
An Eclipse Plugin to Support Code Smells Detection

Tiago Pessoa1, Fernando Brito e Abreu2,1,

Miguel Pessoa Monteiro3,1, Sérgio Bryton1

1 CITI/FCT/UNL, Campus da Caparica, 2829-516 Caparica, Portugal
2 ISCTE-IUL, Av.ª das Forças Armadas, 1649-026 Lisboa, Portugal
3 DI/FCT/UNL, Campus da Caparica, 2829-516 Caparica, Portugal

{tap16004@fct.unl.pt, fba@iscte.pt, mmonteiro@di.fct.unl.pt, bryton@di.fct.unl.pt}

Abstract. Eradication of code smells is often pointed out as a way to improve
readability, extensibility and design in existing software. However, code smell
detection in large systems remains time consuming and error-prone, partly due
to the inherent subjectivity of the detection processes presently available. In
view of mitigating the subjectivity problem, this paper presents a tool that

automates a technique for the detection and assessment of code smells in Java
source code, developed as an Eclipse plug-in. The technique is based upon a
Binary Logistic Regression model and calibrated by expert’s knowledge. A
short overview of the technique is provided and the tool is described.

Keywords: refactoring, code smells, binary logistic regression, automated
software engineering.

1 Introduction

As advocated by the agile XP methodology [1], refactoring techniques are sought to

reduce costs associated with software life cycle at both the Construction phase [2]

and the Production phase [2] by supporting iterative and incremental activities and

also by improving software extensibility, understandability and reusability [3]. Taking

into account that software maintenance activities are the most costly in the software

life cycle [4-6], tangible benefits are expected from regularly performing refactoring.

Empirical evidence showing the dire consequences of code infested with smells,

seems to concur [7].

Even with an approach based on guidelines offered by Beck [1] and Fowler [3], the

need of informed human assistance is still felt, to decide where refactoring is worth

applying [8]. It is here that the concept of code smells provides a contribution [3].
Nevertheless, we have found, in the context of post-graduate courses, that the manual

detection of code smells is an excessively time-consuming activity (therefore costly)

and is error-prone, as it depends on the developer’s degree of experience and

intuition.

Empirical studies on the effectiveness of code smells detection techniques are still

scarce, but there is some evidence that their eradication is not being achieved to a

satisfactory degree, often because developers are not aware of their presence [9]. This

is due to the lack of adequate tool support, which requires sound techniques for code

smells diagnosis. The subjective nature of code smells definition hinders that

soundness [3, 10].

Currently used code smells detection techniques come in two flavours. The first

concerns qualitative detection using (inevitably biased) expert-based heuristics. The

latter uses thresholds on software metrics obtained from the source code under

analysis and seems more appealing for supporting automation due to its repeatability.

However, it has two important preconditions for effective use. First, the same set of

metrics cannot be used to detect all smells of a catalog such as the one in [3] since
code smells are very distinct in nature. Second, even with a customized set of metrics

chosen by an expert for detecting a particular smell, the resulting model must be

calibrated, i.e., its internal values must be determined to reduce false positives and

false negatives. That entails an empirical validation based on existing classification

data. Mantyla el al. [11] confirm the difficulty of assessing code smells by using

metric sets and the hard task of defining a detection model.

Our work contributes to the field of code smells detection by providing an

automated process, supported by a tool (an Eclipse plug-in), capable of code smell

assessment in Java source code in an objective and automatic way. In contrast with

existing proposals that rely purely on the opinion of a single expert, we propose a

statistically based detection algorithm that will go through progressive calibration

based upon a developers’ community. The detection algorithm, based on Binary
Logistic Regression, was initially calibrated by using a moderately large set of pre-

classified methods (by human experts) and validated for the Long Method code smell,

as depicted in Bryton et al. [10]. The larger the set, the better will be the detection.

Our approach relies on the community of our tool users to perform continuous

recalibration of the code smells detection models (one per each smell).

We have developed a prototype version of the Smellchecker tool, an Eclipse

plugin for detecting code smells in Java code. This prototype allows smell tagging,

visualization and detection.

The rest of this paper is structured as follows. Section 2 overviews the Binary

Logistic Regression model and discusses how calibration using expert’s knowledge

leverages it. Section 3 introduces the automated process to code smells detection.
Section 4 describes the architecture of the Smellchecker Eclipse plug-in in detail and

summarizes how it is used. Section 5 depicts threats to validity. Section 6 briefly

reviews related work. Finally, section 7 presents some closing remarks and outlines

future research directions.

2 Binary Logistic Regression

Binary logistic regression (BLR) is used for estimating the probability of occurrence

of an event (here, the existence of a code smell) by fitting data to a logistic curve. It is

a generalized linear model where the dependent variable has two values (code smell

present or absent) and an arbitrary set of numeric explanatory variables can be used

(here, a set of code complexity metrics). The following logistic function is used to

estimate the percentage of probability of a particular code smell:

 .

Where z is called the logit, are the regressors or explanatory variables (code

complexity metrics collected from the source code) and are the regression

coefficients calculated during the calibration process. The choice of the adequate

metrics to select for each code smell estimation model based on BLR can be

performed by using the Wald or the Likelihood-Ratio tests.

To perform BLR calibration with a statistical tool such as SPSS or R, we need a
sample with values for all variables (explanatory and outcome). Table 1 presents an

extract of such a sample, corresponding to four methods on the

org.apache.commons.cli package from Apache Commons CLI 1.2. The collected

metrics are MLOC (method lines of code), NBD (nested block depth), VG

(cyclomatic complexity), PAR (number of parameters) and LVAR (number of local

variables). These are the explanatory variables in the BLR model. Long Method is the

dependent or outcome variable: an expert indication of the presence of the Long

Method code smell on the particular method.

After calibration and validation of the regression coefficients, the instantiated

model is used to predict the possible presence of a particular code smell.

Table 1. Sample extract for calibrating a Long Method code smell estimation model

Application ApacheCommonsCLI1.2

Package org.apache.commons.cli

Class GnuParser Parser HelpFormatter PosixParser

Method flatten parse renderOptions burstToken

MLOC 69 67 59 46

NBD 5 5 4 4

VG 11 14 10 6

PAR 3 4 5 2

LVAR 9 12 19 5

Long Method 0 1 1 0

3 Automated Code Smells Detection

This section sets the context and presents this work’s underlying main theme:

reducing the subjectivity in code smells detection by automating its process. Figure 1

outlines the automated process, which comprise the activities described next.

Code Annotation. In the first iteration, experts must tag the code sample for the

presence of code smells in methods, classes or interfaces, to yield an adequate sample

for the initial calibration of the models, prior to making the tool available to “regular”

developers. In subsequent iterations those developers will only tag false positives

(developer disagrees with a detected smell) and false negatives (developer identifies a

non-detected code smell). These cases are expected to decrease over time as more

data results in more finely calibrated models that produce more precise results.

Metrics Calculation. Automatic process that requires a parser-enabled tool that

computes metrics on the target source code (the one that is annotated).

Models Calibration. Calibration of the BLR models by calculating and validating the

regression coefficients. It is an automatic process performed by a statistical processor.
Note that there will be one model for each code smell. Each model may have different

explanatory variables (metrics).

Smells Detection. Application of the calibrated BLR models to selected source code

elements. This estimates the probability of presence of the corresponding code smells

in the selected artifacts.

Smells Visualization. Identification of the source code artifacts where code smells
are estimated to be present. The developer can set the threshold probability (e.g. see

only the code smells above 90% probability) independently for each code smell.

Fig. 1. Code smells detection process

Detected code smells will vary depending on the selected probability threshold.

Increasing the probability too much will cause more false negatives, while decreasing

it in excess will cause more false positives. It will be up to the developer to fine tune

the threshold to get the adequate level of advice (let us call it “sensitivity”) regarding
the presence of code smells. It will also be up to the developer to decide on the

adequacy of applying a given refactoring to remove a detected code smell.

1. Code Annotation
(Manual)

2.Metrics

Calculation

(Automatic)

3. Model Calibration
(Automatic)

4. Smells

Detection

(Automatic)

5. Smells Visualization
(Automatic)

The described process can have two different usage patterns. The first concerns a

single user with a single machine. The second, a remote usage for more than one user.

Local Usage. The process is completely local (Fig. 2). The models calibration process

is done locally. The user is responsible for tagging an initial source code base to
calibrate the models. Then, the user can apply the models to detect the occurrence of

code smells in all code bases of his choice. It is also possible to refine the calibration

of the model by providing additional code smell tagging information.

The usefulness of this option is one of practical value: tuning the models, through

progressive calibrations, to personal user preferences, thus matching the models to the

user notions of where a code smell might be present.

Fig. 2. Local usage

Remote Usage. The process has a remote central server responsible for storing, on its

own data base, the code smells tagging and metrics values provided by several users
(Fig. 3). With the calibration and validation of the BLR model being performed on the

server, users can remotely query the server for the most recent model parameters. This

model is calculated from the aggregated data provided by all users, augmenting the

statistical significance of the BLR estimates and thus providing a more accurate

detection of the code smells.

One of the simpler updates the user can make is to provide feedback on false

positives and false negatives detected, thus contributing for the models’ progressive

enhancement.

User

Code

Annotation

User

data

User System

User

Metrics

Calculation

User

data

User

Calibrate

Model

User

data

Fig. 3. Remote usage

4 Smellchecker

We have chosen the Eclipse framework as the target platform to support Smellchecker

development due to its advanced Java support, available refactoring features, along
with its plug-in development facility,

Eclipse is a stylish and appropriate choice for our tool deployment since its

architecture by components supports integration of virtually any component within its

architecture. Yet, despite its advanced support for Java source code refactoring as part

of its standard JDT toolkit, code smells detection is by and large completely lacking.

Since Eclipse’s architecture by components permits seemingly integration of

virtually any component within its scheme, it is a stylish and appropriate choice for

our tool deployment.

The Smellchecker prototype architecture uses Java 1.6 and Eclipse platform 3.5. It

comprises the following components, traceable to the processes described in Fig 1:
1. Source Code Annotation – Eclipse’s SWT/JFace UI Framework, Eclipse’s JDT

AST;

2. Metrics Calculation – Metrics Eclipse Plugin Version 1.3.8;

3. BLR Models Calibration – R Statistical Computing, JRI;

4. Code Smells Detection - Eclipse’s JDT AST;

5. Code Smells Visualization - Eclipse’s SWT/JFace UI Framework.

An overview of all the major components comprising Smellchecker is provided in

Fig. 4.

User 1

Calibrate

Model

User 1

data

Code Smells DB

User 2

Calibrate

Model

User 2

data

User 3

Calibrate

Model

User 3

data

Model Calibration

(Using Data From All Users)

R

E

M

O

T

E

 Common to all processes is the persistence component, represented on the

diagram as the Code Smells DB (database) component.

Fig. 4. Smellchecker component diagram

Source Code Annotation. Eclipse’s SWT/JFace UI Framework provides user
interface resources that allow code smells tagging assistance.

Users can tag classes, methods and interfaces. This operation may be performed

manually, by tagging the code directly with Java annotations with the following

syntax:

@CodeSmell(type=CodeSmellType.LargeClass,

description="Too many functionalities")

public class Customer {...}

The code smells annotation process is also assisted by the UI. The user can select

from a drop menu the corresponding code smell tag for each desired code fragment.

Eclipse will present a Tag Smell menu in the context of code elements when available.

As described by Fowler [3] and Wake [12], classes, interfaces and methods have

particular code smells associations. An example of the UI assisted code smell

annotation process in represented in Fig 5.

After selection, the annotation will be added, via AST (Java’s Abstract Syntax

Tree) API, to the source code exactly as the annotation example listed above. A data

base entry will be made consisting of the smell indication in conjunction with

information of the method, class, interface, application, and package annotated.

Fig. 5. UI assisted Code Smell Annotation

Fig. 6 shows the command and icon, Refresh Visualization, for constructing or

refreshing source code’s smells annotation database. The information will then be

displayed in tree form on the workbench view Smellcheckeer Tagged Code Smells in

conjunction with the metrics calculated for that specific resource. This view is context
aware so a class, package, or method must be selected.

Fig. 6. Refresh Visualization command and icon

Code Metrics Calculation. Metrics calculation is accomplished by the Eclipse

Metrics 1.3.8 plug-in. Metrics supported for classes include Lines of Code, Depth of

Inheritance Tree, Number of Methods and Lack of Cohesion to name a few. For

methods, the tool supports: Lines of Code, Nested Block Depth, McCabe Cyclomatic

Complexity and Number of Parameters. It also provides an extension point on the

basis of which it is possible to extend the plug-in to calculate additional metrics.

The Metrics Calculation plugin must be enabled via the Smellchecker preference page

menu. Metrics are then calculated during the build cycle and displayed in the view

Smellchecker: Tagged Code Smells in conjunction with code smells presence
indications. Fig. 7 shows an example.

Fig. 7. Metrics and Annotated Code Smells view

Models calibration. Calibration and validation of the BLR models is performed by

the R statistical engine. Interaction between the plug-in and R is made with JRI, a

Java/R Interface that allows running an instance of R as a process that responds to

command line type commands and outputs back to Java the data resulting from its
computations. Actions that must be performed include: normality tests on the metric

data (to know which test to apply), correlation coefficients among the variables,

collinearity diagnosis tests and goodness-of-fit analysis for the BLR models.

Smells Detection. It follows the successful calibration of the BLR model. The

selection of the command Code Smells Detection, on the toolbar CodeSmells menu,

parses (for all open projects) all compilation units with the AST API parse command

of JDT. For each class or method (depending if the model was calibrated for a class or
a method smell), the corresponding metrics is read from the data base and the

probability of the presence of the code smell is calculated. If the probability is above

the defined threshold, the node of the AST corresponding to the artifact under

analysis is marked as a problematic node with JDT’ Marker class, which is

responsible for marking compile errors or warnings. To distinguish make code smells

warnings from compile errors and warnings, a lower value of importance is linked to

the node where the code smell was detected.

Smells Visualization. Since nodes identified by the model have been marked, they
will appear in the error log view and they will have the same properties as compiler

errors. So a jump to the smelly section of the code can be performed upon a click.

The previous descriptions apply both to the single-user/single-machine functioning, as

well as to the remote usage process. Additional conditioning pertains to the

centralized efforts of the server, as well as availability of the service as a web service

to accommodate client needs for a simple interface. The data is communicated as an

XML document and the derivation of the model is identical with the difference that in

the server case, more data is expected to be available.

5 Threats to Validity

Assurance cannot be stated that, for all the 22 Code Smells described by Fowler,

the BLR model proposed will derive valid assumptions. For example, Duplicated

Code is an active area of research with sophisticated mechanisms already derived to

identify Code Clones [13].

Threats to validity arise from the set of metrics selected, the experts opinion and

the sensibility expressed by the BLR model after calibration.

Metrics selected for the Smellchecker tool derive from their availability in a prior

existing Eclipse Plugin and represent a small subset of metrics presented in literature
[14]. Metrics in Smellchecker concern classic complexity measures that are not suited

to detect all code smells. Therefore the need exist to extend their boundary.

Further studies must be conducted to know how sensitive the BLR model is to bad

data given by experts and also to analyze over fitting issues and scalability of the

model.

6 Related Work

A few open-source tools exist for detecting code smells in Java code. Most of them

use static analysis, that is, they do not require executing the program, such as the one

presented in this paper.

PMD (http://pmd.sourceforge.net/). This widely used tool uses static analysis
techniques to scan Java source code and look for potential problems like possible

bugs (empty try/catch/finally/switch statements), dead code (unused local variables,

parameters and private methods), suboptimal code (wasteful String/StringBuffer

usage), overcomplicated expressions (unnecessary if statements, for loops that could

be while loops) and duplicate code (copied/pasted code means copied/pasted bugs).

PMD is integrated with JDeveloper, Eclipse, JEdit, JBuilder, BlueJ, CodeGuide,

NetBeans, IntelliJ IDEA, TextPad, Maven, Ant, Gel, JCreator, and Emacs.

FindBugs (http://findbugs.sourceforge.net). This tool is also widely used and
integrated with Eclipse, using the static analysis capabilities of Apache’s Byte Code

Engineering Library (BCEL) to inspect Java bytecode for occurrences of bug patterns.

The latter are code idioms that are often errors. Bug patterns arise for a variety of

reasons such as: difficult language features, misunderstood API methods,

misunderstood invariants when code is modified during maintenance, or garden

variety mistakes as typos or use of the wrong boolean operator. Their authors report

that its analysis is sometimes imprecise since many false positives (up to 50% of

identified bugs) can be risen.

http://pmd.sourceforge.net/
http://findbugs.sourceforge.net/

SISSy (http://sissy.fzi.de). According to its authors, the Structural Investigation of

Software Systems tool can detect some well-known code smells and the violation of

over 50 typical OO design principles, heuristics and patterns, such as bottleneck

classes, god classes, data classes or cyclical dependencies between classes or

packages. SISSy can analyze systems written in Java, C++ or Delphi but, as far as we

could ascertain, is not integrated with any IDE.

Smelly (http://smelly.sourceforge.net). Is an Eclipse plug-in that, according to its
authors, is able to detect the following code smells in Java code: Data Class, God

Class, God Method, High Comment Density, Long Parameter List and Switch. Only

the one in bold matches the original name in the original code smells catalog [3].

Code Bad Smell Detector (http://cbsdetector.sourceforge.net/). This tool claims to

detect five of Fowler et al. [3] code smells: Data Clumps, Switch Statements,
Speculative Generality, Message Chains, and Middle Man, from Java source code. It

has no recent downloads and appears to be associated with an ongoing PhD work. It is

also not integrated with an IDE.

7 Conclusion & Future Work

Closing Remarks. The idea of automating code smells detection by using metrics

and tools is not new. However, the detection technique used in the Smellchecker tool

is in contrast with all other known proposals due to the usage of a dynamic statistical

process that relies on expert’s knowledge that can be applied, theoretically1, to any

smell. A distinctive characteristic of our approach is that the quality of the detection

process increases as time goes on, due to progressive model calibrations supported by

accumulated data.

Future Work. More in-depth studies are required for validating the process for

different code smells, different calibration data, and better assurance of the BLR

model coefficients.
According to [3], a given code smell can be mitigated/removed by applying one

out of a set of refactoring transformations. Since Eclipse supports several of those

transformations, we envision that upon code smells identification, adequate

refactorings could be suggested to remove the smell. In future, we will look at ways

of computing the expected quality improvements attained by applying each of the

refactoring alternatives. Hopefully, that will allow us to provide some advice for the

developer.

1 Empirical studies are required to validate this assumption.

http://sissy.fzi.de/
http://smelly.sourceforge.net/
http://cbsdetector.sourceforge.net/

Acknowledgements

The work presented herein was partly supported by the VALSE project of the CITI

research center within the Department of Informatics at FCT/UNL in Portugal.

References

1. Beck, K. and C. Andres, Extreme programming explained: embrace change. 2004:
Addison-Wesley Professional.

2. Ambler, S., J. Nalbone, and M. Vizdos, Enterprise unified process, the: extending the
rational unified process. 2005: Prentice Hall Press Upper Saddle River, NJ, USA.

3. Fowler, M. and K. Beck, Refactoring: improving the design of existing code. 1999:

Addison-Wesley Professional.
4. Lientz, B. and E. Swanson, Software maintenance management: a study of the

maintenance of computer application software in 487 data processing organizations.
Vol. 4. 1980: Addison-Wesley Reading MA.

5. Guimaraes, T., Managing application program maintenance expenditures.
Communications of the ACM, 1983. 26(10): p. 739-746.

6. Bennett, K. and V. Rajlich. Software maintenance and evolution: a roadmap. 2000:
ACM.

7. Khomh, F., M. Di Penta, and Y. Guéhéneuc. An exploratory study of the impact of
code smells on software change-proneness. Proceedings of the 16th Working
Conference on Reverse Engineering (WCRE '09). 2009, IEEE: Lille, France. pp. 75 -
84.

8. Mens, T. and T. Tourwé, A survey of software refactoring. Software Engineering,
IEEE Transactions on, 2005. 30(2): p. 126-139.

9. Counsell, S., et al., Is a strategy for code smell assessment long overdue?, in
Proceedings of the 2010 ICSE Workshop on Emerging Trends in Software Metrics.

2010, ACM: Cape Town, South Africa. p. 32-38.
10. Bryton, S., F. e Abreu, and M. Monteiro. Reducing Subjectivity in Code Smells

Detection: Experimenting with the Long Method. Proceedings of the 7th
International Conference on the Quality of Information and Communications
Technology (QUATIC'2010), IEEE: Porto, Portugal. pp. 337-342.

11. Mantyla, M., J. Vanhanen, and C. Lassenius. Bad smells-humans as code critics.
Proceedings of the International Conference on Software Maintenance (ICSM'04).
2004, IEEE: Chicago, Illinois, USA. pp. 399-408.

12. Wake, W., Refactoring workbook. 2003: Addison-Wesley Longman Publishing Co.,
Inc. Boston, MA, USA.

13. Kim, M., et al., An empirical study of code clone genealogies. ACM SIGSOFT
Software Engineering Notes, 2005. 30(5): p. 187-196.

14. Henderson-Sellers, B., Object-oriented metrics: measures of complexity. 1996:
Prentice Hall.

