is the best option.

SStteepp 55 -- Introduce locking mechanisms

The programmer must lock every neighboring data element with
whichever locking mechanisms the implementation language or
framework provides. Although optimistically assuming that there
will be no concurrent access to data elements, it would be foolish
not to lock the elements we are currently accessing. Locks are only
released immediately prior to committing the iteration. This
ensures atomicity in an iteration, in the sense that the data-

structure always maintains a consistent state. These locks should
not be all restrictive, i.e., some operations should be allowed to
perform concurrently while others require exclusive access to data.

SStteepp 66 -- Consider how to handle miss-speculation and

rollback operations

When a conflict is detected, optimistic methods must be able to
recover from the conflict without deadlocking or waiting for the
locks to be released. Recovering from an illegal access requires the
iteration to be reset to its initial state. There is a broad variety of

methods and variations to provide this type of operation [9, 16,
34]. The most frequently used methods of performing rollback are
summarized next:

• Lazy update – changes are performed in cache and are

only moved to main memory after the iteration commits
successfully. This is equivalent to Shadow copies, where
all operations are performed on a copy of the data element
that then replaces the original, if the iteration commits
successfully.

• Reverse operations – all operations are stored in an undo

log. Rolling back an iteration is just a matter of applying
reverse methods in a Last-In First-Out manner.

• Snapshot – prior to any change, a snapshot of the data is

saved and all changes are performed on the original data-
structure. In case of a rollback, the snapshot is recovered
and replaces the modified data, restoring it to its original
state.

After rollback, the iteration either is allowed to try again
immediately or waits to be processed later.

Example

A general example of the implementation of a worklist-based
irregular algorithm is shown in Figure 6. Here, a worker thread

starts an unbounded while loop (line 5) and requests a new
iteration from the scheduler (line 8). Each iteration then performs
its corresponding computation and if it produces more work, it is
added to the worklist (line 13-14) and the thread iterates again. If
there is a conflict between iterations, an exception is thrown (line

18), otherwise the iteration is allowed to commit (line 16). This
example assumes the existence of a scheduler, who is responsible
for providing iterations to threads and to keep supplying work.

Picking up the example of Delaunay Triangulation, we can

Figure 6 – General optimistic implementation of a

irregular algorithm.

1 Graph graph;

2 Worker worker; //worker thread

3 Scheduler scheduler;

4

5 while (true){

6 try{

7 Iteration it;

8 it = scheduler.newIteration(worker);

9

10 scheduler.nextElement(it);

11 <result,work> = compute(graph,it);

12 graph.replaceSubgraph(it, result);

13 if(work.isNotNull())

14 scheduler.addWork(work);

15
16 scheduler.commitIteration(it);

17
18 }catch (violationException ve){

19 //do nothing

20 //graph is only updated on commit

21 }

22 //check for termination

23 }

Figure 7 – Optimistic implementation of Delauney

Triangulation.

1 Graph mesh;

2 Worker worker; //worker thread

3 Scheduler scheduler;

4

5 while (true){

6 try{

7 Iteration it;

8 it = scheduler.newIteration(worker);

9 do {

10 scheduler.nextElement(it);

11 Triangle tri;

12 tri = triangulateOrFlip(mesh,it);

13 graph.replaceSubgraph(it, tri);

14 if(tri.isInvalid())

15 scheduler.addWork(it, tri);

16

17 } while(it.workLeft());

18

19 scheduler.commitIteration(it);

20

21 }catch (violationException ve)

22 //do nothing

23 //graph is only updated on commit

24 }

25 //Check for terminations

26 }

elaborate on the previous implementation and create a rough
optimistic version of the algorithm (Figure 7). In this
implementation, a worker thread starts an unbounded while loop
(line 5) and asks for a new iteration from the scheduler (line 8).
Each iteration then creates a new triangulation and, if that

triangulation is invalid, it is added to the worklist (line 14-15) and
the thread iterates again to correct the problem. If there is some
conflict between iterations, an exception is thrown (line 21),
otherwise the iteration is allowed to commit (line 19).

A wide variety of different optimistic parallel implementations of
irregular algorithms have been proposed by the parallel
programming community [1, 10, 33, 35, 60].

Related Patterns

 Amorphous Data-Parallelism

The best way to handle Amorphous Data-Parallelism is by
Optimistic Iteration.

 Data-Parallel Graph
The graph data-structure provides an appropriate data-
structure for Amorphous Data-Parallelism, since it provides
an ideal abstraction for the dependence graph.

 In-Order Iteration

If iterations have a restrict scheduling order, then In-Order
Iteration applies.

Known uses

The first examples of optimistic parallelization were introduced in
the 70s as a form of branch speculation [20, 58]. Years later, in
1985, Jefferson presented one of the most well known optimistic
methods: the Time Warp mechanism [30]. This mechanism
implemented a method for transparently synchronize discrete-
event simulation in distributed systems. Other well known

optimistic techniques relate to loop speculation [24, 50]. Recently
hardware techniques have enabled optimistically created parallel
threads by tracking dependences by monitoring memory accesses
made by loop iterations [40, 49, 56, 62, 65]. This technique,
known either as Thread level speculation or Speculative
Multithreading, proves to be quite useful to optimistically
parallelize many applications and has been introduced in a
significant number of parallelization architectures [11, 19, 39, 47,

59]. The Galois framework [34] is a recent approach to the
parallelization of irregular algorithms whose execution model is
based on optimistic execution.

3.5. In-Order Iteration

Also Known As

Ordered execution

Problem

How to find available Amorphous Data-Parallelism when tightly
inter-dependent iterations constrain execution to a sequential

iteration order?

Context

In most irregular algorithms, the order in which iterations are

processed doesn’t constrain the actual outcome. The end result is
the same in whichever order the iterations are processed, as is the
case of Maxflow algorithms [13] which always find the maximum
flow, independently on the order in which nodes are processed.
Others have different outputs according to the order of iteration

but the correctness of the algorithm is not compromised. For
example, in Delaunay Triangulation and Refinement algorithms
[54], different orderings might produce different meshes, but the
output will always be a mesh on which every triangle respects the
Delaunay Property.

However, in some algorithms the order of iteration not only
influences the end result, but is the sole order that ensures
correctness. This is the case of Event-driven simulation [15],

where events must be processed in global time order, and
Kruskal’s minimum spanning tree [13], where edges must be
processed by increasing weight.

When dealing with optimistic parallelization of irregular
algorithms, there is a good chance that the programmer will
eventually be confronted with a restrictive ordering of execution
that in theory would invalidate the advantages of speculation.
Ordering is enforced when (1) Iterations depend on data

previously computed in other iterations or (2) Iterations must
follow data properties that enforce ordering constraints, like
alphabetical or numerical order.

Matching the execution order of iterations to this sequential order
can be achieved statically. The problem is how to extract
Amorphous Data-Parallelism using Optimistic Iteration in such
cases?

Forces

 Amount of constraints vs. benefit

If ordering constrains only a very small set of iterations,
then probably the cost of introducing In-Order Iteration

doesn’t cover the benefits in performance.

 Order of rollback

The order of rollback of conflicting iterations could lead
to deadlocks. If a higher priority iteration keeps rolling

back due to conflicts with a lesser priority iteration, the
algorithm would stop progressing and eventually might
not terminate. A timeout mechanism could be an efficient
way to check for priority errors.

 Size of data set

The size of the data set influences the distribution of
iterations and therefore, the bigger the data set, the more
opportunities for independent execution exist.

Solution

When iterations must be executed in a specific order, a simplistic
form of optimistic execution would not be able to extract enough

parallelism and the solution would reduce to a sequential
execution. The solution entails finding a way to extract a useful
amount of Amorphous Data-Parallelism without disregarding the
complexity of the ordering constraints, i.e., optimistically execute
the problem while not invalidating the order of iterations. To
achieve this, the programmer should (1) check if the order is only
partial, in which case optimistic execution of partially ordered
iterations is possible, and (2) ensure that an iteration only updates

the data-structure when all preceding iterations have done so.

Check for partial ordering

The majority of irregular algorithms enforce only partial ordering,
i.e., only relatively small sets of iterations must meet ordering
constraints. Independence between constrained sets is nevertheless
possible. To illustrate this, let us consider the case where two
iterations, A and B, are geometrically distant in that they don’t
share the same data elements. Nevertheless, some ordering is
enforced – say alphabetical ordering – meaning that iteration A

would always have to be executed before iteration B. Between
these two iterations there is no available optimistic parallelism
because executing B before A would lead to a conflict. However,
this represents only a partial ordering. There is always a possibility
that two A iterations could be executed concurrently. The same
concept is applied to minimum spanning tree algorithms like
Kruskal’s MST [13] where usually more than one edge has the
same or approximate weight – and event based algorithms with

logic clocks – Lamport clocks [36] have causal order of events, yet
a global ordering is only enforced for events that trigger actions on
different processes. Same process events have only to comply with
local order and can occur concurrently with other local order
events on other processors.

If the amount of iterations able to execute concurrently is
significant, there might be no need to further refine the
implementation to better explore Optimistic Iteration. However,

the amount required for efficient performance is very algorithm-
dependent and therefore requires experimentation to obtain
reliable estimates.

Consider committal order

If there isn’t enough available parallelism and performance is

constrained, another solution is to consider that when algorithms
have partial ordering constraints, that order needs only be enforced
when iterations commit. The state that is observed by the system
must remain consistent at all times, but consistency is only ensured
after committal. When iterations are executing speculatively the
state remains consistent and conforms to the order in which
iterations should execute, i.e., iterations should be allowed to
execute in any order but committal order should be enforced.

One way to enable the above model of optimistic execution is to
assign priorities to iterations and ensure that higher priority
iterations always commit before the lower priority ones, while
allowing lower priority iterations to execute speculatively. This
way, state consistency is ensured. Uncommitted iterations should
be stored in a heap-like data-structure and only allowed to commit
when at the top of the heap. This implementation nevertheless
leaves the programmer with the task of ensuring that when

committing the root of the heap, that iteration has the highest
priority and that no other higher priority iteration will occur in the
future.

Example

Following Kruskal’s MST algorithm [13], any two edges are
independent if they don’t have any node in common. Given this,
the algorithm can process independent edges concurrently if their

weight is less than or equal to any other edges waiting to be
processed. Implementation of this algorithm by In-Order
Optimistic Execution is shown in Figure 8.

Related Patterns

 Optimistic Iteration

In-Order Iteration is a special case of Optimistic Iteration
where iterations have ordering constraints.

Known uses

On processing algorithms subject to ordering constraints, static

approaches tend to provide more efficient implementations of
algorithms. In cases where data dependences are available only at
run-time, more careful hand-coded concurrent implementations
using coarse locking mechanisms are usually preferred due to the
small amount of parallelism available. Therefore, the number of
speculative parallelization approaches that provide support for
ordering is reduced.

The SETL language for set theory [53] and Galois [34] have

similar ordered set iterators, but contrary to Galois, SETL doesn’t
have unbounded sets, and neither is a parallel programming
language. An analogous use is that of out-of-order execution,
where speculative execution of processor instructions is used to
reduce the amount of time for required for future
instructions [27]. Tomasulo’s reorder buffer [58] is an approach
to a Commit pool structure. Another approach adds speculative
parallelization to FORTRAN-style DO-loops in X10, with

resource to hardware transactional memory [61]. Safe futures are
a related form of allowing for speculative ordered execution [44].

4. RELATED WORK
Pattern catalogs and languages for software design represent a
widely prolific area of development, partly due to the widely
cited Gang-of-Four catalog of object-oriented design

patterns [21]. From this earlier approach, patterns became popular

Figure 8 – In-Order implementation of Kruskal’s MST.

1 Graph graph;

2 Worker worker; //worker thread

3 InOrderScheduler scheduler;

4 scheduler = //add iterations from graph

5 MST mst; //minimum spanning tree;

6

7 while (true){

8 try{

9 Iteration it;

10 it = scheduler.newIteration(worker);

11 do {

12 scheduler.nextElement(it);

13 inNode=it.getEdgeIn();

14 OutNode=it.getEdgeOut()

15 tree=//if valid path, create MST

16 mst.replaceSubgraph(it, tree);

17 } while(it.workLeft());

18 //Commit this iteration if top priority.

19 //If not, commit the top of the heap.

20 scheduler.commitInOrder(it);

21

22 }catch (violationException ve){

23 //do nothing

24 //graph is only updated on commit

25 }

26 //check for termination

27 }

in the field of reusable design, covering different application
domains such as object-oriented programming [46], aspect-
oriented programming [46] framework design [51, 63], software
architecture [4, 7], components [55], machine learning [3, 22] and
even patterns about patterns [12, 42].

The pattern language proposed here has close relations to some of
the pattern languages for parallel processing proposed by the
software pattern community, namely the pattern repository of the
Hillside group [32] and the pattern language of Mattson et al [41].
However, those pattern languages and catalogs propose solutions
for a broader class of problems and handle irregularity as special
cases, in which case the solution needs to conform to a different
set of characteristics. By contrast, our pattern language is

specifically focused on irregular problems, which are considerably
more complex. We propose instead to classify the solution to
regular problems as a subset of the solution of irregular problems.
There are nonetheless some pattern languages designed for
specific irregular algorithms, as is the case of Dig et al pattern
language for N-Body methods [17].

5. CONCLUSIONS AND FUTURE WORK
This paper describes a pattern language for the parallelization of
irregular algorithms. Currently, none of the three design spaces
(Structure, Execution and Optimization) present a high degree of
maturity considering that they don’t express the full set of
solutions for the parallelization of irregular algorithms. However,
when considering optimistic approaches, these patterns represent a

well developed and mature body of knowledge.

In future, we plan to further refine this pattern language, as well as
to produce a set of case studies to validate our approach. Efforts
for developing a collection of aspect-oriented implementations of
the patterns are about to begin. The majority of the patterns shown
here were developed using the Galois Framework [34] as case
study. Other frameworks and languages have considerably
different methodologies for handling irregularity. We hope to
explore these alternatives as well, and relate them to the patterns

described here, enriching and maturing the language, as well as
enhancing its potential applicability to cover a broader set of
techniques and methods targeting parallel irregular algorithms.

6. ACKNOWLEDGMENTS
This work was partially supported by the project PRIA

(UTAustin/CA/0056/2008) funded by the Portuguese Fundação
para a Ciência e Tecnologia.

7. REFERENCES
 [1] Antonopoulos, C., Ding, X., Chernikov, A., Blagojevic, F.,

Nikolopoulos, D. and Chrisochoides, N., Multigrain parallel

delaunay mesh generation: challenges and opportunities for
multithreaded architectures. in, (2005), ACM, 376.

[2] Asenjo, R., Corbera, F., Gutiérrez, E., Navarro, M., Plata, O.
and Zapata, E., Optimization Techniques for Irregular and
Pointer-Based Programs, 12th Euromicro Conference on
Parallel, Distributed and Network-Based Processing
(PDP'04), 2004, pp.2

[3] Avgeriou, P., and Zdun, U., Architectural patterns revisited –

A pattern language, In Proceedings of 10th European

Conference on Pattern Languages of Programs (EuroPloP
2005), Irsee, Germany, July 2005.

[4] Avgeriou, P. and Zdun, U., Architectural patterns revisited–
a pattern language. in Proc. 10th European Conference on
Pattern Languages of Programs (EuroPlop 2005), Irsee,

Germany, pages 1-39, July, 2005.

[5] Bisseling, R. Parallel Scientific Computation: A structured
approach using BSP and MPI. Oxford University Press,
USA, 2004.

[6] Biswas, R., Oliker, L. and Shan, H. Parallel computing
strategies for irregular algorithms. Annual Review of
Scalable Computing.

[7] Buschmann, F., Meunier, R., Rohnert, H., Sommerlad, P.

and Stal, M. A system of patterns: Pattern-oriented software
architecture, Wiley New York, 1996.

[8] Capretz, L. A brief history of the object-oriented approach.
ACM SIGSOFT Software Engineering Notes, 28 (2).

[9] Carothers, C., Perumalla, K. and Fujimoto, R., The effect of
state-saving in optimistic simulation on a cache-coherent
non-uniform memory access architecture, in Proc. 31st
conference on Winter simulation: Simulation - a bridge to

the future – Vol. 2, Phoenix, Arizona, United States, 1999,
pp. 1624-1633..

[10] Chrisochoides, N., Lee, C., Lowekamp, B. et al., Multigrain
parallel delaunay mesh generation: challenges and
opportunities for multithreaded architectures., in
Proceedings of the 19th annual international Conference on
Supercomputing, ICS 2005, Cambridge, Massachusetts,
USA, pp. 376, 2005.

[11] Codrescu, L., Wills, D. and Meindl, J. Architecture of the
Atlas chip-multiprocessor: Dynamically parallelizing
irregular applications. IEEE Transactions on Computers, 50
(1). 67-82.

[12] Coplien, J. and Woolf, B. A pattern language for writers'
workshops. C PLUS PLUS REPORT, 9. pp. 51-60, 1997.

[13] Cormen, T.H., Leiserson, C.E. and Rivest, R.L.
Introduction to algorithms. MIT Press, Cambridge,Mass. ;
London, 1990.

[14] Das, R., Uysal, M., Saltz, J. and Hwang, Y. Communication
optimizations for irregular scientific computations on
distributed memory architectures. Journal of Parallel and
Distributed Computing, 22 (3) pp. 462-478, 1994.

[15] Das, S., Adaptive protocols for parallel discrete event
simulation, in Proceedings of the 28th conference on
Winter simulation, Coronado, California, United States,
1996, pp. 186-193.

[16] Dieter, W. and Lumpp, J., A User-level Checkpointing

Library for POSIX Threads Programs, in Proceedings of the
Twenty-Ninth Annual International Symposium on Fault-
Tolerant Computing, 1999, pp. 224.

[17] Dig, D. Johnson, R. and Snir, M., N-Body Pattern Language,
February, 2010;

http://parlab.eecs.berkeley.edu/wiki/patterns/n-
body_methods

[18] Dijkstra, E. A note on two problems in connexion with
graphs. Numerische mathematik, 1 (1). 269-271.

[19] Dorojevets, M. and Oklobdzija, V. Multithreaded decoupled
architecture. International Journal of High Speed
Computing, 7 (3). 465.

[20] Fisher, J., Very Long Instruction Word architectures and the

ELI-512, in Proceedings of the 10th annual international
symposium on Computer architecture, Stockholm, Sweden,
1983, pp. 140-150.

[21] Gamma, E. Helm, E. Johnson R. et al., Design patterns:
Elements of reusable object-oriented software. Addison
Wesley, Reading, MA.

[22] Goodyear P., Avgeriou P., Baggetun, R. et al., Towards a
pattern language for networked learning. Networked

learning 2004 (pp. 449-455). Lancaster: Lancaster
University.

[23] Gross, J. and Yellen, J. Graph theory and its applications.
CRC press, 2006.

[24] Gupta, M. and Nim, R., Techniques for speculative run-time
parallelization of loops, in Proceedings of the 1998
ACM/IEEE conference on Supercomputing (CDROM), San
Jose, CA, 1998, pp. 1-12.

[25] Gustafson, J. Reevaluating Amdahl's Law. Communications
of the ACM, 31 (5), 1988

[26] Gutierrez, E., Asenjo, R., Plata, O. and Zapata, E. Automatic
parallelization of irregular applications. Parallel Computing,
26 (13-14). 1709-1738.

[27] Hennessy, J., Patterson, D., Goldberg, D. and Asanovic, K.
Computer architecture: a quantitative approach. Morgan
Kaufmann, 2003.

[28] Hermenegildo, M. Parallelizing irregular and pointer-based

computations automatically: Perspectives from logic and
constraint programming. Parallel Computing, 26 (13-14).
1685-1708.

[29] Hudson, B., Miller, G.L. and Phillips, T. Sparse parallel
Delaunay mesh refinement Proceedings of the nineteenth
annual ACM symposium on Parallel algorithms and
architectures, ACM, San Diego, California, USA, 2007,
339-347.

[30] Jefferson, D. Virtual time. ACM Transactions on
Programming Languages and Systems (TOPLAS), 7 (3).
425.

[31] Karniadakis, G. and Kirby, R. Parallel scientific computing
in C++ and MPI. Cambridge University Press Cambridge,

2003.

[32] Keutzer, K. and Mattson, T. Our Pattern Language (OPL):
A Design Pattern Language for Engineering (Parallel)
Software, ParaPLoP 2009, Santa Cruz, CA,USA, June
2009.

[33] Kolingerová, I. and Kohout, J. Optimistic parallel Delaunay
triangulation. The Visual Computer, 18 (8). 511-529.

[34] Kulkarni, M. The Galois System: Optimistic Parallelization

of Irregular Programs, Cornell University, 2008.

[35] Kulkarni, M., Burtscher, M., Pingali, K. and Cascaval, C.,
Lonestar: A suite of parallel irregular programs. in IEEE
International Symposium on Performance Analysis of
Systems and Software, (2009), pp. 65-76.

[36] Lamport, L. Time, clocks, and the ordering of events in a
distributed system, Communications ACM, vol. 21, no. 7,
pp. 558-565, 1978.

[37] Launchbury, J. Graph algorithms with a functional flavour.
Lecture Notes in Computer Science, 925. 308.

[38] Lublinerman, R., Chaudhuri, S. and Cerny, P., Parallel
programming with object assemblies, in Proceeding of the
24th ACM SIGPLAN conference on Object oriented
programming systems languages and applications, Orlando,
Florida, USA, 2009, pp. 61-80.

[39] Marcuello, P. and González, A., Control and Data

Dependence Speculation in Multithreaded Processors,
MTEAC ‘98 Conference, 1998.

[40] Marcuello, P., González, A., A Quantitative Assessment of
Thread-Level Speculation Techniques, in Proceedings of
the 14th International Symposium on Parallel and
Distributed Processing, 2000, pp. 595.

[41] Mattson, T., Sanders, B. and Massingill, B. Patterns for
parallel programming. Addison-Wesley Professional, 2004.

[42] Meszaros, G., Doble, J., MetaPatterns: A Pattern Language

for Pattern Writing, in Proceedings International
Conference on Pattern Languages of Programs (PLoP 96),
Monticello, Illinois, September 1996

[43] Monteiro P., Monteiro, M., A Pattern Language for
Parallelizing Irregular Algorithms, CITI - Departamento de
Informática, Faculdade de Ciências e Tecnologia da
Universidade Nova de Lisboa, Almada, 2010.

[44] Navabi, A., Zhang, X. and Jagannathan, S., Quasi-static

scheduling for safe futures, in Proceedings of the 13th

ACM SIGPLAN Symposium on Principles and practice of
parallel programming, Salt Lake City, UT, USA, 2008, pp.
23-32.

[45] Nikolopoulos, D., Polychronopoulos, C. and Ayguadé, E.,
Scaling irregular parallel codes with minimal programming

effort. In Proceedings of Supercomputing, 2001

[46] Noble, J. and Sydney, A. Towards a pattern language for
object oriented design. Proc. of Technology of Object-
Oriented Languages and Systems (TOOLS Pacific), 28. 2-13.

[47] Oplinger, J., Heine, D., Liao, S., Nayfeh, B., Lam, M. and
Olukotun, K. Software and hardware for exploiting
speculative parallelism with a multiprocessor. Computer
Systems Laboratory Technical Report CSL-TR-97-715,

Stanford University.

[48] Pingali, K., Kulkarni, M., Nguyen, et al. Amorphous data-
parallelism in irregular algorithms, Technical Report TR-09-
05, Department of Computer Science, The University of
Texas at Austin, February 2009..

[49] Prabhu, M. and Olukotun, K., Using thread-level speculation
to simplify manual parallelization, in Proceedings of the
ninth ACM SIGPLAN symposium on Principles and

practice of parallel programming, San Diego, California,
USA, 2003, pp. 1-12.

[50] Gupta, M. and Nim, R., Techniques for speculative run-time
parallelization of loops, in Proceedings of the 1998
ACM/IEEE conference on Supercomputing (CDROM), San
Jose, CA, 1998, pp. 1-12.

[51] Roberts, D. and Johnson, R. Evolving frameworks: A pattern
language for developing object-oriented frameworks.

Pattern Languages of Program Design, 3. 471–486.

[52] Schmidt, D. and Buschmann, F., Patterns, frameworks, and
middleware: Their synergistic relationships. In 25th
International Conference on Software Engineering, pp. 694–
704, May 2003.

[53] Schwartz, J., Dewar, R., Schonberg, E. and Dubinsky, E.
Programming with sets; an introduction to SETL. Springer-
Verlag New York, Inc. New York, NY, USA, 1986.

[54] Shewchuk, J. Delaunay refinement algorithms for triangular

mesh generation. Computational Geometry: Theory and
Applications, 22 (1-3). 21-74.

[55] Spinellis, D. and Raptis, K. Component mining: A process
and its pattern language. Information and Software
Technology, 42 (9). 609-617.

[56] Steffan, J., Colohan, C., Zhai, A. and Mowry, T. A scalable
approach to thread-level speculation. ACM SIGARCH
Computer Architecture News, 28 (2). 1-12.

[57] Taylor, S., Watts, J., Rieffel, M. and Palmer, M. The
concurrent graph: basic technology for irregular problems.
IEEE Parallel and Distributed Technology. 15-25.

[58] Tomasulo, R. An efficient algorithm for exploiting multiple
arithmetic units. IBM Journal of research and

Development, 11 (1). 25-33.

[59] Tsai, J. and Yew, P. The superthreaded architecture: Thread
pipelining with run-time data dependence checking and
control speculation. Urbana, 51. 61801-61351.

[60] Verma, C., Multithreaded Delaunay Triangulation., The
College of William and Mary, Williamsburg, Virginia,
2004.

[61] von Praun, C., Ceze, L. and Cascaval, C., Implicit

parallelism with ordered transactions, in Proceedings of the
12th ACM SIGPLAN symposium on Principles and
practice of parallel programming, San Jose, California,
USA, 2007, pp. 79-89.

[62] Wang, S., Dai, X., Yellajyosula, K., Zhai, A. and Yew, P.
Loop selection for thread-level speculation. Lecture Notes
in Computer Science, 4339. 289.

[63] Wolf, K. and Liu, C. New clients with old servers: A

pattern language for client/server frameworks. Pattern
Languages of Program Design. 51–64.

[64] Zdun, U. Pattern language for the design of aspect
languages and aspect composition frameworks. IEE
Proceedings-Software, 151 (2). 67-84.

[65] Zhang, Y., Rauchwerger, L. and Torrellas, J., Hardware for
speculative run-time parallelization in distributed shared-
memory multiprocessors. in, (1998), IEEE Computer

Society Washington, DC, USA, 162.

[66] Zhang, Z. and Torrellas, J. Speeding up irregular
applications in shared-memory multiprocessors: Memory
binding and group prefetching. ACM SIGARCH Computer
Architecture News, 23 (2). 188-199.

