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Abstract. Eradication of code smells is often pointed out as a way to improve 
readability, extensibility and design in existing software. However, code smell 
detection in large systems remains time consuming and error-prone, partly due 
to the inherent subjectivity of the detection processes presently available. In 
view of mitigating the subjectivity problem, this paper presents a tool that 

automates a technique for the detection and assessment of code smells in Java 
source code, developed as an Eclipse plug-in. The technique is based upon a 
Binary Logistic Regression model and calibrated by expert’s knowledge. A 
short overview of the technique is provided and the tool is described. 

Keywords: refactoring, code smells, binary logistic regression, automated 
software engineering. 

1  Introduction 

As advocated by the agile XP methodology [1], refactoring techniques are sought to 

reduce costs associated with software life cycle at both the Construction phase [2]  

and the Production phase [2] by supporting iterative and incremental activities and 

also by improving software extensibility, understandability and reusability [3]. Taking 

into account that software maintenance activities are the most costly in the software 

life cycle [4-6],  tangible benefits are expected from regularly performing refactoring. 

Empirical evidence showing the dire consequences of code infested with smells, 

seems to concur [7]. 

Even with an approach based on guidelines offered by Beck [1] and Fowler [3], the 

need of informed human assistance is still felt, to decide where refactoring is worth 

applying [8]. It is here that the concept of code smells provides a contribution [3]. 
Nevertheless, we have found, in the context of post-graduate courses, that the manual 

detection of code smells is an excessively time-consuming activity (therefore costly) 

and is error-prone, as it depends on the developer’s degree of experience and 

intuition. 

Empirical studies on the effectiveness of code smells detection techniques are still 

scarce, but there is some evidence that their eradication is not being achieved to a 

satisfactory degree, often because developers are not aware of their presence [9]. This 

is due to the lack of adequate tool support, which requires sound techniques for code 



smells diagnosis. The subjective nature of code smells definition hinders that 

soundness [3, 10]. 

Currently used code smells detection techniques come in two flavours. The first 

concerns qualitative detection using (inevitably biased) expert-based heuristics. The 

latter uses thresholds on software metrics obtained from the source code under 

analysis and seems more appealing for supporting automation due to its repeatability. 

However, it has two important preconditions for effective use. First, the same set of 

metrics cannot be used to detect all smells of a catalog such as the one in [3] since 
code smells are very distinct in nature. Second, even with a customized set of metrics 

chosen by an expert for detecting a particular smell, the resulting model must be 

calibrated, i.e., its internal values must be determined to reduce false positives and 

false negatives. That entails an empirical validation based on existing classification 

data. Mantyla el al. [11] confirm the difficulty of assessing code smells by using 

metric sets and the hard task of defining a detection model. 

Our work contributes to the field of code smells detection by providing an 

automated process, supported by a tool (an Eclipse plug-in), capable of code smell 

assessment in Java source code in an objective and automatic way. In contrast with 

existing proposals that rely purely on the opinion of a single expert, we propose a 

statistically based detection algorithm that will go through progressive calibration 

based upon a developers’ community. The detection algorithm, based on Binary 
Logistic Regression, was initially calibrated by using a moderately large set of pre-

classified methods (by human experts) and validated for the Long Method code smell, 

as depicted in Bryton et al. [10]. The larger the set, the better will be the detection. 

Our approach relies on the community of our tool users to perform continuous 

recalibration of the code smells detection models (one per each smell). 

We have developed a prototype version of  the Smellchecker tool, an Eclipse 

plugin for detecting code smells in Java code. This prototype allows smell tagging, 

visualization and detection. 

The rest of this paper is structured as follows. Section 2 overviews the Binary 

Logistic Regression model and discusses how calibration using expert’s knowledge 

leverages it. Section 3 introduces the automated process to code smells detection. 
Section 4 describes the architecture of the Smellchecker Eclipse plug-in in detail and 

summarizes how it is used. Section 5 depicts threats to validity. Section 6 briefly 

reviews related work. Finally, section 7 presents some closing remarks and outlines 

future research directions. 

2  Binary Logistic Regression 

Binary logistic regression (BLR) is used for estimating the probability of occurrence 

of an event (here, the existence of a code smell) by fitting data to a logistic curve. It is 

a generalized linear model where the dependent variable has two values (code smell 

present or absent) and an arbitrary set of numeric explanatory variables can be used 

(here, a set of code complexity metrics). The following logistic function is used to 

estimate the percentage of probability of a particular code smell: 
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Where z is called the logit,    are the regressors or explanatory variables (code 

complexity metrics collected from the source code) and    are the regression 

coefficients calculated during the calibration process. The choice of the adequate 

metrics to select for each code smell estimation model based on BLR can be 

performed by using the Wald or the Likelihood-Ratio tests. 

To perform BLR calibration with a statistical tool such as SPSS or R, we need a 
sample with values for all variables (explanatory and outcome). Table 1 presents an 

extract of such a sample, corresponding to four methods on the 

org.apache.commons.cli package from Apache Commons CLI 1.2. The collected 

metrics are MLOC (method lines of code), NBD (nested block depth), VG 

(cyclomatic complexity), PAR (number of parameters) and LVAR (number of local 

variables). These are the explanatory variables in the BLR model. Long Method is the 

dependent or outcome variable: an expert indication of the presence of the Long 

Method code smell on the particular method. 

After calibration and validation of the regression coefficients, the instantiated 

model is used to predict the possible presence of a particular code smell. 

Table 1. Sample extract for calibrating a Long Method code smell estimation model 

Application ApacheCommonsCLI1.2 

Package org.apache.commons.cli 

Class GnuParser Parser HelpFormatter PosixParser 

Method flatten parse renderOptions burstToken 

MLOC 69 67 59 46 

NBD 5 5 4 4 

VG 11 14 10 6 

PAR 3 4 5 2 

LVAR 9 12 19 5 

Long Method 0 1 1 0 

3  Automated Code Smells Detection 

This section sets the context and presents this work’s underlying main theme: 

reducing the subjectivity in code smells detection by automating its process. Figure 1 

outlines the automated process, which comprise the activities described next. 
 

Code Annotation. In the first iteration, experts must tag the code sample for the 

presence of code smells in methods, classes or interfaces, to yield an adequate sample 

for the initial calibration of the models, prior to making the tool available to “regular” 

developers. In subsequent iterations those developers will only tag false positives 

(developer disagrees with a detected smell) and false negatives (developer identifies a 



non-detected code smell). These cases are expected to decrease over time as more 

data results in more finely calibrated models that produce more precise results. 

 

Metrics Calculation. Automatic process that requires a parser-enabled tool that 

computes metrics on the target source code (the one that is annotated). 

 

Models Calibration. Calibration of the BLR models by calculating and validating the 

regression coefficients. It is an automatic process performed by a statistical processor. 
Note that there will be one model for each code smell. Each model may have different 

explanatory variables (metrics). 

Smells Detection. Application of the calibrated BLR models to selected source code 

elements. This estimates the probability of presence of the corresponding code smells 

in the selected artifacts. 

Smells Visualization. Identification of the source code artifacts where code smells 
are estimated to be present. The developer can set the threshold probability (e.g. see 

only the code smells above 90% probability) independently for each code smell.  

 

 

Fig. 1. Code smells detection process 

Detected code smells will vary depending on the selected probability threshold. 

Increasing the probability too much will cause more false negatives, while decreasing 

it in excess will cause more false positives. It will be up to the developer to fine tune 

the threshold to get the adequate level of advice (let us call it “sensitivity”) regarding 
the presence of code smells. It will also be up to the developer to decide on the 

adequacy of applying a given refactoring to remove a detected code smell. 
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The described process can have two different usage patterns. The first concerns a 

single user with a single machine. The second, a remote usage for more than one user. 

Local Usage. The process is completely local (Fig. 2). The models calibration process 

is done locally. The user is responsible for tagging an initial source code base to 
calibrate the models. Then, the user can apply the models to detect the occurrence of 

code smells in all code bases of his choice. It is also possible to refine the calibration 

of the model by providing additional code smell tagging information. 

The usefulness of this option is one of practical value: tuning the models, through 

progressive calibrations, to personal user preferences, thus matching the models to the 

user notions of where a code smell might be present. 

 

 

Fig. 2. Local usage 

Remote Usage. The process has a remote central server responsible for storing, on its 

own data base, the code smells tagging and metrics values provided by several users 
(Fig. 3). With the calibration and validation of the BLR model being performed on the 

server, users can remotely query the server for the most recent model parameters. This 

model is calculated from the aggregated data provided by all users, augmenting the 

statistical significance of the BLR estimates and thus providing a more accurate 

detection of the code smells. 

One of the simpler updates the user can make is to provide feedback on false 

positives and false negatives detected, thus contributing for the models’ progressive 

enhancement. 
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Fig. 3. Remote usage 

4  Smellchecker 

We have chosen the Eclipse framework as the target platform to support Smellchecker 

development due to its advanced Java support, available refactoring features, along 
with its plug-in development facility,  

Eclipse is a stylish and appropriate choice for our tool deployment since its 

architecture by components supports integration of virtually any component within its 

architecture. Yet, despite its advanced support for Java source code refactoring as part 

of its standard JDT toolkit, code smells detection is by and large completely lacking.  

 

Since Eclipse’s architecture by components permits seemingly integration of 

virtually any component within its scheme, it is a stylish and appropriate choice for 

our tool deployment. 

The Smellchecker prototype architecture uses Java 1.6 and Eclipse platform 3.5. It  

comprises the following components, traceable to the processes described in Fig 1:  
1. Source Code Annotation – Eclipse’s SWT/JFace UI Framework, Eclipse’s JDT 

AST;  

2. Metrics Calculation – Metrics Eclipse Plugin Version 1.3.8; 

3. BLR Models Calibration – R Statistical Computing, JRI; 

4. Code Smells Detection - Eclipse’s JDT AST; 

5. Code Smells Visualization - Eclipse’s SWT/JFace UI Framework. 

 

An overview of all the major components comprising Smellchecker is provided in 

Fig. 4. 
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 Common to all processes is the persistence component, represented on the 

diagram as the Code Smells DB (database) component. 

 

 

Fig. 4. Smellchecker component diagram 

Source Code Annotation. Eclipse’s SWT/JFace UI Framework provides user 
interface resources that allow code smells tagging assistance. 

Users can tag classes, methods and interfaces. This operation may be performed 

manually, by tagging the code directly with Java annotations with the following 

syntax: 

 
@CodeSmell(type=CodeSmellType.LargeClass,  

description="Too many functionalities") 

public class Customer {...} 

  

The code smells annotation process is also assisted by the UI. The user can select 

from a drop menu the corresponding code smell tag for each desired code fragment. 

Eclipse will present a Tag Smell menu in the context of code elements when available. 

As described by Fowler [3] and Wake [12], classes, interfaces and methods have 

particular code smells associations. An example of the UI assisted code smell 

annotation process in represented in Fig 5. 

After selection, the annotation will be added, via AST (Java’s Abstract Syntax 

Tree) API, to the source code exactly as the annotation example listed above. A data 

base entry will be made consisting of the smell indication in conjunction with 

information of the method, class, interface, application, and package annotated. 
 



 

Fig. 5. UI assisted Code Smell Annotation 

 

Fig. 6 shows the command and icon, Refresh Visualization, for constructing or 

refreshing source code’s smells annotation database. The information will then be 

displayed in tree form on the workbench view Smellcheckeer Tagged Code Smells in 

conjunction with the metrics calculated for that specific resource. This view is context 
aware so a class, package, or method must be selected.  

 

 

 

Fig. 6. Refresh Visualization command and icon 

 

Code Metrics Calculation. Metrics calculation is accomplished by the Eclipse 

Metrics 1.3.8 plug-in. Metrics supported for classes include Lines of Code, Depth of 

Inheritance Tree, Number of Methods and Lack of Cohesion to name a few. For 

methods, the tool supports: Lines of Code, Nested Block Depth, McCabe Cyclomatic 

Complexity and Number of Parameters. It also provides an extension point on the 

basis of which it is possible to extend the plug-in to calculate additional metrics. 

The Metrics Calculation plugin must be enabled via the Smellchecker preference page 

menu. Metrics are then calculated during the build cycle and displayed in the view 

Smellchecker: Tagged Code Smells in conjunction with code smells presence 
indications. Fig. 7 shows an example. 



 

Fig. 7. Metrics and Annotated Code Smells view 

Models calibration. Calibration and validation of the BLR models is performed by 

the R statistical engine. Interaction between the plug-in and R is made with JRI, a 

Java/R Interface that allows running an instance of R as a process that responds to 

command line type commands and outputs back to Java the data resulting from its 
computations. Actions that must be performed include: normality tests on the metric 

data (to know which test to apply), correlation coefficients among the variables, 

collinearity diagnosis tests and goodness-of-fit analysis for the BLR models. 

Smells Detection. It follows the successful calibration of the BLR model. The 

selection of the command Code Smells Detection, on the toolbar CodeSmells menu, 

parses (for all open projects) all compilation units with the AST API parse command 

of JDT. For each class or method (depending if the model was calibrated for a class or 
a method smell), the corresponding metrics is read from the data base and the 

probability of the presence of the code smell is calculated. If the probability is above 

the defined threshold, the node of the AST corresponding to the artifact under 

analysis is marked as a problematic node with JDT’ Marker class, which is 

responsible for marking compile errors or warnings. To distinguish make code smells 

warnings from compile errors and warnings, a lower value of importance is linked to 

the node where the code smell was detected. 

Smells Visualization. Since nodes identified by the model have been marked, they 
will appear in the error log view and they will have the same properties as compiler 

errors. So a jump to the smelly section of the code can be performed upon a click. 

 

The previous descriptions apply both to the single-user/single-machine functioning, as 

well as to the remote usage process. Additional conditioning pertains to the 

centralized efforts of the server, as well as availability of the service as a web service 

to accommodate client needs for a simple interface. The data is communicated as an 



XML document and the derivation of the model is identical with the difference that in 

the server case, more data is expected to be available. 

5  Threats to Validity 

Assurance cannot be stated that, for all the 22 Code Smells described by Fowler, 

the BLR model proposed will derive valid assumptions. For example, Duplicated 

Code is an active area of research with sophisticated mechanisms already derived to 

identify Code Clones [13].  

Threats to validity arise from the set of metrics selected, the experts opinion and 

the sensibility expressed by the BLR model after calibration. 

Metrics selected for the Smellchecker tool derive from their availability in a prior 

existing Eclipse Plugin and represent a small subset of metrics presented in literature 
[14]. Metrics in Smellchecker concern classic complexity measures that are not suited 

to detect all code smells. Therefore the need exist to extend their boundary. 

Further studies must be conducted  to know how sensitive the BLR model is to bad 

data given by experts and also to analyze over fitting issues and scalability of the 

model. 

6  Related Work 

A few open-source tools exist for detecting code smells in Java code. Most of them 

use static analysis, that is, they do not require executing the program, such as the one 

presented in this paper. 

PMD (http://pmd.sourceforge.net/). This widely used tool uses static analysis 
techniques to scan Java source code and look for potential problems like possible 

bugs (empty try/catch/finally/switch statements), dead code (unused local variables, 

parameters and private methods), suboptimal code (wasteful String/StringBuffer 

usage), overcomplicated expressions (unnecessary if statements, for loops that could 

be while loops) and duplicate code (copied/pasted code means copied/pasted bugs). 

PMD is integrated with JDeveloper, Eclipse, JEdit, JBuilder, BlueJ, CodeGuide, 

NetBeans, IntelliJ IDEA, TextPad, Maven, Ant, Gel, JCreator, and Emacs. 

FindBugs (http://findbugs.sourceforge.net). This tool is also widely used and 
integrated with Eclipse, using the static analysis capabilities of Apache’s Byte Code 

Engineering Library (BCEL) to inspect Java bytecode for occurrences of bug patterns. 

The latter are code idioms that are often errors. Bug patterns arise for a variety of 

reasons such as: difficult language features, misunderstood API methods, 

misunderstood invariants when code is modified during maintenance, or garden 

variety mistakes as typos or use of the wrong boolean operator. Their authors report 

that its analysis is sometimes imprecise since many false positives (up to 50% of 

identified bugs) can be risen. 

http://pmd.sourceforge.net/
http://findbugs.sourceforge.net/


SISSy (http://sissy.fzi.de). According to its authors, the Structural Investigation of 

Software Systems tool can detect some well-known code smells and the violation of 

over 50 typical OO design principles, heuristics and patterns, such as bottleneck 

classes, god classes, data classes or cyclical dependencies between classes or 

packages. SISSy can analyze systems written in Java, C++ or Delphi but, as far as we 

could ascertain, is not integrated with any IDE. 

Smelly (http://smelly.sourceforge.net). Is an Eclipse plug-in that, according to its 
authors, is able to detect the following code smells in Java code: Data Class, God 

Class, God Method, High Comment Density, Long Parameter List and Switch. Only 

the one in bold matches the original name in the original code smells catalog [3]. 

Code Bad Smell Detector (http://cbsdetector.sourceforge.net/). This tool claims to 

detect five of Fowler et al. [3] code smells: Data Clumps, Switch Statements, 
Speculative Generality, Message Chains, and Middle Man, from Java source code. It 

has no recent downloads and appears to be associated with an ongoing PhD work. It is 

also not integrated with an IDE. 

7  Conclusion & Future Work 

Closing Remarks. The idea of automating code smells detection by using metrics 

and tools is not new. However, the detection technique used in the Smellchecker tool 

is in contrast with all other known proposals due to the usage of a dynamic statistical 

process that relies on expert’s knowledge that can be applied, theoretically1, to any 

smell. A distinctive characteristic of our approach is that the quality of the detection 

process increases as time goes on, due to progressive model calibrations supported by 

accumulated data. 

Future Work. More in-depth studies are required for validating the process for 

different code smells, different calibration data, and better assurance of the BLR 

model coefficients. 
According to [3], a given code smell can be mitigated/removed by applying one 

out of a set of refactoring transformations. Since Eclipse supports several of those 

transformations, we envision that upon code smells identification, adequate 

refactorings could be suggested to remove the smell. In future, we will look at ways 

of computing the expected quality improvements attained by applying each of the 

refactoring alternatives. Hopefully, that will allow us to provide some advice for the 

developer. 

                                                        
1 Empirical studies are required to validate this assumption. 

http://sissy.fzi.de/
http://smelly.sourceforge.net/
http://cbsdetector.sourceforge.net/
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