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ABSTRACT 
In irregular algorithms, data set’s dependences and distributions 
cannot be statically predicted. This class of algorithms tends to 
organize computations in terms of data locality instead of 
parallelizing control in multiple threads. Thus, opportunities for 
exploiting parallelism vary dynamically, according to how the 
algorithm changes data dependences. This paper presents the first 

part of a pattern language for creating parallel implementations of 
irregular algorithms and applications. Four patterns are proposed: 
Amorphous Data-Parallelism, Data-Parallel Graph, Optimistic 
Iteration and In-Order Iteration. 

1. INTRODUCTION 
Gustafson’s law [25] states that any sufficiently large problem can 
be efficiently parallelized and has proven that parallelization is an 
effective way to accelerate the processing of massive data. 
However, in practice not all applications are easily parallelized 
and finding the right programming model and architecture for a 
given algorithm is quite challenging in the multicore era. Issues 
such as race conditions, communication, scalability, load 
balancing, data distribution, and locality further add to the effort of 
achieving efficient parallel programs. 

The parallelization of irregular algorithms [6, 35] is constrained 
by irregular accesses to dynamic pointer-based data structures 
whose data-dependence set can only be uncovered at run-time. To 
date, not much attention has been paid to this class of algorithms. 
By developing the pattern language presented here, we aim to 
increase the knowledge base of best practices in parallel 
programming of irregular algorithms and reduce the effort of 
producing new core synchronization concepts and other 

parallelism related components. 

Irregular problems arise often in the scientific domain as most 
algorithms betray unpredictability and irregularity. Examples of 

such algorithms include sparse matrix computations, 
computational fluid dynamics, image processing, molecular 

dynamics simulations, galaxy simulations, climate modeling and 
optimization problems [26]. These represent some of the Irregular 
algorithms that could potentially benefit from this pattern 
language. 

Patterns capture formal solutions to specific problems, while 
maintaining a level of abstraction above design models (e.g., 
UML) and source code. This way, patterns support a high-level 
form of reuse, which is independent from language, paradigm and 

hardware. Identifying and documenting patterns of complex 
concurrent software problems is one of key practices that will 
allow concurrent software development to be established as an 
engineering discipline – one which requires thorough systematic 
understanding and documentation of successful practices [52]. 

The rest of this paper is organized as follows: Section 2 discusses 
algorithmic irregularity and proposes a definition. Section 3 
describes four patterns for our pattern language. Section 4 

discusses related work and section 5 concludes the paper. 

2. IRREGULAR ALGORITHMS 
To date, the programming community did not reach a consensus 
on the definition of irregular algorithm, though algorithm 
irregularity is frequently considered in the literature. Most 
references to irregularity stressing the problem of indirect access 

to data [2, 14] are found in articles published until around the mid 
1990s, roughly when object-oriented programming became 
widespread in the programming community [8]. Hereafter, 
object-orientation, and essentially pointer-based programming, 
became the tool of choice for the implementation of most 
algorithms, including irregular algorithms, giving rise to the 
definition of irregularity as a function of the dynamism of 
pointer-based data structures [28, 48, 66]. Other definitions arise 

from the fact that, in pointer-based data structures, data growth 
can be unpredictable, resulting in irregular distributions of data 
among partitions [45] and input dependent communication 
patterns [57]. 

We propose that the problem of irregularity be defined in a more 
abstract way as a problem of unpredictability of data 
dependences. Having stated that, we further observe that 
traditional approaches to parallelization cannot be efficiently 

mapped to the unpredictable run-time behavior of irregular 
algorithms and applications. 



 

Figure 1 – Explicit relationships among patterns. 

 

3. PATTERN LANGUAGE 
The patterns in this paper are part of a pattern language, a set of 
closely related patterns that provide a solution to the 
parallelization of irregular algorithms. The set of patterns 
described here covers a subset of the entire parallelization methods 
available for irregular algorithms. This paper is focused on 

describing patterns for the parallelization of worklist-based 
irregular algorithms, using optimistic or speculative 
techniques [24].  

The pattern language is divided in three separate design spaces 
that follow a hierarchical structure representing the order in which 
the programmer must consider the implementation.  

1. Structural patterns consider how to structure irregular 
algorithms in terms of their algorithmic properties and 

data-structures and how these will be affected by optimistic 
parallel execution. This set of patterns is the most important 
of the pattern language, since the two underlying design 
spaces build directly upon its properties. If the programmer 
cannot conform to these patterns, then using patterns from 
this language is discouraged.  

2. Execution patterns effectively take into account how the 
actual execution of the algorithm is handled and how to 

guide the algorithm to explore the maximum amount of 

parallelism. Not taking these patterns into consideration 
may lead to lower performance benchmarks. 

3. Optimization patterns are designed to present the final 
phase of implementation and essentially focus on some 
optimizations that, when applied over structural patterns, 
contribute to further increase the performance of 
irregular parallel algorithms. 

Additional considerations as to the actual application of the 
patterns are worth pointing out, since there are relationships and 

dependences among the patterns that might provide further 
insight to their applicability to a particular context. Figure 1 
further describes these relationships. 

Note that Figure 1 presents a broad-brush overview of the 
relationships among patterns: not every relationship is explicitly 
represented as an arrow – the different levels of the patterns also 
imply dependences. Every optimization and execution pattern 
builds upon structural patterns and, while their implementation is 

not strictly necessary, execution patterns should at least be 
considered prior to any optimization.  

This paper describes four of the patterns from the pattern 
language: Amorphous Data-Parallelism (section 3.2), Data-
Parallel Graph (section 3.3), Optimistic Iteration (section 3.4) 
and In-Order Execution (section 3.5). The full set of patterns is 
documented in an MSc thesis [43]. 



 

3.1. Pattern-specific Terminology 
An abstract terminology is used in the pattern descriptions to free 

the reader from algorithm and implementation specific jargon, thus 
allowing the patterns to be applied to a wider range of irregular 
algorithms. It is up to the implementer to decide how our pattern 
terminology maps to the algorithm being implemented. 

Data element – a data element is a well-identified, describable 
unit of data that may be indivisible or consist of a set of data items. 
Additionally, data elements can be individualized from the overall 
data set. The identification of such data elements is algorithm-

specific and usually comprises on an often repeated name whose 
meaning is associated to the algorithmic metaphor. 

Data Set – a set of data elements or data-structure. 

Iteration – an iteration represents the basic unit of a processing 
step in the solution of an algorithmic problem. Executing an 
algorithm entails repetitively executing the step a finite number of 
times, i.e., repeatedly applying the same operation over a set of 
data until de algorithm terminates. Execution often involves using 

the output of an iteration as the input of its predecessor. 

Set of neighbors or neighborhood – represents the set of data 
elements that will be read or written by an iteration while it is 
being executed. 

Operator – Algorithm operators can have either read or write 
semantics. If each iteration performs a set of operations, then the 
semantics of operators is defined by degree of influence: 

 A Writer algorithm has at least one write operation. Writes 

are operators that introduce some sort of data-dependence by 
updating the data structure. 

 Reader algorithms are composed of strictly reader 
operations and do not influence the set of data dependences 
in any way. These are infrequent in irregular algorithms and 
as such can be handled by regular data-parallel methods. 

 Available parallelism – number of iterations available for 
concurrent execution at any single instance in time. 

3.2. Amorphous Data-Parallelism 

Problem 

How to exploit concurrency in the presence of unpredictable data 
dependences? 

Context 

Traditional data parallelism exploits the decomposition of data-
structures as a way to attain concurrent behavior. This entails 
dividing the data structure into independent sets and distributing 
them among processing units in a way that allows for the parallel 
application of a stream of operations.  

However, when dealing with irregular algorithms, the nature of 
data dependences is unpredictable and dynamic and the amount of 
parallelism that can be achieved varies according to how the 
algorithm changes its data dependences. As such, the 
decomposition of the data-structure cannot be statically defined. 

Amorphous data-parallelism is a particular form of data-
parallelism that arises when the underlying data-structure has no 

fixed shape or size, i.e. is amorphous, implying that the amount 
of available opportunities for concurrency-free parallelism is 
unpredictable. 

How then can we decompose an algorithm’s data in a way that 
allows for data-parallel execution, when: 

1. The occurrence and location of data accesses can only be 
properly estimated at runtime. 

2. Concurrent computations may modify the structure of 
underlying data. 

Forces 

• Data Granularity  

Coarse-grained data may imply less communication but 
will introduce larger computational overhead and reduce 
the amount of available parallelism opportunities. If on 

the other hand the grain is fine, communications will 
represent the major overhead but will introduce a greater 
amount of available parallelism. 

• Sequential to Parallel Traceability 

If the pattern is correctly applied, there must be a simple 
and convenient mapping between the sequential and 
parallel versions of an implementation. This allows 
programmers to easily check the correctness of their 

implementation. 

• Concurrent access 

Concurrent access must be carefully considered. Coarse 
locks might ensure mutual exclusion but data 
dependences between locked elements might at the same 
time create deadlock opportunities and reduce the amount 
of available parallelism. 

Solution 

In irregular programs, an intimate knowledge is needed of how 
the different parts of the program interact and what part the data 
plays in the overall solution design. This is the basic context for 
the exploitation of data parallelism. In this context however, one 
must consider how the concurrent behavior will operate over the 
data and how to ensure the independence of computations in the 
overall parallelization strategy. 

As such, the general solution for this problem entails being able 
to, at each iteration: 

1. Identify the independent sets of data suitable to be 
executed in parallel 

2. Decide which shared data elements need to be locked to 
avoid concurrent access 

3. Ensure that the computational cost of independent sets 
remain balanced 

A decomposition based on Amorphous Data-Parallelism must 
ensure that: 

• Data dependent computations drive parallelism. 

• Computations are performed in a way that introduces 

opportunities for independent parallel execution over the 
data. 



 

The general solution of this pattern is comprised of the following 
steps: 

SStteepp  11  --    Define a valid data-parallel decomposition based on 

the concept of basic data element and determine the 

operator 

The basic data element represents the smallest independent set of 
data around which the parallelism will be driven. Defining this 
abstraction allows the programmer to consider how to apply 
locking mechanisms to ensure concurrency.  

The definition of the type of operator allows the programmer to 

understand of how each iteration changes the structure of data. 

Furthermore, being aware of these two concepts and how they 
influence one another allows the identification the set of 
independent data elements at each iteration. 

SStteepp  22  --    Express computations in terms of the data-structure 

elements. 

The programmer must choose how the data-structure will be 
iterated and reify an abstraction of the data for the computation as 

a call to DataStructure.get(index) or some similar 

instruction. This step is highly influenced by the choice of parallel 
programming language. 

SStteepp  33  --    Repeatedly apply the computation algorithm to each 

data block. 

This means not only iterating over the data-structure and applying 
the computation but also checking for the constraints of 
Amorphous Data-Parallelism: 

 

The foreach loop iteratively traverses the dataStructure and 
performs the algorithm-dependent computation. The atomicity of 
the operation is ensured by locking mechanisms which restrict the 
ways in which concurrent access can invalidate the computation. 

Example 

Delaunay Triangulation is an irregular algorithm for generating a 
mesh of triangles from a given set of points [54]. In order to 
generate valid triangulations, every triangle in the generated mesh 
must fulfill the Delaunay property, which states that for a 
circumference that intersects the vertex points of a triangle, no 

other point belonging to the mesh is located inside the 
circumference. When a violation of the Delaunay property is 
detected, the common edge is flipped to produce a valid 
triangulation. An example of the execution of Delaunay 
Triangulation is shown in Figure 2. 

Delaunay Triangulation takes an input set of points in 2D space 
and as a first step surrounds all points with a single triangle (A). 
Then, it iteratively picks a single point (B and C), determines its 

surrounding triangle and splits the triangle in three new triangles, 
with the selected point as focal vertex. It then follows by checking 
the Delaunay property (D) and flipping when needed (E).  

 

The underlying problem in Delaunay Triangulation can be 
parallelized in an amorphous data-parallel way by considering 
each triangle as the data block that drives parallelism. The 
repeated application of an activity to the various triangles exposes 
the parallelism inherent to the algorithm. 

Delaunay Triangulation is irregular, i.e., there is a high degree of 
unpredictability in data-dependences. As the actual triangle mesh 
is created by iteratively selecting random points to be added to 

the mesh, its resulting structure cannot be estimated statically. 
Furthermore, when a point is added to the mesh, it might 
invalidate the Delaunay Property for a number of triangles, 
whose edges must be flipped. A flip operation incurs in additional 
overhead, since every adjoined triangle will need to be locked. 
The general Amorphous Data-Parallell solution to the Delaunay 
Triangulation example consists in: 

SStteepp  11    On a first analysis, defining a point as the basic data 

element is the most straightforward choice. However, 
a better approach to this algorithm is to consider a 
triangle as the data element. This is true if considering 
that to ensure mutual exclusion we will always need 
to lock at least one triangle.  
Delaunay’s has two basic operations: triangulation 
and edge flipping, both of which change the data 
structure by changing the structure of data 

dependences. Therefore this is writer algorithm. 

SStteepp  22    In this step, we need to know how the data structure is 
built in order to be able to retrieve the data elements 
we need. For Delaunay Triangulation, this entails 
accessing the mesh and retrieving the triangle that 
surrounds the point we are currently triangulating. 

mesh.getSurroundingTriangle(point); 

SStteepp  33    The general amorphous data-parallel form of 

Delauney Triangulation is consistent with the 
pseudo-code described in Figure 3. 
 

Figure 2 – Execution of the Delaunay Triangulation. 

 

 

1 foreach element in dataStructure do 

2 dataElements = // identify neighbors  

3 lock dataElements; 

4 compute(dataStructure.get(dataElements)); 

5 unlock dataElements; 

6 endForeach 

 



 

Related Patterns 

• Data Decomposition 

Amorphous Data-Parallelism can be considered as a more 
specific form of data-parallelism [32] or Data 
Decomposition [41]. 

Known Uses 

Amorphous Data-Parallelism in irregular algorithms was first 
described by Kulkarni [34], although, to the best of our 
knowledge, we are the first to call it a pattern. We know of no 
other classifications of this type of parallelism. Recently, 
Lublinerman et al [38] presented Chorus, a high-level parallel 
programming model for irregular applications which uses the 
concept of amorphous data-parallelism. We know of no other 

parallel classification of this type of parallelism. 

3.3. Data-Parallel Graph 

Problem 

How does a graph abstraction influence the opportunities for 

Amorphous Data-parallelism and the structure of the algorithm? 

Context 

On implementing an algorithm, much of the effort is spent on 

deciding what is the best underlying data structure on which to 
represent data to process and what are the characteristics that make 
it valuable on a concurrent environment. 

Irregular algorithms are mostly characterized by pointer-based 
graph data-structures, which contribute significantly towards the 
algorithm’s irregularity [48]. Nonetheless, graphs are mature data-
structures with wide functionality and adaptability, over which it is 
possible to efficiently implement some, if not all, irregular 

algorithms present in the scientific community. 

In this context, we present a list of some of the reasons why graphs 
are used: 

1. Graphs are a generally used and accepted metaphor for 
describing structure and behavior. Examples of this can be 
as varied as state machines, flowcharts, UML diagrams, 
BPMN diagrams, EBNF diagrams, circuits, etc. 

2. There are a large number of algorithms for graph traversal 
and search. The list includes Depth-First and Breadth-
First traversal, Iterative In-Order and Post-Order [37], 
Dijkstra's Shortest Path [18] and Kruskal and Prim’s 
algorithm [13], just to name a few. 

3. Graphs represent structure and introduce constraints and 
properties such as hierarchy, connectivity, edge direction 
and weight, as defined in Graph Theory[23]. 

4. Complex graphs are composed of sub-graphs with similar 
structural properties. This allows for additional 
opportunities for divide-and-conquer strategies. 

5. Graphs can be reconfigured with little or no effort, simply 
by loosening or tightening the connectivity constraints. 

6. Graph nodes and edges can be associated with a variety 
of meanings and be of varying complexities. 

7. Graphs can be used to represent virtually every data 

structure used in computation. The most common 
examples are: 

Trees – are a form of specialized bipartite, connected, 
acyclic and undirected graphs with one of its element 
distinguished as the root element [23]. Trees have many 
specialized forms (like the Binary-tree, Red-black tree, 
B-tree, AVL tree, etc) and can be used to represent other 
structures like hashtables and heaps. 

Lists – represent path graphs[23], acyclic graphs where 
every node is connected to at most 2 other nodes. Lists 
can be used to represent stacks, pipes and queues. 

Grids – are special distance-regular graphs that can be 
represented in two-dimensional space. Grids can be easily 
transformed into cubes (in three-dimensional space) or 
hypercubes (above the three-dimensional space). Grids 
can also be used to represent N-dimensional matrices. 

Aside from the advantages stated above, programmers should 

take into consideration whether the graph abstraction actually 
benefits the implementation of the algorithm. Some data-
structures, like trees and lists, are just as mature data-structures as 
graphs and are more attuned to some problems than others. 
Nonetheless, a Graph abstraction remains a perfectly good option. 

Achieving efficient parallel implementations of irregular 
algorithms based on graph data-structures is a problem in itself. 
Data Parallel Graph is focused on amorphous data-parallel 
graph algorithms, i.e., graph algorithms that have an inherent 

amorphous data-parallel structure. 

The focus of this pattern is not to provide specific implementation 
solutions, merely to allow us to understand how graph 
characteristics influence irregular parallel problems. 

Forces 

 Specific vs. Reusable Implementation 

A more specific graph implementation can provide 
additional performance to the algorithm but will make it 
inherently more difficult to implement and will hamper 
reusability. One must weigh the cost of implementation 
against the expected benefits. This force can also 
represent the decision of implementing a graph 

1 Set pointSet = //initialize set of points 

2 TriangleMesh mesh; 

3  

4 foreach point in pointSet atomically do  

5 Triangle tri 

6 tri = mesh.surroundingTriangle(point) 

7 adjacent = //get triangles adjacent to tri  

8 lock adjacent and tri; 

9 Triangle tri2 = triangulate(tri); 

10 while tri2.isNotValid(){ 

11 flip(tri2); 

12 } 

13 mesh.addTriangle(tri2, adjacent); 

14 unlock adjacent and tri; 

15 endForeach 

 

Figure 3 – Delaunay Triangulation with Amorphous 
Data-Parallelism. 



 

specifically tailored for the problem at hand or using an 
available graph library. 

 Optimization vs. Portability 

If the data structure is tailored to a specific hardware, then 
performance will be greatly optimized but portability will 
be reduced by a similar proportion. This also reduces the 
chance of reproducing highly optimized benchmarks. 

 Update Cost vs. Performance 

There must be a careful balance between the cost of 
dynamically updating the graph structure and the 
performance of the algorithm. If updates are 
computationally expensive, then performance will be 
directly impacted in a negative way. 

Solution 

A graph is the preferred data-structure to be used in the majority of 
irregular algorithms. Implementing efficient irregular parallel 
graph-based algorithms is a question of being able to identify and 
extract potential data-parallelism inherent to graph data-structures. 
This means taking advantage of the relationships between node 
elements (characterized by edges) to identify which elements 

might be accessed and updated at each iteration. These same 
elements will be locked as part of amorphous data-parallelism. 

The general instantiation of a Data-Parallel Graph  requires the 
following steps: 

SStteepp  11  --    Identify algorithm-specific graph characteristics 

A graph data-structure can have several different characteristics, 
which can be sorted in three distinct classes: 

 Edge characteristics 

Direction: By default, an edge between two nodes is 
considered bidirectional or undirected. This means that there 
is a reciprocal relation between the connecting nodes and the 

graph can be traversed in any direction. However, there are 
some instances where edges can be one-way, i.e., traversing is 
restricted to a specific direction. In this case, the edges are said 
to be directed. An example of a directed graph is a street map, 
since some streets are one-way and others are two-way, while 
a social network represents an undirected graph. 

Weight: Edges can have weights, i.e., there can be a cost 
associated with traversing a given edge. For instance, given a 

map of cities modeled as a graph where every edge has a cost 
associated with the distance between those same cities, we 
could use Dijkstra's Shortest Path Algorithm [18] to discover 
the shortest path between two cities.  

Direction and weight characteristics are orthogonal and we can 
be used in any combination. 

 Node characteristics 

Label: A node can have a label that distinguishes it from all 
other nodes. This is the case of the root node in trees or the 
source and sink nodes in the maximum flow problems [13]. 

Value: nodes can have values that provide some contextual 
reference to the algorithm in question. For instance, boolean 
values that indicate whether a node has been visited before or 
color values, typical of graph coloring algorithms. 

Both label and value characteristics are completely 
orthogonal and we can have, for a given graph, any 
combination of the above two characteristics. 

 Structural characteristics 

Structural characteristics of graphs infer a sense of how data 
is organized and help realize how special structural attributes 
are to be handled. 

Completeness: If every node is connected to every other 
node, then we say the graph is complete. Complete graphs are 
difficult to handle because they cannot be efficiently 
partitioned due to the absence of sub-graphs. 

Independence: A node is independent or isolated if it has no 
edges connecting it to other elements in the graph. A set is 
independent if it constitutes a sub-graph not connected by any 
edge to the main graph. The programmer must consider these 
characteristics when designing traversing and partitioning 
strategies for the algorithm. 

Connectivity: A graph is connected if for every two distinct 
nodes there is a path connecting them. This characteristic 
influences the amount of independence present in the graph. 

Cycles: A cycle exists if starting from a given node, there is a 
path through the graph that leads back to that same node. 
Most of the graphs contain cycles and this important 
characteristic requires the programmer to pay special 
attention so that the algorithm doesn’t get caught in an 
endless loop around a cycle. 

Self-loops: A self loop happens when a node has an edge 
connecting to itself. This is a special instance of cycles since 

the algorithm can be caught in a closed loop, never leaving 
the same node. Self-loops must also be taken into account 
when partitioning the graph so that there is no node 
duplication. 

SStteepp  22  --    Define the graph data-structure 

The vast majority of programming languages don’t provide built-
in graph data-structures. However, there are a few libraries 
available. This is due to the fact that a generic graph library can 
be quite complex and can be implemented in n-number of ways 
(typically as adjacency lists or matrices but there are some purely 
object-oriented implementations available). 

On deciding which implementation of graph data-structure to use, 

the programmer must take into account the following two factors: 

 Reusability factor 

On choosing or implementing a graph data-structure one must 
take care to identify the nature and reusability aspects of the 
problem at hand. If the problem is small and there is little 
probability that a full-fledged graph data structure will be 
needed, then an implementation using an adjacency list or 

matrix is a good option. This type of rough implementation is 
ideal when the cost of learning how to use a third-party 
library or of implementing a more generic and complex graph 
data-structure is considerably higher than the cost of 
implementing the overall algorithm. 

 Optimization factor 

More than the cost of learning how to use a graph library, the 

programmer must take care to consider if and how the 



 

algorithm can be optimized and how this optimization can be 
achieved with a wide-spectrum graph library. 

If the algorithm is intended to be run on a specific 
computational environment and is expected to achieve 
maximum performance in that environment, then the data-

structure needs to be closely attuned to the underlying 
hardware configuration or operation system. This means that 
the data-structure should be designed with these specific 
characteristics and trade-offs in mind. For instance, a 
third-party graph library doesn’t have many considerations for 
partitioning concerns. 

On the other hand, if an ideal performance can be achieved by 
fine-tuning the algorithm instead of the data structure, then 

probably the learning curve of using a third-party graph library 
has a lower cost than implementing a brand new data-
structure. 

SStteepp  33  --    Determining how the algorithm traverses the 

data-structure 

This factor is important in this context because in the case of 
parallel implementations of algorithms, the graph traversal is what 
drives parallelism, i.e., the algorithm progresses through traversal 
of the elements of the graph and by performing the specified 

computations on each element. The traversal strategy is also very 
dependent on the way data is partitioned.  

SStteepp  44  --    Determine how amorphous data-parallel 

computations can be composed 

Graphs are ideal representations for amorphous data-parallel 
problems essentially because they represent a natural abstraction 
to the constraints of Amorphous Data-Parallelism. Let us consider 
the terminology used to describe Amorphous Data-Parallelism: 

Data element: using a graph abstraction, the smallest 
independent data element is a node in the graph. 

Iteration: in most irregular computations, choosing the next 
iteration is equivalent to retrieving the next node via one of the 
adjacent edges of the current node. One example is maximum-
flow algorithms [13]. 

Operator: reader operators are equivalent to traversal 
operations while write operators conform to graph coarsening 
operations. 

Neighbors: in graphs, the smallest neighborhood is composed 
by all nodes adjacent to the node currently being processed. 

Furthermore, a graph can be seen as if composed of computational 
nodes connected by edges encoding computational dependences. 
This means that where we have a data node, we can assume that 
there is a corresponding computation. In addition, to every edge 
connecting two nodes, and therefore representing data 
dependences, we can assume that there is a corresponding edge in 

the computation that relates to computational dependences, that is, 
data derived from other computations. 

SStteepp  55  --    Determine the need for data partitioning 

At this point, it is necessary to identify if and how to partition the 

graph data-structure in a way that promotes further Amorphous 
Data-Parallelism. This entails Data-Oriented Graph Partitioning. 

 

Example 

As previously stated, using graphs as primary data-structures 
usually brings some useful advantages. This is the case of the 

Sparse Cholesky Factorization Algorithm a linear algebra method 
that transforms a matrix into a factor of a unique lower triangular 
matrix. The traditional Cholesky algorithms are implemented 
with a matrix-like data-structure. In this case however, since the 
matrix is sparse, that is, the majority of its elements are zero, the 
matrix can be mapped into a graph without compromising 
efficiency. 

In Figure 4, a matrix (a) is mapped to a graph representation (b) 

where r nodes represent rows and c nodes represent columns. 

Edges between the nodes map the actual values presented in the 

matrix. Another, more efficient mapping (c) is obtained by 
creating one node per index value. This means that for an NxN 
matrix, there will be only N nodes. In this case, the main diagonal 
is represented as self-edges, while other edges are duplicated due 
to the matrix’s symmetry. The mapping from matrix (a) to graph 
(c) can be accomplished by the code in Figure 5. 

After this point, the programmer should adapt the algorithm to 
use this new graph representation of the sparse matrix. 

Related Patterns 

 Amorphous Data-Parallelism 

Amorphous Data Parallelism is used to provide an 
underlying graph representation to the data required by 
the Amorphous Data Parallelism pattern. 

1 Graph g; 

2 Matrix [rows][columns] m; 

3 for ( int col in columns){ 

4 for( int row in rows : row <= col){ 

5 if( m[row] [col] != 0){ 

6 Node ncol = g.addNode(col); 

7 Node nrow = g.addNode(row); 

8 //create edge and add its value 

9 g.addEdge(nrow,ncol,m[row][col]); 

10 } 

11 } 

12 } 

 
Figure 5 – Matrix to Graph Transformation. 

Figure 4 - Graph representations of a sparse symmetrical 

matrix. 



 

 Graph Partitioning  

The graph data-structure influences partitioning which in 
turn will influence parallelization opportunities. 

Known Uses 

The Lonestar benchmark suite [35] offers a number of irregular 

applications designed with graph data-structures. Additionally, the 
literature for scientific problems is widely populated with parallel 
implementations of irregular algorithms [5, 29, 31]. 

3.4. Optimistic Iteration 

Also Known As 

Data-Driven Speculation, Speculative Execution, Optimistic 

Execution 

Problem 

How to efficiently parallelize an algorithm that presents an 
amorphous data-parallel structure? 

Context 

When considering how to efficiently parallelize irregular 
algorithms, a more traditional approach using locks to synchronize 
concurrent accesses to data is possible, but would undoubtedly 
reduce the amount of available parallelism. Alternatives like static 
analysis techniques – such as points-to and shape analysis – or 
semi-static approaches – based on the inspector-executor model – 
fail to uncover the full set of potential parallelism, since they 

either only check data dependences at compile time or do not 
acknowledge dynamic dependence changes in data-structures. 

To overcome the dependence chain under these conditions, 
programmers must take into account the advantages of speculative 
or optimistic parallelization techniques [34]. For this specific case, 
speculative execution of Amorphous Data-Parallelism implies 
being able to execute parts of the code without complete 
knowledge of the data dependences. 

Forces 

• Implementation Cost vs. Benefit 

Implementing an optimistic execution technique from 
scratch can be costly. The main disadvantage of these 
techniques lies in the complexity of handling miss-
speculation problems, such as state saving and rollback 
actions. These can be quite challenging and if not done 

properly can increase the memory and computational cost 
of an algorithm to the point that there is no added benefit 
in using Optimistic Iteration. 

• Available Parallelism vs. Number of Conflicts 

While finer-grained computations can yield a greater 
amount of available parallelism, it will also increase the 
likelihood of conflicts. The programmer should consider 
how many independent computations can take place 

simultaneously and find the optimal grain size. 

• Grain of Parallelism vs. Cost of Locking 

If the cost of locking is not influenced by grain size, 
executing many fine-grained computations might be worse 

than executing a single coarser one. 

• Grain of Parallelism vs. Cost of Miss-Speculation 

The cost of miss-speculation can be measured as the sum 
of the cost of corrective action with the cost of re-
executing the work, added with the cost of acquiring and 

releasing locks for both the conflicted and re-executed 
iteration. Therefore, the cost of miss-speculation 
increases as the grain coarsens, as does the amount of 
wasted work due to rollbacks. 

Solution 

The idea behind Optimistic Iteration is to execute an algorithm in 

parallel while assuming that data dependences are never violated, 
i.e., that there is no concurrent access to the data elements being 
processed. This does not mean that data is guaranteed to be 
independent but merely that the system must check for and take 
appropriate corrective actions when a dependence violation 
occurs. When no violations are detected, the results of iterations 
can be committed and the resulting data elements are added to the 
data dependence set. 

Optimistic Iteration techniques are widely used in the parallel 
programming community and there are several different 
strategies for the implementation of speculative mechanisms. In 
this paper, we lack the space to describe all the different 
techniques in detail. For this reason, we have selected what we 
consider to be the main application-independent focal points of 
Optimistic Iteration. 

The following steps describe how to speculatively 

execute an algorithm in an Amorphous Data-Parallelism way: 

SStteepp  11  --    Determine the type of algorithm operator 

As regards to the type of interaction with the data-structure, 
algorithm operators can have either read or write semantics. 
Strictly-reader algorithms don’t have much to gain from 
Amorphous Data-Parallelism, since the structure of data 
dependences never changes. 

SStteepp  22  --    Build data dependence graph 

Optimistic Iteration uses the speculative execution of iterations as 
a way to break the highly coupled dependence chain around data 
elements. To create a valid mapping from data to iterations, the 
programmer needs to build the data dependence set for the 
specific algorithm under consideration. To this end, a graph can 

be seen as if composed of computational nodes connected by 
edges encoding computational dependences. Where we have a 
data node, we can assume there is a corresponding iteration. To 
every edge connecting two nodes, and therefore representing data 
dependences, we can assume there is a corresponding edge 
between iterations representing computational data dependences, 
i.e., data output from one iteration provides the input to another. 
This abstraction allows us to consider the various iterations of the 
algorithm as a traversal of data dependences. 

SStteepp  33  --    Anticipate special ordering restrictions between 

iterations 

The programmer must consider how strict the data dependences 
between the different iterations are. If iterations must be 
committed in a sequential-like order, then In-Order Iteration 
applies. 



 

SStteepp  44  --    Predict the set of neighbors of each iteration 

This is probably the most important and difficult step. For most 
irregular algorithms, the neighborhood can be predicted with a 
certain degree of accuracy. The prediction entails understanding 
what data elements will be read or written on each iteration. If the 
computations never change the structure of data dependences, the 
neighborhood can be determined in a straightforward manner. In 
matrix based algorithms, for example, the values of the matrix 
might change with every iteration but its structure remains the 

same. On the other hand, if the structure is dynamically changed, 
neighborhoods are harder to predict and while we can predict that 
a neighborhood is a set   of data elements, another parallel 

executing iteration might add a new element to the structure 
(say element  ) which will in fact increase the neighborhood   to 

     . In this case, the neighborhood cannot be properly 
estimated and we are clearly in a situation where Optimistic 
Iteration is the best option. 

SStteepp  55  --    Introduce locking mechanisms 

The programmer must lock every neighboring data element with 
whichever locking mechanisms the implementation language or 
framework provides. Although optimistically assuming that there 
will be no concurrent access to data elements, it would be foolish 
not to lock the elements we are currently accessing. Locks are only 
released immediately prior to committing the iteration. This 
ensures atomicity in an iteration, in the sense that the data-

structure always maintains a consistent state. These locks should 
not be all restrictive, i.e., some operations should be allowed to 
perform concurrently while others require exclusive access to data. 

SStteepp  66  --    Consider how to handle miss-speculation and 

rollback operations  

When a conflict is detected, optimistic methods must be able to 
recover from the conflict without deadlocking or waiting for the 
locks to be released. Recovering from an illegal access requires the 
iteration to be reset to its initial state. There is a broad variety of 

methods and variations to provide this type of operation [9, 16, 
34]. The most frequently used methods of performing rollback are 
summarized next: 

• Lazy update – changes are performed in cache and are 

only moved to main memory after the iteration commits 
successfully. This is equivalent to Shadow copies, where 
all operations are performed on a copy of the data element 
that then replaces the original, if the iteration commits 
successfully. 

• Reverse operations – all operations are stored in an undo 

log. Rolling back an iteration is just a matter of applying 
reverse methods in a Last-In First-Out manner. 

• Snapshot – prior to any change, a snapshot of the data is 

saved and all changes are performed on the original data-
structure. In case of a rollback, the snapshot is recovered 
and replaces the modified data, restoring it to its original 
state. 

After rollback, the iteration either is allowed to try again 
immediately or waits to be processed later. 

Example 

A general example of the implementation of a worklist-based 
irregular algorithm is shown in Figure 6. Here, a worker thread 

starts an unbounded while loop (line 5) and requests a new 
iteration from the scheduler (line 8). Each iteration then performs 
its corresponding computation and if it produces more work, it is 
added to the worklist (line 13-14) and the thread iterates again. If 
there is a conflict between iterations, an exception is thrown (line 

18), otherwise the iteration is allowed to commit (line 16). This 
example assumes the existence of a scheduler, who is responsible 
for providing iterations to threads and to keep supplying work. 

Picking up the example of Delaunay Triangulation, we can 

Figure 6 – General optimistic implementation of a 

irregular algorithm. 

1 Graph graph; 

2 Worker worker;  //worker thread 

3 Scheduler scheduler; 

4  

5 while (true){ 

6 try{ 

7 Iteration it; 

8 it = scheduler.newIteration(worker); 

9  

10 scheduler.nextElement(it); 

11 <result,work> = compute(graph,it); 

12 graph.replaceSubgraph(it, result); 

13 if(work.isNotNull()) 

14 scheduler.addWork(work); 

15  
16 scheduler.commitIteration(it); 

17  
18 }catch (violationException ve){ 

19 //do nothing 

20 //graph is only updated on commit 

21 } 

22 //check for termination 

23 } 

Figure 7 – Optimistic implementation of Delauney 

Triangulation. 

1 Graph mesh; 

2 Worker worker;  //worker thread 

3 Scheduler scheduler; 

4  

5 while (true){ 

6 try{ 

7 Iteration it; 

8 it = scheduler.newIteration(worker); 

9 do { 

10 scheduler.nextElement(it); 

11 Triangle tri; 

12 tri = triangulateOrFlip(mesh,it); 

13 graph.replaceSubgraph(it, tri); 

14 if(tri.isInvalid()) 

15 scheduler.addWork(it, tri); 

16  

17 } while(it.workLeft()); 

18  

19 scheduler.commitIteration(it); 

20  

21 }catch (violationException ve) 

22 //do nothing 

23 //graph is only updated on commit 

24 } 

25 //Check for terminations 

26 } 



 

elaborate on the previous implementation and create a rough 
optimistic version of the algorithm (Figure 7). In this 
implementation, a worker thread starts an unbounded while loop 
(line 5) and asks for a new iteration from the scheduler (line 8). 
Each iteration then creates a new triangulation and, if that 

triangulation is invalid, it is added to the worklist (line 14-15) and 
the thread iterates again to correct the problem. If there is some 
conflict between iterations, an exception is thrown (line 21), 
otherwise the iteration is allowed to commit (line 19). 

A wide variety of different optimistic parallel implementations of 
irregular algorithms have been proposed by the parallel 
programming community [1, 10, 33, 35, 60]. 

Related Patterns 

 Amorphous Data-Parallelism  

The best way to handle Amorphous Data-Parallelism is by 
Optimistic Iteration. 

 Data-Parallel Graph 
The graph data-structure provides an appropriate data-
structure for Amorphous Data-Parallelism, since it provides 
an ideal abstraction for the dependence graph. 

 In-Order Iteration 

If iterations have a restrict scheduling order, then In-Order 
Iteration applies. 

Known uses 

The first examples of optimistic parallelization were introduced in 
the 70s as a form of branch speculation [20, 58]. Years later, in 
1985, Jefferson presented one of the most well known optimistic 
methods: the Time Warp mechanism [30]. This mechanism 
implemented a method for transparently synchronize discrete-
event simulation in distributed systems. Other well known 

optimistic techniques relate to loop speculation [24, 50]. Recently 
hardware techniques have enabled optimistically created parallel 
threads by tracking dependences by monitoring memory accesses 
made by loop iterations [40, 49, 56, 62, 65]. This technique, 
known either as Thread level speculation or Speculative 
Multithreading, proves to be quite useful to optimistically 
parallelize many applications and has been introduced in a 
significant number of parallelization architectures [11, 19, 39, 47, 

59]. The Galois framework [34] is a recent approach to the 
parallelization of irregular algorithms whose execution model is 
based on optimistic execution. 

3.5. In-Order Iteration 

Also Known As 

Ordered execution 

Problem 

How to find available Amorphous Data-Parallelism when tightly 
inter-dependent iterations constrain execution to a sequential 

iteration order? 

Context 

In most irregular algorithms, the order in which iterations are 

processed doesn’t constrain the actual outcome. The end result is 
the same in whichever order the iterations are processed, as is the 
case of Maxflow algorithms [13] which always find the maximum 
flow, independently on the order in which nodes are processed. 
Others have different outputs according to the order of iteration 

but the correctness of the algorithm is not compromised. For 
example, in Delaunay Triangulation and Refinement algorithms 
[54], different orderings might produce different meshes, but the 
output will always be a mesh on which every triangle respects the 
Delaunay Property. 

However, in some algorithms the order of iteration not only 
influences the end result, but is the sole order that ensures 
correctness. This is the case of Event-driven simulation [15], 

where events must be processed in global time order, and 
Kruskal’s minimum spanning tree [13], where edges must be 
processed by increasing weight. 

When dealing with optimistic parallelization of irregular 
algorithms, there is a good chance that the programmer will 
eventually be confronted with a restrictive ordering of execution 
that in theory would invalidate the advantages of speculation. 
Ordering is enforced when (1) Iterations depend on data 

previously computed in other iterations or (2) Iterations must 
follow data properties that enforce ordering constraints, like 
alphabetical or numerical order. 

Matching the execution order of iterations to this sequential order 
can be achieved statically. The problem is how to extract 
Amorphous Data-Parallelism using Optimistic Iteration in such 
cases? 

Forces 

 Amount of constraints vs. benefit 

If ordering constrains only a very small set of iterations, 
then probably the cost of introducing In-Order Iteration 

doesn’t cover the benefits in performance. 

 Order of rollback 

The order of rollback of conflicting iterations could lead 
to deadlocks. If a higher priority iteration keeps rolling 

back due to conflicts with a lesser priority iteration, the 
algorithm would stop progressing and eventually might 
not terminate. A timeout mechanism could be an efficient 
way to check for priority errors. 

 Size of data set 

The size of the data set influences the distribution of 
iterations and therefore, the bigger the data set, the more 
opportunities for independent execution exist. 

Solution 

When iterations must be executed in a specific order, a simplistic 
form of optimistic execution would not be able to extract enough 

parallelism and the solution would reduce to a sequential 
execution. The solution entails finding a way to extract a useful 
amount of Amorphous Data-Parallelism without disregarding the 
complexity of the ordering constraints, i.e., optimistically execute 
the problem while not invalidating the order of iterations. To 
achieve this, the programmer should (1) check if the order is only 
partial, in which case optimistic execution of partially ordered 
iterations is possible, and (2) ensure that an iteration only updates 



 

the data-structure when all preceding iterations have done so. 

Check for partial ordering 

The majority of irregular algorithms enforce only partial ordering, 
i.e., only relatively small sets of iterations must meet ordering 
constraints. Independence between constrained sets is nevertheless 
possible. To illustrate this, let us consider the case where two 
iterations, A and B, are geometrically distant in that they don’t 
share the same data elements. Nevertheless, some ordering is 
enforced – say alphabetical ordering – meaning that iteration A 

would always have to be executed before iteration B. Between 
these two iterations there is no available optimistic parallelism 
because executing B before A would lead to a conflict. However, 
this represents only a partial ordering. There is always a possibility 
that two A iterations could be executed concurrently. The same 
concept is applied to minimum spanning tree algorithms like 
Kruskal’s MST [13] where usually more than one edge has the 
same or approximate weight – and event based algorithms with 

logic clocks – Lamport clocks [36] have causal order of events, yet 
a global ordering is only enforced for events that trigger actions on 
different processes. Same process events have only to comply with 
local order and can occur concurrently with other local order 
events on other processors. 

If the amount of iterations able to execute concurrently is 
significant, there might be no need to further refine the 
implementation to better explore Optimistic Iteration. However, 

the amount required for efficient performance is very algorithm-
dependent and therefore requires experimentation to obtain 
reliable estimates. 

Consider committal order 

If there isn’t enough available parallelism and performance is 

constrained, another solution is to consider that when algorithms 
have partial ordering constraints, that order needs only be enforced 
when iterations commit. The state that is observed by the system 
must remain consistent at all times, but consistency is only ensured 
after committal. When iterations are executing speculatively the 
state remains consistent and conforms to the order in which 
iterations should execute, i.e., iterations should be allowed to 
execute in any order but committal order should be enforced. 

One way to enable the above model of optimistic execution is to 
assign priorities to iterations and ensure that higher priority 
iterations always commit before the lower priority ones, while 
allowing lower priority iterations to execute speculatively. This 
way, state consistency is ensured. Uncommitted iterations should 
be stored in a heap-like data-structure and only allowed to commit 
when at the top of the heap. This implementation nevertheless 
leaves the programmer with the task of ensuring that when 

committing the root of the heap, that iteration has the highest 
priority and that no other higher priority iteration will occur in the 
future. 

Example 

Following Kruskal’s MST algorithm [13], any two edges are 
independent if they don’t have any node in common. Given this, 
the algorithm can process independent edges concurrently if their 

weight is less than or equal to any other edges waiting to be 
processed. Implementation of this algorithm by In-Order 
Optimistic Execution is shown in Figure 8. 

Related Patterns 

 Optimistic Iteration 

In-Order Iteration is a special case of Optimistic Iteration 
where iterations have ordering constraints. 

Known uses 

On processing algorithms subject to ordering constraints, static 

approaches tend to provide more efficient implementations of 
algorithms. In cases where data dependences are available only at 
run-time, more careful hand-coded concurrent implementations 
using coarse locking mechanisms are usually preferred due to the 
small amount of parallelism available. Therefore, the number of 
speculative parallelization approaches that provide support for 
ordering is reduced. 

The SETL language for set theory [53] and Galois [34] have 

similar ordered set iterators, but contrary to Galois, SETL doesn’t 
have unbounded sets, and neither is a parallel programming 
language. An analogous use is that of out-of-order execution, 
where speculative execution of processor instructions is used to 
reduce the amount of time for required for future 
instructions [27]. Tomasulo’s reorder buffer [58] is an approach 
to a Commit pool structure. Another approach adds speculative 
parallelization to FORTRAN-style DO-loops in X10, with 

resource to hardware transactional memory [61]. Safe futures are 
a related form of allowing for speculative ordered execution [44]. 

4. RELATED WORK 
Pattern catalogs and languages for software design represent a 
widely prolific area of development, partly due to the widely 
cited Gang-of-Four catalog of object-oriented design 

patterns [21]. From this earlier approach, patterns became popular 

Figure 8 – In-Order implementation of Kruskal’s MST. 

1 Graph graph; 

2 Worker worker;  //worker thread 

3 InOrderScheduler scheduler; 

4 scheduler = //add iterations from graph 

5 MST mst; //minimum spanning tree; 

6  

7 while (true){ 

8 try{ 

9 Iteration it; 

10 it = scheduler.newIteration(worker); 

11 do { 

12 scheduler.nextElement(it); 

13 inNode=it.getEdgeIn(); 

14 OutNode=it.getEdgeOut() 

15 tree=//if valid path, create MST 

16 mst.replaceSubgraph(it, tree); 

17 } while(it.workLeft()); 

18 //Commit this iteration if top priority.  

19 //If not, commit the top of the heap. 

20 scheduler.commitInOrder(it); 

21  

22 }catch (violationException ve){ 

23 //do nothing 

24 //graph is only updated on commit 

25 } 

26 //check for termination 

27 } 

 



 

in the field of reusable design, covering different application 
domains such as object-oriented programming [46], aspect-
oriented programming [46] framework design [51, 63], software 
architecture [4, 7], components [55], machine learning [3, 22] and 
even patterns about patterns [12, 42]. 

The pattern language proposed here has close relations to some of 
the pattern languages for parallel processing proposed by the 
software pattern community, namely the pattern repository of the 
Hillside group [32] and the pattern language of Mattson et al [41]. 
However, those pattern languages and catalogs propose solutions 
for a broader class of problems and handle irregularity as special 
cases, in which case the solution needs to conform to a different 
set of characteristics. By contrast, our pattern language is 

specifically focused on irregular problems, which are considerably 
more complex. We propose instead to classify the solution to 
regular problems as a subset of the solution of irregular problems. 
There are nonetheless some pattern languages designed for 
specific irregular algorithms, as is the case of Dig et al pattern 
language for N-Body methods [17]. 

5. CONCLUSIONS AND FUTURE WORK 
This paper describes a pattern language for the parallelization of 
irregular algorithms. Currently, none of the three design spaces 
(Structure, Execution and Optimization) present a high degree of 
maturity considering that they don’t express the full set of 
solutions for the parallelization of irregular algorithms. However, 
when considering optimistic approaches, these patterns represent a 

well developed and mature body of knowledge. 

In future, we plan to further refine this pattern language, as well as 
to produce a set of case studies to validate our approach. Efforts 
for developing a collection of aspect-oriented implementations of 
the patterns are about to begin. The majority of the patterns shown 
here were developed using the Galois Framework [34] as case 
study. Other frameworks and languages have considerably 
different methodologies for handling irregularity. We hope to 
explore these alternatives as well, and relate them to the patterns 

described here, enriching and maturing the language, as well as 
enhancing its potential applicability to cover a broader set of 
techniques and methods targeting parallel irregular algorithms. 
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