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ABSTRACT 

Software engineering tools should support complete separation of concerns, by 
enabling the deployment of each different concern in its own unit of modularity. 
Unfortunately, current tools and languages – including those supporting the object-
oriented programming paradigm – fail to provide a complete and effective support for the 
separation of all concerns. Undesirable phenomena such as code scattering and code 
tangling ensue. 

Aspect-Oriented Programming is a new programming paradigm capable of 
modularising crosscutting concerns. Aspect-oriented programming complements existing 
programming paradigms, including object-oriented programming, with constructs that 
provide a fuller separation of concerns. 

Refactoring is a technique to restructure program source code in order to improve its 
underlying design and style while preserving the externally observable behaviour. “Code 
smells” help to detect inadequate structures and designs, which are then gradually removed 
through refactoring processes. 

There is a prospect of aspect-oriented programming becoming a mainstream 
technology in the near future. This begs the question of how to deal with a large base of 
object-oriented legacy code when aspect-orientation becomes standard practice. AspectJ's 
backward compatibility with Java opens the way for refactoring existing Java applications 
to leverage the concepts and mechanisms of aspects. This requires a prior idea of good 
style for aspect-oriented source code, something yet to be developed and matured. 

This thesis contributes to the definition of a new style appropriate to aspect 
orientation. To this effect, this thesis documents a collection of novel refactorings enabling 
the extraction of crosscutting concerns from object-oriented legacy source code and the 
subsequent restructuring of the aspects thus obtained. In addition, this thesis presents a 
review of traditional object-oriented code smells so they can be used as indicators of latent 
aspects in object-oriented source code. Finally, this thesis proposes several novel aspect-
oriented code smells. We validate the refactorings through an illustrative refactoring 
process. 

Keywords: Aspect-Oriented Programming, Refactoring, Object-Oriented Programming. 
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RESUMO 

Idealmente, as ferramentas de engenharia de programas suportariam uma estrita 
separação de facetas, possibilitando a colocação de cada faceta na sua própria unidade 
modular. Infelizmente, as actuais ferramentas e linguagens – incluindo as que suportam o 
paradigma da orientação ao objecto – não conseguem obter uma completa e efectiva 
separação de todas as facetas. Daí resultam fenómenos indesejáveis tais como a dispersão e 
emaranhado de texto fonte. 

A programação orientada ao aspecto é um novo paradigma da programação capaz de 
modularizar facetas transversais. A orientação ao aspecto complementa os paradigmas 
existentes, incluindo a orientação ao objecto, com mecanismos que providenciam uma 
separação de facetas mais completa. 

A refabricação de programas é uma técnica para reestruturar o texto fonte de um 
programa no sentido de melhorar a concepção e estilo subjacentes, mantendo o seu 
comportamento externamente observável. “Maus cheiros” no texto fonte ajudam a 
detectar estruturas e concepções inadequadas, que são então gradualmente removidos 
através de processos de refabricação. 

Existe a perspectiva da orientação ao aspecto ter uma aceitação generalizada no futuro 
próximo. Coloca-se a questão de como lidar com uma grande base instalada de texto fonte 
orientado ao objecto legado quando tal acontecer. A compatibilidade retroactiva de 
AspectJ em relação a Java possibilita a refabricação das aplicações Java existentes de modo 
a tomarem partido dos conceitos e mecanismos dos aspectos. Porém, isto tem como 
pressuposto uma ideia clara de bom estilo para o texto fonte orientado ao aspecto, algo 
que actualmente não existe duma maneira desenvolvida e matura. 

Esta tese contribui para a caracterização de um novo estilo, apropriado à orientação ao 
aspecto. Para esse efeito, esta tese documenta uma colecção de refabricações originais 
através das quais facetas transversais existentes em texto legado orientado ao objecto são 
extraídas para aspectos, e a posterior reestruturação dos aspectos assim obtidos pode ser 
realizada. Esta tese apresenta também uma reapreciação dos maus cheiros orientados ao 
objecto tradicionais no sentido de poderem ser usados na detecção de aspectos latentes no 
texto fonte orientado ao objecto. Por fim, esta tese propõe diversos maus cheiros originais, 
orientados ao aspecto. As refabricações são validadas por meio de um processo de 
refabricação ilustrativo. 

Palavras chave: Programação Orientada ao Aspecto, Refabricação, Programação 
Orientada ao Objecto. 



iv 

 



 

v 

ACKNOWLEDGMENTS 

It was remarked before that there is nothing more rewarding than writing the acknowledgements 
section of a doctoral dissertation. Indeed, now that I’m writing this last section of my work, I can 
finally understand the joy! 
First and foremost, I thank João Miguel Fernandes. More than a supervisor, he was my partner in 
a team that worked extremely well throughout the 37 months of this extraordinary journey. João 
Miguel kept bringing new challenges that I would not have dared attempting to tackle if it was not 
for his prompting, and which I, often to my surprise, kept meeting. He led me to fulfil a potential of 
which I was previously unaware. Without him, work for this thesis could never have evolved the 
way it has. 
I’m deeply indebted to my parents, Maria Ângela and Jorge Pessoa Monteiro, for providing the 
office space near my home where I had the ideal conditions to work and think (including, thank 
God, isolation from the Internet!). 
António M. F. Rito da Silva deserves a special place in this acknowledgements section. As leader 
of the Software Engineering Group at INESC-ID, he was extremely open and supportive since I 
approached him at the start of my work. Rito was instrumental in the definition of my work: his 
was the idea of putting together the subjects of aspect-oriented programming and refactoring. 
My thanks to Sérgio Miguel Fernandes, for his patience and unfailing support while I was 
exploring the WorkSCo framework. 
Stefan Hanenberg gave me a precious hint at the AOSD 2003 in Boston, by remarking that at 
the time nobody really had a clear idea of what a “good style” for AOP should be. His remark 
made me realise that I should tackle the subject of refactoring from the side of style. 
Special thanks to João Luís Ferreira Sobral and Rui Mendes for their support and friendship. 
This project was supported by PRODEP III (Medida 5 – Acção 5.3 – Eixo 3 – Formação 
Avançada de Docentes do Ensino Superior). I also acknowledge the financial support given by 
project PPC-VM (PO-SI/CHS/47158/ 2002) and by FLAD (Fundação Luso Americana 
para o Desenvolvimento). 
Finally, I dedicate this thesis to my beloved wife Ana Maria and our children Maria Adília and 
Jorge Fernando. 



vi 



vii 

CONTENTS 

CHAPTER 1. INTRODUCTION.................................................................................. 1 
1.1. MOTIVATION .......................................................................................................... 1 
1.2. PROBLEM STATEMENT............................................................................................ 5 
1.3. AIMS OF THE THESIS ............................................................................................... 7 
1.4. APPROACH TAKEN.................................................................................................. 7 

1.4.1 First Case Study: the WorkSCo Framework ............................................ 7 
1.4.2 Second Case Study: the GoF Patterns...................................................... 8 

1.5. CONTRIBUTIONS OF THE THESIS ............................................................................. 8 
1.6. ISSUES NOT ADDRESSED.......................................................................................... 9 
1.7. ORGANISATION OF THE THESIS ............................................................................... 9 

CHAPTER 2. SEPARATION OF CONCERNS AND REFACTORING............... 11 
2.1. TRADITIONAL SEPARATION OF CONCERNS ........................................................... 11 

2.1.1 Object-Oriented Programming............................................................... 11 
2.1.2 The Law of Demeter ............................................................................... 15 
2.1.3 Design Patterns ...................................................................................... 15 
2.1.4 Components ............................................................................................ 17 
2.1.5 Frameworks ............................................................................................ 20 

2.2. REFACTORING....................................................................................................... 20 
2.2.1 Role of Units Tests in Refactoring.......................................................... 22 
2.2.2 Brief History of Refactoring ................................................................... 23 
2.2.3 Bad Smells in the Code........................................................................... 24 
2.2.4 Why do we need Refactoring? ................................................................ 26 

2.3. METAPROGRAMMING AND REFLECTIVE TECHNIQUES .......................................... 27 
2.4. ASPECT-ORIENTED PROGRAMMING...................................................................... 29 

2.4.1 What is AOP? ......................................................................................... 30 
2.4.2 Concepts and Mechanisms of an Aspect-Oriented Language................ 32 
2.4.3 A Complete Illustrating Example ........................................................... 38 
2.4.4 Aspect Interfaces and Reusable Aspects................................................. 41 

CHAPTER 3. CASE STUDY: WORKSCO............................................................... 45 
3.1. WHAT IS WORKSCO?........................................................................................... 46 
3.2. WHY WORKSCO WAS SELECTED.......................................................................... 46 
3.3. WHY WORK ON WORKSCO WAS DISCONTINUED ................................................. 46 
3.4. APPROACH TAKEN................................................................................................ 47 
3.5. ARCHITECTURE OF WORKSCO ............................................................................. 47 
3.6. EXPLORATION OF WORKSCO ............................................................................... 49 

3.6.1 The Data Link Feature ........................................................................... 50 
3.6.2 Initial Hurdles ........................................................................................ 51 
3.6.3 Style Issues.............................................................................................. 53 

3.7. WORK ON THE CASE STUDY ................................................................................. 54 
3.7.1 Extracting the Data Link Feature........................................................... 54 
3.7.2 Analysis of the Debugging Concern ....................................................... 60 

3.8. DISCUSSION .......................................................................................................... 60 
3.8.1 Good Object-Oriented Style is a Precondition for applying AOP ......... 61 
3.8.2 Preservation of Intent vs. Preservation of Behaviour ............................ 61 



 

viii 

3.8.3 Feature Decomposition as a Likely Anti-Pattern ................................... 62 

CHAPTER 4. CASE STUDY: IMPLEMENTATIONS OF THE GOF PATTERNS 
IN JAVA AND ASPECTJ............................................................................................ 65 

4.1. WHY THE EXAMPLES WERE SELECTED ................................................................. 65 
4.2. APPROACH TAKEN................................................................................................ 65 
4.3. AD HOC ANALYSIS OF THE ASPECTJ IMPLEMENTATIONS ..................................... 66 

4.3.1 Role Assignment and Role Separation ................................................... 66 
4.3.2 A Price for Reusability ........................................................................... 69 
4.3.3 Difficulties in Capturing Context ........................................................... 70 
4.3.4 Problems of Privileged Access ............................................................... 74 
4.3.5 Problems with Illegal Weaving .............................................................. 74 

4.4. RESULTS DERIVED FROM THE CODE EXAMPLES ................................................... 75 
4.5. SUMMARY............................................................................................................. 75 

CHAPTER 5. ASPECT-ORIENTED CODE SMELLS ........................................... 77 
5.1. OO SMELLS IN THE LIGHT OF AOP....................................................................... 77 
5.2. THE DOUBLE PERSONALITY CODE SMELL ............................................................ 78 
5.3. ABSTRACT CLASSES AS A CODE SMELL................................................................ 80 
5.4. THE ASPECT LAZINESS CODE SMELL...................................................................... 80 

CHAPTER 6. ASPECT-ORIENTED REFACTORINGS........................................ 85 
6.1. FORMAT OF THE REFACTORINGS........................................................................... 85 
6.2. GENERAL GUIDELINES.......................................................................................... 86 
6.3. REFACTORINGS FOR FEATURE EXTRACTION......................................................... 87 

6.3.1 Change Abstract Class to Interface........................................................ 88 
6.3.2 Extract Feature into Aspect.................................................................... 90 
6.3.3 Extract Fragment into Advice ................................................................ 94 
6.3.4 Extract Inner Class to Standalone.......................................................... 99 
6.3.5 Inline Class within Aspect .................................................................... 102 
6.3.6 Inline Interface within Aspect............................................................... 103 
6.3.7 Move Field from Class to Inter-type..................................................... 104 
6.3.8 Move Method from Class to Inter-type................................................. 106 
6.3.9 Replace Implements with Declare Parents........................................... 108 
6.3.10 Split Abstract Class into Aspect and Interface ..................................... 109 

6.4. REFACTORINGS FOR RESTRUCTURING THE INTERNALS OF ASPECTS ................... 112 
6.4.1 Extend Marker Interface with Signature .............................................. 113 
6.4.2 Generalise Target Type with Marker Interface.................................... 114 
6.4.3 Introduce Aspect Protection ................................................................. 116 
6.4.4 Replace Inter-type Field with Aspect Map ........................................... 118 
6.4.5 Replace Inter-type Method with Aspect Method................................... 125 
6.4.6 Tidy Up Internal Aspect Structure........................................................ 128 

6.5. REFACTORINGS TO DEAL WITH ASPECT GENERALISATION................................. 129 
6.5.1 Extract Superaspect.............................................................................. 129 
6.5.2 Pull Up Advice...................................................................................... 130 
6.5.3 Pull Up Declare Parents ...................................................................... 130 
6.5.4 Pull Up Inter-type Declaration ............................................................ 131 
6.5.5 Pull Up Marker Interface ..................................................................... 132 
6.5.6 Pull Up Pointcut ................................................................................... 133 
6.5.7 Push Down Advice................................................................................ 133 
6.5.8 Push Down Declare Parents ................................................................ 134 



 

ix 

6.5.9 Push Down Inter-type Declaration ...................................................... 135 
6.5.10 Push Down Marker Interface ............................................................... 135 
6.5.11 Push Down Pointcut ............................................................................. 136 

6.6. DEALING WITH LEGACY CODE............................................................................ 137 
6.6.1 Partition Constructor Signature........................................................... 137 

CHAPTER 7. VALIDATING EXAMPLE: REFACTORING OBSERVER ....... 139 
7.1. THE OBSERVER DESIGN PATTERN ...................................................................... 139 
7.2. THE FLOWER EXAMPLE ...................................................................................... 140 
7.3. THE JAVA STANDARD API OBSERVER-OBSERVABLE PROTOCOL ....................... 141 
7.4. THE ORIGINAL JAVA IMPLEMENTATION ............................................................. 142 
7.5. UNIT-TESTING THE FLOWER EXAMPLE............................................................... 145 
7.6. THE REUSABLE AOP IMPLEMENTATION OF OBSERVER ...................................... 149 
7.7. REFACTORING SESSIONS..................................................................................... 151 

7.7.1 First Phase: Feature Extraction........................................................... 151 
7.7.2 Second Phase: Restructure the Internals of the Aspect........................ 160 
7.7.3 Third Phase: Extracting Common Code to a Superaspect................... 169 
7.7.4 Alternative Refactoring Path ................................................................ 171 

7.8. DISCUSSION ........................................................................................................ 181 

CHAPTER 8. RELATED WORK ............................................................................ 183 
8.1. GENERAL OVERVIEW.......................................................................................... 183 
8.2. ASSESSING THE GOF PATTERN IMPLEMENTATIONS CODE .................................. 183 
8.3. GUIDELINES ON HOW TO APPROACH THE SOURCE CODE.................................... 184 
8.4. GENERAL STYLE RULES...................................................................................... 184 
8.5. PROPOSALS FOR ASPECT-ORIENTED REFACTORINGS.......................................... 185 
8.6. PROPOSALS FOR ASPECT-ORIENTED CODE SMELLS............................................ 186 
8.7. PROVING THE PRESERVATION OF BEHAVIOUR .................................................... 187 
8.8. POTENTIAL PITFALLS.......................................................................................... 187 

CHAPTER 9. CONCLUSIONS ................................................................................ 189 
9.1. CONTRIBUTIONS ................................................................................................. 189 
9.2. PUBLICATIONS .................................................................................................... 190 
9.3. FUTURE RESEARCH............................................................................................. 190 

9.3.1 Maturing the Refactorings.................................................................... 190 
9.3.2 Pinpointing Other Code Smells ............................................................ 191 
9.3.3 Developing Other Refactoring Ideas.................................................... 191 
9.3.4 Covering Other Language Characteristics .......................................... 192 
9.3.5 Refactorings for Restructuring the Remaining Base Code................... 192 
9.3.6 Refactorings to Cope with Published Interfaces .................................. 192 
9.3.7 Developing Opposite Refactorings....................................................... 192 
9.3.8 Updating to New Language Versions................................................... 193 
9.3.9 Comparing AspectJ with AHEAD......................................................... 193 

APPENDIX A REFACTORINGS DOCUMENTED BY FOWLER..................... 195 

APPENDIX B CODE SMELLS DESCRIBED BY BECK AND FOWLER ........ 197 

APPENDIX C ADDITIONAL REFACTORINGS FROM 
WWW.REFACTORING.COM ................................................................................ 199 

APPENDIX D REFACTORINGS TO PATTERNS BY KERIEVSKY................ 201 



 

x 

APPENDIX E CODE SMELLS DESCRIBED BY KERIEVSKY ........................ 203 

APPENDIX F CODE SMELLS AND SYMPTOMS DESCRIBED BY WAKE.. 204 

APPENDIX G – ASPECTJ QUICK REFERENCE ............................................... 206 

BIBLIOGRAPHY....................................................................................................... 209 

REFERENCES FROM THE INTERNET............................................................... 221 
 



 

xi 

CODE LISTINGS 

LISTING 1: SIMPLE CLASS DEFINING A SIMPLE METHOD ................................................... 28 
LISTING 2: STRAIGHTFORWARD WAY TO CALL A METHOD ............................................... 29 
LISTING 3: CALLING A METHOD THROUGH REFLECTION .................................................. 29 
LISTING 4: SIMPLE EXAMPLE OF POINTCUTS AND ADVICE................................................ 36 
LISTING 5: MESSAGES TO THE CONSOLE AS A CROSSCUTTING CONCERN ......................... 38 
LISTING 6: EXAMPLE OF A SIMPLE ASPECT ENCLOSING MESSAGES IN BRACKETS ............. 39 
LISTING 7: EXAMPLE OF AN ASPECT SORTING MESSAGES TO THE CONSOLE ..................... 40 
LISTING 8: REUSABLE ASPECTJ IMPLEMENTATION OF CHAIN OF RESPONSIBILITY .......... 42 
LISTING 9: SNAPSHOT OF THE COMPILE METHOD FOR THE FORKPROCEDURE CLASS. ...... 52 
LISTING 10: SNAPSHOT OF THE REPEATUNTILPROCEDURE CLASS’ CONSTRUCTOR. ........ 53 
LISTING 11: SNAPSHOT OF A METHOD BETRAYING CONDITIONAL COMPLEXITY............... 54 
LISTING 12: VARIANT OF INTRODUCED CONSTRUCTOR WITH CALL TO SUPER.................. 56 
LISTING 13: COMPOSITEPROTOCOL – REUSABLE IMPLEMENTATION OF COMPOSITE........ 71 
LISTING 14: COMMANDPROTOCOL – REUSABLE IMPLEMENTATION OF COMMAND.......... 72 
LISTING 15: STANDALONE INTERFACES AUXILIARY TO COMMANDPROTOCOL. ............... 73 
LISTING 16: ILLUSTRATING USE CASE FOR THE COMMAND PATTERN............................... 73 
LISTING 17: EXAMPLE OF THE DOUBLE PERSONALITY SMELL ........................................... 79 
LISTING 18: CODE EXAMPLE ILLUSTRATING THE ASPECT LAZINESS SMELL...................... 82 
LISTING 19: CODE EXAMPLE AFTER REMOVING THE ASPECT LAZINESS SMELL................. 83 
LISTING 20: INITIAL ILLUSTRATING EXAMPLE FOR EXTRACT FEATURE INTO ASPECT. ....... 92 
LISTING 21: CLEAN CODE AFTER USING EXTRACT FEATURE INTO ASPECT......................... 93 
LISTING 22: WINDOW VIEW CONCERN AFTER EXTRATION INTO AN ASPECT. .................... 94 
LISTING 23: PRECONDITION CHECKING CONCERN AFTER EXTRACTION TO AN ASPECT. .... 94 
LISTING 24: INITIAL (TANGLED) FORM OF THE FLOWER SUBJECT CLASS........................ 143 
LISTING 25: INITIAL (TANGLED) FORM OF THE BEE OBSERVER CLASS. .......................... 144 
LISTING 26: INITIAL (TANGLED) VERSION OF THE HUMMINGBIRD OBSERVER CLASS ..... 144 
LISTING 27: TEST METHOD USED THROUGHOUT AS CLIENT CODE. ................................. 145 
LISTING 28: OUTPUTSUPRESS ABSTRACT ASPECT.......................................................... 146 
LISTING 29: OUTPUTCAPTURE ABSTRACT ASPECT......................................................... 147 
LISTING 30: POINTCUT ASPECT OF GENERALLY APPLICABLE POINTCUTS ....................... 147 
LISTING 31: TEST CLASS FOR THE FLOWER EXAMPLE OF THE OBSERVER PATTERN ....... 148 
LISTING 32: THE REUSABLE OBSERVERPROTOCOL ASBTRACT ASPECT.......................... 150 
LISTING 33: ONE CONCRETE SUBASPECT OF OBSERVERPROTOCOL ............................... 150 
LISTING 34: CLEAN VERSION OF THE FLOWER CLASS. ................................................... 156 
LISTING 35: CLEAN VERSION OF THE BEE CLASS ........................................................... 157 
LISTING 36: CLEAN VERSION OF THE HUMMINGBIRD CLASS.......................................... 158 
LISTING 37: OBSERVINGOPEN JUST AFTER THE EXTRACTION PROCESS.......................... 159 
LISTING 38: OBSERVINGOPEN ASPECT AFTER USING GENERALISE TARGET TYPE WITH 

MARKER INTERFACE ............................................................................................... 163 
LISTING 39: OBSERVINGOPEN AFTER BEING COMPLETELY TIDIED UP ......................... 166 
LISTING 40: OBSERVINGCLOSE AFTER BEING COMPLETELY TIDIED UP ....................... 168 
LISTING 41: OBSERVINGRELATIONSHIPS ABSTRACT ASPECT........................................ 170 
LISTING 42: FINAL FORM OF THE OBSERVINGOPEN ASPECT ......................................... 170 
LISTING 43: FINAL FORM OF THE OBSERVINGCLOSE ASPECT........................................ 171 
LISTING 44: OBSERVINGOPEN AS SUBASPECT OF OBSERVERPROTOCOL........................ 173 
LISTING 45: OBSERVINGOPEN AFTER SOME TIDYING UP................................................ 176 



 

xii 

LISTING 46: RESTRUCTURED VERSION OF TEST CLASS. .................................................. 178 
LISTING 47: NEW TEST FOR THE SECOND IMPLEMENTATION OF OBSERVINGOPEN......... 179 
LISTING 48: SECOND FINAL VERSION OF OBSERVINGOPEN. .......................................... 180 
LISTING 49: FINAL VERSION OF OBSERVINGCLOSE ....................................................... 180 
LISTING 50: REFACTORED VERSION OF THE TEST FOR THE FLOWER EXAMPLE............... 181 
 



 

xiii 

FIGURES 

FIGURE 1: EXAMPLE OF GOOD MODULARITY – XML PARSING IN ORG.APACHE.TOMCAT... 4 
FIGURE 2: EXAMPLE OF CROSSCUTTING – LOGGING IN ORG.APACHE.TOMCAT. ................. 4 
FIGURE 3: JUNIT’S RED BAR SIGNALLING A FAILED TEST................................................. 23 
FIGURE 4: INTRODUTORY EXAMPLE FOR THE COMPOSE METHOD REFACTORING. ........... 25 
FIGURE 5: (A) TRADITIONAL COMPILATION (B) COMPILATION WITH WEAVING .............. 31 
FIGURE 6: GENERAL STRUCTURE OF REUSABLE ASPECTS................................................. 43 
FIGURE 7: THE WORKSCO FRONT-END PROCEDURE HIERARCHY..................................... 48 
FIGURE 8: ARCHITECTURE OF THE WORKSCO FRAMEWORK ........................................... 49 
FIGURE 9: ORIGINAL CHAIN OF PROCEDURE CONSTRUCTORS IN WORKSCO. ................... 55 
FIGURE 10: CONSTRUCTOR HIERARCHIES WITH AND WITHOUT DATA LINKS .................. 56 
FIGURE 11: DEALING WITH A CROSSCUTTING CONCERN INTERNAL TO AN ASPECT........... 57 
FIGURE 12: STRUCTURE FOR THE OBSERVER DESIGN PATTERN. ................................... 140 
 



 

xiv 

 



 

xv 

TABLES 

TABLE 1: EXAMPLES OF POINTCUTS IN ASPECTJ.............................................................. 34 
TABLE 2: EXAMPLES OF CONTEXT CAPTURE BY POINTCUTS. ........................................... 35 
TABLE 3: EXAMPLES OF CONTEXT CAPTURE BY POINTCUTS. ........................................... 35 
TABLE 4: ANALYSIS OF ASPECTJ IMPLEMENTATIONS OF THE GOF PATTERNS ACCORDING 

TO ROLES AND MODULARITY PROPERTIES ................................................................ 68 
 



 

xvi 

 



 

xvii 

 LIST OF ABBREVIATIONS 

AHEAD – Algebraic Hierarchical Equations for Applications Design 

AO – Aspect-Oriented 

AOP – Aspect-Oriented Programming 

AOSD – Aspect-Oriented Software Development 

API – Application Program Interface 

ASoC – Advanced Separation of Concerns 

DSL – Domain-Specific Language 

GoF – Gang-of-Four (the four authors of [48]) 

IC – Integrated Circuit 

IDE – Integrated Development Environment 

OO – Object-Oriented 

OOP – Object-Oriented Programming 

XML – Extended Mark-up Language 

XP – Extreme Programming 

WfDL – Workflow definition language 

WorkSCo – Workflow for separation of concerns 



 

xviii 

 



 

1 

Chapter 1. Introduction 

Aspect-Oriented Programming (AOP) [86] is a new paradigm that is presently gaining 
increasing acceptance in the software engineering community. There is the prospect of 
widespread adoption of aspect-orientation in the not too distant future, which begs the 
question of how to deal with a large legacy of object-oriented (OO) code. Experience with 
refactoring of OO software in the last half-decade suggests that refactoring techniques 
have the potential to bring the concepts and mechanisms of aspect-orientation to existing 
OO frameworks and applications. However, an essential prerequisite for the use of 
refactoring is presently missing: a clear notion of “good” aspect-oriented style, as opposed 
to existing notions of OO style. Such a style would be useful both to refactor existing OO 
code to turn it into aspect-oriented code, and to improve aspect-oriented code. 

In recent years, a clear notion of good style for OO code bases was successfully 
represented through catalogues of code smells [47] – symptoms in the source code that can 
be used to detect the existence of potential problems – and refactorings [125][47] – 
behaviour-preserving transformations of the source code that remove the smells, thus 
improving the underlying design. 

This dissertation derives collections of refactorings and code smells that contribute to 
characterise a style specific to aspect orientation. 

1.1. Motivation 
Ever since the beginning of software engineering as an independent activity, one of its 
main goals has been to bridge the gap between computer hardware and the human mind. 
The programming models developed in recent decades show a steady path from the low 
level of computer hardware towards the way the human mind functions. All efforts to 
make programming easier are ultimately efforts to find a model suitable for the human 
mind, and translate instances of such a model to the low-level imperative code that 
machines understand. From the basis of this fact, some authors are studying the 
referencing and binding mechanisms of natural languages to derive useful insights for 
programming language design [101]. 

How does the human mind work? It is important to consider its limitations as well as its 
strengths. The human mind clearly has limits regarding the quantity of details it can cope 
with at a given moment. This explains why models are needed. Models enable us to 
concentrate on the relevant features of the problem in hand, without having to consider 
other characteristics. In a word, our minds need abstraction. 

As Kiczales remarked in [81], abstraction is not only a primary concept in all engineering 
disciplines, but also a basic property of how people approach the world. Kiczales noted 
that, in software, abstractions could be used as (a) a tool for managing complexity, (b) a 
convention to draw clear boundaries between the different aspects (concerns) of a system, 
(c) the appropriate way for provider programmers to give component software to client 
programmers, without overburdening them with “unnecessary” details. 

It is no coincidence that one persistent aim of software engineering throughout its 
development has been the creation and perfection of models and tools for the support of 
abstraction. We cannot concentrate on many subjects or concerns simultaneously. Instead, 
we need to abstract from most of the concerns so that we can concentrate on a particular 
concern in order to deal with it effectively. We need to break, or decompose systems and 
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problems into smaller subsystems and sub-problems, in order to concentrate on each sub 
problem by turns. This is the fundamental idea behind the works of Parnas [132] and 
Dijkstra [37] when they suggested separation of concerns1 as a technique for problem solving. 
They were simply echoing the way the human mind functions. 

A concern is any issue from a system’s design potentially deserving of the attention of the 
programmer at a given time during the design, implementation and maintenance phases. 
Separation of concerns is the ability to keep every concern in its own unit of modularity, i.e. 
constructs in a programming language containing code that can potentially be part of one 
or more programs, have a well-defined interface and are amenable to separate treatment by 
available tools. To modularise a concern is to enclose all code related to that concern within 
a unit of modularity for the sake of its own consistency and to ease the human 
programmer’s task of reasoning with it. Modularity greatly facilitates system development 
because if we are able to reason with an issue of the system at a time, while keeping in 
mind that we are dealing with only one of such issues, we are making things easier for 
ourselves. 

Ideally, the decomposition of a system into separate concerns would lead directly to an 
optimal structure of the intended system. In practice, however, it will be possible to 
implement the resulting structure exactly as designed only if the supporting tools provide 
the necessary composition mechanisms. Those mechanisms determine what we can 
separate, because we will not separate what we cannot later compose. In this context, we 
use the term composition to refer to the ability to bind or put together software parts (i.e. 
modules) that were separately developed. Examples of language-level composition of 
software parts include widely known mechanisms such as method or procedure calls and 
class inheritance. 

The fact that a given language does not provide a direct support for a particular 
composition does not necessarily mean that the intended effect cannot be achieved from 
the mechanisms available with that language. However, in such cases the intended effects 
are achieved only through redundancy and/or additional efforts on the part of the 
programmer. For instance, one of the crudest forms to achieve a composition is through 
code duplication, i.e. copying and pasting the section of code that performs the desired 
sequence of actions in all the points in the program’s code where we want such actions to 
take place. Naturally, such a practice goes against all modern notions of good programming 
practice, but it is worth noting that we can afford to make that judgement only because we 
presently have more powerful composition mechanisms at our disposal. In this case, we 
would place the relevant code in a routine or method, and then place calls to that routine 
or method in all relevant places. 

A well-known example of a language-level composition mechanism replacing redundant 
code is dynamic binding in object-oriented languages (see section 2.1.1). It is possible to 
emulate its effect in procedural languages such as Pascal, by using conditional control 
structures (typically case statements or chains of if-then-else structures). However, 
conditional statements are a much less satisfactory way because any addition to, or change 
in, the available cases entails invasive modifications to the source code of those statements. 
Software developers strive for composition mechanisms that achieve their intended effects 
in a modular way, i.e. without requiring invasive changes – as is the case of dynamic 
binding. 

                                                 
1 Parnas is generally credited for the introduction of the concept of separation of concerns, when proposing 

modular programming [132] as a better way to structure program code. The term “separation of concerns” 
was first coined by Dijkstra in [37]. 
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In order to achieve compositions in a modular way, the composition mechanisms need 
units of modularity. Functions, procedures, modules, methods, classes and packages are 
examples of units of modularity. Available composition mechanisms work on the available 
units of modularity, and therefore it is important to consider what code can and cannot be 
placed within such units. 

Unfortunately, current software development tools, including OO languages, do not 
provide composition mechanisms that are powerful enough to enable the desired level of 
separation of concerns. Code duplication is a phenomenon that still occurs in a significant 
– and perhaps increasing – number of occasions in present software engineering activities. 
The example of methods and method calls comprises one suitable example – although in 
object-oriented languages we can avoid duplicating the code of the method, we still have to 
duplicate the calls to the method in an unbounded number of places. 

When not all concerns of a system’s code can be kept separate, several negative properties 
ensue. Code related to a concern that cannot be modularised usually results in code scattering 
– small code fragments scattered throughout several units of modularity. Concerns that 
suffer from this problem are known in the literature as crosscutting concerns [86], as their code 
cuts across several units of modularity. Furthermore, the available units will enclose code 
relative to several other concerns, resulting in an intertwined mixture of code fragments 
usually referred as code tangling. Scattering and tangling both increase the difficulty to read, 
understand, analyse, maintain, and reuse code. These limitations are the root cause of 
problems such as the so-called inheritance anomalies [106][3], which started to be noticed at 
the end of the 1980s. Inheritance anomalies motivated an enormous quantity of research 
efforts and publications during the 1990s, e.g. [108][18][144][66]. 

Figure 1 shows an example of good modularity. It represents the code of one of the 
versions of org.apache.tomcat server2. The vertical bars depict individual modules and the 
red lines depict the lines of code related to extended mark-up language (XML) parsing. We 
can see that all the code related to the concern is placed inside a single module, which 
contains only code related to that concern. Whenever we need to change something related 
to this concern, we know that all changes should be done within that module. This 
contrasts with another concern found in the same code base, shown in Figure 2. The red 
lines depict the code related to logging, which is spread throughout the entire system. 
Hence, there is duplication of code to address the same concern at a number of non-
contiguous points within the system. Logging is a crosscutting concern. 

It is highly desirable that all the relevant concerns are considered and planned for as early 
as possible. In this way, it is easier to conceive an architecture that takes into account all 
concerns, maximising flexibility and maintainability. However, experience showed that it is 
not generally possible to foresee all concerns upfront in the design phase. Some concerns 
are revealed or identified only after experience is gained during implementation. When 
some late concern appears, its code has to be manually inserted into the already existing 
code. As a result, the underlying design suffers in many occasions, and the scattering and 
tangling problems increase. 

To compound the problem, requirements tend to change over time [133][56], sometimes 
even during the analysis or design phases. This means that even when all relevant concerns 
are identified – and therefore duly taken into account in the software architecture – a 
changing requirement may cause the same problems as if a more careless design had been 
produced [56]. 

                                                 
2 Figure 1 and Figure 2 were taken from a presentation by the Xerox PARC team that developed the early 

versions of AspectJ. 
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Figure 1: Example of good modularity – XML parsing in org.apache.tomcat. 

 

 
Figure 2: Example of crosscutting – Logging in org.apache.tomcat. 

To further compound the problem, sometimes a given functionality may be needed in 
various contexts, which may require different sets of additional concerns (e.g. different 
error-handling strategies, synchronisation policies, distribution strategies in network 
environments, different supports for monitoring, logging, debugging, optimisation, etc), 
each with its own specific additional code. In such cases, it may not always be possible to 
reuse the code for the basic functionality in the various contexts [34]. Each may require a 
different version, with its own set of specific add-ons to the code. Even when a common 
system for all the required combinations can be built, it is likely to be more complex than 
would be strictly necessary for each individual combination, its design including a number 
of “hooks” and hot spots [135] – structural elements enabling software engineers to plug 
additional components or provide alternative implementations of specific features. These 
elements increase the complexity of the system’s structure and are sometimes a cause for 
the deterioration of its performance. 

All the aforementioned problems help to explain why the tangling effect tends to occur in 
later phases of the system development [34]. The design usually starts simple and clean, but 
as additional concerns are added into the system, both the evolving code and the design 
(when design documentation is still kept at all) gradually become more and more tangled 
and confused. Thus, program code tends to loose intentionality as it evolves. 
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The term intentionality refers to the conceptual gap between program code and the domain 
concepts of the design. The more intentionality we keep, the easier the program code is to 
be understood, modified and reused. Maximum intentionality can be attained through 
domain specific languages (DSLs), i.e. languages specifically designed to provide direct 
support to the concepts of a particular problem domain [34]. 

When we consider general-purpose programming languages such as C++ [147], CLOS [75] 
or Smalltalk [50], some loss of intentionality is bound to occur, since the programmer has 
to translate the concepts of the problem domain into the instructions and constructs 
supported by the language. Beyond that, however, the conceptual gap could theoretically be 
kept at a minimum, provided the code related to each concept is kept separate from the 
code related to other concepts. However, that cannot be attained with the technologies 
currently used in industrial and enterprise environments. For that, we need more powerful 
composition mechanisms. AOP is a new technique that improves on object-oriented 
programming (OOP) in this regard. 

Intentionality is likewise a central concept in refactoring. Refactoring is one of the key 
concepts of Extreme Programming (XP) [12], which regards a system’s source code as 
primarily a communication mechanism between humans rather than machines. Refactoring 
is a code-centric approach that aims to maximise the clarity of the expression of intent in 
source code [4]. Again, the emphasis is on making things easier for the human mind. 

1.2. Problem Statement 
This thesis explores the combination of AOP [40][86] and refactoring [184][47][53][125], 
two techniques that contribute to deal with the problems of permanent evolution of 
software. Refactoring is an approach that facilitates the continuous change of source code, 
enabling it to evolve in line with changes in environments and requirements. AOP provides 
stronger modularisation and software composition mechanisms than those provided by 
previous technologies, thus diminishing the potential impact that changes to the code 
related to a given concern have on code not related to that concern. 

AOP’s steady progress from “bleeding edge” research field to mainstream technology [140] 
brings forward the problem of how to deal with large number of OO legacy code bases. 
Experience with refactoring of OO software in the last half-decade suggests that 
refactoring techniques have the potential to bring the concepts and mechanisms of aspect-
orientation to existing OO frameworks and applications. However, several interrelated 
hurdles will have to be overcome before developers of aspect-oriented software can 
employ refactoring in an effective way. 

One hurdle is the present lack of a fully developed idea of “good” style for AOP. In 
practice, this entails developing a notion of good style for the AspectJ programming 
language [83][82][172]. AspectJ is an extension of the Java language [51] that includes 
mechanisms to support the concepts of AOP and is the most mature aspect-oriented 
language currently available. AspectJ therefore comprises the most obvious subject for the 
study of an aspect-oriented (AO) style. Throughout this thesis, AspectJ is used and 
regarded as the primary representative of AOP. This is reinforced by the fact that other 
AO tools tend to follow the example of AspectJ and support similar concepts [77]. 
Naturally, equating AspectJ with AOP is a simplification: future developments are likely to 
yield a greater variety of mature AO tools. When that happens, AspectJ will not dominate 
the AO landscape to the extent that it does today. However, we saw fit to use the terms 
AOP and AspectJ interchangeably in order to simplify and facilitate the presentation of the 
various concepts. 
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The ideas of refactoring and coding style are intimately connected. To a large extent, 
refactoring is transforming code written in bad style into code written in good style. Style 
rules [156] say how a human programmer should shape her source code so that fellow 
programmers do not have difficulty in understanding it, whenever they need to use it or 
modify it. We cannot rely on the compiler for this, as the rules enforced by the compiler 
merely tell us what machines understand. Style rules tells us what humans understand. In 
addition, style rules guide the programmer through the refactoring processes. Programmers 
won’t be able to carry out a refactoring process unless they have a clear idea of what they 
are aiming at. 

Why does AOP need its own specific style, different from that of OOP? Coding styles aim 
to express the coding practices that yield source code easier to maintain and evolve. 
Whenever a programming language provides alternative ways to achieve some result, the 
way that causes the least problems to present and future programmers should be 
considered the one in best style. Throughout the various stages of development of 
programming languages, many developments of style were motivated by the advent of new, 
superior mechanisms. We briefly mention three examples: 

1. Dijkstra’s famous dictum that the “Go-to statement [should be] considered 
harmful” [38] stemmed from the availability of control structures namely loops. 

2. Fowler et al. [47] considered the use of the switch statement to be a code smell, due 
to the availability of polymorphism and dynamic binding. 

3. Orleans suggested in [128] that the ‘if’ statement be considered harmful in the 
context of languages using elaborate forms of predicate dispatch. 

All these considerations suggest that the appropriate notion of style for a given language 
strongly depends on what can be achieved with that language. In this light, the suitable style 
of AspectJ cannot be the same as for Java. AspectJ enables programmers to perform 
compositions that are impossible with Java, most notably the modularisation of 
crosscutting concerns. This modularisation eliminates negative qualities that result from the 
crosscutting effect, such as code scattering and code tangling, which we should not expect 
to find in aspect-oriented source code. This suggests that many of traditional OO solutions, 
which betrays such negative qualities, should now be considered bad style. 

The absence of a notion of style for AO programs is a consequence of the fact that we still 
do not have a complete and mature knowledge of the new paradigm. We still do not know 
how best to use each construct of AspectJ, how the various constructs interact and what 
are the implications of those interactions. We still do not have a clear knowledge of what 
the relationship between “base code” and aspects should be, and how best to leverage 
aspects in designing interfaces and building libraries and frameworks. 

The very compositional power of AspectJ can be cause for problems. AspectJ offers 
multiple ways to achieve various effects and compositions. For instance, the 
implementation of mixins [22] can be achieved both through marker interfaces controlled 
within the aspect and through inner static aspects placed within interfaces. Likewise, non-
singleton aspect associations provide alternatives to solutions obtained with the default 
singleton aspects. AspectJ programmers are sometimes faced with so many choices that it 
becomes hard to decide on the design most appropriate to a particular situation. There is a 
need to further study the consequences and implications of each solution in order to make 
choices clear. We believe that catalogues of code smells and refactorings are an effective 
way to present this knowledge to programmers. 

For human programmers to have a clear notion of style, they need a consistent set of rules 
that effectively captures and expresses it. The way chosen by Fowler et al. to express the 
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style they advocate in [47] was through a catalogues of code smells (see Chapter 5) – 
symptoms in the source code serving as indicators that something may not be as it should 
be. These smells are compounded by a catalogue of refactorings (see Chapter 6) through 
which those smells can be removed from existing code. These catalogues proved very 
useful in bringing the concepts of refactoring and good OO style to a wider audience and 
in providing programmers with guidelines on when to refactor and how best to refactor. 
Presently, an AO equivalent of such catalogues is not available. This constitutes another 
hurdle for the development and adoption of Aspect-Oriented Refactoring and is both a 
cause and a consequence of the first hurdle. 

1.3. Aims of  the Thesis 
The broad aim of this thesis is to expand the current refactoring space, which is currently 
in its infancy. The primary specific aim is to develop a collection of refactorings for aspect-
oriented source code, using AspectJ as the subject programming language. 

Transforming the source code in order to improve it assumes the existence of a clear idea 
of when code needs improving. In this thesis, we use the notion of refactoring as the 
transformation steps required to remove bad smells from existing source code. We therefore 
set the complementary aim of developing a set of code smells pinpointing the situations in 
source code that warrant the use of the refactorings. 

1.4. Approach Taken 
We took the approach of using case studies as a vehicle for gaining the necessary insights. 
The case studies should be code bases in AspectJ or Java with the appropriate structural 
characteristics (e.g. presence of crosscutting concerns). We approached the Java code bases 
as if they were AspectJ code bases written in a bad style (i.e. Java code as “smelly” AspectJ 
code). The case studies would be subject to refactoring experiments to derive the kinds of 
refactorings that would be effective in turn them into examples of good AO style (i.e. that 
would remove the code smells). 

Some criteria were set for the selection of the case studies: all case studies should be 
independent of the author, i.e. created neither by him nor under his specifications. At least 
one of these must comprise a “real” example, being non-trivial in both size and complexity. 
At the start of our work [116], we selected two candidates to be used as case studies: (1) the 
WorkSCo framework [187] and (2) the collection of implementations (version 1.1) in both 
Java and AspectJ of the 23 Gang-of-Four (GoF) design patterns [48], presented by 
Hannemann and Kiczales [60]. 

1.4.1 First Case Study: the WorkSCo Framework 

The WorkSCo framework is an instance of the architecture proposed in [104]. It is being 
developed at the ESW [186] group at INESC-ID, using Java technology. Workflow 
applications [65] are a good example of modern software, whose requirements include a 
multitude of crosscutting concerns. They stress to the limit the capabilities for separation 
of concerns of current software engineering technologies. 

The architecture of WorkSCo aims to provide a flexible support for evolution. Its design 
relies on a considerable number of design patterns, most of which are intended to achieve 
particular separations of concerns. The framework as implemented at ESW/INESC-ID 
[186] introduces a few structural deviations from the original design [104][103] in order to 
achieve separations that are more ambitious [43]. WorkSCo can be regarded as an example 
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of the maximum results of separation of concerns that can be obtained using conventional 
approaches such as those surveyed in Chapter 2 of this thesis – including OOP, 
components and design patterns. That made WorkSCo an interesting case study as well as 
an appropriate starting point for the research presented in this thesis. 

WorkSCo was used as the first case study. The most significant work on WorkSCo 
comprised the extraction of one crosscutting concern from the code base. The first 
refactorings documented in this thesis were derived from these extraction experiments. 

1.4.2 Second Case Study: the GoF Patterns 

Over the last decade, OO design patterns [48] became a popular approach to reusing design 
knowledge. Patterns are a means to capture the experience and knowledge of software 
designers. A pattern names and describes a problem commonly found in software designs, 
and prescribes a range of variants of a solution for the problem, so as to ease the reuse of 
that solution [135][23][143]. One of the variants of the solution is applied in each different 
design, adapted to the specifics of the given problem. The repetitive use of a pattern over 
many designs yields many design structures that have a set of core structural characteristics 
in common. 

The idea behind design patterns is to record the essence of solutions to recurrent design 
problems in order to facilitate their reuse whenever one instance of the problem is 
encountered. Experienced designers captured successful design experience in pattern 
catalogues. By applying a solution that was successfully applied in the past, designers are 
free from thinking anew every time the problem recurs. 

Several catalogues of patterns have been published, the most popular and influential of 
which is the book by Gamma et al. [48]. The popularity of this book and of the patterns it 
documents led many programmers across the world to develop their own implementations 
of the patterns in various languages, including Java [39][177][178][180][181][52]. In 2002, 
Hannemann and Kiczales presented their implementations in both Java and AspectJ and 
provided an analysis of the results [60]. Our work on the GoF patterns was centred on 
these dual implementations, compounded with other Java implementations [39][32], which 
were used to test and refine the results derived. A substantial part of the findings presented 
in this thesis originated from our study of these examples. 

1.5. Contributions of  the Thesis 
The main results of this Ph.D. project are the following: 

 A collection of twenty-eight refactorings for the AspectJ programming language. 

 A review of the traditional OO code smells in light of AOP. 

 The proposal of several novel code smells, including one that is specific to aspects. 

 Several considerations associated with the above refactorings and code smells. 

The collection of twenty-eight refactorings is structured in the following groups: 

 Ten refactorings for the extraction of crosscutting concerns from Java code bases 
to aspects. 

 Six refactorings for improving the internals of aspects, including aspects resulting 
from extraction processes performed according to refactorings of the previous 
group. 
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 Eleven refactorings dealing with the extraction of common code between multiple 
aspects and the associated transfer of aspect-specific constructs between 
superaspects and subaspects. 

 One refactoring dealing with the separation of concerns in the signature of 
constructors that are part of published interfaces. 

This thesis aims to contribute to the expansion of the aspect-oriented refactoring space, 
not to cover it completely or thoroughly (that was not yet achieved even for the Java 
language). We believe the development of a style for a new programming paradigm requires 
the accumulated experience of many researchers and practitioners across the software 
engineering community. The aim of this thesis is to provide a contribution. 

1.6. Issues not addressed 
The scope of work in the field of aspect-oriented refactoring is extensive and no thesis can 
attempt to deal with more than a subset of that field. It is important to understand what 
this thesis does not attempt to do. 

 No aspect mining  
The term aspect mining is usually used to refer to the development of tools that 
perform an automatic or semi-automatic detection of crosscutting concerns 
[142][166][164] or assist the developer in such searches [138]. We do not contribute 
to the development of aspect mining tools, though we provide insights to the 
detection of latent aspects in the form of code smells, which are proposed in 
Chapter 4. 

 No tool support  
Developing tools that automate standard transformations of source code is related 
to the one covered in this thesis, but is not the same. Even when provided with 
refactoring tools, developers still need to have a proper notion of style to decide 
when code transformations should be used, and to choose the specific 
transformation that must be applied to each specific circumstance. It is this 
knowledge that we aim to expand, from which tool developers can benefit. Though 
we developed the refactorings to be performed manually, we believe they can be 
helpful to developers of tool support for aspect-oriented refactorings 
[61][58][41][73], by suggesting refactorings that may be worthy of their 
development efforts. Therefore, this thesis indirectly contributes to the 
development of future tools. 

 No metrics  
This thesis does not attempt to formally measure and quantify the benefits in code 
of the proposed refactorings. Work on metrics for the complexity of aspect-
oriented source code can be found in [167], [165] and [49]. 

 No formalism  
This thesis does not attempt to provide a formal, mathematical basis for the 
refactorings. Cole and Borba are working in this field [30], and in [29] they state 
their intention of extending their work to cover our refactorings in future work. 

With the above excluded the context of this thesis will hopefully be clearer. 

1.7. Organisation of  the Thesis 
This thesis is organised as follows: 
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Chapter 2 starts with a brief overview of several traditional techniques and mechanisms 
used to achieve separation of concerns, with a stress on limitations and associated 
problems. Next, it presents refactoring as a technique to cope with some of those 
limitations. Reflection is briefly mentioned, since during a certain period it seemed to be a 
promising technique to overcome those limitations. Finally, we introduce aspect-oriented 
programming, which effectively realised the hopes initially placed on reflection. AspectJ is 
used as the primary representative of AOP. 

Chapter 3 presents the first case study, the WorkSCo framework. The Chapter describes 
WorkSCo, focusing on the characteristics that motivated its use as a case study. We next 
explain why work on WorkSCo was discontinued, after which we describe how we 
approached WorkSCo. We describe its architecture, the experiments performed on it, 
hurdles encountered and results obtained. In the end, we present the conclusions we 
derived from the case study. 

Chapter 4 presents the second case study, a collection of code examples comprising the 
implementation in Java and AspectJ of the GoF patterns. The Chapter explains why the 
examples were selected and how we approached them. We provide some background on 
the examples, and we describe various issues that we detected during our analysis and 
subsequent work. We briefly state the results derived and conclude the Chapter with a 
summary of the main insights we derived from the case study. 

Chapter 5 presents some code smells that act as guidelines for using the refactorings. These 
include (1) traditional OO smells reviewed in the light of AOP, (2) novel smells designed to 
assist in the detection of crosscutting concerns in legacy OO code, and (3) an aspect-
specific smell. The refactorings that can remove the smells are mentioned in the pertinent 
places. 

Chapter 6 presents the refactorings. The Chapter presents the format used to describe the 
refactorings and presents various guidelines that are applicable to most refactoring 
processes. Next, the Chapter describes each of the refactorings, which are divided into four 
groups: (1) extraction of crosscutting concerns to aspects, (2) tidying up the internal 
structure of extracted aspects, (3) factoring out of common code to superaspects and (4) a 
special case dealing with constructors with published interfaces. 

Chapter 7 presents a validating example that describes in detail a complete refactoring 
process based on a small example based of the Observer pattern ([48], p. 293). 

Chapter 8 surveys related work. 

Chapter 9 concludes this thesis by summarising the contributions, mentioning the related 
articles so far published or submitted, and surveys opportunities for future work. 

 



 

11 

Chapter 2. Separation of  Concerns and 
Refactoring 

The purpose of this Chapter is to survey both traditional and novel techniques and 
mechanisms to achieve separation of concerns in software systems. Section 2.1 covers 
traditional techniques, such as OOP, design patterns, components and frameworks. Some 
explanations of why these techniques are not powerful enough are provided. Section 2.2 
covers refactoring, a technique that helps to ameliorate the consequences of the limitations 
and shortcomings of the previously covered techniques. Reflection is mentioned in section 
2.3, with a stress on the reason why many people regard it as a link between traditional 
techniques and AOP. Finally, AOP is described in section 2.4. 

We do not claim that techniques such as AOP and refactoring solve or overcome all of the 
limitations and shortcomings mentioned in relation to the traditional techniques. 
Describing current problems and limitations serves to drive home the idea that a broad 
range of issues in software engineering are still in need of addressing. Nevertheless, we 
believe that techniques such as refactoring and AOP can ameliorate some of the problems 
and overcome some of the limitations. 

2.1. Traditional Separation of  Concerns 
This section briefly surveys several traditional techniques of software engineering, with a 
stress on some of the limitations and associated problems. Subsection 2.1.1 covers object 
technology [68] and subsection 2.1.2 refers to the law of Demeter, which is closely related 
to OOP. Subsection 2.1.3 covers design patterns [48][135][23], subsection 2.1.4 discusses 
the concept of component [149][161] and subsection 2.1.5 briefly discusses frameworks 
[69][42]. 

2.1.1 Object-Oriented Programming 

OOP is the current dominant programming paradigm3, so much so that other software 
development techniques are often discussed in terms of the concepts of OOP, even though 
they are independent. Examples are design patterns, components, frameworks and 
refactoring. 

Core Concepts 

In the early years of research, there were uncertainties on exactly which features are 
essential to the definition of object-orientation. While a relative consensus was eventually 
reached regarding a number of “core” concepts [160], including object identity [79][80], 
modularity, implementation hiding, encapsulation, inheritance and polymorphism, the same 
did not happen to other features such as delegation [97][21], garbage collection4, multiple 
inheritance, mixin inheritance [22], generic types [112] and design by contract [110][113]. 
                                                 
3 Currently, whenever a new programming language is created, it is expected to be object-oriented, unless 

there are specific reasons for not being so. This leads us to conclude that OOP is indeed dominant. The 
advent of AOP does not change that, because AOP complements existing paradigms rather than replace 
them. 

4 Garbage collection seems to be a later addition to the consensus, especially after the negative experiences 
with C++, the only major language supporting the concepts of object-orientation that does not provide 
some form of automatic memory management. 
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The latter features can be found in some OO languages, but not in others. Even concepts 
such as class, inheritance and polymorphism are not directly supported in all the models 
proposed through the years [97]. In consequence, OO languages vary more markedly than 
is the case with previous, simpler, paradigms such as procedural programming. 

One of the most fundamental concepts of OO is object identity. Each object has its own 
identity, which enables it to be distinguished from other objects, even when compared with 
an object with identical structure and holding similar state. Identity enables objects to be 
referenced by multiple other objects, and whenever an object changes its state, all other 
objects referencing it can know about the change, without confusing it for a different 
object. Associated to the concept of identity is the self-variable (variously called self, current 
or this), a variable through which the methods of the object can access the object’s state 
and behaviour, without ever confusing it with the state and behaviour of a different object. 

The term class has been used to represent several distinct concepts; depending on the 
author or language concerned. It is usual for authors and languages to assign more than 
one of these meanings to the term class, though not necessarily all of them. Thus, a class 
can be: 

• A type specifying a set of objects that expose the same functionality and behaviour. 
It is usual to regard types as specifications of behaviour [113], independent of any 
particular implementation of that behaviour. One modern example of a construct 
modelling a type is the Java interface. However, Java interfaces are a purely 
syntactic mechanism, and lack a semantic dimension. A more complete mechanism 
to specify (and enforce) types can be found in the Eiffel language [111], which 
includes a system of operation pre-conditions and post-conditions, as well as class 
invariants. Together, these mechanisms provide a semantic dimension to type 
specification and enable design by contract. 

• A factory or template [160][80] for the creation of objects of similar structure and 
behaviour, often called the instances of the class. Some OO languages enable classes 
to exist as independent entities during a program run, and some languages (e.g. 
Smalltalk) even enable classes to be changed in such a way that the next instances 
have different or additional properties [46]. 

• A module [145][113], comprising a repository of implementation (i.e. a set of 
variables and operations defined within a single lexical scope) that is hidden behind 
a well-defined interface. In this context, it is usual to view classes as entities that 
encapsulate a particular implementation of the behaviour specified by a type. In 
addition, classes can have one or more interfaces (i.e. classes can have more than 
one type). Entities from the environment outside of the module must interact with 
the instances solely through these interfaces. The modules can be self-contained 
parts of programs and can be used in different programs. 

Meyer coined the open-closed principle5 [113], which states that “software entities (classes, 
modules, functions, etc.) should be open for extension, but closed for modification.” This 
principle states that the behaviour of a module should be extensible, meaning that 
programmers should be able to make the module behave in new and different ways, as the 
requirements of the application change, or new requirements arise. In addition, the source 
code of the module should be inviolate, meaning no one should be allowed to make 
changes in its source code for the purposes of adding new functionality. It would seem that 

                                                 
5 Meyer proposed the Open-Closed principle in the first edition of [113] (1988). 
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these two requirements are incompatible, but the mechanism of inheritance is capable of 
meeting both. 

Inheritance is the mechanism through which a class shares its state and behaviour with 
another class – the former is variously called the superclass, parent or ancestor, and the 
latter is variously called the subclass, base class, child, heir or descendant. The fields (also 
variously called slots, attributes, member variables or instance variables) comprise the state 
and the methods (also called selectors, member functions or routines) implement the 
operations provided by the class, which together comprise the class’ behaviour. By 
inheriting from the superclass, the subclass automatically acquires its fields and methods, 
without the need for the programmer to manually insert duplications of its definitions. 
Those definitions stay in just one place in the code, within the lexical scope of the 
superclass. OO languages usually allow the subclass to define new fields and methods, and 
to override the methods it inherits with implementations specific to the state and situations 
the subclass is intended to address. In most languages, overriding methods can also call the 
original method from the superclass (via a pseudo-variable usually called “super”), which 
enables programmers to extend inherited operations with new behaviour. It is considered 
good style to ensure that the overriding methods provide the same behaviour that would be 
expected of the superclass’ method (i.e. the subclass honours the superclass’ contract): The 
majority of OO languages does not provide mechanisms to automatically verify that 
contracts are enforced, beyond what is expressed through syntactic mechanisms. The major 
exception is Eiffel. 

Dynamic binding automatically selects the appropriate section of code associated with a 
method, based on the runtime type of the object that was the target of the method call. 
Compilers cannot statically determine which function is called, because the information on 
the type of the object is available only during runtime. Therefore, some method lookup 
must be performed at runtime in order to dispatch the right method. The resulting effect is 
what is usually called dynamic or late binding. Though less flexible, static binding is usually 
a more efficient mechanism than dynamic binding, because all the compilers need to do is 
to generate a call to a specific function name. In the early days of OOP, this additional 
overhead was considered a problem, and some languages (most notably C++) provided the 
procedural-style static binding as the default. However, this also caused problems in 
practice [117][113][72]. Except in certain domain-specific problems, more importance is 
presently given to characteristics such as ease of modelling, development and maintenance. 

Liskov, in a keynote address given at the OOPSLA’87 conference, presented a desirable 
property of subtypes relative to supertypes [99]: the ability to use an instance of a subtype 
in a context where an instance of its supertype is expected. This came to be known of the 
principle of substitutability [80], or the Liskov substitution principle. When this principle holds to 
classes as types, it is possible to create new subclasses and make existing programs to 
function with them the same way as with the original classes. This follows the open-closed 
principle and ensures that classes are extensible. 

These properties led many software developers in the early days of OO to misguidedly 
believe that inheritance would enable programs to be extensible as well. Unfortunately, this 
is far from the truth. The reason is that classes are of limited worth when taken in isolation. 
A program is not one class, but an arbitrarily complex collaboration of objects. 

Inheritance enables a class to extend another class, but not an arbitrary system of classes or 
a set of methods scattered throughout multiple classes. Dynamic binding enables one 
method to override a method with an identical signature in the superclass, but not an 
arbitrary set of fragments scattered throughout multiple methods, in one or several classes. 
Whenever the functionality we would like to extend is not in the form of a class or a 
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method, developers must extract the desired unit of modularity to a separate place in the 
system and restructure the remaining parts so that the new unit is used according to the 
Liskov substitution principle. For instance, whenever the system does not provide the 
desired method to be used or extended, developers must extract it and place it in the 
appropriate class, after which it is available to be called or overridden. In practice, 
developers identify the useful abstractions to be captured in classes and its respective 
operations through a discovery process. Johnson and Foote remark in [69] that developers 
usually discover such abstractions only after acquiring experience with various concrete 
examples. Frameworks (see section 2.1.5) are developed and matured through this 
discovery process as well. 

Issues of style play an important part in this discovery process. An appropriate style 
facilitates the development of class systems. For instance, adopting a style favouring small 
classes and methods makes it more likely that we will find the class or method we would 
like to (re)use or extend. Johnson and Foote [69] propose a set of style rules, using 
Smalltalk as the illustrating OO language. These rules are the prototypes for the catalogues 
of bad smells and refactorings (see 2.2) proposed by Fowler et al. [47], using Java as the 
illustrating language. 

Assessment of OOP 

Although software reuse was a much-talked goal in software engineering well before the 
advent of OOP, the concepts it supported led many to think we finally had a technology 
that would deliver genuine software reuse. Objects would be “naturally reusable” because 
of the aforementioned properties. However, experience acquired later showed that this was 
far from being the case. One manifestation of this disappointment is the statement by 
Udell that OOP had failed on its promise of software reuse [155], mentioning components 
developed with a non-OOP programming tool (Visual Basic) as an example of greater 
success with software reuse. Nierstrasz and Dami (cf. first Chapter of [124]) refer to a 
debate in the Internet, prompted by Udell’s article, which led to the conclusion that reuse 
depends more on design and methodology than technology. Nierstrasz and Dami 
expressed the view that developments in both areas are needed for software to become 
effectively reusable. 

Presently, it is generally agreed that OOP provided a better way to organise software, 
including source code, relative to previous models such as procedural programming. 
However, two decades of experience with OOP also led to the conclusion that although 
OOP signalled a significant advancement in software engineering, it still requires an explicit 
effort to deliver reusable software. Ossher and Tarr [130][131] made a particularly 
perceptive remark on current state of affairs in software development: “At present, 
software is like clay: it is soft and malleable early in its lifetime, but eventually it hardens 
and becomes brittle. At that point, it is possible to add new bumps to it, but its 
fundamental shape is set, and it can no longer adapt adequately to the constant 
evolutionary pressures of our ever-changing world.” 

One of the reasons why this occurs, even with software developed with OO technologies, 
is that the mechanisms of OOP to achieve separation of concerns are still insufficient. 
Many cases and problems can presently be found that include concerns whose code the 
object model is not able to keep in separate units of modularity. Moreover, such cases are 
appearing more often, due to the increasing complexity of software. 

These problems occur because OOP shares a limitation with all previous programming 
paradigms: the support for only one, single criterion for the decomposition of a system into 
units of modularity. A single criterion becomes the dominant one, and as a result, concerns 
that need to be decomposed along some different criterion usually become “scattered” 
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through the design and code. Ossher and Tarr [130][131] dubbed this problem the 
“tyranny of the dominant decomposition”. It is one of the root causes of the scattering and 
tangling effects. 

2.1.2 The Law of  Demeter 

The Law of Demeter, proposed by Lieberherr and Holland [95][93][94], is a style guideline for 
writing “good” object-oriented code. It basically states that objects in object-oriented 
programs should deal only with their “closest neighbours”, the exact definition of which 
depends on which of the various forms of the law is being applied. There are “strong” and 
“weak” forms of the law, and there is also an “object-form” and a “class-form”. The weak 
form of the law states that methods should send only messages to the self-variable, the 
fields of the self-variable and the method’s arguments (these also including objects local to 
the method and global objects, in case the language’s rules allow for its existence). The 
strong form of the law is similar but excludes from the previous set all accesses to fields 
inherited from superclasses. These must be mediated through accessor methods. 

The aim of the authors of the law was to reduce coupling between objects, so that changes 
in an object (or, to be more precise, to the code of its class) impact on the smallest possible 
set of other objects and classes. If, for instance, the strong form of the law is followed in 
languages that have the private access mode similar to C++’s and Java’s (meaning that only 
instances of the exact class can directly access those fields), then all fields are declared 
private and any changes to them bear no impact on the outside of the class, including 
subclasses. In particular, the law prohibits the deep nesting of accessor methods such as 
object.getPart1().getPart2().getPart3().getPart4(), because such sequences make the code 
dependent on the particular structure of the various objects that are included in these 
sequences (the law allows the nesting of constructor calls, whose use in languages such as 
C++ and Java is anyway unavoidable). 

The class form’s versions (strong and weak) are expressed in terms of classes, while the 
object forms are expressed in terms of objects [93]. The existence of both an “object form” 
and a “class form” is due to the fact that even if it is the object form that expresses the 
author’s true intentions (the “spirit” of the law), it is not possible for compilers to enforce 
it at compile-time. However, compilers can enforce the class form, and that is the primary 
motivation for the existence of the class form. 

Despite some benefits that following the law in its various forms may bring, it has been 
criticised on several fronts (cf. [141] and pages 668-671 of [113]). In particular, Czarnecki 
and Eisenecker [34] note that appliance of the law leads to object-oriented programs full of 
small methods that do no or very little computation. Most of these methods simply call 
other methods, passing information from a set of objects to another set of objects in the 
same program. Programmers new to the code that try to understand the intents of the 
original developers are forced to an “endless chase” through such small methods, 
wondering where the “real” computation gets done. In addition to this understandability 
problem, Czarnecki and Eisenecker also point out that even when the law is followed, 
changes in a part of an object structure that is not directly involved in the computation but 
needs to be traversed by the small information-passing methods require the manual 
modification or addition of these small methods. 

2.1.3 Design Patterns 

Design Patterns [48][135][23] are a convention for documenting generic and reusable 
solutions for problems that recurrently occur in multiple systems and contexts. Design 
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patterns explore the possibility of using a proven solution to a problem to create similar 
solutions for other, similar, problems. Each design pattern focuses on a particular design 
problem, abstracting from context-specific situations and tools, including programming 
languages, and identifies all the important issues – both positive and negative – of the 
solution in consideration. 

Each design pattern is given a carefully chosen name, which can be used to enrich a 
vocabulary shared between system developers. This way design patterns contribute to a 
“bandwidth increase” in their conversations. A collection of design patterns related to 
common subject is said to constitute a pattern language. For instance, [144] presents a pattern 
language for dealing with concurrency and synchronisation in the development of 
concurrent OO applications. 

Design patterns are not restricted to object technology, like other techniques such as 
components and frameworks. However, design patterns often are associated with OOP, 
because they appeared when OOP was starting to gain a significant following, first through 
OO languages such as Smalltalk, CLOS, C++ and Eiffel, and more recently Java. For 
instance, all 23 patterns from the most popular book on the subject [48] are based on OO 
technology. 

Design patterns express systems of collaborating classes, their relationships and 
responsibilities, and thus strongly influence the design of larger structures, such as software 
architectures and frameworks [17] (see section 2.1.5). Patterns provide the conceptual 
building blocks of frameworks and that is why there is a close relationship between the two 
concepts [68]. However, frameworks reside at the source code level, while design patterns 
are at a higher level of abstraction. Patterns are not meant to be used “as is”, but rather 
require the developer to reimplement the ideas they embody in every new specific case. 
Though the pattern documentation often includes fragments of code in specific languages 
– termed idioms – these serve illustrative purposes, and the developer must tailor the 
solution to her needs. Patterns are a tool for design reuse, but do not deliver reuse at the 
code level. 

Most design patterns, including most of those collected in [48], but also in [23], [143], [144] 
and other publications, offer solutions for the separation of concerns in situations of 
various kinds. For each situation, the use of a pattern will prove to be more or less 
convenient and advantageous depending on the designer’s particular aims. Since many 
patterns are based on the traditional concepts of object technology, namely inheritance and 
object composition (association and aggregation), code based on these patterns, including 
framework code, also suffers from the problems mentioned in section 1.1. In most cases, 
the use of a pattern involves trade-offs. 

In [34], Czarnecki and Eisenecker mention some of the problems associated with the use 
of design patterns. One of the most serious is the preplanning problem [1][34] – architectures 
that result from applying patterns are usually more flexible for certain kinds of changes, but 
they also result more difficult to adapt to other kinds (i.e. they become “brittle”). It is the 
responsibility of the designer to anticipate all changes that might be required of the system 
during its lifetime, and select the appropriate patterns and respective implementations, 
weighing the various advantages and disadvantages. Here lies one of the problems with 
patterns: as we argued in section 1.1, anticipating all future requirements of a system is 
difficult, and sometimes impossible. 

A second serious problem mentioned by Czarnecki and Eisenecker is the fact software 
compositions in most patterns are based exclusively on the mechanisms of inheritance and 
aggregation, which introduce more complexity than necessary. This causes object 
schizophrenia [1][34] – the tendency of many patterns to break designs, which would 
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otherwise preserve their unity and coherence, into several parts (objects and classes) for the 
sake of a specific separation. This increases the tangling and scattering effects already at the 
design phase, and leads to a loss of intentionality. 

Another problem is the traceability problem. Traceability [27][26] measures the ease with 
which one is able to determine how one of the parts of a system (be it requirement, design 
or code) affects others. The traceability between design and code in many pattern 
implementations is poor, due to its indirect representation of design patterns in the code. It 
is often hard to determine exactly which pattern was used in the design and for which 
purpose from looking at a given implementation. 

The most obvious solution to the traceability problem lies in turning the design patterns 
into language and library features [24][11], in order to increase intentionality and 
traceability. This is already happening: for instance, the Iterator pattern ([48], pp. 257-271) 
is used in the collection application program interface (API) for the Java programming 
language [51] and the next version of Java (1.5, codenamed “Tiger”) [5] subsumes the 
pattern into the language syntax. Another example is the Observer pattern ([48], p. 293), 
which is the basis for the Observer and Observable interfaces from Java’s standard 
java.lang API (see also section 7.3). In some cases, the availability of some feature can 
remove the need for a given pattern altogether. In fact, design patterns could be regarded 
as a sign of limitations in existing languages. For instance, the decorator pattern ([48], pp. 
175-184) is really a technique for emulating mixins [22] in languages that do not have the 
features necessary to directly support them (such as Java). Likewise, the Visitor pattern 
([48], pp. 331-344) is an attempt to deal with two simultaneous criteria for decomposition, 
which could be dealt with in a more elegant way if a mechanism for multiple dispatch were 
available. 

Czarnecki and Eisenecker view design patterns as a useful technique for documenting 
limitations in current tools, that can move on to more advanced, possibly higher-level 
features, as experience is gained and the tools evolve. They also think patterns will retain 
their usefulness for documenting the applicability of language features for solving specific 
problems. 

Czarnecki and Eisenecker also mention a drawback that design patterns have from the 
performance point of view. They note (cf. page 61 of [34]) that design patterns typically 
rely on dynamic binding even in cases where the variation points remain frozen within a 
single application, in which case static binding and partial evaluation would be more 
appropriate. For instance, in his Ph.D. thesis (page 159 of [104]), Manolescu states the 
following when evaluating the OO framework he developed: “The ability to plug into the 
micro-workflow core components that implement advanced workflow features requires 
adding hooks to the core’s components. Once added, these hooks incur runtime overhead 
even when the pluggable components they accommodate aren’t plugged in. This overhead 
represents the run time cost of the flexibility achieved through composition.” These 
remarks apply to many complex OO software systems. 

2.1.4 Components 

Component is a more general concept than that of object. The concept of component 
[149][161] aims to embody the alluring idea of software integrated circuits (software ICs), 
proposed by Cox [33] in the context of OOP. Nierstrasz and Dami (first Chapter of [124]) 
proposed a definition of component as a software structure specifically designed to be 
reused in collaboration with other components. One component taken in isolation does 
not comprise an application, but a component is independent of any specific application. 
Components enable their users to abstract from the implementation details, by 
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encapsulating definitions behind a well defined, independent interface. Concrete 
applications result from the composition of several components and the instantiation of 
the parameters passed through their interfaces. 

The concept of component can be characterised by stressing the following properties [161]: 

• Components are pre-built. Components are usually distinct and separate items, such 
that their identities are not wholly lost in the assembly and, if the assembly is 
disassembled, they can be recovered relatively intact. Software components retain 
separate identities within the runtime software of which they form a part because 
they are pre-built. This reflects the fact that, components are generally made 
available in binary form, rather than as source code units that might be assembled 
into a program and then compiled. There are historical as well as pragmatic reasons 
for this being so. For instance, using pre-built components is cheaper than reusing 
code earlier in the development process, since it cuts out the earlier parts of the 
development process. Another pragmatic reason is the fact that organisations 
generally want applications to be integrated “non-intrusively”, or “non-invasively”, 
meaning without code changes. Being pre-built helps to be built with non-intrusive 
reuse in mind. Maintainability is also a reason: being pre-built places a much 
stronger boundary between components than there is between classes of an OO 
application, particularly if the source code is not available. In most cases, this 
enforces the assumption that a change will impact only the component itself, which 
in turn reduces the amount of code inspection required and results in lower costs 
for software development. 

• Components are black box, accessible only via their interfaces. The ability of components to 
interoperate with other components, and the way they do this, is also important. 
Components are “black-box”, that their internals are not visible to users, which are 
interested only in the functions or “services” they offer through interfaces. The 
design of the component’s interface is key to their specification. 

• Components are separable, context-independent. It must be possible to separate a 
component from its context and use it in another context. 

In [161] a definition is proposed that gathers the above mentioned characteristics of a 
component: “A software component is a separable piece of executable software that makes 
sense as a unit, and can interoperate with other components, within some supporting 
environment. The component is accessible only via its interfaces and is capable of use as-is, 
after any necessary installation and configuration procedures have been carried out. In 
order for it to be combined with other components, it must be possible to obtain details of 
its interfaces.” 

The above definition recognises that the reusability space of a component is limited to a 
given environment (i.e. the component built for running on a given environment can be 
reused only within an instance of that environment). Keeping with Cox’s “software IC” 
analogy, we can say that environments comprise the software IC boards. Examples of such 
environments can be platforms such as the Java platform or .Net, as well as many 
frameworks. Each component must make assumptions about its environment. Platform 
and frameworks serve to narrow the assumptions that a component has to make about its 
environment to manageable proportions. This does not indicate the order with which 
components, platforms and frameworks are developed. Sometimes, a component is created 
during the development of a framework, in which case it is designed to conform to the 
rules of the framework. In other cases, a pre-existing component is reused in a framework, 
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in which case the framework must provide the necessary conditions that ensure its correct 
use. 

Unfortunately, experience in software development showed that there are limits to the 
feasibility of black-box components and software ICs. The IC analogy may even be cause 
of some misunderstandings, as it may lead some people into thinking that software reuse 
can be attained by simply mimicking the black-box nature of hardware components. In 
fact, hardware ICs are comparatively used in much more narrow range of environments 
than software. The environments of h/w ICs keep most variables fixed for each individual 
instance, namely voltage, clock speed and number of pins. Therefore, to keep an h/w IC 
isolated from “changes” in its environment is really a non-issue. Whenever we switch from 
a board to one with different characteristics, we replace the ICs as well. The new board 
may contain similar ICs that provide identical functionality and interface, but are prepared 
to work with the new physical characteristics. The situation is different with software 
components. An enormous range of elements in the environment keeps changing, 
including the underlying h/w, the operating system, the libraries, the programs that 
generate the inputs, the programs that receive their outputs, the programming language 
used to write other components, etc. Yet, it is expected of software to continuously adapt 
to all these changes. To require a component to be usable in uni-threaded, multi-threaded 
and distributed environments is roughly the equivalent of requiring an h/w chip to be 
adaptable to several different voltages and clock frequencies. 

When programmers ponder on the set of elements of the implementation that should be 
included in the interface to prepare the system for all potential changes in requirements and 
the environment, they usually find the task self-defeating. As new requirements arise, 
programmers are inexorably pushed to the conclusion that each new problem demands a 
fresh set of implementation elements to be exposed in the interface, until there are no 
implementation elements left to hide. Ultimately, in order to deal with every potential 
change to requirements and environment, practically everything in the implementation 
needs to be exposed. 

A particularly significant technical hurdle is the fact that interfaces of software 
components, which in the general case are restricted to the signatures of routines or 
methods, only cover a narrow subset of the characteristics of the surrounding 
environments. Programmers do not have the possibility to parameterise characteristics of 
the environment that often play an overriding importance in the requirements for the 
software system. This particularly applies to non-functional characteristics (e.g. time 
constraints or the maximum amount of memory used). In such cases, developers have no 
other option than to resort to direct intervention in the implementation code. 

In [81] Kiczales illustrated the problem with the limits of abstraction and interfaces, as they 
are currently understood. He presented an example comprising a hypothetical architecture 
for a spreadsheet application, structured into several layers of abstraction. In his example, 
each layer would provide the desired functionality while hiding the implementation details 
from the layer above, and interfaces would comprise the boundaries between two different 
layers of abstraction. The system would be built on top of window system, which in turn 
be implemented on top of an operating system, and so on. Each cell of the spreadsheet 
would be implemented as a window from the window system. The proposed architecture 
would benefit from the usual advantages of abstraction, including portability and 
reusability. However, it would be plain to even inexperienced programmers that such a 
system would either not work, or at the very least its performance would be so bad as to 
render it worthless for all practical purposes. This would be so because the proposed 
design was based solely on the principles of abstraction without taking into account others 
issues that do not show up in interfaces, namely the overall system performance. The fact 
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that the implementation of the window system would likely fail to give adequate 
performance would not be deduced from the system’s interface, and most likely neither 
could it be deduced from the system’s documentation. In order to address the above 
problems, Kiczales proposed open implementation, which is discussed in section 2.3. 

2.1.5 Frameworks 

In order to restrict the dimensions of potential change to a manageable set, a technique 
that is related to the above – frameworks [42][69][68] – was developed along with 
components. Frameworks are typically collections of cooperating, and generally abstract, 
classes that realise a specific architecture and encapsulate all algorithms common to a 
family of applications. Some of the operations declared by the abstract classes can be left 
unimplemented because their implementation is specific to concrete cases (cf. the 
“behaviour classes” or “programs with holes” mentioned by Meyer in pp. 505-6 of [113]). 

A framework is a sort of code template containing the common code that can be completed 
by application-specific code, resulting in concrete applications, or framework instances [7]. 
These can be obtained through customisations, usually by integrating in the framework 
domain-specific classes that inherit from the abstract classes and contain all the missing 
functionality needed to build a complete application. Frameworks are usually characterised 
by the inversion of control property: abstract classes call the application-specific classes, and 
not the other way round. This enables the general part of the framework to control and 
fine-tune the behaviour that domain-specific classes are permitted to override and/or 
customise. 

The above definition of framework emphasises its clear-box nature, in contrast to that of 
components. Being clear-box, frameworks are more flexible and customisable than 
components. However, frameworks also force users to learn their architectures and internal 
structures, which is the cause of one of the problems in using them. Because of its 
complexity, they are hard to learn and hard to develop. For instance, Johnson points out in 
[68] that programmers complaining about the complexity of a set of dependent classes are 
usually a sign that the classes are part of a framework. Frameworks provide the usual trade-
off between power and complexity in system development. 

As pointed out in section 2.1.2, frameworks share with design patterns the preplanning 
problem. However, the problem really becomes serious in the kind of large and complex 
structures that frameworks tend to be (or to grow into being). In addition, the situation 
often arises in frameworks in which a single class has several superimposed roles from 
various different patterns [157] (some developers proudly refer to the “pattern density” of 
their creations [14][157]). This increases the traceability problem we mentioned in the 
context of design patterns (see section 2.1.2). Lack of traceability makes it harder to foresee 
the consequences of a given change in the class. This is a consequence of the fact that 
present OO languages do not provide constructs to express design patterns more 
declaratively or intentionally. 

2.2. Refactoring 
Refactoring [184][125][47] is a technique that attempts to deal with the preplanning 
problem and to cope with the continuous changes in requirements and environments. The 
purpose of refactoring is to improve the design inherent in the existing code, while 
maintaining its behaviour. Refactoring is changing a code base in such a way that it 
corresponds to a better design, a procedure reverses the traditional order of design first, 
code next. The refactored code is meant to be better organised and easier to maintain, 
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adapt and extend, while providing the same functionality. A variety of specific code 
transformations – themselves called refactorings – is employed in this transformation 
process. Each refactoring describes a disciplined way to modify code in order to achieve a 
specific design change, without introducing compiler errors, bugs, or otherwise affecting 
the application’s “externally observable behaviour”6 [47]. Chapter 7 describes one 
refactoring process. The first Chapter of [47] describes another. 

Refactorings are typically performed through small steps, often with tests performed in 
between, to make sure that no errors are introduced. It is considered prudent to perform a 
given restructuring with a sequence of small refactorings rather than a few large ones, as 
large restructurings increase the likelihood of introducing errors. Larger refactorings are 
usually decomposed into several small ones. Sometimes a given refactoring may require 
several others to be made, before the code is ripe for it to be applied. For instance, when 
referring to Extract Method ([47], p. 110) Fowler et al. mention awkward situations that may 
require the previous use of two other refactorings before Extract Method ([47], p. 110) can 
be safely applied. 

Refactorings can be performed either manually or automatically. Though the earlier 
research efforts focused on tools that could automatically perform behaviour-preserving 
transformations on the source code, a more recent approach appeared [12], proposing that 
such transformations be performed manually [47] in case such tools are absent from the 
development environment. Nevertheless, the availability of tool support for code 
transformations is very desirable to provide safety in its use and to increase productivity. In 
addition, tools generally support the undo operation of the refactorings, something that is 
important for the situations when the programmer finds out that she took a wrong turn. 

Refactorings are not meant to introduce new functionality. Code transformations that add 
or change existing functionality are not considered refactorings. This is sometimes 
represented by Beck’s “two hats” metaphor ([47], p.54). The programmer is always 
performing one of two distinct activities: adding function or refactoring. She is either 
wearing the developer hat or the refactoring hat, but not both. She may be adding a piece 
of functionality, in which case she is wearing the developer hat. She may realise that her 
task would be much easier if the code were structured differently, so she swaps hats and 
refactors for a while. Then she swaps hats again, and adds the functionality. She may swap 
hats frequently during the software development process, but at every moment she should 
be aware of which hat she is wearing. 

Refactoring is different from optimisation. Optimisation is usually a behaviour-preserving 
change to a program with the goal to make it more efficient. Such changes often make the 
source code less intentional, which is the opposite of what is aimed at with refactoring. 
Fowler concedes that changing a program to make it more intentional does yield slower 
programs, but also tends to make programs more amenable to performance tuning. Fowler 
also notes that the majority of programs spend most of its time in a small fraction of the 
code. He warns that to blindly strive for good performance in all parts of the system tends 
to result in programs that are harder to work with, which brings its own set of costly 
consequences. Fowler states that, excluding exceptional cases where this fact does not 
apply, developers should write tuneable software first, and then tune it for sufficient speed. 

                                                 
6 Since one of the key requirements of refactoring is to preserve behaviour, it does not make sense to apply 

refactorings to a code base that gives rise to compiler errors, for such code bases do not have a concrete 
and testable behaviour one can think of preserving. 
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2.2.1 Role of  Units Tests in Refactoring 

Refactorings are often described as “behaviour-preserving transformations of source 
code”. The most often used mechanism to express the desirable behaviour is tests. As 
Fowler states in [47] (p.89), “if you want to refactor, the essential precondition is having 
solid tests”. Without tests, there is no way to know if the desirable behaviour of an 
application changed or not. 

The tests normally associated with refactoring are unit tests – highly localised tests dedicated 
to testing a single unit of modularity, usually a class or method. There are other kinds of 
tests. For instance, integration tests are written to test a collaboration of objects works as is 
supposed to. Functional tests are written to ensure that a whole subsystem or the system as a 
whole works as planned. Stress or load tests serve to assess whether an application performs 
well even during particularly demanding conditions (e.g., when there are many people using 
it, or when it must process a large number of requests within a short period of time). 
Finally, there are acceptance tests to assess whether the application actually meets the 
customer’s needs. Acceptance tests are usually conducted directly by the costumer or 
someone acting as the costumer’s proxy. 

Currently, a large and growing community of software developers manage suites of unit 
tests using tools such as the JUnit framework [183]. Such tools are becoming so widespread 
that they are being integrated with some of the existing IDEs. For instance, eclipse [179] 
includes JUnit in its standard installation package. 

One important feature of the tests developed according to frameworks such as JUnit is the 
fact that the programmer is not required to look at console or printed outputs to check 
whether results are as they were supposed to be. Instead, the tests themselves carry out the 
relevant comparisons – they are automatic, meaning that they notify the programmer of 
results only if problems were detected. Otherwise, the tests terminate silently. In addition, 
in tools such as JUnit it is possible to execute an entire collection of tests with a single 
instruction. JUnit is capable of automatically identifying all the tests within a class or 
package and executing them without requiring further intervention on the part of the 
programmer. 

It is important that tests are automatic, because otherwise the number of tests that can be 
performed in sequence would be severely limited, and using them would be an exhausting 
task that people would be reluctant to perform frequently. On the other hand, the number 
of automatic tests in a system can be arbitrarily large, and that is why it is essential that 
tools such as JUnit be able to automatically run all tests placed within the specific class, 
package or subsystem. Programmers need to worry with the results only when one or more 
of the tests fail, giving rise to JUnit’s famous “red bar”. Figure 3 shows an example, taken 
from [15]. Use of automatic tests also seems to lead to a more psychologically satisfying 
approach to testing [16] than with previous, conventional, ways, opening the way for the 
test-driven development approach to software development [4][13]. 

Unit tests also serve as regression tests, i.e. tests that ensure that new modifications do not 
introduce fresh bugs into code that was previously passing all the tests. Thus, unit tests blur 
traditional boundaries between the phases of coding, testing and debugging. 
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Figure 3: JUnit’s red bar signalling a failed test. 

2.2.2 Brief  History of  Refactoring 

Though programmers have been applying source code transformations for decades, only 
more recently has refactoring been subject to formal research. One of the earliest works is 
Griswold’s doctoral work. In his PhD thesis [53] and again in a paper co-authored with his 
thesis supervisor, Notkin [54], Griswold remarks that unanticipated changes are likely to 
cut across the module structure of the system, and that the resulting needs for non-local 
changes are the key property of structural degradation and one primary cost factor in 
software maintenance. The authors claimed that the global restructuring of software 
systems could be cost-effective, if it is automated and separated from other qualitatively 
different maintenance activities. Griswold focused on automating a set of program 
transformations that are difficult for the human programmer to perform correctly or 
quickly, but are easy for the computer to perform. The automation of such transformations 
was meant to free the software engineer from those tasks, enabling her to concentrate on 
the subjective activities of choosing the appropriate structure. 

Griswold focused his work on procedural and functional programs, and included a 
prototype tool for restructuring Scheme programs. Opdyke’s Ph.D. thesis [125], under the 
supervision of Ralph Johnson, is generally considered the first major written work on the 
subject of automatic refactoring of object-oriented programs. Opdyke and Johnson were 
also the first to use the term “refactoring” in the context of transforming OO programs 
[127]. 

Opdyke identified a series of refactorings for object-oriented source code, using C++ as 
the subject language. Opdyke described the structural prerequisites and automatic program 
transformations necessary to guarantee preservation of behaviour [125]. Opdyke and 
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Johnson later defined various refactorings for C++ [126][70]. Similarly, Tokuda and Batory 
evaluated the impact of a refactoring tool for C++ [151][152]. Though Opdyke’s work 
focused primarily on C++, it opened the way for the first widespread refactoring tool – the 
Refactoring Browser [137]. This tool was developed for Smalltalk by John Brant and Don 
Roberts, also under the supervision of Johnson. In his Ph.D. thesis [136], Roberts specifies 
the refactorings provided by the Smalltalk Browser and focuses on the possibility to 
combine refactorings by analysing post conditions and preconditions of the combined 
refactorings. 

Since the end of the 90’s, refactoring became the subject of growing interest due to the 
advent of agile methodologies, most notably Extreme Programming (XP) [12]. In this context, 
refactoring is regarded in a subtly different light. Earlier research was based on the 
assumption that automatic tool support is a fundamental prerequisite for refactoring to be 
feasible. Therefore, the advent of refactoring tools would open an entire new range of 
possibilities. From the point of view of advocates of XP, however, those possibilities can 
be realised even without the support of refactoring tools. The availability of testing 
frameworks such as JUnit [183] made the difference. Naturally, advocates of XP welcome 
tool support for refactoring as a very important contribution to enhancing their 
productivity. These views are clearly expressed in the book by Fowler [47], which also acts 
as a manifesto for the use of refactoring in software development and maintenance. 

Fowler et al. [47] present a manual but disciplined approach to the use of refactoring. The 
primary component in this book is a collection of 72 manual refactorings for object-
oriented programs (see Appendix A). The subject language used in Fowler’s book is Java, 
and the book was published at a time when tool support for refactoring Java programs was 
not available. The refactorings were meant to be performed in a manual but disciplined 
way. After publishing his book, Fowler challenged tool vendors to produce automated 
refactoring tools for mainstream languages such as Java. Fortunately, the tool vendors 
responded, and few years later several IDEs provided automated support for many of the 
refactorings described in Fowler’s book. 

Presently, Fowler maintains a web site with material on the subject of refactoring [184]. 
The site does not provide many of the contents of his book, but includes a list of 
refactorings, including some that were described after the book’s publication (see Appendix 
C). There is also a very active mailing list to discuss issues related to refactoring and style 
[185]. 

2.2.3 Bad Smells in the Code 

Having tool support for refactoring is an important though not sufficient factor. Presently, 
the available tools can already automate many of the most widely known refactorings, but 
cannot automate the thought process that leads to the decision to apply a given refactoring. 
Though most of the desirable code transformations may one day be completely automated, 
the process that leads to decisions of when to refactor, what to refactor, and how to 
refactor is expected to remain a subjective one and therefore the preserve of human 
programmers. Humans must make the decisions, and for that they need rules of style. A 
clear notion of style enables programmers to recognise the situations in the code that 
require intervention. 

Notions of style in a programming language are meant to express the coding practices that 
result in code easier to understand and to evolve. This entails making the code 
communicate the intentions of the programmer as clearly as possible (i.e. favouring the 
code’s intentionality). Refactoring, like XP, regards a system’s source code as primarily a 
communication mechanism between people, not computers. Whenever a programmer has 
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difficulties in understanding what a snippet of code is supposed to do, this is considered a 
sign that the code should be refactored. This is illustrated in Figure 4, where the motivating 
example for the Compose Method ([76], p.123) refactoring is shown. 
 
public void add(Object element) { 
 if(!readOnly) { 
  int newSize = size + 1; 
  if(newSize > elements.length) { 
   Object[] newElements = new Object[elemnts.length + 10]; 
   for(int i=0; i<size; i++) 
    newElements[i] = elements[i]; 
   elements = newElements; 
  } 
  elements[size++] = element; 
 } 
} 

 
public void add(Object element) { 
 if(readOnly) 
  return; 
 if(atCapacity()) 
  grow(); 
 addElement(element); 
} 

Figure 4: Introdutory Example for the Compose Method refactoring. 

In the days of procedural programming, the original form of the example shown in Figure 
4, which includes three nested control structures within the same method, would be 
considered standard practice. In the light of the style proposed in [47][76], it smells of the 
Long Method smell ([47], p.76). Figure 4 also illustrates the tendency of refactorings to enrich 
the interface of the refactored objects. Though Fowler’s catalogue also includes 
refactorings to inline methods and classes, more often than not the refactoring process 
yields a system with a larger number of finer-grained units of modularity. This is in keeping 
with the interface-oriented and interface-driven nature of OO. 

Fowler’s book contributes with a more developed mechanism to express notions of style. 
Fowler explains in Chapter 3 of his book [47] that describing the situations that lead to the 
use of given refactoring is trickier than describing the mechanics of the refactoring itself. 
The strategy he adopted, on a suggestion by Beck, was to describe what the code should not 
be, instead of describing what it should be, through the bad smells in code metaphor. Code 
smells are a way to describe warning signs about potential problems in code. Not all smells 
indicate a problem, but most are worthy of a look and a decision of whether to refactor or 
not to refactor. Fowler’s book includes the description of 22 different smells, and indicates 
the refactorings that are likely to remove them from the code (see Appendix B). The 
collection of smells serves as a refactoring guide for programmers. 

A decade earlier, Johnson and Foote provided “rules of thumb” [69], for obtaining well-
structured OO classes that are amenable to reuse. These rules can be considered 
prototypes of the rules proposed by Beck and Fowler, touching issues of both design and 
style. The differences between the rules by Johnson and Foote and those proposed by 
Fowler et al. are in the subject language (Johnson and Foote use Smalltalk) and in the 
greater maturity and level of detail provided by Fowler and Beck. For instance, Foote and 
Johnson propose a Reduce the number of arguments rule that corresponds to the Long Parameter 
List smell ([47], p.78), but also to the refactorings Extract Method ([47], p.110), Extract Class 
([47], p.149), Preserve Whole Object ([47], p. 288) and Introduce Parameter Object ([47], p. 295). 
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In his workbook on refactoring [158], Wake elaborated on the smell metaphor by evoking 
the image of someone opening a fridge that has a few things going bad inside: “some 
smells will be strong, and it will be obvious what to do about them. Other smells will be 
subtler; one won’t be sure if the problem is caused by this or that dish from yesterday. 
Some food in the fridge may be bad without having a particularly bad smell.” Wake states 
that “code smells seem to be like that: some are obvious, some aren’t. Some mask other 
problems. Some go away unexpectedly when one fixes something else”. 

Wake contributes with more smells (see Appendix F). In addition, Wake introduces the 
concept of symptom, which is closely related to that of smell, but mentioning a concrete 
situation instead of providing a general description. In addition, Kerievsky published a 
book documenting 27 refactorings to introduce (and sometimes to remove) design patterns 
in existing code [76] (see Appendix D), and contributes with several additional smells (see 
Appendix E). The refactorings address both the new smells he proposes as well as some of 
the smells described by Fowler et al. Kerievsky’s refactorings are presented in a format 
similar to that used by Fowler, and we also use in Chapter 6. 

2.2.4 Why do we need Refactoring? 

Ideally, programmers would be able to place all concerns in a software system in their own 
units of modularity, and would be capable to perform any compositions of those units 
according to the conveniences of each specific case of use. In practice, programmers are 
not able to do that, because traditional programming models and tools are limited in terms 
of the composition mechanisms provided and units of modularity supported. 
Consequently, whenever there is a need for an unsupported composition, the system’s 
source code must be manually changed to derive something equivalent to the desired 
composition. 

Existing composition mechanisms support only a limited set of units of modularity, and 
changes in requirements and environments entail changes in the existing units. Whenever 
programmers need to perform compositions over code not confined within the available 
units, programmers are forced to first extract new units from the code base. In systems 
subject to evolving requirements and environments [133][56], this process may need to be 
continuous and permanent. Limitations on the compositional capabilities also have the 
consequence that existing units tend to contain code related to more than one concern 
(giving rise to the code tangling problem). Each time that changes must be made to one of 
the concerns, it is necessary to change the unit anew. This consequently increases the rate 
at which a given unit must be subject to changes. 

Another cause for the need to refactor is the fact that many programmers write OO code 
in poor style [113][47]. One of the likely causes for this is the paradigm shift problem [88], i.e. 
the fact that absorbing the concepts and way of thinking of OOP seems to be much harder 
to people previously used to the procedural style. Anecdotal evidence (e.g. page 172 of 
[148]) suggests that it takes programmers from a half year to one and a half years to switch 
the mindset from a procedural to an OO view of the world. On the other hand, experience 
also suggests that OOP is more easily absorbed by people that did not have a previous 
contact with procedural programming. It is the switch that is difficult, not OOP itself. 
Judging from the examples of bad style presented in [69][47][76][158] and elsewhere, the 
mental misadjustment caused by a procedural background seems to be a major cause of 
badly written OO code. 
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2.3. Metaprogramming and Reflective Techniques 
There are many tools that automate a wide variety of tasks in software engineering, 
including compilers, type-checkers, interpreters, debuggers, translators, code generators, 
optimisers, and profilers. Recently there have been new additions, namely aspect weavers 
(see section 2.4) and refactoring tools (see section 2.2). There is a common element in all 
these tools: they use representations of programs that are processed in some way, and that 
can take various roles in that processing (as input, as output, or both). All these tasks fall 
under the umbrella term of metaprogramming. 
Briefly, metaprogramming [34] is the automation of programming, the activity of 
developing programs that read, manipulate, and/or write other programs. It is 
characterised by the fact that the representations being processed do not relate to a 
particular problem domain, but to the programs themselves. In the special case in which 
the representation the metaprogram is processing relates to itself, the term computational 
reflection [103] or simply reflection [87] is used. 

In earlier days, the primary mechanism to deal with crosscutting concerns was through 
language features, i.e. the intervention of the compiler. Crosscutting concerns span an 
entire system and therefore require a global view of the application, available in an 
appropriate representation. Decades ago, the compiler was one of the few entities to 
possess this global representation7. Type checking is an example of a crosscutting concern 
that compilers have been addressing effectively since the days of procedural languages. 
However, at the time compilers could address only a limited range of crosscutting 
concerns, for a number of reasons. Compiler technology was less developed, 
computational resources were more expensive and limited, and anyway it is not desirable 
that programming languages be changed frequently. In addition, language features can only 
address general issues, as using language features to deal with case-specific issues is often 
not practical. 

As related technologies developed and matured, new possibilities to address crosscutting 
concerns appeared, and reflection was a particularly promising trend. In [103], Maes defines 
reflection as the ability of a software system to query, inspect and manipulate 
representations of itself. The most straightforward way to implement reflection is through 
interpreted languages. To support reflection, the interpreter must maintain a representation 
of the interpreted program, and expose all or part of it to the program itself, through some 
suitable protocol [87]. This protocol enables the program to perform computations on 
itself and therefore change its own structure. Through reflection, users of the reflective 
language would be able to tailor it to the extent that the protocol would allow. Variants of 
the default behaviour provided by mechanisms such as inheritance, delegation and 
protection could be specified, and novel kinds of compositions could be obtained [46]. 

In section 2.1.4, we mention the limitation of traditional approaches to interfaces, which do 
not take into account important issues such as memory consumption and efficiency. These 
limitations were pointed out by Kiczales in [81], which proposed a new approach to 
address these problems that Kiczales called open implementation. Open implementation was 
based on the work by Kiczales and others on meta-object protocols [20][87]. Open 
implementation proposes using reflective architectures to provide developers with a second 
interface in addition to the traditional interface [85]. The primary interface would be similar 

                                                 
7 Tools such as preprocessors were another, but they did not prove to be a satisfactory solution. One of the 

reasons is precisely because the actions of a preprocessor bypassed the compiler and therefore its global 
representation of the program. For instance, the symbols defined by the preprocessor cannot be type-
checked by the compiler. 
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to that of traditional systems and would relate to the desired behaviour of the system. The 
secondary interface would be optional and would enable the customisation of particular 
aspects of the underlying system’s implementation to make it better meet the system’s 
needs. Therefore, the secondary interface would deal with meta-level issues. 

Despite the early promise, the reflective approach also proved to have drawbacks. Some of 
them were known from the start, while others surfaced as experience was gained. The first 
drawback is that reflection requires a reflective architecture, which is expensive. Some 
languages are often selected for their efficiency and therefore it does not make much sense 
to develop an expensive reflective infrastructure for them. This particularly applies to 
languages such as C and C++, which possess characteristics, such as direct access to 
arbitrary memory locations that are either hard or expensive to reconcile with a reflective 
architecture. Reflection can also give rise to security issues in some languages. For instance, 
Java has reflective facilities, but because Java was designed for communication through the 
Internet, its reflective interface was designed to be “read-only” and to not allow programs 
to modify their structure and behaviour [25]. 

In addition, the parts of the source code dealing with the meta-level lack intentionality. The 
statements comprising the meta level look like those from the base level (unless a different 
sublanguage is used for the meta-level) and therefore it is hard to tell them apart. Listings 
1-3 present a simple example. Listing 1 shows a simple class Capsule defining a simple 
doSomething method. Listings 2-3 show two client classes that have the same externally 
observable behaviour. Listing 2 shows a client SimpleCaller calling that method through 
the standard, straightforward way. Listing 3 shows a ReflectiveCaller client calling the same 
method through reflection. Listing 3 makes it harder to know at a glance what the 
intentions are than Listing 2. 

On the other hand, some meta-level sections of a program relate to modifying and 
customising language mechanisms whose default behaviours are often expressed 
declaratively. These meta-level sections nevertheless have a programmatic form. To have 
parts relating to the same concern expressed in two different ways is confusing and 
undesirable. The programmatic nature of these meta-level sections also makes them harder 
to reason with, and harder to control. 

Many uses of reflective techniques are nowadays regarded as bad-style, i.e. something to be 
avoided whenever reasonable alternatives are available. One reason for this is the 
aforementioned lack of intentionality: it often comprises an alternative means to achieve an 
effect that is already supported through more direct (i.e. intentional) means. For instance, 
the reflective facilities of Java enable the call of a method through a string containing the 
method’s name. However, this comprises a much more complicated way to call a method 
than the standard one. In addition, such code is likely to escape the notice of refactoring 
tools. If, for instance, Rename Method ([47], p.) is applied to method doSomething shown in 
Listing 1, the tool will likely fail to update the reflective call made in ReflectiveCaller shown 
in Listing 3. This comprises another reason for considering the use of reflection to be bad 
style. 
 
public class Capsule { 
 public void doSomething() { 
  System.out.println("doing something..."); 
 } 
} 

Listing 1: Simple class defining a simple method 
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public class SimpleCaller { 
 public static void main(String[] args) { 
  Capsule capsule = new Capsule(); 
  capsule.doSomething(); 
 } 
} 

Listing 2: straightforward way to call a method 

 
import java.lang.reflect.Method; 
import java.lang.reflect.InvocationTargetException; 
 
public class ReflectiveCaller { 
 public static void main(String[] args) { 
  Capsule capsule = new Capsule(); 
  Class classObj = capsule.getClass(); 
  Class[] classes = new Class[0]; 
  try { 
   Method method = classObj.getDeclaredMethod("doSomething", classes); 
   method.invoke(capsule, null); 
  } catch(NoSuchMethodException e) { 
   System.err.println("Class object failed to find the method."); 
  } catch(IllegalAccessException e) { 
   System.err.println("Acces to method considered ilegal."); 
  } catch(InvocationTargetException e) { 
   System.err.println("Method invokation failed."); 
  } 
 } 
} 

Listing 3: Calling a method through reflection 

2.4. Aspect-Oriented Programming 
AOP is a project whose development started at the Palo Alto research Centre at Xerox, 
under the direction of Kiczales. At the end of 2002 that project was transformed into an 
open-source project hosted by IBM’s eclipse IDE project [179]. That project (along with 
other projects such as AJDT [169]) aims to develop a mature software development for the 
AspectJ language, the primary representative of AOP technology. 

AOP is one of several lines of research included in the umbrella term Advanced Separation 
of Concerns (ASoC) [40][44][170]. The common aim of ASoC is to develop models and 
tools that enable a greater level of separation of concerns than those attained by traditional 
technologies such as those surveyed in section 2.1. Unfortunately, ASoC is also referred as 
Aspect-Oriented Software Development (AOSD), therefore risking being confused with 
AOP. For this reason, this thesis always uses AOP to refer to the technique described in 
section 2.4.1 and uses the term ASoC in preference to AOSD. 

ASoC also includes a growing number of research lines and projects, namely Composition 
Filters [176][19][2], Adaptive Programming [96][92], Subject-Oriented Programming [63], 
Multi-Dimensional Separation of Concerns [150][131][129] and the research conducted by 
Don Batory [10][8][9]. Some of the aforementioned projects are of limited interest from 
the practical point of view. For instance, Subject-Oriented Programming is no longer under 
active development, having being superseded by Multi-Dimensional Separation of 
Concerns. Composition Filters lacks a modern tool providing a full support of its model. 
Besides AOP, none of the aforementioned ASoC research projects yielded until now a 
mature enough a language or tool to be subject to the kind of research focusing on issues 
of style that was undertaken for this thesis. 
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2.4.1 What is AOP? 

AOP is above all a modularity technology, whose focus is to enable the clean 
modularisation of crosscutting concerns. AOP was created under the assumption that no 
programming model or language based on a single criterion of decomposition – be it 
function, assertion, class or any other – is able to separate and encapsulate all concerns 
found in the more complex examples of modern software [86]. When a system has two or 
more decompositions such that neither can fit neatly into the other, one of the 
decompositions tends to be dominant [150]. Only the elements relating to the dominant 
decomposition are cleanly modularised: the code relative to others concerns tends to be 
crosscutting, i.e. they are scattered throughout the modules of the existing structure. Those 
elements usually appear as code fragments enclosed within the existing modules, i.e. they 
are tangled with code related to other concerns. In the light of AOP, it is very desirable that 
models and tools for software development be able to present each concern in the form 
that most facilitate its understanding, reasoning and maintenance, thus providing greater 
intentionality. Code scattering and code tangling are an impediment to achieve it. 

Kiczales et al. propose a new programming technique they dubbed aspect-oriented [86] as a 
solution to the crosscutting effect and associated problems. Kiczales et al. use the term 
aspect to refer to concerns or design decisions difficult or impossible to capture cleanly, no 
matter which programming model is used. AOP enables the representation in its own unit 
of modularity of code relative to concerns that would otherwise cut cross several units. 
This new type of module – the aspect – is a representation of a (otherwise crosscutting) 
concern cleanly captured in its own unit of modularity. The various aspects are then 
composed through a process dubbed weaving [86][64], which produces the application 
through composition of all the intended aspects. 

Aspects are composed by weaving aspect code with a base code. This process works by 
inlining the instructions from the aspect code into the base code, producing a tangled 
version. The fact that it is tangled does not impact negatively the development process, 
since it can be regenerated every time a new version is required. The inlining analogy used 
to describe weaving may suggest the processing and generating of source code, but the 
earliest aspect-oriented compilers started to perform this inlining at the binary level, very 
soon in the technology’s developing process. This made it clear that weaving could be 
regarded as one more phase in the execution of a compiler (see Figure 5), and that is how it 
is presently regarded [6]. There is nothing in the aspect-oriented model stating that the 
target of the weaving process must be source or binary code, or that the weaving process 
must be static (compile-time), dynamic (runtime), something in between (e.g. load-time), or 
supported at the virtual machine level [134]. 
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Figure 5: (a) Traditional Compilation (b) Compilation with Weaving 

 

AOP is meant to complement other models, not to replace them. What distinguishes 
aspects from traditional modules is the crosscutting nature of the concerns they 
modularise. It is important to realise the relative nature of this concept: a given concern 
may be crosscutting using one model but may be a cleanly encapsulated one using another. 
For instance, the procedural model decomposes systems according to algorithms, and 
therefore data is scattered across multiple units of modularity (procedures). In OOP, data 
and functionalities comprise the primary decomposition of the system and therefore data is 
cleanly modularised. Other, non-functional, concerns stand out as crosscutting. That is why 
the aspects that complement OO applications tend to be non-functional. 

Often, the various aspects relate to different abstraction domains. Recognising this fact, the 
earliest proposals presented by Kiczales et al. include aspects coded in different, sometimes 
concern-specific, languages. This is consistent with the idea of maximising intentionality. It 
is the task of the aspect weaver to compose the various aspects into a single application. 
For instance, Lopes developed two concern-specific languages – COOL and RIDL 
[100][102] – designed to express policies of synchronisation in multithreaded environments 
and the management of access to remote objects throughout networks. Although DSLs 
alone yields maximum intentionality to model specific domains, use of DSLs is also very 
limiting, since it would require a new DSL as well as its own specific aspect weaver for each 
new domain, and possibly for each target application language or platform. These problems 
are not present in the AspectJ language, which is general-purpose. 

In its earliest years, there were debates on the nature of AOP and what differentiated it 
from other models. Filman and Friedman [45] proposed quantification and obliviousness as the 
defining properties of aspect-orientation. Quantification of a piece of code over a program 
is the ability to specify a set of separate points in the execution of the program and then 
execute the piece of code in every point of the set. In other words, quantification is to say, 
“whenever condition C arises, perform action A”. The kinds of quantifications that an 
aspect-oriented language supports determine the language’s expressive power. A usual 
quantification can be “whenever method M is called”, but can be something more fine-
grained like “whenever variable v is accessed for reading”. 

Obliviousness is the ability to quantify a piece of code over programs that were written 
oblivious to this code. The programs are said to be oblivious because they were not 
specifically prepared to receive those quantifications (the programmers who wrote the 
program were oblivious to them). Thus, it becomes possible to add, or change, or even 
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delete behaviour from a program without changing its code. Therefore, AOP opens the 
possibility to reuse code not originally intended to be reused, or in ways other than those 
initially intended. 

2.4.2 Concepts and Mechanisms of  an Aspect-Oriented Language 

The main aspect-oriented tool is AspectJ [83][82][90], a backwards-compatible extension of 
Java8. Various aspect-oriented tools have later appeared [77], but the majority is strongly 
influenced by the design of AspectJ. Currently, AspectJ is a de facto standard for AOP in 
terms of language design. For this reason, and for the sake of simplicity, we use the terms 
AOP and AspectJ interchangeably throughout this thesis. 

AspectJ was designed to be independent of any specific implementation, so that widely 
different approaches could be taken to support its mechanisms. For instance, an AspectJ 
weaver can take source code as input, or binary code, and its output can be source code (in 
which case will have to be compiled again by another compiler), or will directly output 
binary code. Depending the specific implementations, the weaving process can take place 
at compile-time, run-time or class load-time, or be performed by the virtual machine itself. 
The first implementation developed at Xerox (AspectJ 1.0.x) included a weaver that 
accepted the source code of the target classes as input and directly generated bytecode-
compatible binaries (which can be interpreted by any Java runtime). Later, a second 
implementation (AspectJ 1.1.x) was developed that supports bytecode-weaving, so both 
input and output come in binary form. 

Each different implementation of AspectJ carries its own specific strengths and limitations. 
For instance, the fact that AspectJ 1.0.x was based on source code meant that weaving 
could only be performed on the classes whose source code was available to the compiler, a 
limitation that does not apply to AspectJ 1.1.x9. On the other hand, the bytecode-based 
implementation of AspectJ 1.1.x is facing its own technical hurdles: for instance, the end of 
exception handlers is undefined in bytecode, which means that AspectJ 1.1.x currently does 
not support around and after advice on exception handlers. The AspectJ language 
specification (accessible from [172]) was designed to abstract from these implementation 
issues. 

It falls out of the scope of this thesis to provide all the details of a language as rich as 
AspectJ. We next describe the primary concepts and present a few illustrating examples 
(see also appendix G for a quick reference). 

Joinpoints 

The kinds of quantifications that an aspect-oriented language supports are determined by 
its joinpoint model. Joinpoint is the novel concept that makes oblivious quantification 
possible. Joinpoints are those elements of the component language semantics with which 
the aspect programs coordinate. A joinpoint is any identifiable execution point in a 
software system. The following execution events are all examples of joinpoints: 

                                                 
8 At the time of writing this thesis, the new version of Java, “Tiger” [5], came out. The latest version of 

AspectJ to be used for the work for this thesis is AspectJ 1.2, which is not compatible with Tiger. AspectJ 5 
[173], a new Tiger-compatible version of AspectJ, is under development. 

9 This in turn opened a legal issue, the possibility of weaving third-party code in violation of the terms under 
which that code is made available. It is usual for software developers to use licenses requiring one not 
modify the code of the libraries they provide, in part to ensure that they run as expected and tested, and 
weaving aspects into their code is often a violation of those restrictions. The AspectJ community hopes that 
in future library licenses start to include permissions to weave aspects, at least in such cases when the 
aspects do preserve the behaviour of the original code. 
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• The call to a method; 

• The execution of a method; 

• The assignment to a variable; 

• The access to a field for reading; 

• The access to a field to modify its value; 

• The execution of the return statement; 

• The construction of an object; 

• The execution of a control structure (conditional or iterative); 

• The condition performed in the context of a control structure; 

• The execution of an exception handler; 

• The loading of a class by the virtual machine; 

Not every joinpoint is supported by AspectJ: only those points that were judged usable in a 
disciplined and principled manner are. For instance, line numbers could comprise a 
joinpoint. However, they would be extremely fragile, i.e. they would be very vulnerable to 
small, otherwise trivial changes to the source code. Another example, presented by Kiczales 
in a posting10 to the aspectj-users mailing list [174], concerns a joinpoint on the evaluation 
of arguments in method calls, which AspectJ does not support. Kiczales notes that most 
programmers feel that if they the take code like the following: 
 
 foo(a + b + c()); 

and change it to 
 
 String temp = a + b + c(); 
 foo(temp); 

the code would not change its behaviour. However, if the system included an aspect 
dependent on the evaluation of parameters, the behaviour could change in perhaps 
surprising ways. This kind of fragility was avoided during the design of AspectJ’s joinpoint 
model. For similar reasons, many other joinpoints are not supported by AspectJ, including 
several of those above mentioned as examples (appendix G presents those that are). These 
include the execution of return and those that take place in the internal implementation of 
methods, such as control structures, comparisons and the use of local variables (access to 
fields, however, are supported). 

Pointcuts 

AspectJ includes a novel construct, the pointcut designator, which identifies particular 
joinpoints by filtering out a subset of all joinpoints of a program flow. The joinpoints 
captured by a pointcut designator correspond to non-contiguous places in the program’s 
source code, and that is why the joinpoint set is crosscutting. Pointcut expressions can 
include wildcards and thus specify an open-ended set of joinpoints. Table 1 shows a few 
legal examples of AspectJ’s pointcut protocol. Appendix G presents a condensed list of the 
aspect-specific constructs of AspectJ, including the supported pointcut designators. 

One important characteristic of AOP is that joinpoint models are not restricted to elements 
exposed by the interface as declared by a class. For instance, the joinpoint model of 

                                                 
10 http://dev.eclipse.org/mhonarc/lists/aspectj-users/msg02826.html 
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AspectJ enables the quantification of the access of fields (both for reading and for writing), 
which in most object-oriented systems are usually kept hidden from the exposed interface. 
For instance, if an AspectJ pointcut is defined to capture all the calls to methods whose 
name start with “set”, without specifying the visibility of the method (i.e. whether the 
method is public or private), it will capture all calls, regardless of visibility of the methods 
concerned. This is yet another way in which the crosscutting nature of aspects is apparent, 
and it somehow suggests that aspects conceptually reside at a meta-level, relative to the 
remaining “code base”. 

AspectJ provides 17 primitive pointcuts (these are shown in appendix G) that collect 
joinpoints based on names and properties. Pointcuts may be combined using set operators 
such as 

 a && b all joinpoints in both a and b  
 a || b  any joinpoint in a or b  
 a && !b any joinpoint in a, except those in b 

From all this, it is apparent that AspectJ’s pointcut protocol effectively comprises a DSL 
for one kind of metaprogramming – quantification. 
call(void Foo.m(int)) A call to the method with signature 

void m(int) in class Foo 
call(void m*(int)) Calls to void methods whose name starts with an ‘m’ 

and which have a single parameter of type int 
call(* m*(..)) Calls to methods of any type whose name starts with 

‘m’ and with any nº of parameters, including zero 
execution(!public Foo.new(..)) The execution of any non-public constructor of Foo 
initialization(Foo.new(int)) The initialisation of any Foo object that is constructed 

with constructor Foo(int) 
staticinitialization(Foo) When the type Foo is initialised, after its class being 

loaded by the virtual machine 
get(int Point.x) When an access for reading the integer field x in the 

Point class takes place 
set(!private * Point.*) Access for writing the value of any non-private field 

in the Point class 
handler(IOException+) When an IOException or one of its subtypes is 

handled with a catch block (without the +, type 
patterns match only the exact type) 

Table 1: Examples of pointcuts in AspectJ. 

Advice 

In AspectJ, the constructs that specify how the behaviour of the base program is to be 
affected are the advice. Advices are nameless method-like blocks associated to a given 
pointcut that execute implicitly, whenever one of the joinpoints collected by the pointcut is 
reached. Note that although advices resemble methods (or procedures) in some ways, they 
do not have call semantics: advices are never called explicitly, and therefore do not need a 
name. For the same reason, they are not polymorphic. 

Advice can define and use their own temporary variables the same way as methods, and 
can use and modify whatever values are exposed by the advice’s signature, the same way 
methods can use and modify values received as parameters. Relative to the execution of a 
joinpoint, advice can execute: 
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• Before a joinpoint. The advice executes immediately before the joinpoint is “entered” 
and it cannot prevent the joinpoint from executing (unless in abnormal situations, 
such as throwing an exception). 

• After a joinpoint. The advice executes immediately after a joinpoint has finished, and 
therefore does not prevent it from executing. There are variants for joinpoints 
terminating normally and exiting by throwing an exception. 

• Instead of a joinpoint. The original joinpoint is executed only if the advice explicitly 
calls it, using the proceed keyword. This mechanism is somewhat similar to calling an 
overridden method using the super pseudo-variable. This advice can emulate the 
other two kinds of advice, but it is also more complex to use. Unlike the other 
kinds of advice, the around advice must declare a return type, which must conform 
to the type of the joinpoint which triggered it (and which can be void). 

Pointcuts can capture context from the joinpoints they collect and pass it to advices, using 
some kinds of pointcut designator specifically designed for that purpose. AspectJ provides 
several such pointcut designators, as well as pointcuts to restrict the scope of applicability 
of the pointcut (see Appendix G). The context passed to the advice must conform to the 
advice’s signature. Table 2 shows a few examples context-capturing pointcuts and Table 3 
shows examples of advice acting on those pointcuts. 
 
pointcut increments(int a): 
 call(* incr(int) && args(a); 

Pointcut increments collects all calls to methods 
incr receiving an int as argument. Parameter ‘a’ 
is bound to the value of the argument 

pointcut call2server(Server callee):
 call(* service(..)) 
 && target(callee); 

Pointcut call2Server collects all calls to method 
service of class Server. The instance of Server is 
bound to the parameter callee 

pointcut fooExecution(Bar self): 
 execution(* foo(..)) 
 && this(self) 

Pointcut fooExecution collects all executions of 
methods named foo of any return type and any 
number of parameters. The currently executing 
object (i.e. the one referenced by the self 
variable ‘this’) is bound to the parameter self. 

Table 2: Examples of context capture by pointcuts. 

before(int v): increments(v) { 
 //... 
} 
after(Server server): call2server(server) { 
 //... 
} 
Bar around(Bar current): fooExecution(current) { 
 //...  
 return //some value of type Bar 
} 

Table 3: Examples of context capture by pointcuts. 

AspectJ was designed in such a way as to ensure that the concepts of joinpoint, pointcut 
and advice are orthogonal. Thus, the definition of a pointcut does not depend on the kind 
of advices that act on their joinpoints, and a given advice acts similarly on all kinds of 
joinpoint. Likewise, joinpoints do not depend on the pointcuts that match them or on what 
kind of advice act on them. If this orthogonality did not exist, programmers would need to 
remember that a particular kind of advice only works on a particular subset of pointcuts or 
on a particular range of joinpoints. Such a language would be more complicated to use. 
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To illustrate the use of pointcuts and advice, consider the simple example shown in Listing 
4. When the class HelloWorld is compiled without the Demo aspect, the traditional 
behaviour occurs as expected and the message “Hello, World!” is sent to the console. 
When the Demo aspect is included in the build, running the main method of HelloWorld 
yields the following output: 
 
Before the greeting. 
Hello, world! 

We usually want to restrict the scope of the pointcuts so that the associated advices do not 
apply to more joinpoints than initially intended (aspects with runaway pointcuts of this 
kind are sometimes called leaking aspects). Assuming the example is placed within a package 
named simple_print, a safer version of Demo would be as follows (the differences are 
highlighted in bold): 
 
public aspect Demo { 
 pointcut greetingExecution(): 
  execution(void greeting()) 
  && within(simple_print.*); 
 
 before(): greetingExecution() { 
  System.out.println("Before the greeting."); 
 } 
} 
 
class HelloWorld { 
 void greeting() { 
  System.out.println("Hello, World!"); 
 } 
 public static void main(String[] args) { 
  HelloWorld hello = new HelloWorld(); 
  hello.greeting(); 
 } 
} 
public aspect Demo { 
 pointcut greetingExecution(): 
  execution(void greeting()); 
 
 before(): greetingExecution() { 
  System.out.println("Before the greeting."); 
 } 
} 

Listing 4: Simple example of pointcuts and advice. 

Inter-type Declarations 

The purpose of inter-type declarations – also known as static introductions, or simply introductions 
– is to declare additional fields and methods into classes. For example: 
 
 public void Foo.actionPerformed(ActionEvent e) { 
  System.out.println(this + " is executing."); 
 } 

This definition adds the method actionPerformed to the target class Foo. From the 
perspective of the clients of Foo, it is as if the method was declared within the class Foo. 
Another kind of introduction is to change the inheritance hierarchies (with some 
limitations) of classes. One frequent use of this mechanism is to make a class implement 
additional interfaces. It is possible (and very useful) to make classes implement interfaces 
declared within the aspect. 
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Inter-type declarations play a very important part in making AspectJ a powerful tool for 
modularising crosscutting concerns. One contributing factor is the fact that access 
modifiers on inter-type members are scoped with regard to the aspect that declares them, 
not the target type. Therefore, when class members declared by the aspect are declared 
private, they are private to the aspect and the only place in the source code in which those 
members can be used is the aspect. This rule further enforces the modularity of aspects. 

This capability can solve a crosscutting problem that usually has a considerable negative 
impact whenever arises. When a given set of data items must be passed as arguments 
throughout several layers of methods, the data must be included in signatures of various 
methods across layer boundaries, “polluting” the interfaces [91][90]. This causes a 
scattering and tangling problem in a system that otherwise would comprise a well-
modularised structure with several independent layers of abstraction. AspectJ enables those 
data items to be used exclusively within an aspect, eliminating this interface pollution and 
yielding a cleaner structure. 

Declare Clauses 

AspectJ includes a number of ‘declare’ clauses that configure or extend the behaviour of 
the compiler, in a way that goes toward the concept of active libraries [35]. Though not all 
such AspectJ clauses are referred in the refactorings documented in Chapter 6, a few of 
them play an important part in the refactorings. We next mention those clauses. 

AspectJ provides ‘declare warning’ and ‘declare error’ clauses to instruct the compiler to 
issue additional warnings and errors respectively. Both clauses associate a pointcut with a 
warning or an error, and a corresponding message. For instance, the following ‘declare 
error’ exposes all the points in which the System.out and System.err objects are accessed 
within a given scope. The intention is to prevent the program from using printing messages 
to the console. 
 
aspect CatchSystemPrinting { 
 pointcut scope(): //some scope definition... 
 declare error: 
  scope() && 
  (get(* System.out) || get(* System.err) || 
   call(* Throwable.printStackTrace())): 
  "Don't print, use the logger"; 
} 

Declare warning and ‘declare error’ clauses are frequently used to enforce system-wide 
policies like the one above. Not all pointcut designators can be used with these clauses, as 
they comprise a static (i.e. compile-time) mechanism and some pointcut designators specify 
joinpoints which can be resolved only during runtime (i.e. they include a dynamic residue 
[64]). Despite these limitations, ‘declare warning’ and ‘declare error’ clauses proved to be 
very useful, and that is demonstrated in several of the refactorings from Chapter 6. The 
most common uses are to assist the developer in detecting scattered points of interest 
during a search (i.e. the so-called scout aspects) and in policy-enforcement. 

The ‘declare parents’ clause is also widely used but for a very different purpose. With it, 
aspects can declare a different supertype (e.g. class or interface) of a given class. The new 
supertype must be a subtype of the original supertype. Therefore, ‘declare parents’ can 
make a class implement additional interfaces. The target class must provide the operations 
declared by the interface (i.e. it must be a subtype of the interface), or the compiler will 
issue an error. For instance, the following example: 
 
 declare parents: BankAccount implements java.io.Serializable; 
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makes the BankAccount class implement the Serializable marker interface from Java’s 
standard API. 

In addition, the aspect can also introduce the concrete operations using inter-type 
declarations. This enables AspectJ to emulate one kind of multiple inheritance, mixin 
inheritance [22]. The combination of inter-type declarations and ‘declare parents’ opens the 
way for an interesting idiom. It comprises an abstract aspect using an interface (possibly 
inner to the aspect) to model an additional role for a set of objects. The aspect declares 
additional state and behaviour on the interface. Concrete aspects use ‘declare parents’ 
clauses in to specify what classes actually play the role in a particular program. That is the 
pattern used by many of the examples presented in Chapter 4. 

2.4.3 A Complete Illustrating Example 

We next illustrate some of the capabilities of AspectJ to handle crosscutting concerns with 
simple example (see Listing 5). 
public class EuphoricHello { 
 static { 
  System.out.println("EuphoricHello class loaded"); 
 } 
 public EuphoricHello() { 
  System.out.println("Instance of EuphoricHello (" + this + ") created."); 
 } 
 public void salute() { 
  System.out.println(this + ": Oh what a wonderful world!"); 
 } 
} 
public class TragicHello { 
 static { 
  System.out.println("TragicHello class loaded"); 
 } 
 public TragicHello() { 
  System.out.println("Instance of TragicHello created."); 
 } 
 public void greeting() { 
  System.out.println("Goodbye, cruel world!"); 
 } 
} 
public class NervousHello extends TragicHello { 
 static { 
  System.out.println("NervousHello class loaded"); 
 } 
 public NervousHello() { 
  System.out.println("Instance of NervousHello created."); 
 } 
 public void greeting() { 
  EuphoricHello[] euphoria = {new EuphoricHello(), new EuphoricHello(), 
    new EuphoricHello(), new EuphoricHello()}; 
  for (int i = 0; i < euphoria.length; i++ ) 
   euphoria[i].salute(); 
  super.greeting(); 
  System.out.println("We live in a dangerous world!"); 
 } 
} 
public class ComplexHello { 
 public static void main(String[] args) { 
  (new NervousHello()).greeting(); 
  System.out.println("Hello, world!"); 
 } 
} 

Listing 5: Messages to the console as a crosscutting concern 
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Several classes are included to maximise the crosscutting element as much as possible – 
each a variant of the celebrated “hello world” example. One of the objects creates an array 
of other objects. Each class from the example makes a call to the println method of the 
System.out object in various moments of the class’ life cycle – when the class is loaded (the 
static block), when an instance is created (within the constructor) and when a method is 
called. The important thing to note is that the entire code base is sprinkled with such calls 
to the println method. When we run the example by calling the main method of 
ComplexHello, we see an output like the following (capPrints was the name of the 
enclosing package): 
 
TragicHello class loaded 
NervousHello class loaded 
Instance of TragicHello created. 
Instance of NervousHello created. 
EuphoricHello class loaded 
Instance of EuphoricHello (capPrints.EuphoricHello@194df86) created. 
Instance of EuphoricHello (capPrints.EuphoricHello@defa1a) created. 
Instance of EuphoricHello (capPrints.EuphoricHello@f5da06) created. 
Instance of EuphoricHello (capPrints.EuphoricHello@bd0108) created. 
capPrints.EuphoricHello@194df86: Oh what a wonderful world! 
capPrints.EuphoricHello@defa1a: Oh what a wonderful world! 
capPrints.EuphoricHello@f5da06: Oh what a wonderful world! 
capPrints.EuphoricHello@bd0108: Oh what a wonderful world! 
Goodbye, cruel world! 
We live in a dangerous world! 
Hello, world! 

Suppose we would like to change the messages the system sends to the console, without 
changing the existing source code. This kind of change is hard, and sometimes impossible 
to achieve with traditional techniques. To illustrate the capabilities of AOP, suppose the 
aspect shown in Listing 6 is included in the system’s build. 
 
01 public aspect BracketEncloser { 
02  pointcut printlnToConsole(String message):  
03   call(public void java.io.PrintStream.println(String)) 
04   && !within(BracketEncloser) 
05   && args(message); 
06 
07  void around(String message): printlnToConsole(message) { 
08   System.out.println("[" + message + "]"); 
09  } 
10 } 

Listing 6: Example of a simple aspect enclosing messages in brackets 

The BracketEncloser aspect encloses each of the messages sent to the console within 
square brackets. It does this by intercepting all calls to System.out.println, in the process 
capturing the string containing the message. The printlnToConsole pointcut (Listing 6, 
lines 2-5) specifies the relevant calls. It uses the within pointcut designator to prevent 
capturing the calls to println made within the aspect itself. This is important, because 
otherwise it would result in infinite recursion. The around advice acting on the pointcut 
(Listing 6, lines 7-9) overrides the joinpoint with a send of the message enclosed with the 
brackets. The output sent to the console when the system is built with BracketEncloser 
aspect is like what follows: 
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[TragicHello class loaded] 
[NervousHello class loaded] 
[Instance of TragicHello created.] 
[Instance of NervousHello created.] 
[EuphoricHello class loaded] 
[Instance of EuphoricHello (capPrints.EuphoricHello@1a16869) created.] 
[Instance of EuphoricHello (capPrints.EuphoricHello@1cde100) created.] 
[Instance of EuphoricHello (capPrints.EuphoricHello@16f0472) created.] 
[Instance of EuphoricHello (capPrints.EuphoricHello@18d107f) created.] 
[capPrints.EuphoricHello@1a16869: Oh what a wonderful world!] 
[capPrints.EuphoricHello@1cde100: Oh what a wonderful world!] 
[capPrints.EuphoricHello@16f0472: Oh what a wonderful world!] 
[capPrints.EuphoricHello@18d107f: Oh what a wonderful world!] 
[Goodbye, cruel world!] 
[We live in a dangerous world!] 
[Hello, world!] 

The BracketEncloser aspect influenced the final behaviour, but in this example the changes 
are arguably somewhat superficial. Aspects have the power to affect the behaviour of the 
primary code in fundamental ways. For instance, the aspect shown in Listing 7 sorts all the 
messages sent to the console in lexicographical order, ignoring case differences. It does this 
by intercepting the calls to println as before (Listing 7, lines 23-26), but in this case, it 
inserts the messages in a list, in the appropriate positions (Listing 7, lines 28 and 15-17). 
The advice and does not call proceed, which circumvents the original behaviour. 
 
01 public aspect OutputReordering { 
02  private List _sortedMessages = new Vector(); 
03 
04  private int findInsertionIndex(String message) { 
05   int index=0; 
06   while(true) { 
07    if(index >= _sortedMessages.size()) break; 
08    if(message.compareToIgnoreCase((String)_sortedMessages.get(index)) 
09      <=0) 
10     break; 
11    index++; 
12   } 
13   return index; 
14  } 
15  private void insert(String message) { 
16   _sortedMessages.add(findInsertionIndex(message), message); 
17  } 
18  private void printMessages() { 
19   for(Iterator it = _sortedMessages.iterator(); it.hasNext();) { 
20    System.out.println(it.next()); 
21   } 
22  } 
23  private pointcut printlnToConsole(String message):  
24   call(public void java.io.PrintStream.println(String)) 
25   && !within(OutputReordering) 
26   && args(message); 
27  void around(String message): printlnToConsole(message) { 
28   insert(message); 
29  } 
30  private pointcut mainExecution(): 
31   execution(public static void main(String[])); 
32  after(): mainExecution() { 
33   printMessages(); 
34  } 
35 } 

Listing 7: Example of an aspect sorting messages to the console 
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The aspect includes a second pointcut to detect the end of the execution of the method 
that initiated the system’s execution (Listing 7, lines 30-31). An after advice then prints the 
sorted messages (Listing 7, lines 32-34 and 18-22). 

When built with the OutputReordering aspect, the system generates the following output 
when executed: 
 
capPrints.EuphoricHello@16f0472: Oh what a wonderful world! 
capPrints.EuphoricHello@18d107f: Oh what a wonderful world! 
capPrints.EuphoricHello@1a16869: Oh what a wonderful world! 
capPrints.EuphoricHello@1cde100: Oh what a wonderful world! 
EuphoricHello class loaded 
Goodbye, cruel world! 
Hello, world! 
Instance of EuphoricHello (capPrints.EuphoricHello@16f0472) created. 
Instance of EuphoricHello (capPrints.EuphoricHello@18d107f) created. 
Instance of EuphoricHello (capPrints.EuphoricHello@1a16869) created. 
Instance of EuphoricHello (capPrints.EuphoricHello@1cde100) created. 
Instance of NervousHello created. 
Instance of TragicHello created. 
NervousHello class loaded 
TragicHello class loaded 
We live in a dangerous world! 

2.4.4 Aspect Interfaces and Reusable Aspects 

In [55], Gudmundson and Kiczales propose a novel kind of interface, based on pointcuts. 
They explain that named pointcuts (pointcuts can also be anonymous) are similar to 
methods in important ways. Named pointcuts have both a signature and a definition, and 
other constructs can access them by name. To further clarify their semantics, named 
pointcuts usually include a brief description in the source code/or interface documentation 
(in Java the former are typically use to generate the latter through the use of tools such as 
javadoc), the same way as method signatures. 

Gudmundson and Kiczales note that the abstraction capability of named pointcuts is 
similar to that of a method signature. The pointcut has a name and a parameter list, just like 
a method signature. The signature of a pointcut can convey the abstract operation captured 
by the pointcut definition, just as the signature of a method conveys the abstract operation 
performed by the method implementation. These capabilities open the way for a new kind 
of interface, based on pointcut signatures, and provide the reasoning behind the capability 
of AspectJ to declare abstract pointcuts in abstract aspects, which are concretised by 
concrete subaspects. However, it is worth mentioning at this point that AspectJ does not 
allow for polymorphism, as an aspect can only inherit from another aspect if the latter is 
abstract. 

The reusable aspects described in Chapter 4 provide good examples of the kind of interface 
that Gudmundson and Kiczales proposed. This is illustrated in Listing 8, which shows the 
ChainOfResponsibilityProtocol abstract aspect – the reusable implementation of the Chain 
of Responsibility pattern ([48], p.223) [60]. All header comments were removed for brevity, 
with the exception of the one for the eventTrigger pointcut. The abstraction captured by 
eventTrigger is the set of interesting events to which a handler should be updated. Each 
different case requires its own unique set of joinpoints, and for this reason the eventTrigger 
pointcut is abstract. Each case-specific aspect dealing with a specific implementation of 
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Chain of Responsibility must inherit from the abstract aspect and concretise eventTrigger, 
in a way that is similar to the use of abstract methods in class inheritance hierarchies. 

Figure 6 illustrates the rationale behind abstract aspects. Aspect pointcuts enable a 
component to adapt to the “form” of a code base. The ability of aspects to adapt to 
different forms directly depends on the joinpoint model supported by the aspect-oriented 
language. Each different code base has its own unique “form”, which comprises all 
elements that can be “seen” through the joinpoint model. For instance, the joinpoint 
model of AspectJ covers method names, and therefore a change in the name of a method 
potentially entails a change to the “form” of the code base, as seen by the aspects. 
 
public abstract aspect ChainOfResponsibilityProtocol { 
 protected interface Handler {} 
 protected interface Request {} 
 
 private WeakHashMap _successors = new WeakHashMap(); 
 
 public boolean Handler.acceptRequest(Request request) { 
  return false; 
 } 
 public void Handler.handleRequest(Request request) {} 
 
 /** 
  * The join points after which a request is raised. 
  * It replaces the normally scattered calls to notify(). To be 
  * concretized by sub-aspects. 
  */ 
 protected abstract pointcut eventTrigger(Handler handler, Request request);
 
 after(Handler handler, Request request): eventTrigger(handler, request) { 
  receiveRequest(handler, request); 
 } 
 
 public void setSuccessor(Handler handler, Handler successor) { 
  _successors.put(handler, successor); 
 } 
 public Handler getSuccessor(Handler handler) {  
  return ((Handler) _successors.get(handler)); 
 } 
 protected void receiveRequest(Handler handler, Request request) { 
  if (handler.acceptRequest(request)) { 
   handler.handleRequest(request); 
  } else {  
   Handler successor = getSuccessor(handler); 
   if (successor == null) { 
    throw new ChainOfResponsibilityException( 
         "request unhandled (end of chain reached)\n"); 
    // This is one way to deal with unhandled requests. 
   } //else { 
   receiveRequest(successor, request); 
  } 
 } 
} 

Listing 8: Reusable AspectJ implementation of Chain of Responsibility 

A reusable abstract aspect encapsulates the parts that are common to all instances of a 
crosscutting concern, i.e. the parts that are not dependent on the specific “forms” of 
specific code bases. The aspect may declare abstract pointcuts which enable it to plug to 
the code bases, but cannot define the concrete joinpoints because these are different for 
each case (and are subject to changes as the code base evolves). In order to be plugged to a 
code base, the abstract aspect must be completed with a concrete subaspect defining the 
concrete pointcuts that are specific to that code base. We expect that many 
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implementations of crosscutting concerns developed in the next few years will follow this 
pattern. 
 

 

Application A Application B Application C 

Concrete aspect 
for application A 

Reusable aspect

Concrete aspect 
for application B 

Concrete aspect 
for application C 

 
Figure 6: General structure of reusable aspects 
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Chapter 3. Case Study: WorkSCo 

WorkSCo was the first of two case studies used to derive the necessary experience and 
knowledge to meet the goals stated in Chapter 1. The original aim was to refactor the code 
of WorkSCo in order to yield an aspect-oriented version of the code. According to the 
initial plan, the insights gained in the process would be used to develop the collection of 
refactorings that are the central goal of this thesis. The plan underwent gradual adjustments 
as the circumstances changed, until the case study was abandoned in favour of the second 
case study (described in Chapter 4). The present Chapter describes the important details 
about the case study, including the characteristics of WorkSCo, the experiments performed 
on it, and the description of hurdles and issues encountered. We believe all these can be 
useful to practitioners. 

Extracting crosscutting concerns from the code base is the natural way to start a 
refactoring process targeting an OO code base, and the experiments went as far as the first 
extraction. It also led to the characterisation of the first refactorings of the collection 
documented in Chapter 6, focusing on the extraction of aspects [118]. These were: 

 Partition Constructor Signature (137) 

 an earlier version of Move Field from Class to Inter-type (104) 

 an earlier version of Move Method from Class to Inter-type (106) 

 an earlier version of Extract Fragment into Advice (94) 

 an earlier version of Extract Feature into Aspect (90). 

The most significant differences between the earlier versions of the refactorings and those 
documented in Chapter 6 are in Extract Feature into Aspect (90), in which the earlier version 
does not consider inner classes. In addition, the earlier versions [118] also did not include 
elaborate motivation sections, but a mere statement of preconditions, when needed. 

The experience gained from this case study was valuable in providing a feel of the kind of 
issues that arise when dealing with non-trivial software systems. That experience was 
valuable throughout the analysis of the second case study. However, the experiments on 
WorkSCo were carried out when we did not completely absorb some issues related to 
style11, as advocated by Fowler et al. [47]. Consequently, we did not react as aggressively to 
some style problems found in WorkSCo’s code base, as it would later have been the case. 
Another problem was the fact that the concern that was effectively extracted from the code 
base did not prove adequate for the AspectJ language, though that conclusion was derived 
in consequence of the experiment. With hindsight, we believe this extraction can be 
regarded as the instance of a latent anti-pattern. We elaborate on this issue in section 3.8. 

This Chapter is structured as follows. Section 3.1 briefly characterises WorkSCo. Section 
3.2 mentions the characteristics of WorkSCo that motivated its use as a case study. After a 
time, work on WorkSCo was discontinued, and section 3.3 explains why. Section 3.4 
presents the approach we took in our work. Section 3.5 describes the architecture of 
                                                 
11 With hindsight, we can now say that at the time we did not completely overcome the paradigm shift problem 

[88] – the difficulties in fully absorving the concepts of object-oriented programming. Though we were 
already knowledgeable of all important OO concepts at the theoretical level, we did not yet have a grasp of 
the implications these concepts have on the details of the code at the “micro level”. The collection of code 
smells presented in [47] helped us in that front in a very significant way. 
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WorkSCo. Section 3.6 describes our exploration of the code base and describes the feature 
that comprised the target of our single extraction experiment. It also reports on some 
interesting hurdles found when exploring the code base and from which lessons can be 
learned. Section 3.7 describes the work we performed on the code base, the most 
important part of which is the extraction into an aspect of the concern presented in the 
previous section. Section 3.7 also includes the analysis we made of another possible 
candidate for extraction. Section 3.8 presents the conclusions we derived from the case 
study. 

3.1. What is WorkSCO? 
WorkSCo (Workflow with Separation of Concerns) is an object-oriented framework for 
workflow management systems [65] under development by the ESW [186] group at 
INESC-ID, Portugal. WorkSCo is an instance of the micro-workflow architecture 
developed by Manolescu in his Ph.D. thesis [104]. The proof-of-concept implementation 
developed in the context of Manolescu’s doctoral work was based on Smalltalk, and the 
description found in [104] is likewise based on the mechanisms of Smalltalk. 

WorkSCo is an implementation of micro-workflow based on Java, using some of the 
“traditional” object-oriented technology surveyed in Chapter 2, namely design patterns and 
components. WorkSCo does not rely on any of the popular middleware infrastructure for 
the support of business environments (such as J2EE or .NET). Some of the functionality 
typically provided by middleware platforms, such as persistence and authentication, is 
currently being developed as extension modules. 

3.2. Why WorkSCo was Selected 
WorkSCo was selected as a case study because it is a suitable example of modern software. 
The domain of workflow software [65] is a demanding one from the software composition 
point of view, with requirements that include a multiple of crosscutting concerns of various 
natures, most notably those associated with middleware. WorkSCo can be regarded as an 
example of the maximum results in terms of separation of concerns that can be obtained 
through conventional approaches. Thus, WorkSCo held the promise of yielding insights on 
what is the difference between mainstream techniques and approaches and those of AOP. 

Another point in favour of selecting WorkSCo as a case study was the fact that the 
WorkSCo team was available to provide information and feedback during the phase of 
learning the framework’s structure and domain-specific concepts. In addition, some of the 
developers of WorkSCo were aware of the developments of AOP and had a grasp of 
associated concepts, holding the promise of a facilitated exchange of ideas. 

3.3. Why Work on WorkSCo was Discontinued 
The structure of WorkSCo comprises a kernel and extension modules (for more 
information see 3.5). When work on this case study started, the functionality kernel was 
already relatively stable, but the majority of the extension modules were still under 
development. For this reason, the development of an aspect-oriented version of WorkSCo 
should be restricted to the kernel in the initial stages. As the modules became ready, they 
would provide opportunities to assess the compositional capabilities of AspectJ, through 
the attempt to compose them to the aspect-oriented version of the kernel. 

However, while work on a snapshot of the code WorkSCo’s kernel was under way, the 
development team of WorkSCo was facing hurdles related to the composition of the 



3.4. Approach Taken 47 

 

extension modules to the kernel. Though the kernel’s functionality was stable, its code was 
in a flux, due to the constant need to provide additional hooks enabling the composition of 
the extension modules. At a certain point, the development team decided to use the 
AHEAD (Algebraic Hierarchical Equations for Applications Design) tool suite [168] to 
perform the compositions that would otherwise be troublesome and the code base was 
adapted accordingly. 

Unfortunately, the decision to use AHEAD undermined the value of WorkSCo as a case 
study for the purposes of this thesis. Using AHEAD meant that Java code would be 
generated, rather than actually written by the programming team. It is impractical (indeed 
nonsensical) to apply refactorings to generated code. We could neither continue our work 
with updated versions of WorkSCo’s code base nor benefit from new versions of extension 
modules that were being developed at the time. In addition, the modifications of the kernel 
were also undermining the value of the unit tests developed for our snapshot of the kernel 
(see 3.6.2), which were not being integrated in WorkSCo. Taking a new version of 
WorkSCo would require an additional effort to adapt or recreate the base of unit tests. 

Meanwhile, other interesting candidates for case studies were being considered and we 
finally decided that a different kind of case study – the one described in Chapter 4 – would 
be preferable for expanding the collection of refactorings initially derived from the work on 
WorkSCo. 

3.4. Approach Taken 
We took the approach of performing refactoring experiments on the WorkSCo code base. 
The code transformations would be carefully recorded, along with the motivation for 
performing them. From these sequences of transformations, some patterns would be likely 
to gradually emerge, and these patterns would provide the basis for the first descriptions of 
refactorings. These would be analysed in detail to assess whether they were “atomic” 
enough, or could be further decomposed into smaller steps. The resulting refactorings 
would then be tested on different code examples. 

Extracting a crosscutting concern to an aspect seemed the natural way to start the 
experiments, as most refactoring processes targeting OO code are likely to start this way, 
probably followed by further refactorings of the resulting code (both the extracted aspects 
and the remaining base code). For this reason, the first phase of the work – learning the 
domain specific concepts – was done with an eye on the crosscutting concerns that would 
comprise suitable targets for extraction to aspects. 

3.5. Architecture of  WorkSCo 
Manolescu claims that his architecture is the first to specifically target developers of OO 
software, rather than end-users. The design of micro-workflow relies on a considerable 
number of design patterns, most of which are intended to achieve particular separations of 
concerns. The architecture comprises a lightweight kernel providing basic workflow 
functionalities that are compounded by extension modules offering features that are more 
advanced. Software developers select the features for their domain-specific workflow 
processes and add the corresponding modules through composition. 

One of the kernel’s key abstractions is the concept of procedure (Figure 7), which models 
various kinds of activities commonly performed by workflow systems. The various types of 
procedures are organised according to the Composite design pattern ([48], pp.163-173). 
This pattern enables the rest of the code to abstract from the concrete kinds of steps or 
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activities that comprise the workflow definition, thus allowing the easy extension of the 
framework with new kinds of procedure. These include both atomic steps (instances of 
simple procedure) and composite activities (e.g. composite procedure). Examples of atomic 
procedures are primitive procedure, which model the actions performed by a single domain-
object, and work list procedure, which is an abstraction for a piece of work carried out by a 
human element of the organisation. Composite procedures, namely sequence procedure, 
conditional procedure and repeat-until procedure, model the conditional and iterative control 
structures similar to those found in imperative programming languages. They include steps 
(child procedures) that are also procedures (either simple or composite). Thus a workflow 
definition has a tree structure, in which all leaf nodes must be instances of the simple 
procedure type (e.g. primitive procedure or work list procedure) and all non-leaf nodes are 
instances of the composite procedure type. 

Procedure

Composite
Procedure

Sequence
Procedure

Conditional
Procedure

RepeatUntil
Procedure Fork Procedure Join Procedure

Condition

Simple
Procedure

Primitive
Procedure

Worklist
Procedure

* *

1 1

1..*

 
Figure 7: The WorkSCo front-end procedure hierarchy. 

The procedure system provides the basic framework for workflow management, enabling 
domain objects, which typically change less frequently than the glue code that models 
processes, to be reused as process rules evolve and different process instances are created. 
Micro-workflow is capable of holding various workflow definitions (representations of 
workflow processes) using a structure that follows the Type Object pattern [71]. 

The ESW group adapted the original micro-workflow design for their project, which is 
based on Java technology. In the process, they introduced several structural innovations in 
order to attain further separations of concerns. The primary design change was motivated 
by the lack of a standard workflow definition language (WfDL). This made it highly 
desirable that WorkSCo be able to support several differing, and evolving WfDLs, and to 
support more than one WfDL simultaneously. The adopted solution was to split the design 
between two layers – a front-end and a back-end [43] (Figure 8). The back-end layer 
comprises a Workflow engine, which accepts and runs low-level graph representations of the 
workflow definitions. Each instance of the front-end layer is responsible to handle the 
concepts and abstractions of a specific WfDL and to compile into the graph structure the 
back-end understands. The WfDL currently supported by WorkSCo is micro-workflow, 
which thus became the first instance of the front-end layer. 
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Figure 8: Architecture of the WorkSCo framework 

Each front-end instance is responsible for generating the low-level graph structure for the 
back-end. In the case of micro-workflow, it is done through a traversal of the workflow 
definition’s procedure tree. Generation of the back-end graph is performed bottom-up, 
starting with the leaf nodes and navigating upwards until the root node is reached. Each 
node provides a compile operation that generates the graph representation of the sub-tree 
from which that node is the root. Non-leaf nodes (composite procedures) are responsible 
to bind the sub-graphs generated by their children, so that the compile operation of root 
node produces the graph representation of the entire workflow definition. These traversals 
of the workflow definition’s procedure tree effectively comprise an instance of the 
Interpreter pattern ([48], p. 243-255). 

3.6. Exploration of  WorkSCo 
The kernel functionality was deployed in a package containing 40 classes and interfaces 
plus a few sub packages providing some accessory functionality. The kernel presented very 
few dependencies on the code of the extension modules, the only exception being a case in 
which one of the key classes in the kernel included in its implements clause an interface 
declared in one of the modules. This low coupling, together with the fact that extracting 
the data links into an aspect affected only the kernel, enabled us to largely ignore the 
extension modules and concentrate our analysis on the kernel. Another reason for ignoring 
the extension modules was the fact that most of them were still under active development 
and their functionalities still incomplete. 

The initial phase of the work consisted in acquiring the necessary grasp of the important 
domain concepts and gaining a familiarity with the system’s structure. During the process 
we tried to identify crosscutting concerns that would provide suitable targets for 
extractions. Note that the activity of concern mining was not our focus and for this reason 
we did not extensively explore sophisticated mining tools and techniques. The learning 
process mostly relied on eclipse’s JDT environment for developing Java applications [179] 
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to assist in our analysis. JDT’s support for code navigation, including the structure view 
and search support capabilities was very useful during the process of searching the code for 
units and fragments related to the target concern. We also experimented using the FEAT 
[138] plug-in for eclipse as a complement to the code search capabilities of JDT. 
Unfortunately, it proved to be of limited use in our particular case due to FEAT not 
covering internal details of methods such as local variables. In other words, FEAT does 
not capture the use relation between components, a widely used relationship in WorkSCo. 
WorkSCo relies less on static relationships (i.e. inheritance) to connect components than 
more “traditional” OO frameworks such as the original Smalltalk implementation of 
micro-workflow described in Manolescu’s thesis [104]. These tools were compounded by 
the feedback of the WorkSCo team, which was helpful in identifying a feature suitable for 
extraction, as well as gaining enough an understanding of details to start writing unit tests. 

We detected a few crosscutting concerns during the exploration process. Unfortunately, the 
functionality of most of them was not fully developed. They were included by the 
WorkSCo developers as placeholders for concepts and functionality that, though not 
necessary in the immediate future, the developers anticipated would be required at a later 
phase. Since their full development was not a priority at the time, their functionality was 
left in an incomplete though compilable state. These concerns did not comprise good 
targets for refactorings because refactorings are meant to preserve the existing behaviour of 
the code base. Since behaviour is incomplete, it cannot be captured in unit tests and there 
would be no simple way of knowing whether a given transformation would be illegal if the 
functionality was complete. This restricted the available choices of targets. Even the 
functionality of the concern that was selected was not complete, though it was in a 
sufficiently developed state to be feasible as candidate for refactoring. 

3.6.1 The Data Link Feature 

Although the front-end model of WorkSCo is control-driven, it enables the independent 
modelling of data flow between procedures, which is done through data links. These 
provide the necessary framework for communication and data passing among independent 
domain-nodes. They ensure the independence of the workflow steps and their reusability, 
and enable the system to provide various services, for example logging and monitoring. 
The concept of data link belongs to the front-end, while the back-end uses a different, 
lower level, representation. 

Data links are defined at the composite procedure level, so that all control structures have 
access to it. However, the specific front-end rules must still be enforced, to ensure data link 
specifications are consistent with the control flow. For instance, data links can only be 
placed in composite procedures specifying some ordering of their children (e.g. it would 
not make sense to establish a link between the two branches of a conditional procedure). 

The code related to data links was not modularised, being scattered throughout all classes 
of the procedure hierarchy (Figure 7) starting with CompositeProcedure. This was making 
it impossible to build a version of WorkSCo devoid of data links, for those clients that do 
not require such functionality. Therefore, data links seemed a good candidate for extraction 
into its own module. 

The data link code comprised four types of code sections: fields, methods, code fragments 
in constructors and code fragments in methods. The key element was a field (_dataLinks) 
declared in the composite procedure class and used by all subclasses. Code using this field 
could be categorised into the following groups: 
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 Initialisation code within the constructors of the various composite procedure 
classes. 

 Management methods, including accessors (getters and setters), queries and 
methods to add, replace and remove a data link. These were all declared in the 
CompositeProcedure class, and thus inherited by all composite procedures (see 
Figure 7). 

 The compilation logic to provide the back-end graph representation with the low-
level equivalent of the data link. 

The compilation logic comprised large code fragments placed at the end of the compile 
method of each composite procedure. These fragments comprised by far the largest parts 
of the code related to data links. All the compile methods of composite procedures were 
very large, and the parts related to the compilation of data links were actually larger than 
the remaining part of those methods. This is illustrated in Listing 9, which shows one of 
these compile methods (the part related to data links is shaded). 

3.6.2 Initial Hurdles 

Several issues had to be solved before we felt ready to start refactoring the code. The most 
serious was the lack of unit test coverage. The WorkSCo project included a collection of 
various broader-scoped tests that fed the system with example workflows. Unfortunately, 
these were unsuitable for guaranteeing preservation of behaviour in refactoring processes, 
due to their coarse grain. As pointed out in [47], fine-grained unit tests are crucial to ensure 
the code transformations always preserve the original behaviour. From our experience, we 
can attest the vital importance of unit tests to give what Beck called “courage” in changing 
the existing code [12]. Only after the initial effort of writing tests did we acquire the 
confidence necessary to start refactoring the code. Before we reached that point, we simply 
felt “paralysed with fear”. In addition, the act of writing tests greatly helped to make one 
understand the workings of the system12 (as suggested by various authors, namely 
Manolescu [105]). The unit tests created for WorkSCo focused mainly on the compile 
operations of the various procedures. 

Another hurdle was the fact that the elements of both the front-end and the back-end were 
still bundled together in the kernel package. This included all the components represented 
in Figure 8, with the exception of the extension modules at the right of the figure. This 
resulted in a tangling effect at the package level that had some impact on the initial 
exploration stage. 

Another issue was choosing the right approach to deal with possible continuous changes in 
the code base, which was the subject of continuing development. We were not part of 
WorkSCo’s development team and its code could be changed at any time: whatever version 
we would operate on, it could quickly become outdated. Our main target was the kernel 
package of WorkSCo, whose functionality was stable. Unfortunately, functional stability did 
not preclude modifications on the kernel’s code, either to correct defects (i.e. bugs) or to 
change its structure in order to make it more amenable to the composition of the extension 
modules that were in various stages of development. This entailed providing the kernel’s 
code with whatever structural hooks would be needed to enable the required compositions. 
For the aforementioned reasons, we decided to “freeze” the code base for some time, by 
taking a snapshot of WorkSCo and undertaking our experiments on it, thus temporarily 
disregarding the subsequent modifications operated by the WorkSCo development team. 

                                                 
12 The process of writing unit tests also helped to expose a few bugs in the system. 
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public Graph compile() { 
 GraphNode begin = new GraphNode( 
  getId() + "B", "Fork", new IdentityService(),_input, _input); 
 GraphNode end = 
  new GraphNode(getId() + "E", "Fork", new IdentityService(), 
        _output, _output); 
 Graph result = new Graph(begin, end); 
 if (getChildrenCount() == 0) 
  result.addControlFlow(begin, end); 
 else { 
  List compiledBranches = new ArrayList(getChildrenCount()); 
  for (int i = 0; i < getChildrenCount(); i++) { 
   Procedure branch = getChild(i); 
   Graph branchGraph = branch.compile(); 
   compiledBranches.add(branchGraph); 
   GraphNode branchStart = branchGraph.getStart(); 
   GraphNode branchEnd = branchGraph.getEnd(); 
   result.addGraph(branchGraph); 
   result.addControlFlow(begin, branchStart); 
   result.addControlFlow(branchEnd, end); 
  } 
  // process the data links now that all nodes are in the resulting graph 
  for (int i = 0; i < _dataLinks.size(); i++) { 
   DataLink dataLink = (DataLink)_dataLinks.get(i); 
   String sourceProcedureId = dataLink.getSourceProcedureId(); 
   String targetProcedureId = dataLink.getTargetProcedureId(); 
   if(sourceProcedureId.equals(_id)){//this procedure is the source of the 
data link 
    /* assuming the default behaviour for mapping then the target 
     * is the first node of the graph for the target branch. */ 
    // find index of procedure with id == targetProcedureId 
    int index = 
     getChildren().indexOf( 
      ProcedureUtils.searchChildProcedure(this, targetProcedureId)); 
    // get the corresponding graph 
    Graph targetGraph = (Graph)compiledBranches.get(index); 
    // get the start node, which is the target node 
    GraphNode targetNode = targetGraph.getStart(); 
    //create a data flow between the start node of 'this' graph and the 
targetNode 
    result.addDataFlow(dataLink.getName(), 
             begin, targetNode, dataLink.getMaps()); 
   } else 
    // this procedure is the target of the data link 
    if (targetProcedureId.equals(_id)) {  
     /* assuming the default behaviour for mapping then the source is 
      * the last node of the graph for the source branch. */ 
     // find index of procedure with id == sourceProcedureId 
     int index = 
      getChildren().indexOf( 
       ProcedureUtils.searchChildProcedure(this, sourceProcedureId)); 
     // get the corresponding graph 
     Graph sourceGraph = (Graph)compiledBranches.get(index); 
     // get the end node, which is the source node 
     GraphNode sourceNode = sourceGraph.getEnd(); 
     // create a data flow between the sourceNode and the end node of 
'this' graph 
     result.addDataFlow(dataLink.getName(), sourceNode, end, 
               dataLink.getMaps()); 
   } else // the data link is between two branch procedures. THIS CANNOT 
HAPPEN 
    System.err.println("ERROR: Link between branches in ForkProcedure!!!"); 
  } 
 } 
 return result; 
} 

Listing 9: Snapshot of the compile method for the ForkProcedure class. 
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In [135], Pree proposes the concept of hot spots of an application framework – “those 
aspects of the application domain that have to be kept flexible” – and states that “we 
consider a framework to have the quality attribute “well-designed” if it provides adequate 
hot spots for adaptations” ([135], p.106). As we point out in section 1.1, this is a hard thing 
to do upfront in practice, and it was also the case with WorkSCo. These difficulties are also 
a symptom of the limitations in the composition capabilities of object-oriented techniques 
(cf. section 1.1). 

3.6.3 Style Issues 

Though generally well structured, the snapshot of the code we worked on placed a few 
hurdles. One was the fact that the code did not adhere to the style advocated by Fowler et 
al. [47]. Style problems were most noticeable in: 

 Very large methods responsible for generating the back-end graph representation 
of workflows. This is illustrated in Listing 913, which shows the compile method for 
one of the composite procedure classes. This method is much smaller than the 
largest of all compile methods, which had 110 lines of code. Some unrelated 
methods were even larger. This style problem is characterised by the Long Method 
smell ([47], p.76). 

 Long parameter lists, mostly in constructors, e.g. the Long Parameter List smell ([47], 
p.78). One example is illustrated in Listing 10, which shows the constructor of the 
RepeatUntilProcedure class. 

 Many uses of comments explaining the purpose of the code, e.g. the Comments smell 
([47], p.87). According to Beck and Fowler, comments are not really a smell, but are 
often used as a deodorant to bad code. The need of a comment to explain what a 
block of code does is a sign that the code does not reveal its intention the way it 
should. Such blocks can be improved, namely by using Extract Method ([47], p.110]). 

 Complex conditional logic, including (1) the unnecessary use of else legs in 
conditional control structures14 and (2) the frequent use of tests for null. Tests for 
null usually suggest that a more aggressive use of the Null Object pattern [163] 
would be beneficial, though only an analysis of the specific situation can confirm 
this assumption. In Listing 11 we show a method with both variations of the smell. 
Fowler et al. [47] did not propose a specific smell for these symptoms, though they 
dedicated a whole Chapter to the simplification of conditional expressions, 
including the introduction of null objects, using Introduce Null Object ([47], p.260). 
Kerievsky proposed the Conditional Complexity smell ([76], p.41) and proposed his 
own version of Introduce Null Object ([76], p.301). 

 
 public RepeatUntilProcedure(String id, String name, 
   Precondition precondition, 
   IOMessage input, IOMessage output, 
   ArrayList dataLinks, 
   Condition guard, Procedure body) { 
  super(id, name, precondition, input, output, dataLinks); 
  _guard = guard; 
  addChild(body); 
 } 

Listing 10: Snapshot of the RepeatUntilProcedure class’ constructor. 

                                                 
13 Some indentation adjustements were made for the purposes of representing the code in these pages.  
14 This style problem was automatically detected by eclipse. 
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public String getActualValue(ExecutionContext executionContext) { 
 if (_value != null) { 
  DPrint.println("dkernel", "Actual value is " + _value); 
  return _value; 
 } 
 else { 
  DPrint.println("dkernel", "Value is a message. Getting part named=" + 
        _messagePartName.toString()); 
  Object messagePartValue = executionContext.getInputMessagePart(_messagePartName); 
  /* In order to support shared context message parts we need to check if the 
   * messagePartValue is null. In that case we get the data from the sharedContext*/ 
  if (messagePartValue == null) { 
   DPrint.println("dkernel", "Getting message part from shared context."); 
   messagePartValue = executionContext.getContext().get(_messagePartName); 
  } 
  DPrint.println("dkernel", "Trying to print the object=" + messagePartValue); 
  if (messagePartValue != null) 
   return messagePartValue.toString(); 
  else { // maybe this is not supposed to happen 
   DPrint.println("dkernel", "Message part was null"); 
   return ""; 
  } 
 } 
} 

Listing 11: Snapshot of a method betraying conditional complexity. 

3.7. Work on the Case Study 
After an initial learning phase, the bulk of our work on WorkSCo comprised the extraction 
of a crosscutting concern from the code base, which is described next. We also analysed 
the code with a view to another concern, and we present our findings in subsection 3.7.2. 

3.7.1 Extracting the Data Link Feature 

We decided to preserve the existing interface of WorkSCo’s kernel during refactoring. This 
way the refactorings would have no impact on the remaining components of WorkSCo, 
relieving us from taking into account the impact of the refactorings on the extension 
modules. This situation is similar to the one of published interfaces, i.e., a software component 
that is used by clients, which therefore become dependent of its interfaces. In both cases, 
the developers of the evolving component cannot change the interface because that would 
risk breaking client code. Thus we followed the strategy of first modifying the internal 
structure of a component, as one stage of a larger refactoring, leaving changes to the 
interface to later stages. 

After creating an empty aspect we dealt with each of the implementation elements in turn – 
fields first, next related methods, next code fragments using the fields – as we prescribe15 in 
Extract Feature Into Aspect (90). Moving fields and methods was straightforward and done 
according to Move Field From Class To Inter-type (104) and Move Method From Class To Inter-
type (106). 

Dealing with Parallel Constructor Chains 

The constructors placed a more complex and interesting problem. Each subclass in the 
procedure hierarchy adds new arguments in its respective constructors and therefore the 
parameter lists of the constructors keep getting longer as we go down the inheritance chain. 
Each constructor makes a super call passing the arguments defined in the constructor of 
the superclass and next deals with the initialisation of the data specific to its class. Figure 9 
                                                 
15 The aspect-oriented refactorings mentioned in this section were in the process of being described and 

refined at this stage. We refer to the code transformations using the names of the resulting refactorings to 
facilitate the presentation. 
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shows three of the constructors, with the code related to data links highlighted in bold. 
Many of the arguments relate to concerns other than the primary concern, data links being 
one example. Naturally, we wished to place all initialisation code related to the data link 
concern within the aspect and to keep all other code in the classes. To complicate things, 
the constructor received arguments related to the concern we wanted to extract but we 
were constrained by the need to maintain its signature in order not to break existing client 
code outside the kernel package. 
 
public abstract class Procedure implements Cloneable { 
 Procedure(String id, 
      String name, 
      Precondition precondition, 
      IOMessage input, IOMessage output) { 
   //initialisation code 
  } 
 //rest of Procedure code 
} 
public abstract class CompositeProcedure extends Procedure { 
 protected List _dataLinks = null; 
 CompositeProcedure(String id, 
         String name, 
         Precondition precondition, 
         IOMessage input, IOMessage output, 
         ArrayList dataLinks) { 
  super(id, name, precondition, input, output); 
  _dataLinks = dataLinks; 
 } 
 //rest of CompositeProcedure code 
} 
public class SequenceProcedure extends CompositeProcedure { 
 public SequenceProcedure(String id, 
           String name, 
           Precondition precondition, 
           IOMessage input, IOMessage output, 
           ArrayList dataLinks, 
           List steps) { 
  super(id, name, precondition, input, output, dataLinks); 
  //initialisation code 
 } 
 //rest of CompositeProcedure code 
} 

Figure 9: Original chain of procedure constructors in WorkSCo. 

We devised Partition Constructor Signature (137) to solve this problem. The intended result 
was to provide the base code of each composite procedure with a new constructor with a 
shorter argument list, devoid of the argument related to the extracted concern, and to make 
the aspect introduce a constructor with the original and longer argument list. The 
introduced constructor would call the simplified constructor in the class, thus avoiding 
having code unrelated to the data link concern. This way the original constructor signatures 
would be preserved, for the sake of the existing code that depended on them, but clients 
that do not require functionality would then be free to use a simpler, cleaner version of the 
constructors. This is shown in Figure 10, again with code related to data links highlighted 
in bold. 

However, when we tried to use Partition Constructor Signature (137) we realised that we were 
not considering super calls. These calls were needed to ensure initialisation code in the 
superclasses would receive their arguments, as well as avoiding duplication of initialisation 
code such as the one highlighted in Figure 10. Yet, we could not include calls to super 
because we were already using calls to this, to link the constructors introduced by the 
aspect to the simpler versions that remained in base code hierarchy. As it stood, either the 
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introduced constructors would make the super calls as in Figure 9, in which case code 
related to the this calls would have to be duplicated, or the this calls could be made but the 
calls to super could not be made and the related code would have to be duplicated. Note 
that the trade-off between calls to super and to this can be reversed. For instance, if we 
chose to place a call to super in the introduced SequenceProcedure constructor, instead of 
a call to this, we would obtain the code as in Listing 12. 
 

Declared in the base code Declared in the DataLink aspect 
public abstract class Procedure 
  implements Cloneable { 
 protected String _id = null; 
 protected String _name = null; 
 protected Precondition 
  _precondition = null; 
 private List _children = null; 
 protected IOMessage _input = null; 
 protected IOMessage _output = null; 
 
 Procedure(String id, 
      String name, 
      Precondition precondition,
      IOMessage input, 
      IOMessage output) { 
  _id = id; 
  _name = name; 
  _precondition = precondition; 
  _input = input; 
  _output = output; 
  setEmptyChildren(); 
  setEmptyProperties(); 
 } 

 
private List 
 Procedure._dataLinks = null; 
 
public Procedure.new( 
   String id, 
   String name, 
   Precondition precondition, 
   IOMessage input, 
   IOMessage output, 
   ArrayList dataLinks) { 
 this( id, 
   name, 
   precondition, 
   input, output); 
 _dataLinks = dataLinks; 
 } 

public class SequenceProcedure 
  extends Procedure { 
 
 public SequenceProcedure( 
   String id, 
   String name, 
   Precondition precondition, 
   IOMessage input, 
   IOMessage output, 
   List steps) { 
  super(id, name,  
     precondition, 
     input, output); 
  if(steps==null); 
   //TO DO: throw exception 
  setChildren(steps); 
 } 

public SequenceProcedure.new( 
  String id, 
  String name, 
  Precondition precondition, 
  IOMessage input, 
  IOMessage output, 
  ArrayList dataLinks, 
  List steps) { 
 this( id, 
   name, 
   precondition, 
   input, output, 
   steps); 
 _dataLinks = dataLinks; 
} 

Figure 10: Constructor Hierarchies with and without Data Links 

 
public SequenceProcedure.new(String id, 
            String name, 
            Precondition precondition, 
            IOMessage input, 
          ..IOMessage output, 
          ..ArrayList dataLinks, 
          ..List steps) { 
 super(id, name, precondition, input, output, datalinks); 
 if (steps == null); //TO DO: throw exception 
 setChildren(steps); 
} 

Listing 12: Variant of introduced constructor with call to super. 
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We concluded that Partition Constructor Signature (137) required, as a precondition, that the 
constructors do not pass arguments to calls to super. Therefore, it could not be used for 
the particular case of the procedure hierarchies. We solved the problem by keeping the calls 
to this in the introduced constructors, just as in Figure 10, and treating the code related to 
super as crosscutting code within the aspect, which was extracted to its own advice (Figure 
11). 

public aspect DataLinks {

private List
CompositeProcedure._dataLinks

= null;

public 
CompositeProcedure.new(

//other arguments,

ArrayList dataLinks)
{

this(...);
}

public SequenceProcedure.new(
//other arguments,

ArrayList dataLinks,
List steps)

{
this(..., steps);

}

pointcut

compositeConstructorChain(
CompositeProcedure _this,

ArrayList dataLinks):
execution(

CompositeProcedure+.new(..))
&& args(//other arguments,

dataLinks, ..)
&& this(_this)

&& within(DataLinks);

after(CompositeProcedure _this,

ArrayList dataLinks)
returning:

compositeConstructorChain(
_this, dataLinks)

{
_this._dataLinks = dataLinks;

}

 
Figure 11: Dealing with a crosscutting concern internal to an aspect. 

This problem interestingly exposes the existence of two dimensions: (1) the normal 
inheritance dimension, represented by the constructor chain placed in the primary code and 
(2) a separate dimension represented by the aspect. There are two separate constructor 
hierarchies, one of which is introduced by the aspect. The problems make themselves felt 
when we try to link an element from one hierarchy to an element from another. In such 
situations are we trying to cross the “aspect dimension”. 

Another interesting characteristic of the advice shown in Figure 11 is the fact that it applies 
only the constructors introduced by the aspect itself, i.e. the advice crosscuts only its 
enclosing aspect. This is an effect similar to those that can be obtained when an inner 
aspect placed is used within a class, in order to address a crosscutting concern that is 
restricted to only that class. 

The Constructor Explosion Problem 

The parameter lists of the constructors of the procedure classes included other arguments 
associated to other secondary concerns, which like the data links could conceivably be 
extracted to their own aspects. This brought the question of what happens when we are in 
the presence of not one, but several aspects, each with its own extra set of parameters to 
add to the class’s constructor signature. 

Each of the aspects may export a partial constructor signature related to its respective 
concern, but clients that require the complete constructor signature that results from the 
combined functionality won’t find it anywhere. AspectJ does not provide a mechanism that 
directly augments the signature of methods or constructors. 
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A possible solution would be the creation of a manager aspect that deals with issues related to 
the composition of several concerns. Such an aspect can declare and export the missing 
compound signature. However, for each different combination of more than one of these 
aspects, a different constructor signature will have to be implemented, resulting in a 
combinatorial explosion of constructor signatures. 

Capturing Needed State in Advice 

Extracting code fragments related to data links from the large compile methods also 
presented some interesting problems. It is worth pointing out that at this point we found it 
useful to use16 Extract Method ([47], p.110]), not just to ease the way for subsequent 
refactorings but primarily to make it easier to reason with, by isolating it from the code 
related to the primary concern. 

The problems were caused by difficulties in capturing the necessary context. Each fragment 
related to data links used several data structures that were created in the part of the compile 
method that preceded it. Those structures were referenced by local variables and neither 
stored as fields of some object nor passed to the compile method as arguments. This 
caused the problem of how to capture them for an advice within the aspect, since AspectJ’s 
pointcut protocol does not include local variables. Sometimes this kind of problem can be 
solved by capturing the result value of a method call made within the method of interest. 
However, we could not do even that, because there was more than one object involved. 

It would be theoretically possible to capture all the necessary objects, but that would require 
extremely complex pointcuts, resulting in code hard to understand and probably error 
prone. We could obtain the needed state through accessors for some of the objects after 
the end of the execution, but at least one complex structure would have to be computed a 
second time, leading to some code duplication (at least performance is not an issue in 
workflow applications). 

An obvious solution would be to turn the needed local state into fields of the procedure 
objects, as that would make it very simple to capture them within the aspect. However, that 
would have been extremely crude and inadequate. We found a compromise by turning the 
compile methods into method objects, by using Replace Method with Method Object ([47], 
p.135). The method objects enabled us to expose the needed state to the pointcuts but the 
associated fields would exist only for the duration of the execution of the compile 
operation, rather than for the entire lifetime the procedure objects. The classes of the 
method object were created as inner classes within each procedure class. After resorting to 
this solution, it was straightforward to apply17 Extract Fragment into Advice (94). 

A word of caution must be given in respect to this solution. We had to make the fields of 
the method objects public, so that code within the advice could have access to its fields. 
This is contrary to common practice in object programming. Otherwise, we would need to 
provide the method objects with accessor methods, which we felt would be overkill in 
these circumstances. Another solution would be to make the aspect privileged; something 
we think should be avoided except as a last resort. Use of privileged aspects is akin to 
making everything public (for the aspect). As Colyer and Clement remark in [31], aspect 
privilege confers the general privilege to access any private state anywhere, while one 
usually wishes to express privilege with respect to a single class or a restricted set of classes. 

                                                 
16 Throughout the exploration of these code bases we used the eclipse IDE [179]with the AJDT plug-in [169]. 

AJDT reuses part of the functionality of eclipse’s JDT plug-in for Java. 
17 The use of Replace Method with Method Object ([47], p.135) is sugested in the motivation section of Extract 

Fragment into Advice (94). 
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Issues of Data Access  

At the start of the refactoring experiment, we created the aspect in a subpackage of 
WorkSCo’s kernel package rather than in the kernel package itself. This would make it 
easier to configure alternative builds, with and without the additional data link functionality. 
In addition, we regarded the data links as an accessory functionality, and to place it in a 
subpackage would make that explicit. However, during the process we started to get 
compiler errors due to visibility violations – several methods and fields referred from code 
moved to the aspect had restricted access (protected, private or package). We temporarily 
solved these problems by (reluctantly) classifying the aspect as privileged, until we analysed 
the various issues and discovered that none of the methods was private – they had either 
package or protected access modes, meaning they were indeed supposed to be visible, but 
only within a restricted scope. In the end we kept the aspect in its own subpackage and 
solved the problems by refactoring the base code, by encapsulating a few fields accessed in 
the advice code, using Self Encapsulate Field ([47], p.171), and relaxing access clauses of some 
methods called from the aspect’s advice. A class from the kernel was used only by the 
aspect and it was moved to the data link subpackage. 

The resulting Aspect 

The aspect that resulted from the extraction process comprised a set of inter-type 
declarations and a set of pointcuts with the corresponding (mostly after) advice. The inter-
type declarations could be grouped into (1) one inter-type field related to the concern, 
(2) several auxiliary methods to manage the data that the field is holding (access, insertion, 
removal, query), (3) the alternative versions of the constructors and (4) methods for the 
actions relating to the compilation of the data link parts. The latter were called from after 
advice matching the execution of the compile operations. One thing to note is that there is 
no crosscutting effect on the part of the aspect contructs: each pointcut captured a single 
joinpoint and each inter-type declaration targeted a single class (the aspect as a whole was 
still crosscutting). 

The bulk of the code relating to data links is the compilation part extracted from the 
compile methods of the procedure hierarchy. This hierarchy is a composite structure, and 
the compilation process comprises the traversal of this structure. The compilation process 
is therefore an instance of the Interpreter pattern [48], which invites a comparison with the 
AspectJ implementation of Interpreter presented by Hannemann and Kiczales [60]. Unlike 
several of the examples from the collection from [60], the implementation of Interpreter 
comprises a single concrete aspect that does not extend a reusable abstract aspect (i.e. there 
is no reusable code). The aspect does not include pointcuts and advice, only inter-type 
declarations. An interesting comment can be found at the beginning of the source file: 

“The very nature of the interpreter pattern introduces coupling between all participants. 
Unfortunately, removing the pattern code from the participants does not work as nicely 
here as with other patterns. The reason is that the roles are defining, i.e., each participant's 
functionality is determined (only) by its role. If aspects were used to implement the entire 
pattern functionality, it would leave the Expressions etc. empty and would make the aspect 
a monolithic module. 

However, it is still possible to augment or change the behaviour of the system without 
changing all participant classes. To show this, we assumed that BooleanExpression.replace( 
String, BooleanExpression) and BooleanExpression.copy were added later. An aspect is 
used to implement those methods, so that other classes do not have to change (we only 
changed the interface, but even that was not necessary). 

In general, however, this pattern does not lend itself nicely to aspectification.” 
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Similar remarks can be made in relation to the data link concern described in this Chapter. 
The data link aspect is more complex than the interpreter aspect from [60] (e.g. it includes 
pointcuts and advice) only because the target code base is more complex. In both cases, the 
aspect is an unyielding structure whose members affect a single point of the primary code 
each (i.e. there is no crosscutting). 

3.7.2 Analysis of  the Debugging Concern 

Debugging – in this context, writing messages to the console to enable the developer to 
monitor executing sessions of the application – is a typical crosscutting concern, whose 
instructions can potentially be placed almost anywhere in the code base. Traditionally, the 
only way to obtain debug messages in key points of the execution flow is to resort to direct 
interventions in the source code. The concern is invasively plugged into the code base 
through insertion of the related instructions in the appropriate points, and if the messages 
were no longer required, the concern would have to be invasively unplugged by deleting 
those instructions. As an alternative, the debug concern can be unplugged by placing the 
instructions within comments. However, this does not eliminate the cluttering effect, and 
whenever the developer wants to reactivate the messages, she must edit the code yet again. 

WorkSCo included a mechanism to ameliorate this problem. It included a class – DPrint – 
for sending debug messages in a controlled way. DPrint uses a println operation similar to 
System.out.println, except that it receives as a first argument a string representing a label. 
DPrint only prints the message (to the console) if the corresponding label was previously 
registered through a debugOn operation passing that label as argument. All messages 
associated to a given label can be deactivated by unregistering the label. This is done by 
calling the debugOff operation with the label as argument. This way it is simple to activate 
and deactivate sets of calls to DPrint.println, by calling debugOn and debugOff at the 
appropriate points. The calls to DPrint.println are scattered throughout all the code of 
WorkSCo. 

We considered extracting this debug concern to an aspect. When we analysed the scattered 
calls to DPrint.println, we found out that it would not be possible to extract it while 
preserving the externally observable behaviour, exactly as it stood. The reason was that the 
calls to DPrint.println were placed in the middle of methods, often within control 
structures. These locations are not supported by AspectJ’s joinpoint model. In some cases, 
the messages included values of local variables, which cannot be captured by the pointcuts 
of AspectJ. However, we also noticed that if the code were transformed according to the 
style advocated by Fowler et al. [47], namely by decomposing many large methods, it 
should be much easier for an aspect to plug a set of calls to DPrint.println close to the one 
found in the snapshot. The option of using an aspect to plug the calls would likely not be 
as flexible (in terms of the exact locations of the calls) as placing the calls directly in the 
intended locations, even after an aggressive refactoring. However, in such case the concern 
would be modularised, with all the associated benefits. 

3.8. Discussion 
This section presents some lessons learned from the experiments described in this Chapter. 
It should be noted that although the case study provided experience and various insights, 
the work on the case study itself benefited little from those insights. This was so because it 
was abandoned in preference of the second case study, at a time when the insights and 
conclusions were still maturing. 
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3.8.1 Good Object-Oriented Style is a Precondition for applying AOP 

The case study described in this Chapter demonstrated that a sound structure of the code, 
in accordance to the one advocated by Fowler et al. [47], is an essential prerequisite for 
aspect-oriented refactorings to be applied effectively. Well-formed code bases tend to be 
richer in joinpoints than badly formed code bases, and greater joinpoint richness is likely to 
provide aspects with the leverage they require for their quantifications. Sparseness of 
joinpoints results from a poorly or insufficiently decomposed system. The most serious 
symptoms of insufficient decomposition were very long methods, large classes and too 
many classes in the same package. 

It is a fortunate coincidence that the style suitable for aspects closely corresponds to the 
one advocated by Fowler et al. [47]. Thus, when developers consider using aspects on an 
existing OO code base, they should first ensure that it is well formed in terms of a good 
OO style, and refactor the code if it is not the case [57]. 

Making the code of WorkSCo conform with [47] would require, at the very least, an 
aggressive decomposition of many methods – using refactorings such as Compose Method 
([76], p.123) and Extract Method ([47], p.110). Such refactorings would enrich the joinpoint 
structure of the base code to a level of granularity sufficient for the extraction of the 
debugging concern to be feasible, or at least to be possible to create an aspect yielding 
behaviour close to the original. It would also likely enable developers to extract the code 
related to data links from the compile operations without the need to use Replace Method 
with Method Object ([47], p.135). This refactoring may be useful in some situations, but if the 
structure of the code base is sound, these are not likely to arise often. In the case of a 
refactored WorkSCo, we believe the various objects required for the data link phase would 
have been captured using new joinpoints resulting from the refactoring. For instance, the 
intermediate graph structure could conceivably have been captured from the return value 
or argument of a new method called within a decomposed compile method. Likewise, the 
constructors of the procedure classes would benefit from a different approach to instance 
construction that removed some of the constructor arguments, particularly those related to 
features that are used only in some configurations. 

It is likely that if the debugging concern is modularised, the resulting aspect will not 
provide exactly the same behaviour as the scattered calls to DPrint.println, even after a 
thorough refactoring that aggressively decomposed many methods. Some of the calls 
would still conceivably not find a suitable joinpoint. Nevertheless, it is likely that the 
joinpoints offered would be fine enough to satisfy developers when carrying out a debug 
session. 

Note that the act of refactoring the code base can also be beneficial in itself [105]. 
Independently of the compositions made possible, a well-refactored code base is easier to 
understand and to reason with. Applying refactorings on source code, for instance by 
simply renaming a method or class whose name does not seem to transmit its intent clearly, 
can provide many useful insights. The same applies to the act of writing unit tests (in case 
the system does not already have them). As Manolescu states in [105], “It’s hard to think of 
a better way of understanding something than actually doing it!” 

3.8.2 Preservation of  Intent vs. Preservation of  Behaviour 

Some of the situations described above raise the issue of preservation of intent versus 
preservation of behaviour. There are cases when refactoring to aspects is not behaviour 
preserving. This does not necessarily mean that the intent of the developer is 
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compromised. In many situations, the intentions of the programmer can be met by many 
slightly different variants of behaviour. 

When discussing a tool for aspect-oriented refactoring, Hannemann et al. in [59] describe 
the case of refactoring one implementation of the Observer pattern ([48], p.293) in the 
JHotDraw framework [182]. In the connection between the DrawingView and 
FigureSelectionListener types, the code notifies listeners after calls to addSelection(Figure), 
but not after addSelectionAll(Figure[]). The latter method relies on calls to the former 
method for its implementation. The extracted aspect relied on a straightforward 
implementation based on pointcuts and advice, which would trigger updates after both 
kinds of calls. The result would be an additional call to listeners to update after adding an 
array of figures to the selection. Although a user may not notice the difference, such a 
refactoring would not preserve the original behaviour. However, the aspect-oriented 
version would be safer because it captures the intent of the program: listeners should be 
informed of the addition of figures and if in the future a developer changed the 
implementation of addSelectionAll(Figure[]) to not using calls to addSelection(Figure), the 
OO version would no longer inform the listeners. The aspect-oriented version captures the 
intent through the direct application of the language mechanisms and therefore provides a 
stronger guarantee of consistency and safety. 

Another example of a mismatch between preservation of intent and preserving the actual 
behaviour (also involving implementations of Observer) is described in Chapter 7. This 
case relates to the order in which listeners are notified, which changed during the 
refactoring process. This detail is irrelevant for the purposes of the desirable behaviour and 
therefore the test that signalled the change in behaviour was changed accordingly. 

Both the aforementioned cases are examples of situations in which preservation of intent is 
not the same as preservation of the existing behaviour. This kind of situation is likely to 
occasionally arise in aspect-oriented refactorings [61], because these entail replacing 
behaviour obtained through manual (i.e. error prone) interventions in the code with 
solutions provided by more reliable language mechanisms. When differences arise, they 
really expose inconsistencies in the manual solution. In such cases, preservation of 
behaviour may not be possible and may even be undesirable. 

Mismatches between intent and actual behaviour are more likely to occur in large and 
complex systems because these are maintained by several people. Multiple developers are 
more likely to fail to enforce a global practice consistently (e.g. omissions, deviations from 
a policy, and bugs). In most cases where a mismatch is exposed, preservation of intent is 
more important than preservation of the original, possibly faulty, behaviour. 

3.8.3 Feature Decomposition as a Likely Anti-Pattern 

The problems related to the extraction of the data link concern suggest that not all 
crosscutting concerns are equally amenable to be extracted to aspects. This is independent 
of the style problems of the WorkSCo code base described in section 3.6.3. The extraction 
of the data link concern was really an attempt to decompose the system according to use 
cases [67] or features18 [74]. The mechanisms AspectJ, particularly inter-type declarations, 
were used to connect the elements of the aspect to the relevant points in the primary 
system. 

                                                 
18 The term “feature” is used with different menanings, depending on the context. When considering criteria 

for the decomposition of software systems, we use the term “feature” in the sense of [74]. For the purposes 
of our analysis, we regard the use case and feature decompositions as equivalent. 
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We conclude from the analysis of this case study that a language like AspectJ is not suitable 
to decompose a system according to use cases or features (i.e. to support product lines). 
The reason is that the base decomposition of AspectJ is fixed, and is the same as the 
decomposition of the language that AspectJ extends – classes and objects. Trying to 
decompose a system according to a different decomposition is bound to lead to 
inappropriate and awkward structures. That is root cause of the hurdles described above, 
regarding our attempt to extract the data links concern (feature). 

We propose a simple rule to tell when a crosscutting concern is suitable for extraction into 
an aspect as understood by languages such as AspectJ: if there is duplication in the 
scattered code fragments in multiple points of the system, extracting such fragments to an 
aspect is likely to prove beneficial. Instead of having multiple duplicated code fragments or 
method calls, the refactored system will include an aspect affecting the appropriate points 
with one or a few advice. In such a situation, the aspect will yield a system with the same 
behaviour but less code. 

On the other hand, if each code block or fragment related to the concern is different from 
the others blocks or fragments, extracting these into an aspect is likely to yield a monolithic 
module with complex connections to the primary structure. The problem can be detected 
by examining the pointcuts, in case the aspect uses any. If each pointcut captures one 
joinpoint only, the concern in question is not crosscutting in the sense understood in the 
context of AspectJ. The same rule applies to inter-type declarations: in general, they should 
target a set of types rather than a specific type. A system structured with such aspects is not 
likely to derive benefits from AOP and may become harder to maintain and evolve. 
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Chapter 4. Case Study: Implementations 
of  the GoF Patterns in Java and AspectJ 

Chapter 4 presents the second case study, a collection of code examples comprising the 
implementation in Java and AspectJ of the GoF patterns. This Chapter explains why the 
examples were selected (section 4.1) and how they were approached (section 4.2). Next, the 
Chapter provides some background on the examples (section 4.3), and describes various 
issues that were detected during analysis and work on them. The Chapter refers to the 
results obtained (section 4.4) and concludes with a summary of the main insights derived 
from the case study (section 4.5). 

4.1. Why the Examples were Selected 
No example implementation of the GoF patterns can be considered “real code”. Such code 
examples must inevitably be labelled “toy code” or something similar. Toy examples 
cannot be directly used in real applications and are not useful to solve real problems. Toy 
examples do not generally include additional concerns that place constraints on the design 
and therefore on the refactorings that we would like to perform in each specific case. Toy 
examples do not address issues that only arise in complex systems, such as user interfaces, 
exception handling and the interaction of non-orthogonal concerns. 

Nevertheless, the patterns illustrate a variety of design and structural issues, as well as 
situations that would be hard to find in a single code base (except possibly in some large 
and complex ones). The implementations of the GoF patterns effectively comprise a 
microcosm of many possible systems. These examples provide a rich source of insights, 
without the need to analyse large code bases or learn domain-specific concepts. 

At the time we were carrying out our work on the first case study, we were also searching 
for other suitable code bases. In particular, we were looking for code bases that were 
publicly available in both their original Java-based form, and in a refactored, AspectJ-based 
form. There seemed to be none. At the time, the code examples presented by Hannemann 
and Kiczales in [60] were the nearest thing around. These implementations of the 23 GoF 
patterns [48] in both Java and AspectJ were (are) one of the nearest things to examples of 
good AO style and design, presenting a clear notion of the desirable internal structure for 
aspects. In practice, they comprised the only available example of code bases available in 
both a Java and AspectJ forms. 

4.2. Approach Taken 
Each AspectJ pattern implementation that is different from the Java implementation offers 
the opportunity to find refactorings capable of transforming the Java solution into the 
AspectJ solution. Our approach was to characterise the refactorings that would be needed 
to yield such transformations. 

However, no pattern has a single, unique solution, in whatever language. Rather, there a 
range of solutions from which designers must pick one for their specific problem. No 
single set of implementations can provide the richness and variety required for our task, 
and for this reason the Java versions from [60] were regarded as mere a starting point. The 
prototype refactorings obtained from analysing the aforementioned examples were 
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subsequently tested and refined with other Java implementations. The refactoring process 
described in Chapter 7 derives from one of those test sessions. 

Fortunately, there are multiples Java implementations of the GoF patterns available in the 
literature [32][52] and/or posted on the Internet [39][180][178][181]. We collected several 
of these code bases, and we focused mainly on the ones from [39][32] because they seemed 
to be the most complete and imaginative. The variety of implementations obtained from 
different examples further enriched the patterns’ potential as providers of insights. Indeed, 
we believe that our work did not exhaust their potential as provider of insights [122]. For 
this reason, we mention their continuing exploration in the list of opportunities for further 
work (see section 9.3). 

4.3. Ad Hoc Analysis of  the AspectJ Implementations 
Though we did not approach the code examples with the intent of undertaking a complete 
or thorough analysis, we derived various insights from them while carrying out our work 
on the examples. These include some limitations of the AspectJ implementations or 
hurdles that can be felt when trying to use them on a concrete situation. We believe these 
insights may be of interest to researchers and that is why we present them here. Note that 
this analysis is neither thorough nor comprehensive: it merely describes several scattered 
insights that we derived during the course of our work. For a more rigorous analysis, we 
refer to the work by Garcia et al [49] (see also Chapter 8). In section 7.1, we also present a 
more detailed analysis of the Observer pattern ([48], p. 293), one instance of which 
provides the subject of the refactoring example presented there. 

The analysis presented next focuses on issues and difficulties that may arise in the use of 
AspectJ constructs, rather than focusing on the patterns. Though we refer to concrete 
patterns when discussing each of the issues, this is done for illustration purposes. For each 
of the patterns covered we provide a minimal introduction, as our purpose is not to analyse 
each pattern in depth – for that, we refer to [48]. Therefore, each description does not 
necessarily mentions all the roles associated with each of the patterns we cover. 

4.3.1 Role Assignment and Role Separation 

Of the 23 AspectJ implementations of the patterns, 22 are different from those in plain 
Java (the identical implementation is that of Façade [48], p.185), offering unique advantages 
as well as their own trade-offs. Generally, the advantages brought by AspectJ translate into 
greater modularisation of crosscutting code. Thus, the patterns with the greater degree of 
crosscutting structure across the various participants see the greater improvement with the 
use of AspectJ. In our view, the most successful implementation is that of Observer ([48], 
p.293) and the least successful is that of Façade ([48], p.185), whose AspectJ version is 
identical to that in Java. 

In [60], Hannemann and Kiczales analyse the GoF patterns and their AspectJ 
implementations according to the roles defined by the pattern and four modularity 
properties (see Table 4). The pattern roles are classified as: 

• Superimposed – The object has a distinct, primary role besides the one assigned by 
the pattern. Superimposed roles can be attached to and detached from existing 
objects. 

• Defining – The object exists only to play the pattern role. Such roles do not lend 
themselves for a separation of roles because the participant plays only that role. 
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Roles can be defining, superimposed, or something in between. The authors acknowledge 
that in some cases the classification is not clear-cut. 

The four modularity properties are: 

• Locality – All the code related to the implementation of the pattern is in the abstract 
and concrete aspects, and none in the participant classes. The participant classes are 
entirely free of the pattern context, and consequently there is no coupling between 
the participants. Potential changes to instance of the pattern are confined to a 
single place. 

• Reusability – The core pattern code is abstracted and reusable. The implementation 
of the pattern is generalising the overall pattern behaviour. The abstract aspect can 
be reused and shared across multiple instances of the pattern. For each pattern 
instance, we only need to define one concrete subaspect of the abstract aspect. 

• Composition Transparency – Because a pattern participant’s implementation is not 
coupled to the pattern, if one of the participants takes part in multiple pattern 
instances, their code does not become more complicated and the pattern instances 
are not confused. Each instance of the pattern can be reasoned about 
independently. 

• (Un)pluggability – Because the participants need not be aware of their roles in any 
pattern instance, it is possible to switch between using a pattern and not using it in 
the system. 

Table 4 is taken from [60], presenting the results of the above-mentioned analysis. From 
the table we can see that there are significant differences between the patterns in terms of 
the nature of the roles. The AspectJ implementations explore the fact that each pattern 
assigns roles to their participants. AspectJ is able to separate the various roles of a class by 
placing the code associated to each different role in its own unit of modularity. The 
technique used for most of the patterns is based on a marker interface that a specific target 
class is made to implement through a ‘declare parents’ clause. Patterns that define a role 
solely for the purposes of the pattern context derive only a limited or no benefit from this 
capability of AspectJ. 

One good example of a defining role can be found in the Command pattern ([48], p.163). 
The intent of Command is to “encapsulate a request as an object, thereby letting you 
parameterise clients with different requests, queue or log requests, and support undoable 
operations.” The pattern prescribes that some the objects represent commands, usually 
modelled by an abstract class (C++) or an interface (Java). Concrete commands are 
instances of concrete classes extending a Command type. The pattern also defines the 
invoker role for objects that place requests to the command objects. In many uses of 
Command, the command participant exists for the sole purpose of implementing 
command objects. In Java, it is usual to implement commands through anonymous inner 
classes, which are by definition non-reusable. Therefore, many instances of Command do 
not derive much benefit from the stronger compositional capabilities of AspectJ. 

On the other hand, one would expect patterns defining superimposed roles to derive much 
benefit in terms of modularity and reusability. To some extent, we found that to be the 
case. Observer ([48], p.293) particularly benefits in this respect, because it stands apart in 
being the only pattern that includes two superimposed roles, in addition to not including 
any defining roles. Consequently, the AspectJ implementation of Observer modularises a 
whole collaboration and that is the reason why it looks particularly impressive (see section 7.1 
for a more detailed analysis of Observer). Chain of Responsibility ([48], p.223) bears some 
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similarities to Observer, but the collaboration between objects is done in terms of a single 
role. For this reason, the AspectJ implementation of this pattern does not impress so 
much. 
 

 Modularity Properties Kinds of Roles 

Pattern name Locality(**) Reusability Composition 
Transparency 

(Un)plug-
gability 

Defining(*) Superimposed 

Façade Same implementation for Java and AspectJ Façade – 

Abstract Factory no no no no Factory, Product – 

Bridge no no no no Abstraction, 
Implementor 

– 

Builder no no no no Builder, 
(Director) 

– 

Factory Method no no no no Product, Creator – 

Interpreter no no n/a no Context, 
Expression 

– 

Template Method (yes) no no (yes) (AbstractClass), 
(ConcreteClass) 

(Abstract Class), 
(Concrete Class) 

Adapter yes no yes yes Target, Adapter Adaptee 

State (yes) no n/a (yes) State Context 

Decorator yes no yes yes Component, 
Decorator 

Concrete-
Component 

Proxy (yes) no (yes) (yes) (Proxy) (Proxy) 

Visitor (yes) yes yes (yes) Visitor Element 

Command (yes) yes yes yes Command Commanding, 
Receiver 

Composite yes yes yes (yes) (Component) (Component, 
Leaf) 

Iterator yes yes yes yes (Iterator) Aggregate 

Flyweight yes yes yes yes FlyweightFactory Flyweight 

Memento yes yes yes yes Memento Originator 

Strategy yes yes yes yes Strategy Context 

Mediator yes yes yes yes – (Mediator), 
Colleague 

Chain of 
Responsibility 

yes yes yes yes – Handler 

Prototype yes yes (yes) yes – Prototype 

Singleton yes yes n/a yes – Singleton 

Observer yes yes yes yes – Subject, 
Observer 

(*) The distinctions between defining and superimposed roles for the different patterns were not always easy to make. 
In some cases, roles are clearly superimposed (e.g. the Subject role in Observer), or defining (e.g. State in the State 
pattern). If the distinction was not totally clear, the role names are shown in parentheses in either or both categories. 

(**)Locality: “(yes)” means that the pattern is localized in terms of its superimposed roles but the implementation of 
the remaining defining role is still done using multiple classes (e.g. State classes for the State pattern). In general, 
(yes) for a desirable property means that some restrictions apply. 

Table 4: Analysis of AspectJ implementations of the GoF patterns according to 
roles and modularity properties 
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Mediator ([48], p.273) does not seem to benefit from AspectJ’s ability to separate roles as 
much as Observer and Chain of Responsibility, and the reason is that one of its roles is not 
really superimposed, as is implied in Table 4. The intent of Mediator is to “define an object 
that encapsulates how a set of objects interact. Mediator promotes loose coupling by 
keeping objects from referring to each other explicitly, and it lets you vary their interaction 
independently”. The mediator is typically an object acting as the hub of communication for 
various other objects, named colleagues. In their example, for Mediator Hannemann and 
Kiczales treat the role of mediator as if it were superimposed, by marking one of the 
participants with the marker interface that represents the role. However, the object playing 
the role in the example is an empty shell (it includes only the constructor). The aspect 
needs a set of the adequate joinpoints to attach the additional state and behaviour and the 
mediator object serves this purpose. One could say that, in practice, the object is still 
playing the role, though the associated code is placed separately in the aspect. 

We think the AspectJ Mediator (as well as Command and some of the other patterns) is a 
case of an aspect trying to improve on a code base that is really not amenable to improving 
(at least on the basis of these designs). It is important to keep in mind that AOP 
complements a given paradigm rather than replace it. If the base decomposition already 
manages to encapsulate a role, there isn’t much scope for AspectJ to improve things. 

4.3.2 A Price for Reusability 

Hannemann and Kiczales claim to have localised the implementation of 17 of the patterns, 
14 of which also attained transparent composability. They also claim to have produced 
reusable aspects for 12 of the 17 patterns. In our analysis of these 12 reusable patterns, we 
detected problems and limitations in some of them. Some of the aspects seem awkward to 
use, with limitations that may not be noticed until one attempts to use them in concrete 
cases. Naturally, these examples are to some extent speculative, but since these problems 
are not mentioned in [60], we mention them in our description. We conclude that in some 
of the patterns reusability comes with a price, just as it happens with traditional OO 
technology. In the case of some patterns, we wonder whether the benefits are worth 
paying. This particularly applies to Composite ([48], p.163) and for this reason we use it to 
illustrate the problem. 

The intent of the Composite pattern ([48], p.163) is to “compose objects into tree 
structures to represent part-whole hierarchies. Composite lets clients treat individual 
objects and compositions of objects uniformly.” The main roles defined by the pattern are 
the component, which declares the common interface, the leaf, which represents the leaf 
objects in the composition, and composite, defines the behaviour for components that have 
children, including the storage and management of the children. 

The AspectJ implementation of Composite (see Listing 13) attains complete obliviousness 
from the pattern roles, but the authors aimed to make the aspect reusable as well. The 
CompositeProtocol aspect implements the composite functionality and defines a small 
framework comprising: 

• Three marker interfaces representing a component, a composite component and a 
leaf component (Listing 13, lines 2-4). The remaining managing logic is done in 
terms of these interfaces. 

• A private hash table (Listing 13, line 6) responsible for mapping components to 
their children. 
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• A protocol based on visitors, through which operations on the elements of the 
composite structure can be performed. The visitors are objects implementing one 
of two alternative inner interfaces (Listing 13, lines 28-30 and 37-39), each defining 
an operation receiving a component as argument and differing in the return type – 
void for operations (Listing 13, line 29) and Object for functions (Listing 13, line 
38). 

The requirement that all operations on elements go through the visitor interfaces – with all 
values passed as a single object – places a constraint on the client programmer. For instance, 
it is hard to implement operations in which an operation on one of the composite’s 
elements use the results from the operation performed on the parent node or on the 
previous children. The complexity is a result of the efforts to yield a reusable aspect. We 
experimented writing a case-specific alternative, eschewing the visitors, and the result was 
significantly simpler. We therefore wonder whether the aspect’s reusability sufficiently 
compensates for the awkwardness in using it. Similar problems plague in various degrees 
some of the other reusable aspects. 

4.3.3 Difficulties in Capturing Context 

Our analysis of the code examples also revealed potential difficulties in capturing the 
context necessary for a given task. That was particularly noticeable in the example for 
Command. The AspectJ implementation is based on the reusable aspect 
CommandProtocol that is shown in Listing 14, (without most of the comments so that it 
fits in one page). The roles defined by Command are modelled by standalone auxiliary 
interfaces (see Listing 15). 
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01 public abstract aspect CompositeProtocol { 
02  public interface Component {} 
03  protected interface Composite extends Component {} 
04  protected interface Leaf extends Component {} 
05 
06  private WeakHashMap perComponentChildren = new WeakHashMap(); 
07 
08  private Vector getChildren(Component s) { 
09   Vector children = (Vector)perComponentChildren.get(s); 
10   if ( children == null ) { 
11    children = new Vector(); 
12    perComponentChildren.put(s, children); 
13   } 
14   return children; 
15  } 
16 
17  public void addChild(Composite composite, Component component) { 
18   getChildren(composite).add(component); 
19  } 
20  public void removeChild(Composite composite, Component component) {  
21   getChildren(composite).remove(component);  
22  } 
23 
24  public Enumeration getAllChildren(Component c) { 
25   return getChildren(c).elements();  
26  } 
27 
28  protected interface Visitor { 
29   public void doOperation(Component c); 
30  } 
31  public void recurseOperation(Component c, Visitor v) { 
32   for (Enumeration enum = getAllChildren(c); enum.hasMoreElements(); ) { 
33    Component child = (Component) enum.nextElement(); 
34    v.doOperation(child); 
35   } 
36  } 
37  protected interface FunctionVisitor { 
38   public Object doFunction(Component c); 
39  } 
40  public Enumeration recurseFunction(Component c, FunctionVisitor fv) { 
41   Vector results = new Vector(); 
42   for (Enumeration enum = getAllChildren(c); enum.hasMoreElements(); ) { 
43    Component child = (Component) enum.nextElement(); 
44    results.add(fv.doFunction(child)); 
45   } 
46   return results.elements(); 
47  }  
48 } 

Listing 13: CompositeProtocol – reusable implementation of Composite. 



72 Chapter 4. Case Study: Implementations of the GoF Patterns in Java and AspectJ 

 

 
01 import java.util.WeakHashMap; 
02 import ca.ubc.cs.spl.aspectPatterns.patternLibrary.Command; 
03 import ca.ubc.cs.spl.aspectPatterns.patternLibrary.CommandInvoker; 
04 import ca.ubc.cs.spl.aspectPatterns.patternLibrary.CommandReceiver; 
05 
06 public abstract aspect CommandProtocol { 
07 // Invoker -> Command mapping // 
08  private WeakHashMap mappingInvokerToCommand = new WeakHashMap(); 
09 
10  public Object setCommand(CommandInvoker invoker, Command command) {  
11   return mappingInvokerToCommand.put(invoker, command);  
12  } 
13  public Object removeCommand(CommandInvoker invoker) {  
14   return setCommand(invoker, null);  
15  } 
16  public Command getCommand(CommandInvoker invoker) {  
17   return (Command) mappingInvokerToCommand.get(invoker);  
18  } 
19 // Command -> Receiver mapping // 
20  private WeakHashMap mappingCommandToReceiver = new WeakHashMap(); 
21  public Object setReceiver(Command command, CommandReceiver receiver) {  
22   return mappingCommandToReceiver.put(command, receiver);  
23  } 
24  public CommandReceiver getReceiver(Command command) {  
25   return (CommandReceiver) mappingCommandToReceiver.get(command);  
26  } 
27 // Command Execution via PC & advice // 
28  protected abstract pointcut commandTrigger(CommandInvoker invoker); 
29  after(CommandInvoker invoker): commandTrigger(invoker) {  
30   Command command = getCommand(invoker); 
31   if (command != null) { 
32    CommandReceiver receiver = getReceiver(command); 
33    command.executeCommand(receiver); 
34   } else { 
35    // Do nothing: This Invoker has no associated command 
36   } 
37  } 
38 // setCommand() via PC & advice // 
39  protected pointcut setCommandTrigger(CommandInvoker invoker, 
40              Command command); 
41  after (CommandInvoker invoker, Command command):  
42    setCommandTrigger(invoker, command) { 
43   if (invoker != null) { 
44    setCommand(invoker, command); 
45   } else { 
46    // If the invoker is null, the command cannot be set.  
47    // Either ignore this case or throw an exception 
48   } 
49  } 
50 // removeCommand() via PC & advice // 
51  protected pointcut removeCommandTrigger(CommandInvoker invoker); 
52  after(CommandInvoker invoker): removeCommandTrigger(invoker) { 
53   if (invoker != null) { 
54    removeCommand(invoker); 
55   } else { 
56    // If the invoker is null, the command cannot be removed.  
57    // Either ignore this case or throw an exception 
58   } 
59  } 
60 // Command default method implementations // 
61  public boolean Command.isExecutable() { 
62   return true; 
63  }  
64 } 

Listing 14: CommandProtocol – reusable implementation of Command. 
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public interface Command { 
 public void executeCommand(CommandReceiver receiver); 
 public boolean isExecutable(); 
} 
public interface CommandInvoker { 
} 
public interface CommandReceiver { 
} 

Listing 15: Standalone interfaces auxiliary to CommandProtocol. 

CommandProtocol provides several variants for associating commands to invokers. The 
association can be implicit, through pointcuts and advice (Listing 14, lines 38-49), or explicit, 
through calls to the aspect method setCommand (Listing 14, lines 10-12). The Main class 
uses the explicit mode (not necessarily a bad thing). We wondered how the implicit mode 
could be used and noticed that it presents a technical hurdle related to context capture. 
CommandProtocol models this functionality through the protected pointcut 
setCommandTrigger (Listing 14, lines 39-40), which receives both the invoker and the 
command objects as parameters. We think that in practice, code bases are not likely to 
expose the context enabling the capture of both the invoker and the command in a single 
pointcut (the whole point is to enable those separations). The illustrating use case that 
accompanies the example (see Listing 16) uses the explicit mode and it is hard to imagine 
how it could use the implicit mode. Therefore, we suspect the implicit mode will not be 
feasible in most cases. Theoretically, this hurdle can be circumvented by refactoring the 
base code, but this is likely to be very invasive, and the resulting changes risk defeating the 
whole purpose of the refactoring – to make the base code oblivious of the association 
between invokers and commands. 
 
public static void main(String[] args) { 
  Button button1 = new Button("Button1"); 
  Button button2 = new Button("Button2"); 
  Button button3 = new Button("Button3");  
   
  Command com1 = new ButtonCommand(); 
  Command com2 = new ButtonCommand2(); 
   
  JPanel pane = new JPanel(); 
  pane.add(button1); 
  ButtonCommanding.aspectOf().setCommand(button1, com1); 
   
  pane.add(button2); 
  ButtonCommanding.aspectOf().setCommand(button2, com2); 
  ButtonCommanding.aspectOf().setReceiver(com2, new Printer()); 
  pane.add(button3); 
  ButtonCommanding.aspectOf().setCommand(button3, com1); 
   
  JFrame frame = new JFrame("Command Pattern Example");   
   
  frame.getContentPane().add(pane); 
  frame.addWindowListener(new WindowAdapter() { 
   public void windowClosing(WindowEvent e) {System.exit(0);} 
  }); 
  frame.pack(); 
  frame.setVisible(true); 
 } 
} 

Listing 16: Illustrating use case for the Command pattern. 
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4.3.4 Problems of  Privileged Access 

The Memento pattern ([48], p.283) poses the problem of how to provide a given object 
with privileged access to the internals of another. The intent of Memento is: “without 
violating encapsulation, capture and externalise an object’s internal state so that the object 
can be restored to this state later. ” Memento defines the originator as the object whose state 
must be stored in a snapshot, the memento as the object storing a snapshot of the 
originator’s internal state, and the caretaker as the object responsible for the memento’s 
safekeeping. 

The memento needs privileged access to the originator’s internals, something that is tricky 
to achieve in many languages (Cooper remarks in [32] that this is not directly possible in 
Smalltalk. Gamma et al. [48] suggest in that C++ implementations use the friend 
construct). A common solution in Java [32] is to give the default (i.e. package protected) 
access to the originator’s state, so that only classes within the same package have access to 
it, and place the memento class in the same package as the originator’s. 

One would expect the AspectJ solution from [60] to rely on a privileged aspect, but it 
doesn’t, probably because privileged aspects are generally regarded as risky and bad style, 
and/or because its use fails to meet the requirement that encapsulation be preserved. 
Instead, the AspectJ solution comprises a reusable abstract aspect modelling the role of 
originator, which must be superimposed on the class of the objects to be safeguarded. The 
logic for generating the memento is based on a standalone Memento interface that must be 
used in all cases. 

The Memento interface is another instance of awkward and inflexible interfaces due to the 
attempt to yield reusability. Memento declares a setState operation for passing the state to 
be safeguarded to the memento, and a getState operation for retrieving it from the 
memento. In order to be generally applicable, the Memento interface cannot refer to case-
specific types. Therefore, the setState operation accepts an argument of type Object and 
getState returns a value of type Object. Clients of Memento must resort to type-unsafe 
downcasts. This interface strikes us as too constraining, because originators need to 
encapsulate their internals within a single object to be passed to setState. This entails 
creating an additional type just for the originator to pass its state to and from mementos. 
The use case in the Main class from the example (not shown) dodges this problem because 
the originator’s state is a simple protected int field, wrapped within an Integer object and 
upcasted to Object when passed to the memento. Downcasts are used for the memento to 
return its snapshot. 

The Java design presented by Cooper ([32], p.169) implements the memento as a peer class 
placed within the originator’s source file. The fields of the originator have package-
protected access. The memento gets the snapshot by receiving the originator as an 
argument to her constructor. The memento holds a reference to its associated originator 
and is able to restore the originator’s saved state through a restore method. The originator 
class itself does not contain any code associated with the pattern. In our view, this design 
compares favourably with the AspectJ design. It achieves the same main advantage as the 
AspectJ design – the originator is oblivious of its role in the pattern (though at the price of 
having the memento class in its source file). 

4.3.5 Problems with Illegal Weaving 

We saw another potential hurdle when we made experiments on implementations of 
Decorator ([48], p.175). The hurdles relate to the fact that weaving on proprietary libraries 
usually violates the licenses under which they are provided. 
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The intent of Decorator is to “attach additional responsibilities to an object dynamically. 
Decorators provide a flexible alternative to subclassing for extending functionality.” 
Decorators are a way to emulate mixins [22] in languages not directly providing the 
mechanism. The pattern defines the decorator participant and one maintaining a reference 
to the decorated object – the component – and exporting an interface that conforms to that 
of the component. The component participant is the object to be decorated with additional 
functionality and which defines the common interface. The AspectJ implementation is 
based on advice – Hannemann and Kiczales [60] remark on the inherent limitations of this 
approach, namely the dynamic reordering of decorators. Advices are less flexible due to 
their static (i.e. compile time) nature. 

When we tried to use the same approach to the example of Decorator presented in [32], we 
discovered we couldn’t, because the component is the JButton type from Java’s javax.swing 
standard API. This prevented us from using pointcut designators such as execution on the 
component operations because this would entail weaving on the Java’s jar file exporting the 
JButton type. Such weaving violates the license under which Java is made publicly available. 
In situations such as these, programmers must resort to the call pointcut designator, which 
targets the binaries making the calls, rather than the code that is actually executed. 
However, in the example from [32] the JButton object is called within a JFrame object 
from the same API. It would be also illegal to weave at either “side” of the component. 

4.4. Results Derived from the Code Examples 
The analysis undertaken on the code examples described in this Chapter yielded most of 
the material documented in the next two chapters, which includes all the refactorings with 
the exception of those mentioned in Chapter 3, which are: 

• Partition Constructor Signature (137) 

• Move Field from Class to Inter-type (104) 

• Move Method from Class to Inter-type (106) 

• Extract Fragment into Advice (94) 

• Extract Feature into Aspect (90). 

All the aforementioned refactorings were updated during our work on the present case 
study, with the exception of Partition Constructor Signature (137). The material for the 
validating example presented in Chapter 7 also originates from the case study described in 
this Chapter. 

4.5. Summary 
In this section, we summarise the main insights we derived from the work on the code 
examples: 

• Each of the 23 GoF design patterns assigns roles to the various participants. The 
primary advantage of AspectJ over OO languages is in the ability to separate the 
secondary roles from the primary functionality of the participants objects. 
However, in many cases the pattern role is the only role played by a participant (i.e. 
the role is defining). In such cases, the improvements brought by AspectJ are 
limited or non-existent. The advantage of AspectJ is particularly noticeable when a 
pattern assigns more than one superimposed role. In such cases, AspectJ is able to 
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modularise the entire collaboration based on the superimposed roles. Observer is 
the only example among the 23 GoF patterns of a modularised collaboration. 

• AOP does not seem to be different from previous techniques in that there is a price 
to pay for reusability. Though AspectJ manages to modularise certain concerns to 
an extent that is beyond the reach of OO, this does not mean that the resulting 
aspect is reusable. Attaining reusability in some cases resulted in added complexity 
as well as interfaces that are inflexible and awkward to use. In previous sections we 
describe a few examples. Just as with OO, there is a trade-off between reusability, 
and flexibility and user-friendliness. 

• Aspects need an adequate base of joinpoints to leverage their quantification 
capabilities. In a few cases, methods and objects were left in the code base whose 
purpose seemed solely to provide a convenient joinpoint to the aspect. These 
situations tended to occur when the nature of the pattern role (superimposed vs. 
defining) was not clear-cut. 

• There are limits to the abilities of AspectJ to capture the necessary context. A case 
is described in which the parameter list of an abstract pointcut required the capture 
of more different values than those that seem to be readily available from existing 
joinpoints. 

• The capabilities of AspectJ to weave onto proprietary libraries raise issues and 
difficulties whose nature is legal rather than technical. A case was described in 
which AspectJ could not be used because using it would entail weaving into the jar 
files that ship with the Java install. This would be in violation of the license under 
which Sun Microsystems distributes the Java files. 
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Chapter 5. Aspect-Oriented Code Smells 

This Chapter presents the code smells that were derived from work on the two case studies 
presented in the two previous chapters. Bad smells in the source code are indicators of 
undesirable situations that should be removed or corrected, and the purpose of refactorings 
is to do just that. For this reason, the descriptions of the smells include suggestions of the 
refactorings that can remove them. These refactorings are presented in Chapter 6 and 
therefore the present Chapter includes many references to material found in the following 
Chapter. This way, we establish the links between the smells and the refactorings. 

The smells are of two kinds: (1) to detect the presence of crosscutting concerns in OO 
code, and (2) to detect a scope for improvement in aspect-oriented code. Most of the 
smells presented here are of the former kind. The last smell – Aspect Laziness – is of the 
latter kind and can only occur in aspects. 

Smells aiming to detect the presence of crosscutting concerns in OO code can be divided 
into traditional OO smells seen from a new, aspect-specific perspective, and novel smells, 
specifically designed to assist in the detection of crosscutting concerns. It should be noted 
that when we refer to “OO code” in the context of detecting crosscutting concerns, we do 
not imply that the code must necessarily be free of aspect code. In this context, we simply 
mean that the “base code” (i.e. parts of a system comprising classes and methods) may still 
include crosscutting concerns that are amenable to being extracted to aspects. 

This Chapter is structured as follows. Section 5.1 surveys traditional OO smells in the light 
of AOP. In section 5.2 the Double Personality is proposed. The Abstract Classes smell is 
proposed in 5.3, and the Aspect Laziness smell is proposed in 5.4. 

5.1. OO Smells in the Light of  AOP 
From our analysis of the code smells presented in [47], [158] and [76], we concluded that 
some can be used by AO programmers as symptoms of the presence of crosscutting 
concerns. This particularly applies to the following two OO smells: 

 Divergent Change ([47], p.79) –The ideal situation when we want to change something 
in a system is to be able to pinpoint a single clear point where the change can be 
made. The Divergent change smell is felt when we can’t do this. According to Beck 
and Fowler, divergent change occurs when one class is commonly changed in 
different ways for different reasons. As an example, the authors mention the 
situation of a programmer looking at a class and saying “Well, I will have to change 
these three methods every time I get a new database; I have to change these four 
methods every time there is a new financial instrument”. In this example, two 
objects are likely to be better than one. However, note that it may not be worth the 
programmer’s effort (unless it is a small one and does not add much complexity) to 
prepare the code to avoid the changes, if she does not expect to add new 
databases19. On the other hand, if the programmer regularly adds new financial 
instruments, she will clearly benefit from removing the smell. 

 Shotgun Surgery ([47], p.80) – As Beck and Fowler point out, shotgun surgery is 
similar to divergent change but is the opposite. This smell is felt when we have to 

                                                 
19 Beck and Fowler define the Speculative Generality ([47], p.83) smell to represent situations in which the code 

is needlessly prepared (and made more complex) for changes that are not certain to be required. 
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make many little changes in many different classes every time one needs to make a 
kind of change to the system. When the changes are scattered everywhere, they are 
hard to find and it is easy to miss an important change. 

Beck and Fowler sum up the two smells by saying that “shotgun surgery is one change that 
alters many classes and divergent change is one class that suffers many kinds of changes”. 
These two smells are clearly symptoms of code scattering code tangling respectively. Wake 
[158] mentions configuration information, logging and persistence as possible causes to the 
Shotgun Surgery smell, all of which can be counted among the favourite examples for the use 
of AOP. Clearly, they can be used to signal the presence of crosscutting concerns. 
However, we think it is useful to be attentive to these symptoms in methods as well, i.e. 
“one change that alters many methods and one method that suffers many kinds of 
changes” can signal the presence of crosscutting concerns, even if restricted to the internals 
of one class. Such a concern cuts across the members of a single class (or a single class 
hierarchy). Laddad [91] cites class-level contract enforcement, lazy initialisation of 
resources and class-specific exception handling as examples of such concerns. 

Kerievsky [76] proposes a variant of Shotgun Surgery that he calls Solution Sprawl ([76], p.43) – 
“you become aware of this smell when adding or updating a system feature causes you to 
make changes to many different pieces of code”. Kerievsky stresses the similarity of the 
two smells but notes that they are sensed differently – “we become aware of Solution Sprawl 
by observing it, while we detect Shogun Surgery by doing it”. Both variants are equally 
promising as indicators of crosscutting concerns. 

The Extract Feature into Aspect (90) refactoring was defined as a general framework for the 
extraction of the fragments and members related to the kind of concern that these smells 
help to detect. 

5.2. The Double Personality Code Smell 
The Double Personality smell can be found in classes that play multiple roles. Ideally, each 
class should play a single role, meaning that it contains only one, coherent, set of 
responsibilities. This often is not possible in OO frameworks and applications. 

Examples of Double Personality can be found in the OO implementations of design patterns 
[48] that include what Hannemann and Kiczales call superimposed roles – roles assigned by the 
pattern to classes that have functionality and responsibility outside the pattern [60]. 

As an example of Double Personality, consider the Chain of Responsibility ([48], p.223) 
pattern. Its purpose is to allow a chain of objects to attempt to handle a request, without 
any of them knowing about the capabilities of the other objects, which can be of different 
types. Whenever an object receives a request that it cannot handle, it passes to the next 
object in the chain. How the system behaves when the end of the chain is reached depends 
on the specific case. The pattern provides a loose coupling between the handler classes, the 
only common link being the logic they all must have to pass the request between them. 
This common logic is modelled by the Handler role, which is superimposed on most of the 
participant classes. 

Listing 17 shows one of the classes from the implementation of Chain of Responsibility, 
taken from [32]. The Handler role is modelled by the interface Chain20, which all handler 
participants must implement. Listing 17 shows one such participant, where the code related 
to the role of handler is shaded. 
                                                 
20 “Chain” is arguably an inadequate name for the interface. A name such as “Handler” would be more 

intentional. 
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public interface Chain { 
 public abstract void addChain(Chain c); 
 public abstract void sendToChain(String mesg); 
 public Chain getChain(); 
} 
public class ColorImage extends JPanel implements Chain { 
 private Chain _nextChain; 
 public ColorImage() { 
  super(); 
  setBorder(new LineBorder(Color.black)); 
 } 
 public void addChain(Chain c) { 
  _nextChain = c; 
 } 
 public void sendToChain(String mesg) { 
  Color c = getColor(mesg); 
  if (c != null) { 
   setBackground(c); 
   repaint(); 
  } else { 
   if (_nextChain != null) 
    _nextChain.sendToChain(mesg); 
  } 
 } 
 private Color getColor(String mesg) { 
  String lmesg = mesg.toLowerCase(); 
  Color c = null; 
  if (lmesg.equals("red")) 
   c = Color.red; 
  if (lmesg.equals("blue")) 
   c = Color.blue; 
  if (lmesg.equals("green")) 
   c = Color.green; 
  return c; 
 } 
 public Chain getChain() { 
  return _nextChain; 
 } 
} 

Listing 17: Example of the Double Personality smell 

More examples of Double Personality can be found in other patterns. In [60], Hannemann 
and Kiczales present an analysis of the GoF patterns covering the superimposition of roles. 
The various classes from the refactoring example that we present in Chapter 7 – based on 
the Observer pattern ([48], p.293) – also betray strong doses of Double Personality (both the 
Subject and Observer roles are superimposed on various participants). 

The example from Listing 17 also suggests that the implementation of interfaces is a useful 
symptom that can help to detect Double Personality in Java sources. Interfaces are a popular 
way to model roles in Java – e.g. use of interfaces to model roles comprise the motivation 
for Extract Interface ([47], p.341). When a class implements an interface modelling a role that 
does not relate to the class’ primary concern, the class smells of Double Personality. Indeed, 
this insight forms the very basis of the work by Tonella and Ceccato [153] (see Chapter 8). 

Double Personality can lead to the detection of two different situations: a secondary role 
superimposed on a single class, and a role cutting across multiple classes. If Double Personality 
is detected in one class, we suggest that developers analyse the code base to confirm that it 
applies to just that class. Again, looking to the interfaces may help: if multiple classes 
implement the interface, this means the secondary concern is crosscutting. 
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If only one class is affected, or if the code of the secondary role is restricted to the 
implementation of the interface, the solution is to extract the secondary role to a mixin 
[22]. There are several ways to do this. Laddad’s Extract Interface Implementation [91] suggests 
a refactoring process that results on the secondary functionality being extracted to a mixin. 
The mixin is implemented through an inner aspect enclosed within the interface which 
models the superimposed role. However, this implementation seems to assume that the 
implements clause should remain in original implementing class. Consequently, the 
coupling between the class and the mixin remains explicit. In some cases, the programmer 
may strive for total obliviousness of the secondary role, in which case we suggest using 
Replace Implements with Declare Parents (108) after applying Extract Interface Implementation. 

Extract Interface Implementation is suitable for creating mixins, but not for dealing with more 
complex cases. As an alternative to the implementation proposed by Laddad, we propose 
Split Abstract Class into Aspect and Interface (109). This refactoring also extracts the secondary 
role but it leads to a different implementation of the extracted mixin that is based on a 
standalone aspect. Split Abstract Class into Aspect and Interface (109) has the advantage that the 
resulting aspect can develop and grow without trouble, if it turns out that the concern is 
more complex than what can be enclosed within a mixin. The implementation that results 
from using Split Abstract Class into Aspect and Interface (109) is similar to some of the 
implementations used by Hannemann and Kiczales to implement the GoF patterns (e.g. 
Chain of Responsibility, Mediator and Observer). 

If the analysis of the code performed after detecting Double Personality reveals that the code 
related to the crosscutting concern is more complex than a simple implementation of an 
interface, we suggest using Extract Feature into Aspect (90) to move all the related elements to 
an aspect. 

5.3. Abstract Classes as a Code Smell 
The AspectJ composition mechanisms enabling the emulation of mixins also enable the 
separation of definitions (i.e. implementation code) from declarations in abstract classes, so 
that these can be turned into interfaces. Hannemann and Kiczales take this approach in 
implementing five of the GoF design patterns in AspectJ [60]. This separation has the 
advantage that classes become free to inherit from some other class, and we still have the 
option of introducing a default implementation to the interfaces. This suggests that abstract 
classes should be considered a code smell, at least in the cases when they prevent us from 
inheriting from some other desirable class. Two of the refactorings documented in Chapter 
6 remove that smell by moving implementation code to an aspect and turning abstract 
classes into interfaces. The Split Abstract Class into Aspect and Interface (109) refactoring can 
be used to extract the concrete members of an abstract class into an aspect, and we can 
turn the resulting pure abstract class into an interface using Change Abstract Class to 
Interface (88). 

5.4. The Aspect Laziness Code Smell 
The Aspect Laziness smell applies to aspects that do not carry the full weight of their 
responsibilities and instead pass the burden to classes, in the form of inter-type 
declarations. We detect this smell in aspects that resort to the mechanism of inter-type 
declarations to add state and behaviour to a class when something more dynamic and/or 
flexible would be desirable. The problem with inter-type declarations is the fact that they 
are a static mechanism. Inter-type declarations apply to all instances of the target class, 
throughout their entire life cycles. For this reason, inter-type declarations are inadequate for 
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solving problems that require a degree of flexibility. Inter-type declarations should be 
avoided (or refactored) in any of the following cases: 

 The additional state and/or behaviour are needed by only a subset of the instances 
of the target classes. 

 The additional state and/or behaviour are needed only during certain specific 
phases in the execution of the program. 

 Instances of the target classes may simultaneously require multiple instances of the 
additional state and behaviour. 

In any of the above cases, the mechanism of inter-type declarations is not dynamic or 
flexible enough. In such cases, it is preferable to provide the aspect with the logic that 
manages the mapping between the target objects and the additional state and behaviour. 
Hannemann and Kiczales showed in the code they presented in [60] how to meet these 
flexibility requirements in an elegant way. According to their designs, the aspect owns a 
data structure mapping the specific instances to the extra state. In many cases, the mapping 
functionality can be implemented using an instance of one of Java’s collections (usually a 
hash table), plus a few aspect methods to manage it. The Replace Inter-type Field with Aspect 
Map (118) and Replace Inter-type Method with Aspect Method (125) refactorings were specifically 
designed to replace the existing inter-type declarations with a mapping logic that provides 
the same functionality in a more flexible way. 

Examples of Aspect Laziness can be found in Chapter 7. These are the two aspects resulting 
from the extraction of crosscutting concerns. Subsection 7.7.2 shows how the smell can be 
removed. Listing 17 shows one of the aspects resulting from the extraction process 
(described in section 7.7.1). The example comprises one implementation of the Observer 
pattern ([48], p.293) involving three participant classes – Flower, Bee and Hummingbird 
(see section 7.2 for a description of the original example). All the members found in the 
aspect from Listing 17 originated from members of the three participant classes. The 
extractions were performed as prescribed by the various refactorings for extracting 
elements related to a crosscutting concern (these are described in section 6.3). 

Aspect Laziness can be clearly detected thanks to the inter-type declarations of fields (Listing 
18, lines 34-36) and methods (Listing 18, lines 38-46). Note that the functionality provided 
by the aspect does not meet any of the flexibility requirements mentioned above. The 
internal structure of the extracted aspect still reflects the original OO design, which 
decentralises the associated state and behaviour throughout the participant objects. This 
contrasts with the very different design shown in Listing 19. There, the same functionality 
is concentrated within the aspect. In this case, it is implemented by means of a hash map 
(Listing 19, line 14) and the various methods that manage it (Listing 19, lines 24-44). The 
aspect shown in Listing 19 corresponds to the design presented by Hannemann and 
Kiczales in [60]. Only a few more refactorings are needed to extract it from the aspect 
shown in Listing 19 (these are described in subsection 7.7.3). 

The aspect shown in Listing 18 also betrays the Duplicated Code ([47], p.76) smell. Both the 
openObsrv field (Listing 18, lines 35 and 36) and the openObserver method (Listing 18, 
lines 41-43 and 44-46) are declared twice. The reason is that they are related to the 
Observer role in the pattern, of which there are two in this example. The same would 
happen to the oNotify field (Listing 18, line 34) and the opening method (Listing 18, lines 
38-40) if there were more than one Subject participant. It is also important to note that the 
extraction process exposed duplication that could not be removed using traditional OO 
techniques – the duplication would be unavoidable and scattered. With AO techniques, this 
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duplication is simply exposed as a code smell – Duplicated Code ([47], p.76) – which can be 
removed with further refactorings. 
 
01 import java.util.Observable; 
02 import java.util.Observer; 
03  
04 public aspect ObservingOpen { 
05  private interface BreakfastTaker { 
06   public void breakfastTime(); 
07  } 
08  declare parents: (Bee || Hummingbird) implements BreakfastTaker; 
09 
10  static class OpenNotifier extends Observable { 
11   private Flower _enclosing; 
12   private boolean alreadyOpen = false; 
11   public OpenNotifier(Flower flower) { 
12    _enclosing = flower; 
13   } 
14   public void notifyObservers() { 
15    if(_enclosing.isOpen() && !this.alreadyOpen) { 
16     this.setChanged(); 
17     super.notifyObservers(); 
18     this.alreadyOpen = true; 
19    } 
20   } 
21   public void close() { 
22    this.alreadyOpen = false; 
23   } 
24  } 
25  static class OpenObserver implements Observer { 
26   private BreakfastTaker _enclosing; 
27   public OpenObserver(BreakfastTaker enclosing) { 
28    _enclosing = enclosing; 
29   } 
30   public void update(Observable ob, Object a) { 
31    _enclosing.breakfastTime(); 
32   } 
33  } 
34  private OpenNotifier Flower.oNotify = new OpenNotifier(this); 
35  private OpenObserver Hummingbird.openObsrv = new OpenObserver(this); 
36  private OpenObserver Bee.openObsrv = new OpenObserver(this); 
37 
38  public Observable Flower.opening() { 
39   return oNotify; 
40  } 
41  public Observer Bee.openObserver() {  
42   return openObsrv;  
43  } 
44  public java.util.Observer Hummingbird.openObserver() {  
45   return openObsrv; 
46  } 
47  pointcut flowerOpen(Flower flower): 
48   execution(void open()) && this(flower); 
49  after(Flower flower) returning : flowerOpen(flower) { 
50   flower.oNotify.notifyObservers(); 
51  } 
52  pointcut flowerClose(Flower flower): 
53   execution(void close()) && this(flower); 
54  after(Flower flower): flowerClose(flower) { 
55   flower.oNotify.close(); 
56  } 
57 } 

Listing 18: Code Example illustrating the Aspect Laziness smell. 
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01 import java.util.WeakHashMap; 
02 import java.util.List; 
03 import java.util.ArrayList; 
04 import java.util.ListIterator; 
05 
06 public aspect ObservingClose { 
07  private interface Subject {} 
08  private interface Observer {} 
09 
10  public abstract boolean Subject.isOpen(); 
11  public abstract void Observer.bedtimeSleep(); 
12  private boolean Subject.alreadyClosed = false; 
13 
14  private WeakHashMap subject2ObserversMap = new WeakHashMap(); 
15 
16  private List getObservers(Subject subject) { 
17   List observers = (List)subject2ObserversMap.get(subject); 
18   if(observers == null) { 
19    observers = new ArrayList(); 
20    subject2ObserversMap.put(subject, observers); 
21   } 
22   return observers; 
23  } 
24  public void addObserver(Subject subject, Observer observer) { 
25   List observers = getObservers(subject); 
26   if(!observers.contains(observer)) 
27    observers.add(observer); 
28   subject2ObserversMap.put(subject, observers); 
29  } 
30  public void removeObserver(Subject subject, Observer observer) { 
31   getObservers(subject).remove(observer); 
32  } 
33  public void clearObservers(Subject subject) { 
34   getObservers(subject).clear(); 
35  } 
36  private void notifyObservers(Subject subject) { 
37   if(!subject.isOpen() && !subject.alreadyClosed) { 
38    subject.alreadyClosed = true; 
39    List observers = getObservers(subject); 
40    for(ListIterator it = observers.listIterator(); it.hasNext();) { 
41     ((Observer)it.next()).bedtimeSleep(); 
42    } 
43   } 
44  } 
45  pointcut flowerOpen(Subject subject): 
46   execution(void open()) && this(subject); 
47  after(Subject subject) returning : flowerOpen(subject) { 
48   subject.alreadyClosed = false; 
49  } 
50  pointcut flowerClose(Subject subject): 
51   execution(void close()) && this(subject); 
52  after(Subject subject): flowerClose(subject) { 
53   notifyObservers(subject); 
54  } 
55 
56  declare parents: Flower implements Subject; 
57  declare parents: (Bee || Hummingbird) implements Observer; 
58 } 

Listing 19: Code Example after removing the Aspect Laziness smell. 
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Chapter 6. Aspect-Oriented Refactorings 

This Chapter describes the refactorings derived from the case studies presented in chapters 
3 and 4. Some of the refactorings are mentioned in Chapter 5, in the context of code 
smells. Though the main source of insights comprised implementations of design patterns, 
all the refactorings presented here – with one possible exception, the one presented in 
section 6.6 – are generally applicable. The exception, or special case, is a refactoring that 
deals with a situation that can arise in legacy code with published interfaces. The collection 
of refactorings is structured in three groups, plus the special case. 

The refactorings documented in this Chapter do not attempt to cover all possible situations 
that can potentially arise in source code. For instance, they do not cover uses of reflection. 
Likewise, they do not deal with what we call the fragile base code problem [118][89] i.e. the fact 
that almost any refactoring can potentially break existing pointcuts. For instance, Move 
Method from Class to Inter-type (106) can break pointcuts using the within pointcut designator. 
We believe human programmers will be able to deal thoroughly with these issues only 
when provided with a new generation of tools, specifically designed to account for the 
presence of aspects. However, we also believe it is possible to keep these problems under 
control provided the adequate practices are followed, including programming AspectJ’s 
constructs with a prudent and appropriate style (see section 6.2), such as that proposed by 
Laddad [91]. 

This Chapter is structured as follows. Section 6.1 presents the format used to describe the 
refactorings. Section 6.2 presents some guidelines that can be applied in most refactoring 
processes. Section 6.3 describes the group of refactorings that deal with the extraction of 
crosscutting concerns from plain Java code bases to aspects. Section 6.4 describes the 
refactorings that relate to the improvement of the internal structure of aspects, particularly 
aspects extracted through the refactorings from the previous group. Section 6.5 describes 
the refactorings that deal with factoring out common code found in multiple aspects. 

6.1. Format of  the Refactorings 
We aimed to present the refactorings in a format that programmers could recognise, to 
enhance their immediate applicability. For this reason we present them in such a way that 
they become a natural extension of the one used by Fowler et al. (Kerievsky took the same 
approach in [76]). The refactorings were also given names in the same style, and the 
presentation format is likewise similar. This format is demanding to the developer of the 
refactorings, because it requires much detail in both the mechanics and in code examples. 
However, it greatly benefits the programmer, who is thus provided with a clear idea of 
when the refactoring should be applied, and how to apply it. 

The format includes the following items: 

• Name of the refactoring. 

• Brief mention of a typical situation. 

• Brief description of the recommended action. 

• Motivation, sometimes complemented with a Pre-conditions section. 

• Mechanics. 



86 Chapter 6. Aspect-Oriented Refactorings 

 

• Code example(s) (except in the simplest refactorings). 

In some refactorings, we complement the motivation section with a preconditions section 
to clarify the scope of applicability. The mechanics sections emphasize the safe way of 
performing a refactoring, just like the mechanics described by Fowler et al [47]. 
Throughout the descriptions, we cross-reference the refactorings, mentioning the page 
number. Likewise, whenever a refactoring from Fowler’s book [47] is mentioned, we 
mention both the reference and the page number. The purpose of the code examples is to 
illustrate the use of each refactoring in the proper context. They are not meant to be self-
contained and, just as in the examples presented in Fowler’s book, the resulting code at the 
end is not necessarily problem-free. We also follow the example of Fowler et al in 
highlighting the changed code in bold and deleted code crossed like this, in the situations 
where it helps to make the changes easier to spot. 

Following the example of Fowler’s book, the descriptions of the refactorings avoid 
mentioning code smells21. 

6.2. General Guidelines 
Some guidelines are applicable to most refactoring processes, independently of the 
transformation being carried out. Techniques such as the following are essential, 
considering that presently there is no adequate tool support for AO refactorings. 

The first guideline is to ensure the programs are adequately unit tested [182][47] before 
applying manual code transformations. Good test coverage remains as essential to the 
refactoring process as before, if no more so. 

A second guideline is to ensure the base code exposes all the desirable joinpoints. An 
effective way to do this is to ensure the code adheres to the style advocated in Fowler’s 
book [47], namely placing each relevant concept in its own class, and the use of small 
methods with meaningful names. Fewer and bigger classes with long methods make it 
more likely that necessary context will take the form of local method variables rather than 
object fields, thus preventing the necessary context from being available for capture at the 
appropriate moment. Long methods make it more likely that AspectJ will not be able to 
insert the additional behaviour in the desirable place within the method. Besides making 
the system easier to understand, using the appropriate style also enriches the system with 
the potentially desirable joinpoints (e.g. more beginnings and ends of methods, more 
method parameters, more return values, more object fields, etc). 

A third guideline relates to pointcuts, which should be made in a style stressing intent [84] 
(typically expressions using wildcards) rather than a specific case. This way, pointcuts can 
express a general policy and may be robust enough to not being affected by minor 
modifications in the target code, such as the removal or addition of a new class or method. 
Another good practice is to place the aspects close to the code they affect whenever 
possible, to increase the likelihood that all team members are aware of the aspects 
potentially affected by refactorings. This often entails placing the aspect in the same 
package, or even within the same source file as the target class (as inner or peer aspects). 
Though the mechanics sections warn of a few potential problems, we expect programmers 
to rely on their knowledge of the code base to check potential problems. 

                                                 
21 This is cause for some duplication between the description of the smells and the of the motivation texts of 

some refactorings. Our aim is to make the description of each refactoring as self-contained as possible. 
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In [91] Laddad prescribes several guidelines to ensure the refactorings are applied in a safe 
way. These involve the creation of a first version of a pointcut through the case-by-case 
enumeration of each interesting joinpoint, followed by its subsequent refactoring to replace 
it with a semantically more meaningful pointcut [84]. To assist in this refactoring, Laddad 
provides a recipe based on AspectJ’s ‘declare error’ mechanism to verify whether two 
different pointcuts p1 and p2 capture exactly the same set of joinpoints: 
 
declare error:  (!p1() && p2()) || (p1() && !p2()): 

”Mismatch in join points captured”; 

Prior to extracting crosscutting behaviour from large systems, Laddad also proposes the 
use of advice deleting the behaviour about to be extracted (through around advice without 
calls to proceed), providing another opportunity to monitor the effects of the aspect. 

Though the refactorings do not mention specific tools, the mechanics sections assume the 
user of the refactorings is using a modern IDE with support for AspectJ (such as 
eclipse/AJDT), providing services such as structure views, various kinds of searches and 
the existing support for plain Java refactorings. These services, particularly structure views, 
are essential for any refactoring process targeting large and complex systems. These 
services can be complemented by the use of ‘declare warning’ clauses, which the mechanics 
sections prescribe at the appropriate points. From our experience, ‘declare warning’ clauses 
can be very effective in speeding up a manual refactoring process involving multiple 
scattered points, particularly if the IDE supports aspects (e.g. eclipse [179] with AJDT 
[169]) and is capable of opening files and going to the relevant point in the code with a 
simple mouse click on the line stating the warning. Considering that the code related to the 
concerns targeted by AOP is by definition scattered throughout multiple units of 
modularity, all these services play an important role. 

The original OO refactorings can be used in AspectJ code as well. Throughout our work, 
we did not detect any refactoring from [47] targeting a specific construct that could not be 
applied to that construct within aspects. For instance, we prescribe the use of Extract 
Method ([47], p.110) to code within aspects in the mechanics of Extend Marker Interface with 
Signature (113). 

6.3. Refactorings for Feature Extraction 
The refactorings presented in this section deal with moving the various implementation 
elements from their original places into aspects. They comprise the starting point of any 
refactoring process dealing with plain Java code bases. Our experience suggests these will 
be the most frequently used refactorings. This group is headed by Extract Feature into 
Aspect (90), a composite refactoring that covers the general feature extraction algorithm. 
The remaining refactorings from the first group refine its various steps. 

The “open class” mechanism of inter-type declarations makes it particularly easy to move 
elements to aspects. From the point of view of client code, there is no difference between a 
public method declared in its own class or introduced by an aspect. There is no need to 
scan client code in search for potential problems the move may have caused: we know 
from the start it didn’t cause any. The same ease applies, to varying degrees, to other 
elements. 

The extraction of methods and fields to aspects, as well as the extraction of snippets of 
code to advice, are probably among the most “obvious” refactorings. As it would be 
expected, several proposals for such refactorings have been presented [73][58]. We also 
present our own proposals: Move Method from Class to Inter-type (106) to move methods to 
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aspects, Move Field from Class to Inter-type (104) to move fields to aspects, and Extract 
Fragment into Advice (94) to move a code snippet to an advice in the aspect. 

However, our work taught us that the elements of implementation can go beyond just 
methods, fields and sequences of statements. The limitations in OOP sometimes lead 
programmers to use inner classes to cope with code duplicated in multiple classes. OOP 
does not enable programmers to modularise the code as much as they would like, but they 
still can use inner classes to tidy up the internals of each of the classes involved, and attain 
a better separation between the secondary code from the one related to the primary 
concern. With AOP, we can go further, using Extract Inner Class to Standalone (99) to turn 
the inner class into a standalone class, and next using Inline Class within Aspect (102) to place 
it inside the aspect. 

A frequent technique to organise the code and make intentions clear is to use interfaces to 
represent roles played by classes. With AOP, we can completely modularise the secondary 
role to which the interfaces are associated. Sometimes the interfaces continue to be useful 
as marker interfaces within an aspect. Interfaces can be inlined within the aspect using Inline 
Interface within Aspect (103), as well as the connections with their implementing classes, using 
Replace Implements with Declare Parents (108). Sometimes the interface is not an interface at all, 
but an abstract class, which includes some concrete elements. These definitions can be 
separated into an aspect using Split Abstract Class into Aspect and Interface (109), after which 
we can use Change Abstract Class to Interface (88) to turn the resulting pure abstract class into 
an interface. 

Interestingly, two of the refactorings documented in this section relate to plain Java 
constructs, but their motivation arises only in the context of aspects – Change Abstract Class 
to Interface (88) and Extract Inner Class to Standalone (99). 

6.3.1 Change Abstract Class to Interface 

Typical situation 

An abstract class prevents their subclasses from inheriting from another class. 

Recommended action 

Turn the abstract class into an interface and change its relationship with the subclasses 
from inheritance to implementation. 

Motivation 

This refactoring will be typically used when someone is using Split Abstract Class into Aspect 
and Interface (109) in an abstract class. It comprises the final step of turning it into an 
interface; to be performed after all concrete members were moved to an aspect. By then 
the class should be a pure abstract class (i.e. an abstract class without any concrete methods 
and non-static fields). Theoretically, it could be argued that a pure abstract class should 
always be turned in an interface, for this makes it plain that we are not in the presence of 
any concrete elements. This way all implementing classes will be free to extend some other 
class if there is a need to. However, we do not propose such a strong statement and defer 
that issue to future work. 

If the abstract class inherits from another class, this refactoring may change type 
relationships. Depending on the specific relationships, this might break the source code or 
not, and you must check for potential problems. If you see no problems, start applying this 
refactoring to the highest class of the inheritance chain and then proceed downwards. 
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This refactoring will be possible only if all classes in the inheritance chain are owned by the 
programmer. In addition, if there are concrete classes higher up this refactoring cannot be 
applied. At the very least, some restructurings in the inheritance chain must be performed 
first. 

Keep in mind that all signatures declared in the resulting interface must be public, as well as 
all the corresponding methods of implementing classes. 

Mechanics 

• Change the keywords ‘abstract class’ to ‘interface’. 

• If the abstract class implements some interfaces, change the ‘implements’ keyword 
to ‘extends’. 

• You can optionally remove the keyword ‘abstract’ from the method declarations. 

• Update all classes inheriting from the abstract class. For each subclass, change the 
keyword from ‘extends’ to ‘implements’. If the subclass implements other 
interfaces, just remove the ‘extends’ keyword and move the name of the former 
abstract class to the list of implemented interfaces. 

Example 

See also the example for Split Abstract Class into Aspect and Interface (109). 
 
public abstract class Builder { 
 public abstract void processType(String type); 
 public abstract void processAttribute(String type); 
 public abstract void processValue(String type); 
 public abstract String getResult(); 
} 
 
public class StructureBuilder extends Builder { 
 //... 
} 
 
public class TextBuilder extends Builder { 
 //... 
} 
 

 
 
public interface Builder { 
 public abstract void processType(String type); 
 public abstract void processAttribute(String type); 
 public abstract void processValue(String type); 
 public abstract String getResult(); 
} 
 
public class StructureBuilder implements Builder { 
 //... 
} 
 
public class TextBuilder implements Builder { 
 //... 
} 
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6.3.2 Extract Feature into Aspect 

Typical situation 

Code related to a feature is scattered across several methods and classes, tangled with 
unrelated code. 

Recommended action 

Extract all the implementation elements related to the feature to an aspect. 

Motivation 

The most usual elements of implementation are methods and fields, which are the ones we 
usually move across modules when performing refactorings. However, some programming 
languages provide support for other kinds of members: for instance, Java allows for inner 
classes and interfaces. The catalogue proposed in [47] does not account for these 
constructs, probably because it wouldn’t make much sense, due to its nature. Inner classes 
and interfaces comprise implementation elements that are tightly coupled to the rest of the 
implementation: for instance, inner classes can access the private members of their 
enclosing classes. They are not meant to be part of the interface of modules, and instead 
are used to provide a better internal structure of a class. Consequently, those elements 
often make sense only within their current enclosing classes. 

The motivation for using inner classes and interfaces is often a direct consequence of the 
limitations in Java’s composition capabilities. Often, they are used as an attempt to 
compensate for the crosscutting effect caused by an additional concern. Inner classes help 
to better separate some parts of a class from “other parts”, which programmers would 
ideally place in separate modules22, if these could be created. However, when we have 
AOP’s superior composition capabilities we have the option of doing exactly that. 
Likewise, interfaces are used to compensate for the scattering and duplication effects 
caused by secondary concerns23 whose code must be duplicated in every affected module, 
causing tangling in those modules. 

With AspectJ, we can design structures that would not be possible with plain Java, and 
therefore it makes sense to extract, move and inline certain kinds of members that 
otherwise would not be considered, including inner classes and interfaces. After 
modularisation such members may no longer be needed, in which case they will be 
removed or transformed when dealing with the internals of the new modules (probably 
using transformations prescribed by Tidy Up Internal Aspect Structure (128). That should be 
done only after extracting all the related elements, when we can take advantage of the new 
modularity. This issue falls outside the scope of this refactoring but it is important to 
include a brief mention here, to stress that not everything is done as soon as we move a 
crosscutting concern to an aspect. 

Mechanics 

• Create an empty aspect in the appropriate package. 

• If you find inner classes related to the extracted concern use Extract Inner Class to 
Standalone (99) to each of them. You can later use Inline Class within Aspect (102). 

                                                 
22 Eckel’s flower example for the Observer pattern ([48], p.293)[1], used in the validating example from 

Chapter 7, is a good example of this: its extensive use of inner classes is meant to compensate for the lack 
of mixin inheritance [22]. 

23 Independent authors reached this same conclusion [153] regarding the use of interfaces. 
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• Move the concern's various fields to the aspect with Move Field from Class to Inter-
type (104). Since fields are usually private, you may have to temporarily declare the 
aspect as privileged in order to keep the code compilable and testable. 

• Move initialisation code placed within the constructors using Extract Fragment into 
Advice (94). If some of that code uses some of the constructor’s parameters, first 
restructure that part of the code. Consider using Extract Method ([47], p.110) to 
replace the parameter in the constructor and related code with a separate method. 
In cases in which the constructor is part of a published interface that cannot be 
changed, consider using Partition Constructor Signature (137). 

• Move the concern’s various methods to the aspect with Move Method from Class to 
Inter-type (106). 

• When only part of the method relates to the concern there are two options: (1) use 
Extract Method ([47], p.110) and then Move Method from Class to Inter-type (106), or 
(2) use Extract Fragment into Advice (94). When the fragment uses an argument from 
the enclosing method, it may be simpler to use the latter. 

• Apply Inline Class within Aspect (102) to any former inner classes that are used only 
within the aspect. Likewise, apply Inline Interface within Aspect (103) to any interfaces 
that are no longer used outside the aspect. 

• Change to private the access modes of all aspect members that are now used only 
within the aspect. 

• Remove the qualifier privileged from the aspect as soon as it no longer accesses 
non-public members in the primary code. 

After extracting all the elements from the primary code, consider using Tidy up Internal 
Aspect Structure (128) to improve the internal structure of the resulting aspect. 

Example: Extracting Two Concerns from a Tangled Stack 

Here we provide a small complete example (initially presented in [118]) that illustrates some 
of the issues of extracting features from an existing class and helps to show how some 
refactorings fit in the larger picture. No client program is presented here, but care was 
taken to ensure that the refactorings are transparent to client code. 

The initial example, shown in Listing 20, comprises a FIFO structure plus two crosscutting 
concerns: (1) support to a simple window view of stack’s state and (2) precondition 
checking. This is a case where the responsibility for checking preconditions lies in the 
client, and that is why the exception used here is unchecked. We do not present the 
definition of the runtime exception, as it is quite trivial. 

We start by extracting the window view concern from the base code, by applying Extract 
Feature into Aspect. We first create an empty aspect WindowView and then move all members 
related to this concern. These include two fields, _label and _text, so we start with these, by 
applying Move Field from Class to Inter-type (104) to each in turn. 

Both field transfers require similar sequences of steps: (1) copy the declaration of the field 
to the aspect, (2) add ‘TangledStack.’ before the field’s name, (3) delete (or comment out) 
the field’s original declaration, (4) when moving the first field include the declaration 
‘import javax.swing.*;’ in the import section of the aspect, and (5) change the field’s access 
to public. Compile and test after moving each field. 

The initialisation code for both fields should be transferred next. The constructor receives 
an argument (the JFrame object) related to the extracted concern, so Partition Constructor 



92 Chapter 6. Aspect-Oriented Refactorings 

 

Signature (137) is used. This results in two versions of the constructor. One version is 
argument less and is placed in the host class, dealing only with the primary concern. The 
other version, receiving the JFrame object that relates to the extracted concern, is placed in 
the aspect, and therefore made (un)pluggable. As this constructor should not include any 
code unrelated to its concern, it includes a call to super rather than duplicate the other 
initialisation code. 
 
import javax.swing.*; 
 
public class TangledStack { 
 private int _top = -1; 
 private Object[] _elements; 
 private final int S_SIZE = 10; 
 private JLabel _label = new JLabel("Stack "); 
 private JTextField _text = new JTextField(20); 
 
 public TangledStack(JFrame frame) { 
  _elements = new Object[S_SIZE]; 
  frame.getContentPane().add(_label); 
  _text.setText("[]"); 
  frame.getContentPane().add(_text); 
 } 
 public String toString() { 
  StringBuffer result = new StringBuffer("["); 
  for(int i=0;i<=_top;i++) { 
   result.append(_elements[i].toString()); 
   if(i!=_top) 
    result.append(", "); 
  } 
  result.append("]"); 
  return result.toString(); 
 } 
 private void display() { 
  _text.setText(toString()); 
 } 
 public void push(Object element) { 
  if(isFull()) 
   throw new PreConditionException("push when stack full."); 
  _elements[++_top] = element; 
  display(); 
 } 
 public void pop() { 
  if(isEmpty()) 
   throw new PreConditionException("pop when stack empty."); 
  _top--; 
  display(); 
 } 
 public Object top() { 
  if(isEmpty()) 
   throw new PreConditionException("top when stack empty."); 
  return _elements[_top]; 
 } 
 public boolean isFull() { 
  return (_top == S_SIZE-1); 
 } 
 public boolean isEmpty() { 
  return (_top<0); 
 } 
} 

Listing 20: Initial illustrating example for Extract Feature into Aspect. 

We use Move Method from Class to Inter-type (106) to move the method display, and we use 
Extract Fragment into Advice (94) to move the calls to display in the push and pop methods to 
a piece of advice. The declaration ‘import javax.swing.*;’ can be removed from the host 



6.3. Refactorings for Feature Extraction 93 

 

class at this point. Finally, we can change to private the access qualifiers of the two moved 
fields and method. 

Extraction of the precondition checking concern is similarly performed according to 
Extract Feature into Aspect, though this case is simpler, comprising three executions of 
Extract Fragment into Advice (94) for the tests in push, pop and top, respectively. After both 
aspects are created as described, the host class is as shown in Listing 21 and the two aspects 
should look as shown in Listing 22 and Listing 23. 
 
public class TangledStack { 
 private int _top = -1; 
 private Object[] _elements; 
 private final int S_SIZE = 3; 
 public TangledStack() { 
  _elements = new Object[S_SIZE]; 
 } 
 public String toString() { 
  StringBuffer result = new StringBuffer("["); 
  for(int i=0;i<=_top;i++) { 
   result.append(_elements[i].toString()); 
   if(i!=_top) 
    result.append(", "); 
  } 
  result.append("]"); 
  return result.toString(); 
 } 
 public void push(Object element) { 
  _elements[++_top] = element; 
 } 
 public void pop() { 
  _top--; 
 } 
 public Object top() { 
  return _elements[_top]; 
 } 
 public boolean isFull() { 
  return (_top == S_SIZE-1); 
 } 
 public boolean isEmpty() { 
  return (_top<0); 
 } 
} 

Listing 21: Clean code after using Extract Feature into Aspect. 
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import javax.swing.*; 
 
public aspect WindowView { 
 private JLabel TangledStack._label = 
  new JLabel("Stack "); 
 private JTextField TangledStack._text = new JTextField(20); 
 public TangledStack.new(JFrame frame) { 
  this(); 
  frame.getContentPane().add(_label); 
  _text.setText("[]"); 
  frame.getContentPane().add(_text); 
 } 
 private void TangledStack.display() { 
  _text.setText(toString()); 
 } 
 pointcut stateChange(TangledStack stack): 
  (execution(public void stack.TangledStack.push(Object)) 
   || 
   execution(public void stack.TangledStack.pop())) 
  && this(stack); 
 after(TangledStack _this) returning : 
  stateChange(_this) { 
  _this.display(); 
 } 
} 

Listing 22: Window view concern after extration into an aspect. 

 
public aspect PreConditionChecking { 
 pointcut checkPush(TangledStack stack): 
  execution(public void 
   TangledStack.push(Object)) 
  && this(stack); 
 before(TangledStack _this): checkPush(_this) { 
  if(_this.isFull()) 
   throw new PreConditionException("push when stack full"); 
 } 
 pointcut checkPop(TangledStack stack): 
  execution(public void TangledStack.pop()) 
  && this(stack); 
 before(TangledStack _this): checkPop(_this) { 
  if(_this.isEmpty()) 
   throw new PreConditionException("pop when stack empty"); 
 } 
 pointcut checkTop(TangledStack stack): 
  execution(public Object TangledStack.top()) 
  && this(stack); 
 before(TangledStack _this): checkTop(_this) { 
  if(_this.isEmpty()) 
   throw new PreConditionException("top when stack empty"); 
 } 
} 

Listing 23: Precondition checking concern after extraction to an aspect. 

6.3.3 Extract Fragment into Advice 

Typical situation 

Part of a method is related to a concern whose code is being moved to an aspect. 

Recommended action 

Create a pointcut capturing the required joinpoint and context and move the code 
fragment to an appropriate advice based on the pointcut. 
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Motivation 

This refactoring should be used when we want to move to an aspect a piece of 
functionality that does not comprise a complete method. Sometimes it is a simple method 
call. In some cases it is convenient to turn the part that should be moved into its own 
method, using Extract Method ([47], p.110]), and next use Move Method from Class to Inter-
type (106) on it. However, even in such occasions there will be need to create an advice that 
calls the method. 

Before copying the code fragment, a careful analysis of the method’s (or, sometimes, the 
constructor’s) body should be made, in order to find a suitable pointcut to capture the 
exact set of intended joinpoints. If the primary code does not offer a suitable joinpoint, one 
or more refactorings must be performed until the code is ripe for this refactoring. 

Sometimes the advice will need to capture local variables (either primitives or object 
references). These are a problem, because AspectJ cannot capture the values of local 
variables. Note that these situations may be a sign that the method is more complicated 
than it should be. Consider whether it would make sense to split it in various parts, using 
Extract Method ([47], p.110]) for each part in turn. Such a split may provide the joinpoints 
you need. For instance, the arguments or return value of one of extracted methods may 
expose the context that was previously available only in a local variable. 

In the more awkward cases when even the above options are of no avail, use Replace Method 
with Method Object ([47], p.135). This is the refactoring recommended by Fowler et al. to ease 
the way for Extract Method ([47], p.110), but it may be even more appropriate to the present 
case, for it is almost certain to provide you with the missing leverage for capture of context. 
This solution is preferable to crudely turning the local variable into a field: this way, the 
lifetime of the fields of the method object is restricted to the execution of the method, 
rather than to the lifetime of the original object. However, keep in mind that it may not be 
possible to keep the fields of the method object private: consider using Encapsulate Field 
([47], p.206). In addition, Replace Method with Method Object ([47], p.135) cannot be used in 
constructors and recursive methods. 

If the fragment to be extracted uses an internal type, consider first using Extract Inner Class 
to Standalone (99) on that type before applying this refactoring. 

Mechanics 

• Create a named pointcut that captures the intended set of joinpoints. If the 
intended pointcut already exists (from previous uses of Extract Fragment into Advice), 
change it to include the joinpoint needed for the new fragment. 

• Make sure that the pointcut captures the context required by the code fragment. In 
particular, check if the extracted fragment mentions ‘this’ or ‘super’, or includes 
self-calls. In such cases, a reference to the executing object must be captured. 
Choose a suitable name for the variable holding the captured object. In some cases, 
the choice may be straightforward. In others, use a general yet meaningful name 
such as ‘_this’ or ‘self’. 
Example (from the illustrating example used for Extract Feature into Aspect(90)): 
pointcut stateChange(TangledStack stack): 
 execution(public void TangledStack.push(Object)) 
 && this(stack); 
after(TangledStack _this) returning : stateChange(_this) { 
 _this.display(); 
} 
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• Check whether all types used in the pointcut are known to the aspect. In some 
cases new import declarations may need to be added (this applies even when the 
type is mentioned only in pointcuts). 

• Create the suitable advice for the pointcut, with an empty body (in case it is not 
already under construction). 

• Move the code to extract from the source method into the advice's body. 

• Replace references to the self-variable ‘this’ by the corresponding variable obtained 
from the context capture. 

• Scan the extracted code for references to any variables that are local in scope to the 
source method, including parameters and local variables. Declarations of any 
temporary variables used only within the extracted code can be placed inside the 
advice's body. In some cases, you may need to make some adjustments to set up 
the advice’s context. 

When the advice is meant to replace a large number of scattered fragments you should 
choose the simpler of the two options: (1) to deal with the whole set at a single go, or (2) to 
deal with one fragment at a time. Sometimes the pointcut is complicated to specify when 
covering only a subset of the intended joinpoints. If that is the case, you may consider 
writing the full, intended pointcut right at the start. The drawback then is that you'll have to 
factor all the scattered fragments to the common advice at a single go before you can 
compile and test again. You should avoid this whenever the scattered fragments are not 
identical or very similar (e.g. calls to the same method). In some cases, it may be 
worthwhile to refactor the various fragments so that they become more alike (e.g. giving 
the same names to locals and parameters) and therefore easier to reason with. Ideally, the 
fragments could be turned into calls to a common method, using Extract Method ([47], 
p.110). 

Example: Simple Extraction of a Method Call 

 
public class TangledStack { 
 //... 
 public void push(Object element) { 
  _elements[++_top] = element; 
  display(); 
 } 

 
public class TangledStack { 
 //... 
 public void push(Object element) { 
  _elements[++_top] = element; 
  display(); 
 } 
pointcut stateChange(TangledStack stack): 
 execution(public void TangledStack.push(Object)) 
 && this(stack); 
 
after(TangledStack _this) returning : 
 stateChange(_this) { 
 _this.display(); 
} 
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Example: Complex example requiring prior refactoring to make the code aspect-
friendly 

The following case arose during the refactoring experiment described in Chapter 3 [118], 
which involved the complete extraction of a concern in order to make it pluggable. At a 
given time, we wanted to use Extract Fragment into Advice on a method called 
RepeatUntilProcedure.compile, but the extracted code needed various local values from the 
previous part of the method for its computation. The values were stored neither as fields of 
some object nor as the return value (the method was overlong). The structure of the code 
was as sketched below: 
 
public class RepeatUntilProcedure ... { 
 //... 
 public Graph compile() { 
  // 17 LoCs 
  if (...) 
   // one LoC 
  else { 
   //13 LoCs related to the primary concern 
   //66 LoCs related to the data link concern 
  } 
  //a few more LoCs related to the data link concern 
 } 
 return result; 
} 
 
public aspect DataLinksAspect { 
 //... 
} 

Using Extract Method ([47], 110) on the chunk of interest, we make it easier to reason with. 
 
public class RepeatUntilProcedure ... { 
 //... 
 private boolean compileDataLinks(<various arguments>) { 
  // 66 LoCs 
  return result; 
 } 
 public Graph compile() { 
  // 17 LoCs 
  if (...) { 
   //1 LoC to prepare for the call to compileDataLinks() 
   ... = compileDataLinks(...); 
   //A few more LoCs 
  } 
  return result; 
 } 

Next, we used Move Method from Class to Inter-type (106) to the compileDataLinks method: 
 
public class RepeatUntilProcedure ... { 
 //... 
 public Graph compile() { 
  // 17 LoCs 
  if (...) { 
   //1 LoC to prepare for the call to compileDataLinks() 
   ... = compileDataLinks(...); 
   //A few more LoCs 
  } 
  return result; 
 } 
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public aspect DataLinksAspect { 
 //... 
 //private 
 public 
 boolean RepeatUntilProcedure.compileDataLinks(...) { 
  // 66 LoCs 
  return result; 
 } 
} 

We then applied Replace Method with Method Object ([47], p.135) to compileDataLinks. The 
class of the method object was implemented with the Compile inner class within 
RepeatUntilProcedure: 
 
public class RepeatUntilProcedure ... { 
 //... 
 public class Compile { 
  private final RepeatUntilProcedure _enclosing; 
  //several fields stemming from the local variables of compileDataLinks()
  public Compile(RepeatUntilProcedure repeatUntilProc) { 
   _enclosing = repeatUntilProc; 
  } 
  public Graph compute() { 
   //The same 17 LoCs of compile(), with the following differences: 
   // º the code uses the fields instead of the former locals 
   // º some references to this were replaced by _enclosing 
   if (...) { 
    //1 LoC to prepare for the call to compileDataLinks() 
    ... = compileDataLinks(...); 
    //A few more LoCs related to the data link concern 
   } 
   return _result; 
  } 
 } 
 //... 

We were finally ready to apply Extract Fragment into Advice, leading to the following layout: 
 
public class RepeatUntilProcedure ... { 
 //... 
 public class Compile { 
  //... 
  public Graph compute() { 
   //17 LoCs 
   if (...) { 
    //1 LoC to prepare for the call to compileDataLinks() 
    ... = compileDataLinks(...); 
    //A few more LoCs related to the data link concern 
   } 
   return _result; 
  } 
 } 
 //... 
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public aspect DataLinksAspect { 
 //... 
 private boolean compileDataLinks(<various arguments>) { 
  // 66 LoCs 
  return result; 
 } 
 pointcut repeatUntilProcComputeCompile( 
   RepeatUntilProcedure _this, 
   RepeatUntilProcedure.Compile compile): 
  call(public Graph RepeatUntilProcedure.Compile.compute()) 
  && target(compile) 
  && this(_this); 
 
 /** Add processing of data-links at the end of the RepeatUntilProcedure 
compile. */ 
 after(RepeatUntilProcedure _this, RepeatUntilProcedure.Compile compile) 
   returning: repeatUntilProcComputeCompile(_this, compile) { 
  if (...) { 
   //1 LoC to prepare for the call to compileDataLinks() 
   ... = _this.compileDataLinks(compile, hasFeedBack); 
   //A few more LoCs related to the data link concern 
  } 
 } 
} 

The refactoring is complete. Notice that the compileDataLinks method could be made 
private again, this time to the aspect. In circumstances such as these, the code inside the 
aspect is likely to need some tidying up. 

6.3.4 Extract Inner Class to Standalone 

Typical situation 

An inner class relates to a concern being extracted into an aspect. 

Recommended action 

Eliminate dependencies from the enclosing class and turn the inner class into a standalone 
class. 

Motivation 

Even if Java programmers are unable to decouple a class from certain accessory 
functionalities, they can at least place those functionalities in a well-localised way, separate 
from the rest of the class’s code. Inner classes can be used to structure the internals of a 
class and localise functionalities not related to the primary functionality of the class, thereby 
separating it from the rest of the class’s implementation. This is facilitated by the capability 
of inner classes to refer to members of the enclosing object, including the private ones. To 
a limited extent, inner classes can be used as if they were subclasses of its enclosing class, 
with the advantage that they can still inherit from another, unrelated, class. 

However, when we have AOP’s superior composition capabilities this may no longer be 
the best available option. The kinds of secondary functionality found within inner classes 
are best modularised within aspects, and that in turn provides the motivation for extracting 
them, something that would probably not make sense with plain Java. 

Turning inner classes into standalone classes is a preparatory step for Inline Class within 
Aspect (102). Note that the limitation of Java’s composition capabilities makes it likely that 
the functionality placed in the extracted classes is duplicated in multiple classes. In such 
cases, applying this refactoring will expose that duplication, particularly when several inner 
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classes have the same name. Moving scattered elements within an aspect is very effective to 
expose various kinds of duplication, including of this kind. 

Mechanics 

• Look for any code within the inner class relating to behaviour that should be kept 
within the enclosing class. Use Extract Method ([47], p.110) on those parts. 

• Create in the inner class a private field of the type of the enclosing class. 
In some cases, the definition of the inner class is repeated within several enclosing 
classes, which may not be related by a common type relationship. In such cases first 
create an interface exposing the common interface used within the inner class and 
make the enclosing classes implement that interface. Make the inner class’s private 
field of that interface type. This way, a common inner class can be extracted from 
all the enclosing classes. If you intend to inline the inner classes within an aspect, 
the interface should be inlined as well – using Inline Interface within Aspect (103) – but 
only after you inline all the implementing classes. 

• Create a public constructor for the inner class and include a parameter for the 
enclosing object providing the initial value of the new field. Update any code 
related with the creation of instances of the inner class in the enclosing class. If the 
inner class is not private, also check possible uses outside the enclosing class. 

• Compile and test. 

• Look for all direct references to fields belonging to the enclosing object. Use Self 
Encapsulate Field ([47], p.171) on all such fields. 

• Look for any calls to private methods made within the inner class. Relax the access 
rules of those methods. 
If you are reluctant to expose those members, you still have the option of doing it 
only on a temporary basis. As soon as the class is inlined within an aspect, reclassify 
them as private. However, in this case the aspect will have to be privileged. 
You can make sure that no members are forgotten by placing 'this.' before each 
field reference and method call (Java does not allow the use of 'this' within inner 
classes to refer to members of the enclosing class). This is easy to do for inner 
classes, since they are typically small (otherwise that could be a case for applying 
Extract Class [47], p.149). 

• Compile and test. 

• Create a standalone class with the same name as the inner class. Copy the source 
text of the inner class to the standalone class and add ‘public’ before the class’s 
name. Check for imports that should go along with the class. Check for imports 
that the host class no longer needs, and delete them. 

• Compile and test. 

• Delete the inner class. Compile and test again. 

Example 

The following example uses a simplified version of the Flower class from Eckel’s flower 
example for the Observer pattern ([48], p. 293), also used in Chapter 7. The purpose is to 
turn the inner class OpenNotifier into a standalone class. 
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public class Flower { 
 private boolean _isOpen; 
 private OpenNotifier _oNotify = new OpenNotifier(); 
 
 public Flower() { 
  _isOpen = false; 
 } 
 public void open() { // Opens its petals 
  System.out.println("Flower open."); 
  _isOpen = true; 
  _oNotify.notifyObservers(); 
 } 
 public Observable opening() { 
  return _oNotify; 
 } 
 private class OpenNotifier extends Observable { 
  private boolean _alreadyOpen = false; 
  public void notifyObservers() { 
   if(_isOpen && !_alreadyOpen) { 
    setChanged(); 
    super.notifyObservers(); 
    _alreadyOpen = true; 
   } 
  } 
  public void close() { 
   _alreadyOpen = false; 
  } 
 } 

First, create the field _enclosing and a constructor receiving an argument to initialise that 
field. The creation of an OpenNotifier object needs to be updated (the compiler can be 
very useful in this kind of situations): 
 
public class OpenNotifier extends Observable { 
 private Flower _enclosing; 
 private boolean _alreadyOpen = false; 
 public OpenNotifier(Flower enclosing) { 
  this._enclosing = enclosing; 
 } 
 public void notifyObservers() { //... 
 
public class Flower { 
 private boolean _isOpen; 
 private OpenNotifier _oNotify = new OpenNotifier(this); 

Next, replace direct references to fields from the enclosing class. There is one in this 
example, _isOpen: 
 
 boolean isOpen() { 
  return this._isOpen; 
 } 
 
private class OpenNotifier extends Observable { 
 private Flower _enclosing; 
 private boolean _alreadyOpen = false; 
 public OpenNotifier(Flower enclosing) { 
  _enclosing = enclosing; 
 } 
 public void notifyObservers() { 
  if(_enclosing.isOpen() && !_alreadyOpen) { 

Next, ensure that all references to member within the inner class have either ‘this.’, ‘super.’ 
or ‘_enclosing.’ (you could also use ‘this._enclosing.’, of course): 
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private class OpenNotifier extends Observable { 
 private Flower _enclosing; 
 private boolean _alreadyOpen = false; 
 public OpenNotifier(Flower enclosing) { 
  this._enclosing = enclosing; 
 } 
 public void notifyObservers() { 
  if(this._enclosing.isOpen() && !this._alreadyOpen) { 
   this.setChanged(); 
   super.notifyObservers(); 
   this._alreadyOpen = true; 
  } 
 } 
 public void close() { 
  this._alreadyOpen = false; 
 } 
} 

Finally, create a standalone class with the same name, copy the contents and delete the 
inner class. 
 
import java.util.Observable; 
 
public class OpenNotifier extends Observable { 
 //... 

6.3.5 Inline Class within Aspect 

Typical situation 

A small standalone class is used only by code within an aspect. 

Recommended action 

Move the class to within the aspect. 

Motivation 

This situation can occur when one or several small helper classes relate to a concern that is 
being modularised into an aspect. It also occurs during the process of moving an inner 
class from class to an aspect, after applying Extract Inner Class to Standalone (99). 

Inner classes are typically small and this refactoring is recommended only for small classes. 
As a rule of thumb, a class with more than a screenful of lines of code clearly does not 
qualify as “small”. In such cases, consider leaving it as standalone or further refactoring it. 

Mechanics 

• Create a copy of the class’ source code, inside the aspect. Replace public with static 
just before the class’ name. 

• Add in the aspect’s import section any imports that may be needed by the class. 

• Compile and test. 

• Delete the standalone class. Compile and test. 

Example 

We take the example of the class OpenNotifier, from Eckel's flower example for the 
Observer pattern ([48], p. 293), also used in Chapter 7. We start at the point after 
OpenNotifier was made a standalone class. 
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import java.util.Observable; 
 
public class OpenNotifier extends Observable { 
 private Flower _enclosing; 
 private boolean _alreadyOpen = false; 
 public OpenNotifier(Flower enclosing) { 
  this._enclosing = enclosing; 
 } 
 public void notifyObservers() { 
  if(this._enclosing.isOpen() && !_alreadyOpen) { 
   this.setChanged(); 
   super.notifyObservers(); 
   this._alreadyOpen = true; 
  } 
 } 
 public void close() { 
  this._alreadyOpen = false; 
 } 
} 

The class can be copied almost “as is” to within the body of the aspect, only the first 
keyword being changed: 
 
static class OpenNotifier extends Observable { 
 private Flower _enclosing; 
 private boolean _alreadyOpen = false; 
 public OpenNotifier(Flower enclosing) { 
  this._enclosing = enclosing; 
 } 
 public void notifyObservers() { 
  if(this._enclosing.isOpen() && !_alreadyOpen) { 
   this.setChanged(); 
   super.notifyObservers(); 
   this._alreadyOpen = true; 
  } 
 } 
 public void close() { 
  this._alreadyOpen = false; 
 } 
} 

In this case, the code using OpenNotifier needs to import java.util.Observable. If the 
aspect does not include that import already, it must be added as well. After compiling and 
testing, this refactoring is complete. 

6.3.6 Inline Interface within Aspect 

Typical situation 

One or several interfaces are used only by an aspect. 

Recommended action 

Move the interfaces to inside the aspect. 

Motivation 

This situation usually arises when a feature is being extracted from the existing code base. 
Often, the feature assigns various roles to various participants using an interface to model 
each role. As related code is being moved to an aspect, at some point only the aspect 
knows about the interfaces. When that happens, there is no compelling reason for keeping 
them standalone. 
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Sometimes the system relies on a set of interdependent interfaces with each interface 
declaring methods that refer to other interfaces in their parameter lists. Ideally, we would 
inline one interface at a time, leaving the code in a compilable state and passing all the tests 
before inlining the next interface. However, this may not be possible, due to 
interdependencies. In such cases it is easier to move the whole set of interfaces at one go. 

Mechanics 

• Create within the aspect a private copy of the standalone interface. 

• Delete the standalone interface24. 

• Compile and test. 

Example 

In the following example, a Mediator25 aspect is being created to encapsulate the interaction 
between various Button objects. Interfaces GUIColleague and GUIMediator are used only 
within the Mediator aspect. Moving only one of the interfaces leads to compiler errors, so 
they are moved at one go. 
 
public interface GUIMediator { 
 public void colleagueChanged(GUIColleague colleague); 
} 
 
public interface GUIColleague { 
 public void setMediator(GUIMediator mediator); 
} 
 
public aspect Mediator { 
 declare parents: Button implements GUIColleague; 
 declare parents: Label implements GUIMediator; 
 //... 

 
public aspect Mediator { 
 private interface GUIMediator { 
  public void colleagueChanged(GUIColleague colleague); 
 } 
 private interface GUIColleague { 
  public void setMediator(GUIMediator mediator); 
 } 

6.3.7 Move Field from Class to Inter-type 

Typical situation 

A field relates to a concern other than the primary concern of its enclosing class. 

Recommended action 

Move the field from the class to the aspect as an inter-type declaration. 

Motivation 

If the field is of an internal type, use Extract Inner Class to Standalone (99) on that type before 
applying this refactoring. The mechanics of this refactoring include some follow-up steps 
to deal with code that uses the moved field. 

                                                 
24 To play safe, make sure that binary *.class files are not left in the directory associated with the package. 
25 The code used in this example was taken from the Mediator example of [60]. 
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Mechanics 

• Copy the declaration of the field from the class to the aspect, including the 
assignment of an initial value, if one exists. Add the host class’s name and ‘.’ before 
the name of the field in the inter-type declaration. 

• Check whether a new import statement should be written in the aspect’s import 
section, to bring the field’s type into its scope. If the aspect is placed in a separate 
package, also check for the declaration of the host class. 

• If the field’s access is private, relax it. If the aspect is placed within the same 
package as the host class, it can be package-protected, otherwise it must be public. 
You will be able change it back to private as soon as all code using the field is 
placed in the aspect. 

• Delete the field’s declaration in the host class. Check for any import statements that 
are no longer necessary in the original host class. 

• Check for pointcuts using the within pointcut designator that refer to the moved 
field. 

• Compile and test. 

• Create a ‘declare warning’ to signal all occurrences of the moved member in the 
code, as shown in the following example: 
public aspect ThisAspect { 
 //... 
 declare warning: 
  (get(JTextField TargetClass._text) || 
   set(JTextField TargetClass._text)) 
  && !within(ThisAspect): 
  "Field _text is accessed outside aspect."; 
 //... 
} 

• For each fragment of code using the field, decide whether the whole method, or 
just a fragment, should be moved to the aspect: (a) if the whole method must be 
moved, use Move Method from Class to Inter-type (106). (b) If just a fragment should be 
moved, use Extract Fragment into Advice (94). (c) If a parameter of a method or 
constructor relates to the moved field use Extract Method ([47], p.110) to isolate the 
part that uses the parameter, move it to the aspect with Move Method from Class to 
Inter-type (106), move the call to a more suitable point, and then use Remove Parameter 
([47], p.277). Use Replace Inter-type Method with Aspect Method (125) to deal with inter-
type methods that use the inter-type fields. Compile and test after each refactoring. 

• As soon as the last access to the field outside the intended scope is removed, 
restrict again the field’s access. This is usually means private, but if for some reason 
you need to keep in the class some code related to the field, consider using 
Encapsulate Field ([47], p.206). If the field was originally protected and subclasses of 
the target class need to access it, use a variant of Introduce Aspect Protection (116). 
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Example 

 
//... 
import javax.swing.*; 
 
public class TangledStack { 
 private int _top = -1; 
 private Object[] elements; 
 private final int S_SIZE = 10; 
 private JLabel _label = new JLabel("Stack "); 
 private JTextField _text = new JTextField(20); 
 //... 
} 

 
public class TangledStack { 
 private int _top = -1; 
 private Object[] elements; 
 private final int S_SIZE = 10; 
 private JLabel _label = new JLabel("Stack "); 
 private JTextField _text = new JTextField(20); 
 //... 
} 
 
import javax.swing.*; 
 
public aspect WindowView { 
 public JLabel TangledStack._label = new JLabel("Stack"); 
 public JTextField TangledStack._text = new JTextField(20); 
 //... 
} 

When all the code relative to the fields is placed in the aspect, change their access qualifiers 
back to private, compile, and test again: 
 
import javax.swing.*; 
 
public aspect WindowView { 
 private JLabel TangledStack._label = new JLabel("Stack"); 
 private JTextField TangledStack._text = new JTextField(20); 
 //... 
} 

6.3.8 Move Method from Class to Inter-type 

Typical situation 

A method belongs to a concern other than the primary concern of its owner class. 

Recommended action 

Move the method into the aspect encapsulating the secondary concern, as an inter-type 
declaration. 

Motivation 

If the method contains some logic that should remain in the class, first apply Extract Method 
([47], p.110). 

If the method uses an internal type for its return value or any of its arguments, use Extract 
Inner Class to Standalone (99) on that type before applying this refactoring. 

The most straightforward case of moving a method to an aspect is when the method is 
public, there is only one implementation of its signature throughout the inheritance chain, 



6.3. Refactorings for Feature Extraction 107 

 

and it uses only (1) its parameters, (2) public members, (3) local variables, (4) members 
already moved from the class to the aspect which are (perhaps temporarily) qualified as 
public. If these conditions are not all met, some of the following cases should be 
considered. 

a) Check if the method uses any non-public member that may not be visible in the aspect. 
Consider whether these should also belong to the aspect's concern. If you think they 
belong to the aspect, consider whether they would be best moved together or one at a time. 
In some cases, several members may be tightly coupled and would be easier to move 
together (or it would be a case for using Extract Class [47], p.149). In case you want to 
move them one at a time, start with the fields, applying Move Field from Class to Inter-
type (104), next move initialisation code in the constructors26 with Extract Fragment into 
Advice (94), and then move the methods with this refactoring. 

b) If the method uses non-public members that you think should remain in the class, check 
if there are public accessor methods you can use, or if it is worth to create them now (even 
if just temporarily), or if you can relax the accesses. See also if it is a case of moving the 
aspect to the same package. If you are reluctant to use any of these options, you’ll have to 
declare the aspect as privileged. 

c) A situation where a method needs to access non-public members in both the host class 
and the aspect may be an indication that the method is addressing more than one concern. 
If it is the case, the best solution is probably to leave the method in the class, keeping the 
code relative to the main functionality, and moving the part related to the target concern, 
using Extract Fragment into Advice (94). 

d) If the moved method is non-public, check if the methods that call the moved method 
also belong to the same concern, the same way as in a). Naturally, this is feasible only when 
just a few methods and fields are involved. 

e) Search for any implementations of the same signature in sub- and super-classes. In case 
you find some, these alternative implementations should belong to the aspect as well, in 
order to make the related functionality pluggable. 

f) A full inheritance hierarchy in the primary code may be a sign that the concern already 
aligns well with the dominant decomposition. Check if that is the case, and whether the 
hierarchy should be left in the primary code. If yes, extract only the relevant subset of the 
code from each of the points of the hierarchy, using Extract Fragment into Advice (94). 

Mechanics 

• Copy the method’s definition to the aspect. Add the class name and ‘.’ before the 
name of the method. 

• If the access is non-public, it may need to be (temporarily) relaxed. If the aspect is 
placed within the same package as the host class, package-protected is enough. 
Otherwise, you must make it public. 

• Check whether new import statements should be included in the aspect’s import 
section. Check if some existing import statement is no longer necessary in the host 
class, and delete them. 

• Check for pointcuts referring to the moved method using the within pointcut 
designator. 

                                                 
26 The refactoring Partition Constructor Signature was designed for a special case that can arise here, if the 

constructor is part of a published interface that the developers are unable or unwilling to modify. 
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• Delete the method’s definition in the class. 

• Compile and test. 

• The following steps apply if you want to make the method private to the aspect. 
Add a ‘declare warning’ to signal all calls to the method, as shown in the following 
example: 
public aspect ThisAspect { 
 //... 
 declare warning: 
  (call(<type> <host class>.someMethod(<arguments>)) 
  && !within(ThisAspect): 
  "method <host class>.someMethod() called outside ThisAspect."; 
 //... 
} 

• As soon as all the code that uses the method is in the aspect, change it to private. In 
case of protected access, leave a ‘declare error’ as prescribed in Introduce Aspect 
Protection (116). 

Example: moving a private method. 

 
public class TangledStack { 
 private void display() { 
  _text.setText(toString()); 
 } 
 //... 
} 

 
public class TangledStack { 
 private void display() { 
  _text.setText(toString()); 
 } 
 //... 
} 
 
public aspect WindowView { 
 //... 
 public //private 
 void TangledStack.display() { 
  _text.setText(toString()); 
 } 
} 

6.3.9 Replace Implements with Declare Parents 

Typical situation 

Classes implement an interface related to a secondary concern. Implementation of the 
interface is used only when the related concern is present in the system. 

Recommended action 

Replace the ‘implements’ in the class with a ‘declare parents’ in the aspect. 

Motivation 

Interfaces are the standard way in Java to represent the various roles played by a class. 
AspectJ makes it possible to encapsulate many of these roles within aspects, which often 
resort to marker interfaces to represent them. It is likely that in the process of moving the 
role to the aspect all references to the interface will be moved as well. When that happens, 
the interface should also be inlined, using Inline Interface within Aspect (103), and turned into a 
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marker interface. The references to the interface include the ‘implements’ declarations in 
the various implementing classes, and these must be inlined as well. 

Mechanics 

• Create the suitable ‘declare parents’ in the aspect. 

• In the implementing class, delete the ‘implements’ clause related to the interface. 

• Compile and test. 

Example: Moving the First Implements Clause 

 
class SomeImplementingClass implements TargetInterface, ... { 
 //... 

 
class SomeImplementingClass implements TargetInterface, ... { 
 //... 
 
public aspect Implementation { 
 declare parents: SomeImplementingClass implements TargetInterface; 
 //... 
} 

Example: Moving the First Implements Clause 

When the aspect already has at least one ‘declare parents’ related to that interface, switch to 
the following notation: 
 
class AnotherClass implements TargetInterface, ... { 
 //... 

 
class AnotherClass implements TargetInterface, ... { 
 //... 
 
public aspect Implementation { 
 declare parents: (SomeImplementingClass || AnotherClass) 
  implements TargetInterface; 
 //... 
} 

6.3.10 Split Abstract Class into Aspect and Interface 

Typical situation 

Classes are prevented from using inheritance because they already inherit from an abstract 
class defining some concrete members. 

Recommended action 

Move all concrete members from the abstract class to an aspect. You can then turn the 
abstract class into an interface. 

Motivation 

All classes implementing the interface will inherit the members introduced by the aspect 
and still be able to inherit from another class. 

Mechanics 

• Create an aspect that will enclose the concrete members of the abstract class. 
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• Use Move Field from Class to Inter-type (104) to move each field in turn from the 
abstract class to the aspect. 

• When the class includes constructors, you may find two different situations, 
depending on whether the initialisations use or not values passed to the 
constructor. If no constructor arguments are required, use Extract Fragment into 
Aspect to move initialisation code from the class’s constructor(s) to the aspect. If 
the initialisation requires arguments, the best option is probably to create setter 
methods for the fields that need external values and refactor the code so that it uses 
the setter methods instead of constructors. The setters (and associated getters) can 
use lazy initialisation of the related fields. 
Introducing a constructor from the aspect is not an option, because the class is 
going to be turned into an interface, loosing the ability to have constructors. 

• For each concrete method, use Move Method from Class to Inter-type to move it from 
the abstract class to the aspect, keeping in the class an abstract declaration the 
method’s signature. 

• Use Change Abstract Class to Interface (88) to turn the abstract class into an interface 
and update the subclasses. 

Example 

The following example is the Java implementation of the Factory Method pattern ([48], 
pp.107-116) by Hannemann and Kiczales [60]. It is worth it to reproduce some comments 
found in the code regarding this implementation: 

“In this example, the factory method createComponent creates a JComponent (a button 
and a label, respectively). The anOperation method showFrame uses the factory method to 
show a little GUI. In one case, the created frame contains a button, in the other a simple 
label. 
Since the anOperation method requires an implementation, Creator has to be an abstract 
class (as opposed to an interface). Consequently, all ConcreteCreators have to be subclasses 
of that class and cannot belong to a different inheritance hierarchy.” 
 
import java.awt.Point; 
import java.awt.event.WindowAdapter; 
import java.awt.event.WindowEvent; 
import javax.swing.JComponent; 
import javax.swing.JFrame; 
import javax.swing.JPanel; 
 
public abstract class Creator { 
 private static Point lastFrameLocation = new Point(0, 0); 
 public abstract JComponent createComponent(); 
 public abstract String getTitle(); 
 public final void showFrame() { 
  JFrame frame = new JFrame(getTitle()); 
  frame.addWindowListener(new WindowAdapter() { 
   public void windowClosing(WindowEvent e) { System.exit(0); } 
  }); 
  JPanel panel = new JPanel(); 
  panel.add(createComponent()); 
  frame.getContentPane().add(panel); 
  frame.pack(); 
  frame.setLocation(lastFrameLocation); 
  lastFrameLocation.translate(75, 75); 
  frame.setVisible(true); 
 } 
} 
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First, we create the blank aspect CreatorImplementation. Next, we use Move Field from Class 
to Inter-type (104) to move the field to aspect. 
 
import java.awt.Point; 
import java.awt.event.WindowAdapter; 
import java.awt.event.WindowEvent; 
import javax.swing.JComponent; 
import javax.swing.JFrame; 
import javax.swing.JPanel; 
 
public abstract class Creator { 
 private static Point lastFrameLocation = new Point(0, 0); 
 public abstract JComponent createComponent(); 
 public abstract String getTitle(); 
 public final void showFrame() { 
  //... 
 } 
} 
 
import java.awt.Point; 
 
public aspect CreatorImplementation { 
 private static Point Creator.lastFrameLocation = new Point(0, 0); 
} 

We then use Move Field from Class to Inter-type (104) to move the lastFrameLocation field, 
which was temporarily made package-protected. Next, we use Move Method from Class to 
Inter-type (106) to move the showFrame method, but in this case leaving an abstract 
declaration of the signature in the abstract class. The lastFrameLocation field can be private 
again. 
 
import java.awt.event.WindowAdapter; 
import java.awt.event.WindowEvent; 
import javax.swing.JComponent; 
import javax.swing.JFrame; 
import javax.swing.JPanel; 
 
public abstract class Creator { 
 public abstract JComponent createComponent(); 
 public abstract String getTitle(); 
 public abstract void showFrame(); 
} 
 
import java.awt.Point; 
import java.awt.event.WindowAdapter; 
import java.awt.event.WindowEvent; 
import javax.swing.JFrame; 
import javax.swing.JPanel; 
 
public aspect CreatorImplementation { 
 private static Point Creator.lastFrameLocation = new Point(0, 0); 
 public final void Creator.showFrame() { 
  //... 
 } 
} 

Next, we use Change Abstract Class to Interface (88) to turn Creator into an interface. This 
entails removing the static classification of the lastFrameLocation field. In many cases, this 
is not behaviour preserving, and it would require some case-specific workaround. As this 
isn’t much of a problem in this particular case, we leave it as shown: 
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import javax.swing.JComponent; 
 
public interface Creator { 
 public abstract JComponent createComponent(); 
 public abstract String getTitle(); 
 public abstract void showFrame(); 
} 
 
import java.awt.Point; 
import java.awt.event.WindowAdapter; 
import java.awt.event.WindowEvent; 
import javax.swing.JFrame; 
import javax.swing.JPanel; 
 
public aspect CreatorImplementation { 
 private static Point Creator.lastFrameLocation = new Point(0, 0); 
 public final void Creator.showFrame() { 
  //... 
 } 
} 

6.4. Refactorings for Restructuring the Internals of  Aspects 
The refactorings from this group deal with the task of improving the internal structure of 
an aspect, after all elements from a crosscutting concern were moved into it (using the 
refactorings presented in the previous section). The group is headed by Tidy Up Internal 
Aspect Structure (128), a composite refactoring that provides the general framework for using 
the remaining refactorings. The motivation for Tidy Up Internal Aspect Structure (128) is due 
to the finding that aspects resulting from feature extractions are generally badly formed, 
betraying much duplication and inadequate internal structure. There is duplication because 
programmers are forced to duplicate code in multiple classes, since they cannot modularise 
the related concern. The act of moving these duplicated elements does not eliminate the 
duplication; it merely moves it to a single place, where it is clearly exposed. It is usual for 
extracted aspects to excessively rely on inter-type declarations (because with them it is easy 
to move members from the base code). When all the members are within the aspect, it is 
time to check whether they should stay as they are, or they should be replaced by a 
different mechanism. 

Our experiments demonstrated that applying Generalise Target Type with Marker Interface (113) 
is an effective way to expose and remove various kinds of duplication in multiple inter-type 
declarations of identical members. We also recommend it as a starting step to tidying up 
the internal structure of aspects resulting from extractions. When using Generalise Target 
Type with Marker Interface (113) it may be expedient to use Extend Marker Interface with 
Signature (113) as a stopgap for some particular cases when the generally applicable code is 
being separated from case-specific code. 

When you notice the Aspect Laziness (80) smell, use Replace Inter-type Field with Aspect 
Map (118) and Replace Inter-type Method with Aspect Method (125) to replace the introductions 
with a different logic providing similar functionality but also with the desired flexibility. 
Introduce Aspect Protection (116) is used to restore some protection to members that were 
turned public in the process of being moved to an aspect. 
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6.4.1 Extend Marker Interface with Signature 

Typical situation 

An inner interface represents a role used only within the aspect. You would like the aspect 
to call a method specific to a type implementing the interface, but not declared by it. 

Recommended action 

Add in the aspect an inter-type abstract declaration of the needed case-specific signature, 
targeting the interface. 

Motivation 

Sometimes you would like to temporarily resolve a dependence on case-specific part 
because that would enable you to do some tidying up of the aspect’s internals, after which 
you will be in a better position to deal with the dependence. Extend Marker Interface with 
Signature can be used as a stopgap in such situations to temporarily resolve dependences to 
a type-specific method. One case in which this situation arises often is during the use of 
Generalise Target Type with Marker Interface (113). 

An alternative solution to these problems would be to resort to downcasts. However, 
downcasts create dependencies to the target type of the cast: the specific type will need to 
be included in the aspect’s import section, the type’s binary file will have to be available 
when performing a build, etc. Extend Marker Interface with Signature may be preferred in some 
situations because it avoids such dependencies. The dependence it creates is restricted to a 
method signature only, not to specific types. For these reasons, this refactoring may be 
worth using even in (simple) cases. 

Preconditions 

The signature must be public in order to be acceptable to the compiler. In addition, this 
solution is feasible only if all the types made to implement the marker interface export the 
signature. 

Mechanics 

• If the method is not public, change it to public. 

• Create in the aspect an inter-type abstract declaration of the method’s signature 
targeting the marker interface that will be used in place of the specific type. 

• Compile and test. 

Example 

The ExampleAspect aspect uses the Role marker interface. Some instructions using Role 
resort to a downcast to specific type SpecificType, to resolve the call to the doSomething 
method, which is specific to this type. By using Extend Marker Interface with Signature, we 
eliminate this dependence to SpecificType. If this is the only use of SpecificType within 
ExampleAspect, even the import can be removed. 
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import ...SpecificType; 
 
public aspect ExampleAspect { 
 private interface Role { } 
 ... action(Role obj) { 
  //... 
  ((SpecificType)obj).doSomething() 

 
import ...SpecificType; 
 
public aspect ExampleAspect { 
 private interface Role { } 
 public abstract void Role.doSomething(); 
 //... 
 obj.doSomething() 

6.4.2 Generalise Target Type with Marker Interface 

Typical situation 

An aspect refers to specific concrete types, preventing it from being reused. 

Recommended action 

Replace the references to specific types with a marker interface and make the specific types 
implement the marker interface. 

Motivation 

This refactoring contributes to reduce the coupling between an aspect and its target code 
bases. It can also be used to expose and eliminate much duplication that couldn’t be 
eliminated if the code kept referring to specific types. It can also be useful when we want to 
apply Extract Superaspect (129) to aspects containing providing similar functionality, because 
it contributes to rationalise its internal structures. 

Several situations can prevent Extract Superaspect (129) from being applied to a set of similar 
aspects. The concrete aspects can contain code specific to concrete classes in the midst of 
generally applicable code. If a general marker interface could be used instead of the specific 
types, use Generalise Target Type with Marker Interface. The resulting marker interfaces may be 
candidates for pulling up to a superaspect. 

Mechanics 

• Create a marker interface representing the role played by the target classes. Create 
the ‘declare parents’ to associate the concrete classes to the role. 

• Replace the references to the class with references to the marker interface. In cases 
when the aspect introduces the same field or method to more than one class, 
remove the duplication by replacing the various introductions with a single 
introduction to the interface. 
Sometimes the replacement cannot be made in method bodies because parts of the 
code depend on elements specific to a concrete class. In such cases, consider using 
Extract Method ([47], p.110) to separate the parts covered by the role interface from 
the parts specific to particular classes. This may be an indication that in future the 
aspect should be split into a generally applicable abstract superaspect and one or 
several specific concrete subaspects, using Extract Superaspect (129). 

• Compile and test. 
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• When all method introductions refer to the interface, it is possible to remove the 
declarations of operations (methods) within the interface (if the interface is a inner 
interface, nested within the aspect, the related operations are defined within the 
aspect anyway, so removing the declarations from the interface will result in simpler 
code). If, however, the interface is kept standalone, leave the declarations in place. 
This way the code will be easier to understand. 

Example: Simple Replacements 

In the following example, GUIColleague is an interface, representing a role. The aspect 
Mediator assigns the GUIColleague role to the Button class, but some parts of the code 
still specifically refer to Button instead of GUIColleague. We want to make all code to 
depend only on the interface. 
 
public aspect Mediator { 
 declare parents: Button implements GUIColleague; 
 declare parents: Label implements GUIMediator; 
 GUIMediator Button._mediator; 
 public void Button.setMediator(GUIMediator mediator) { 
  this._mediator = mediator; 
 } 
 pointcut buttonClicked(Button button): 
  execution(public void clicked()) && this(button); 
 after(Button button): buttonClicked(button) { 
  button._mediator.colleagueChanged(button); 
 } 
 //... 
} 

 
public aspect Mediator { 
 declare parents: Button implements GUIColleague; 
 declare parents: Label implements GUIMediator; 
 GUIMediator GUIColleague._mediator; 
 public void GUIColleague.setMediator(GUIMediator mediator) { 
  this._mediator = mediator; 
 } 
 pointcut buttonClicked(GUIColleague button): 
  execution(public void clicked()) && this(button); 
 after(GUIColleague button): buttonClicked(button) { 
  button._mediator.colleagueChanged(button); 
 } 
 //... 
} 

Naturally, the names of some variables (such as button) should now be renamed to reflect 
their more general context. 

Example: Eliminating Duplication 

This example is based on the Observer pattern ([48], pp.293-303). See also section 7.1 for 
more information on Observer. In this example, the ObservingOpen aspect encapsulates 
an observing relationship that was extracted from the participant classes. ObservingOpen 
introduces some fields and methods into several classes playing the Observer role (in this 
case Bee and Hummingbird). The classes are the only difference between these 
introductions, so applying Generalise Target Type with Marker Interface creates the Subject 
marker interface and removes the duplication. 
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public aspect ObservingOpen ... { 
 //... 
 private OpenObserver Hummingbird.openObsrv = new OpenObserver(this); 
 private OpenObserver Bee.openObsrv = new OpenObserver(this); 
 
 public java.util.Observer Bee.openObserver() { 
  return openObsrv; 
 } 
 public java.util.Observer Hummingbird.openObserver() { 
  return openObsrv; 
 } 
} 

 
public aspect ObservingOpen ... { 
 //... 
 private interface Subject { } 
 declare parents: (Bee || Hummingbird) implements Subject; 
 private OpenObserver Subject.openObsrv = new OpenObserver(this); 
 
 public java.util.Observer Subject.openObserver() { 
  return openObsrv; 
 } 
} 

6.4.3 Introduce Aspect Protection 

Typical situation 

You would like an inter-type member to be visible in an aspect al all its subaspects, but not 
outside the aspect inheritance chain. 

Recommended action 

Declare the inter-type member as public and place a ‘declare error’ preventing its use 
outside the aspect inheritance chain. 

Motivation 

AspectJ does not allow the protected access on inter-type members, so whenever we would 
like to extend its access to subaspects we must classify the member as public. In some 
cases, it is desirable to have some form of access protection preventing the use of the 
member outside aspect code. The ‘declare error’ mechanism enables us to emulate that 
protection. 

Mechanics 

• Add a ‘declare warning’ in the aspect enclosing the inter-type member, specifying 
the intended restriction on its use. 

• Compile and test. 

• For each warning generated by the compiler, perform the refactorings necessary to 
move the use of the member to the authorised modules of the system. 

• When there are no more warnings, change the ‘declare warning’ to ‘declare error’. 

Example: protecting an inter-type field 

Consider an abstract superaspect GeneralPolicy declaring inter-type the field 
_sensitiveData. We want to restrict use of the field to aspect and its subaspects. 
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abstract aspect GeneralPolicy { 
 protected interface Participant {} 
 public Data Participant._sensitiveData; 
 //... 
} 
 
aspect ConcretePolicy extends GeneralPolicy { 
 //code using Participant._sensitiveData 
} 

We can add in the superaspect the following ‘declare warning’: 
 
abstract aspect GeneralPolicy { 
 protected interface Participant {} 
 public Data Participant._sensitiveData; 
 declare warning: 
  (set(public Data Participant+._sensitiveData) || 
  get(public Data Participant+._sensitiveData)) 
  && !within(GeneralPolicy+): 
  "field _sensitiveData is aspect protected. Not visible here."; 
 //... 
} 

Next, we deal with all points in the system that give rise to warnings. After all warnings are 
gone, we change the ‘declare warning’ to ‘declare error’. 

Example: protecting an inter-type method 

Suppose the same abstract aspect as in the previous example also includes method 
processSensitiveData, which we also would like to protect: 
 
abstract aspect GeneralPolicy { 
 protected interface Participant {} 
 public Data Participant._sensitiveData; 
 public void processSensitiveData() { 
  //code using Participant._sensitiveData 
 } 
 //... 
} 

We create the following ‘declare warning’: 
 
abstract aspect GeneralPolicy { 
 protected interface Participant {} 
 public Data Participant._sensitiveData; 
 public void processSensitiveData() { 
  //code using caspule._sensitiveData 
 } 
 declare warning: 
  call(void processSensitiveData()) 
  && !within(GeneralPolicy+): 
  "method processSensitiveData is aspect protected. Not visible here."; 
 //... 
} 

Likewise, the ‘declare warning’ should be changed to ‘declare error’ when all the warnings 
are gone. 

Example: protecting an inter-type method relative to both the host class and the 
aspect chains 

What if we want to allow the access to a member in the host class, in addition the aspect 
and their descendents? In the above example all is needed is one more within to the above 
‘declare error’: 
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declare error: 
 call(void processSensitiveData()) 
 && !within(Participant+) 
 && !within(GeneralPolicy+): 
 "Call to processSensitiveData() outside Participant and GeneralPolicy 
chains."; 

6.4.4 Replace Inter-type Field with Aspect Map 

Typical situation 

An aspect statically introduces additional state to a set of classes, when a more dynamic or 
flexible link between state and targets would be desirable. 

Recommended action 

Replace the inter-type declarations with a structure owned by the aspect performing a map 
between the additional state and target objects. 

Motivation 

An inter-type declaration is a static mechanism. It affects all instances of the target class, 
throughout their entire life cycles. For some problems, this is exactly right, but for others 
something more flexible would be preferable. In some cases only a subset of all instances 
of a class need the extra state and behaviour, or they need it only in a specific phase of their 
life cycles. Sometimes the same instance simultaneously needs multiple instances of the 
extra state and behaviour. Sometimes the application only knows at runtime which 
instances need the extra state and behaviour. Inter-type declarations do not provide the 
necessary flexibility in these cases. 

An inter-type declaration is itself a kind of mapping, usually from a class to a field or 
method. However, we cannot control the moments when it applies, when it ceases to 
apply, and the precise set of objects to which it applies. Whenever this kind of flexibility is 
required and the existing solution relies on introductions, use Replace Inter-type Field with 
Aspect Map to replace the introductions with a suitable mapping. 

This refactoring is also useful in a different situation. Sometimes we have several aspects 
performing similar actions on similar data, and these include inter-type declarations. 
Naturally, we’ll want to remove the duplication, by pulling the common parts to a 
superaspect. Here arises another problem: as long as each subaspect introduces its own 
additional fields to classes, there will be separate instances of the additional state for each 
subaspect. However, if the code is pulled up to the superaspect, there will be a single 
instance of the introduced state common to all subaspects. A similar problem would arise if 
we tried to replace an instance field with a static field. Such a pull will almost certainly not 
be behaviour preserving. In most cases, an inter-type declaration cannot be pulled up to a 
superaspect as is. This pulling up usually requires the prior replacement of inter-type state 
with aspect state. 

As it happens, the kind of replacements that solve the first problem can solve the second 
problem as well. Unlike with inter-type declarations, there is a separate instance of the state 
declared in the superaspect in each active subaspect. In most cases, solving the problem 
merely entails selecting a suitable structure to replace the inter-type fields, and update the 
associated logic accordingly. 

To ease the replacement of the original inter-type state with the new mapping structure, 
you should first isolate it behind a small layer within the aspect, to protect the rest of the 
aspect code from being exposed to it. In the simplest case, all we have to do is ensure that 
the aspect is provided with accessor methods encapsulating the inter-type fields. Only 
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those methods will need to be changed when the structure is replaced. In the case of 
preparing inter-type declarations to be pulled up, Replace Inter-type Field with Aspect Map must 
be applied to each of subaspects in turn. Next, use Pull Up Field ([47], p.320) and Pull Up 
Method ([47], p.322) to pull the state and its associated logic to the common superaspect. 

Preconditions 

Ensure that the fields in the various aspects do indeed provide equivalent interfaces and 
functionality. 

Mechanics 

• Use Encapsulate Field ([47], p.206) on the introduced field. Unlike traditional 
accessor methods, these ones are aspect methods, receiving the target object as 
argument. 

• Add to each aspect a new structure capable of supporting the equivalent 
functionality. Add accessors similar to the ones created in the previous step: they 
would ideally have the same signatures and similar names. Add any additional 
management methods (i.e. for insertion, removal, etc.) that may also be required. 

• If the aspect resorts to inter-type methods to handle the field, use Replace Inter-type 
Method with Aspect Method (125) to create aspect versions of those methods, using 
the new structure. 

• Compile and test. 

• Replace each call to the original accessors with the new ones. Compile and test 
when all replacements are done. 

• Remove the old accessor methods. Compile and test. 

• Remove the old inter-type field and related code. Compile and test. 

Example: replacing an inter-type field with an aspect map 

The following example presents fragments of an aspect implementing an instance of the 
Mediator pattern ([48], pp.273-282), adapted from a Java implementation by Cooper [32]. 
In this example, there is a mediator object (of type Mediator) acting as the hub of 
communication between various colleagues. The colleagues are instances of ClearButton 
and MoveButton, both subclasses of javax.swing.JButton, and KidList, which is a subclass 
of javax.swing.JScrollPane, implementing a listener interface from the javax.swing.event 
API. This example declares the Colleague role as a marker interface and assigns it to the 
three colleague participant types. The aspect indirectly introduces in each colleague a 
reference to the mediator, by way of the marker interface. 

This implementation is unsuitable because it introduces the additional state and behaviour 
to all instances of the participant classes, independently of whether all of them need it or 
not. By replacing this implementation with one based on a map, we eliminate this 
inflexibility. 
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public aspect Mediating ... 
 private interface Colleague {} 
 private Mediator Colleague.mediator; 
 
 declare parents: 
  (ClearButton || MoveButton || KidList) implements Colleague; 
 
 pointcut clearButtonExecute(ClearButton clearButton): ... 
 after(ClearButton clearButton): clearButtonExecute(clearButton) { 
  clearButton.mediator.clear(); 
 } 
 
 pointcut moveButtonExecute(MoveButton moveButton): ... 
 after(MoveButton moveButton): moveButtonExecute(moveButton) { 
  moveButton.mediator.move(); 
 } 
 
 pointcut kidListChanged(KidList kidList): ... 
 after(KidList kidList) returning: kidListChanged(kidList) { 
  kidList.mediator.select(); 
 } 

As a first step, we perform a refactoring similar of Encapsulate Field ([47], p.206) to produce 
a temporary getter method for the inter-type field. The same getter can be used in all 
different target types. It cannot be given exactly the same name as the map-based getter, so 
we add a zero to avoid compiler errors. 
 
public aspect Mediating ... 
 private Mediator getMediator0(Colleague colleague) { 
  return colleague.mediator; 
 } 
 pointcut ... 
 after(ClearButton clearButton): clearButtonExecute(clearButton) { 
  getMediator0(clearButton).clear(); 
 } 
 pointcut ... 
 after(MoveButton moveButton): moveButtonExecute(moveButton) { 
  getMediator0(moveButton).move(); 
 } 
 pointcut ... 
 after(KidList kidList) returning: kidListChanged(kidList) { 
  getMediator0(kidList).select(); 
 } 

Now that all accesses to the inter-type field are done through this temporary getter, the 
inter-type nature of the mediator field is effectively encapsulated. Next, we add a suitable 
data structure to map the target objects to the mediator field. A hash table is a good choice 
for these cases. The introduced field was private to the aspect, so the getters are private as 
well. The access mode of the map-based setter can be more problematic. Note that the 
map-based setter is responsible for associating the target object with the mediator field, 
using the newly added mapping structure. It does not have a correspondent statement in 
the original version of the code, but we must find an appropriate point of the program to 
place it. The access mode of the map-based setter depends on where the field is used in the 
system: private if it is used only within the aspect, non-private otherwise. In this example, 
we assume a public access. 
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import java.util.WeakHashMap; 
 
public aspect Mediating ... 
 WeakHashMap colleague2mediatorMap = new WeakHashMap(); 
 
 private Mediator getMediator(Colleague colleague) { 
  return (Mediator)colleague2mediatorMap.get(colleague); 
 } 
 public void setMediator(Colleague colleague, Mediator mediator) { 
  colleague2mediatorMap.put(colleague, mediator); 
 } 
 private Mediator getMediator0(Colleague colleague) { 
  return colleague.mediator; 
 } 

We must now decide on the places where to put the calls to the map-based setters. The 
places where the objects containing the field are created could be used as a basis, though in 
some cases it may be preferable to place the calls elsewhere. After all, that is precisely one 
of the advantages of replacing a static mapping with a dynamic one: we have more choices. 
Outside the aspect, the calls to the map-based setter should be something like this: 
 
 Mediating.aspectOf().setMediator(clearButton, mediator); 

Inside advice within the aspect, the same call can be expressed in a simpler way: 
 
 setMediator(clearButton, mediator); 

We insert the calls to the map-based setter and make the calls to the temporary getter refer 
to the final getter. After compiling and testing again, we can delete the original declaration 
and the temporary getter. Now the aspect’s code looks like this: 
 
public aspect Mediating ... 
 private Mediator Colleague.mediator; 
 declare parents: (ClearButton || MoveButton || KidList) 
  implements Colleague; 
 
 WeakHashMap colleague2mediatorMap = new WeakHashMap(); 
 
 private Mediator getMediator(Colleague colleague) { 
  return (Mediator)colleague2mediatorMap.get(colleague); 
 } 
 public void setMediator(Colleague colleague, Mediator mediator) { 
  colleague2mediatorMap.put(colleague, mediator); 
 } 
 
 private Mediator getMediator0(Colleague colleague) { 
  return colleague.mediator; 
 } 
 pointcut clearButtonExecute(ClearButton clearButton): ... 
 after(ClearButton clearButton): clearButtonExecute(clearButton) { 
  getMediator(clearButton).clear(); 
 } 
 pointcut moveButtonExecute(MoveButton moveButton): ... 
 after(MoveButton moveButton): moveButtonExecute(moveButton) { 
  getMediator(moveButton).move(); 
 } 
 pointcut kidListChanged(KidList kidList): ... 
 after(KidList kidList) returning: kidListChanged(kidList) { 
  getMediator(kidList).select(); 
 } 
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Example: preparing an Observer implementation for the extraction of a superaspect 

This second example is an implementation of the Observer pattern ([48], pp.293-303). See 
also section 7.1 for more information on Observer. This implementation was extracted into 
an aspect from the example by Cooper [32], using Extract Feature into Aspect (90). This 
example is a bit more complex than the previous one, because it includes inter-type 
methods that use the inter-type field. These inter-type methods must be replaced using 
Replace Inter-type Method with Aspect Method (125). We assume the scenario in which the 
system has other, similar, implementations of the pattern and we would like to factor out 
the common elements by pulling them up to a superaspect. These implementations rely on 
the introduction of a java.util.Vector field to the subject participant, which is among the 
elements we would like to pull up, along with its associated logic. 

The present implementation does not lend itself to be pulled up to the superaspect, for the 
same reasons as in the previous example: it was designed assuming there would be only one 
instance of the pattern for each subject: the vector cannot support multiple observing 
relationships for the same object. To solve this problem, we’ll replace the inter-type vector 
with a more suitable hash table owned by the aspect, which will manage the mappings 
between subjects and the list (i.e. a java.util.Vector object) of its observers. We’ll use Replace 
Inter-type Method with Aspect Method (125) to replace the original logic using the vector with 
aspect logic using the hash table. 

Cooper’s example includes a Watch2LSubject object as subject and two types of observers, 
which are instances of ListFrameObserver and ColorFrameObserver (both subclasses of 
javax.swing.JFrame). The Watch2LSubject object includes three radio buttons, one for each 
of the colours red, green and blue. Whenever a different radio button is selected, the 
ColorFrameObserver instances change their background colour accordingly, and the 
ListFrameObserver adds the name of the selected colour to its list. 

The refactored aspect uses two inner interfaces27 to represent the roles of subject and 
observer. It introduces the java.util.Vector field to the objects playing the role of subject, 
which holds the subject’s registered observers. The aspect also introduces two methods to 
the subjects: addObserver(Observer), which is used to register a new observer for the 
subject, and notifyObservers(JRadioButton), through which subjects notify all their 
registered observers of a change in the selected colour. That notification is carried out 
through the sendNotify method, which is declared in the Observer inner interface. The 
sendNotify method receives as parameter a string representing the new colour. The aspect 
also introduces the implementation of sendNotify for each concrete observer type. 

                                                 
27 In the initial Java implementation [32], Observer and Subject were standalone interfaces. They were inlined 

to within the Observing aspect during the refactoring process. 
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public aspect Observing ... 
 private interface Subject {} 
 interface Observer { 
  /** notify the Observers that a change has taken place */ 
  public void sendNotify(String s); 
 } 
 declare parents: Watch2LSubject implements Subject; 
 declare parents: (ListFrameObserver || ColorFrameObserver) 
  implements Observer; 
 
 private Vector Subject._observingFramesList = new Vector(); 
 
 public void Subject.addObserver(Observer obs) { 
  //  adds observer to list in Vector 
  _observingFramesList.addElement(obs); 
 } 
 /* sends text of selected button to all observers */ 
 private void Subject.notifyObservers(JRadioButton rad) { 
  String sColor = rad.getText(); 
  for (int i = 0; i < _observingFramesList.size(); i++ ) { 
   ((Observer) (_observingFramesList.elementAt(i))).sendNotify(sColor); 
  } 
 } 
 
 public void ListFrameObserver.sendNotify(String s) { 
  _listData.addElement(s); 
 } 
 public void ColorFrameObserver.sendNotify(String str) { 
  changeColor(str); 
 } 

The aspect also includes a pointcut and corresponding advice to trigger the adequate 
behaviour when the subject changes the selected colour: 
 
 pointcut watchStateChange(Watch2LSubject watch, ItemEvent event): ... 
 after(Watch2LSubject watch, ItemEvent event): 
   watchStateChange(watch, event) { 
  if(event.getStateChange() == ItemEvent.SELECTED) 
   watch.notifyObservers((JRadioButton) event.getSource()); 
 } 

The mechanics prescribe the use of Encapsulate Field ([47], p.206) on the existing field. In 
this particular case, we must instead create a new field as the mapping structure (we’ll 
create the accessor methods for the structure as soon as there is a need to do so). 
 
import java.util.WeakHashMap; 
... 
public aspect Observing ...  
 //... 
 WeakHashMap _subject2Observers = new WeakHashMap(); 

Next, we use Replace Inter-type Method with Aspect Method (125) to replace the addObserver 
and notifyObservers inter-type methods with aspect versions using the new mapping 
structure (see the example section of Replace Inter-type Method with Aspect Method (125) for 
more details of this step). 

The new implementation is now in place and working. There was no need to add accessors 
to the mapping structure, as it is already encapsulated by addObserver and 
notifyObservers. These two aspect methods comprise a small layer hiding the structure. We 
can now delete the old implementation, after which the aspect looks like this: 
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public aspect Observing ... 
 private interface Subject {} 
 interface Observer { 
  /** notify the Observers that a change has taken place */ 
  public void sendNotify(String s); 
 } 
 declare parents: Watch2LSubject implements Subject; 
 declare parents: (ListFrameObserver || ColorFrameObserver) 
  implements Observer; 
 
 private Vector Subject._observingFramesList = new Vector(); 
 
 public void Subject.addObserver(Observer obs) { 
  //  adds observer to list in Vector 
  _observingFramesList.addElement(obs); 
 } 
 /* sends text of selected button to all observers */ 
 private void Subject.notifyObservers(JRadioButton rad) { 
  String sColor = rad.getText(); 
  for (int i = 0; i < _observingFramesList.size(); i++ ) { 
   ((Observer) (_observingFramesList.elementAt(i))).sendNotify(sColor); 
  } 
 } 
 
 WeakHashMap _subject2Observers = new WeakHashMap(); 
 
 public void addObserver(Subject subject, Observer observer) { 
  Vector observers; 
  Object obj = _subject2Observers.get(subject); 
  if(obj == null) 
   observers = new Vector(); 
  else observers = (Vector) obj; 
  observers.add(observer); 
  _subject2Observers.put(subject, observers); 
 } 
 public void notifyObservers(Subject subject, JRadioButton radioButton) { 
  String sColor = radioButton.getText(); 
  Vector observersList = (Vector)_subject2Observers.get(subject); 
  for (int i = 0; i < observersList.size(); i++ ) { 
   ((Observer) (observersList.elementAt(i))).sendNotify(sColor); 
  } 
 } 
 public void ListFrameObserver.sendNotify(String s) { 
  _listData.addElement(s); 
 } 
 /* Observer is notified of change here */ 
 public void ColorFrameObserver.sendNotify(String str) { 
  changeColor(str); 
 } 
 
 pointcut watchStateChange(Watch2LSubject watch, ItemEvent event): ... 
 after(Watch2LSubject watch, ItemEvent event): 
   watchStateChange(watch, event) { 
  if(event.getStateChange() == ItemEvent.SELECTED) 
   notifyObservers(watch, (JRadioButton) event.getSource()); 
 } 
} 
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6.4.5 Replace Inter-type Method with Aspect Method 

Typical situation 

An aspect introduces additional methods to a class or interface, when a more dynamic and 
flexible composition would be desirable. 

Recommended action 

Replace the inter-type method with an aspect method getting the target object as 
parameter. 

Motivation 

This refactoring was designed to be a follow-up to Replace Inter-type Field with Aspect Map 
(118). That refactoring deals with inter-type fields and the present refactoring deals with the 
(inter-type) methods that use those fields. 

The present refactoring is made possible by the fact that a method introduced to a class can 
always be replaced by a similar aspect method receiving an instance of the target class as an 
additional argument, which will use the target object as a key. 
 
public class Capsule { 
 private int _value; 
 public Capsule(int value) { 
  _value = value; 
 } 
public aspect Additional { 
 public void Capsule.doSomethingMore() { 
  System.out.println("Doing something more with " + this); 
 } 
  Capsule capsule = new Capsule(7); 
  capsule.doSomethingMore(); 

 
public class Capsule { 
 private int _value; 
 public Capsule(int value) { 
  _value = value; 
 } 
public aspect Additional { 
 public void doSomethingMore(Capsule capsule) { 
  System.out.println("Doing something more with " + capsule); 
 } 
  Capsule capsule = new Capsule(7); 
  Additional.aspectOf().doSomethingMore(capsule); 

Replacements of this kind should not be made in the general case, and that is why we 
prescribe using this refactoring only in the context of Replace Inter-type Field with Aspect Map 
(118). This refactoring is equally useful to deal with both situations covered by the other 
refactoring: (1) replacing inter-type declarations with a dynamic mechanism and 
(2) preparing inter-type state duplicated in various aspects to be factored out to a common 
superaspect. This refactoring transforms existing inter-type methods into aspect methods 
based on the map that was created when applying Replace Inter-type Field with Aspect 
Map (118). 

Mechanics 

• Create in the aspect a copy of the inter-type method, with same name and 
signature. Insert, in the beginning of the aspect method's parameter list, an 
additional parameter whose type is the original target of the inter-type declaration. 



126 Chapter 6. Aspect-Oriented Refactorings 

 

• Replace each reference to ‘this’ with the new parameter. Change all self-calls and 
references to fields to refer to the new first parameter. 

• Compile and test. 

• Change the body of the inter-type method so that it calls the aspect method, if 
there are no further dependences preventing you. 

• Add a ‘declare warning’ exposing all calls to the inter-type method:  
declare warning: 
 (call(<type> <host class>.someMethod(<arguments>)): 
 "method <host class>.someMethod() is called here."; 

• Following the warnings, replace each call to the inter-type method with a call to the 
aspect method. Compile and test after each change. 

• When there are no more warnings delete the ‘declare warning’ and the inter-type 
method. 
When covering the mechanics of several refactorings from [47], Fowler considers 
the situation when the existing method is part of the interface and cannot be 
changed. Fowler recommends that in such cases the old method be left in place and 
marked as deprecated. 

• Compile and test. 

Example 

This example is part of the second example for Replace Inter-type Field with Aspect Map (118). 
In it, an aspect introduces the following methods to the Subject marker interface:  
 
 public void Subject.addObserver(Observer obs) { 
  _observingFramesList.addElement(obs); 
 } 
 private void Subject.notifyObservers(JRadioButton rad) { 
  String sColor = rad.getText(); 
  for (int i = 0; i < _observingFramesList.size(); i++ ) { 
   ((Observer) (_observingFramesList.elementAt(i))).sendNotify(sColor); 
  } 
 } 

As an example of client code, the following subject and observers are created and 
registered, through calls to the Subject.addObserver method: 
 
  Watch2LSubject subject = new Watch2LSubject(); 
  //Observing.aspectOf().setSubject(subject); 
 
  ColorFrameObserver cframeObs1 = new ColorFrameObserver(); 
  ColorFrameObserver cframeObs2 = new ColorFrameObserver(); 
  ColorFrameObserver cframeObs3 = new ColorFrameObserver(); 
  ListFrameObserver lframeObs = new ListFrameObserver(); 
 
  subject.addObserver(cframeObs1); 
  subject.addObserver(cframeObs2); 
  subject.addObserver(cframeObs3); 
  subject.addObserver(lframeObs); 

The aspect itself also includes an advice calling the other method, Subject.notifyObservers: 
 
 after(Watch2LSubject watch, ItemEvent event): 
   watchStateChange(watch, event) { 
  if(event.getStateChange() == ItemEvent.SELECTED) 
   watch.notifyObservers((JRadioButton) event.getSource()); 
 } 
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This functionality should be replaced by aspect methods based on a hash table owned by 
the aspect: the aspect field _subject2Observers, which uses subject objects as keys, and 
vectors of observers as values: 
 
 WeakHashMap _subject2Observers = new WeakHashMap(); 

As a first step, we create the following two aspect methods, with the same names: 
 
 public void addObserver(Subject subject, Observer observer) { 
  Vector observers; 
  Object obj = _subject2Observers.get(subject); 
  if(obj == null) 
   observers = new Vector(); 
  else observers = (Vector) obj; 
  observers.add(observer); 
  _subject2Observers.put(subject, observers); 
 } 
 public void notifyObservers(Subject subject, JRadioButton radioButton) { 
  String sColor = radioButton.getText(); 
  Vector observersList = (Vector)_subject2Observers.get(subject); 
  for (int i = 0; i < observersList.size(); i++ ) { 
   ((Observer) (observersList.elementAt(i))).sendNotify(sColor); 
  } 
 } 

We can’t replace the body of the inter-type methods with calls to the new ones at this 
point. We must first replace the calls to the addObserver method, which register the 
observers to their subjects. Otherwise, the tests would fail. We therefore perform the next 
step as prescribed, adding ‘declare warning’ clauses that will expose all calls to these 
methods: 
 
 declare warning: call(void Subject.addObserver(Observer)): 
  "Method Subject.addObserver(Observer) is called here."; 
 declare warning: call(void Subject.notifyObservers(JRadioButton)): 
  "Method Subject.notifyObservers(JRadioButton) is called here."; 

We compile, resulting in a series of warnings locating the calls to the old methods. After 
replacing each of them with calls to the aspect methods, we compile again. All warnings 
disappeared, and we test. We remove the ‘declare warning’ clauses. Now the client code 
calling addObservers looks like this: 
 
  Watch2LSubject watch2LFrame = new Watch2LSubject(); 
 
  ColorFrameObserver cframeObs1 = new ColorFrameObserver(); 
  ColorFrameObserver cframeObs2 = new ColorFrameObserver(); 
  ColorFrameObserver cframeObs3 = new ColorFrameObserver(); 
  ListFrameObserver lframeObs = new ListFrameObserver(); 
 
  subject.addObserver(cframeObs1); 
  subject.addObserver(cframeObs2); 
  subject.addObserver(cframeObs3); 
  subject.addObserver(lframeObs); 
 
  Observing.aspectOf().addObserver(watch2LFrame, cframeObs1); 
  Observing.aspectOf().addObserver(watch2LFrame, cframeObs2); 
  Observing.aspectOf().addObserver(watch2LFrame, cframeObs3); 
  Observing.aspectOf().addObserver(watch2LFrame, lframeObs); 

The call to notifyObservers now takes the form: 
 
 after(Watch2LSubject watch, ItemEvent event): 
   watchStateChange(watch, event) { 
  if(event.getStateChange() == ItemEvent.SELECTED) 
   notifyObservers(watch, (JRadioButton) event.getSource()); 
 } 
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6.4.6 Tidy Up Internal Aspect Structure 

Typical situation 

The internal structure of an aspect resulting from the extraction of a crosscutting concern 
is sub-optimal, being based on static compositions and betraying duplication. 

Recommended action 

Tidy up the internal structure of the aspect by removing duplication and dependencies on 
case specific target types. 

Motivation 

This refactoring serves as the general framework indicating when to use the remaining 
refactorings from the same group28, and in what situations. 

AOP adds a new type of situation in which code duplication can arise (i.e. is exposed). 
Refactoring an object-oriented (OO) code base to aspects entails extracting concerns and 
features whose very crosscutting nature gives rise to duplication that is hard or impossible 
to avoid when using traditional OO mechanisms. A typical situation is a system containing 
repeated implementations of the same functionality scattered in multiple classes. Simply 
extracting those code snippets into an aspect does not guarantee, by itself, removal of this 
duplication. This merely moves the duplicated code into aspects. In some cases, the 
duplication becomes obvious only when it is placed in a single module. Therefore, 
extracting the crosscutting code is only the first part of the job. Next, duplication within 
the aspect must be removed and its internal structure improved. The necessary refactorings 
may involve profound changes in that structure, and may entail the replacement of the 
extracted design with a different, more suitable design. 

Inter-type declarations can sometimes be too limiting. They make it very easy to move 
members from classes to aspects without impact on client code, and aspects resulting from 
extractions are likely to use them. However, in some cases, we would like the aspect to 
introduce the additional state and behaviour on an object-by-object basis, and inter-type 
declarations are not flexible enough to achieve that. This entails the replacement of these 
introductions with different logic. 

Mechanics 

• If the code assigns roles to participant classes, see if the aspect code uses marker 
interfaces to represent those roles instead of referring directly to case-specific 
classes. If it is not the case, use Generalise Target Type with Marker Interface (113). 

• If parts of the code make explicit references to specific classes that cannot be 
generalised, separate the specific parts from the generally applicable ones by using 
Extract Method ([47], p.110). You should do this if the aspect contains enough 
generally applicable logic to be worth extracting to a reusable abstract superaspect. 

• Inspect the inter-type declarations looking for cases in which the extra state and 
behaviour is needed only at specific times, or is needed by only a subset of the 
instances of the target classes, or may be needed in multiple instances 
simultaneously. In such cases, consider using Replace Inter-type Field with Aspect 
Map (118) to deal with the introduced state, and Replace Inter-type Method with Aspect 
Method (125) to deal with the behaviour based on that state. 

                                                 
28 We do not mean to imply that each of the refactorings from the group is necessarily referred directly. 
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Example 

The refactoring process described in subsection 7.7.2 is a good example of this composite 
refactoring. 

6.5. Refactorings to Deal with Aspect Generalisation 
We sometimes find that an aspect contains both generically applicable code and case-
specific code. The former can potentially be placed in a reusable superaspect, in which case 
we use Extract Superaspect (129). That refactoring in turn prescribes the various Pull Up 
refactorings. Our experience showed that we sometimes need to reverse some of the pulls, 
and that was our motivation for the Push Down refactorings. 

The main refactoring for this group is Extract Superaspect (129). This group bears the same 
name as an equivalent group in [47], which contains various Pull Up and Push Down 
refactorings. This section contains similar refactorings dealing in this case with aspect-
specific constructs, including pointcuts, advice, marker interfaces and inter-type 
declarations. 

6.5.1 Extract Superaspect 

Typical situation 

Two or more aspects contain similar code and functionality. 

Recommended action 

Move the common features to a superaspect. 

Motivation 

It has been noted numerous times that common patterns sometimes only surface during 
development [69][42]. When a common pattern in the code is identified, the sensible thing 
to do is make that commonality clear, by creating a separate unit of modularity with an 
appropriate name and placing the common code there. An obvious benefit is the removal 
of duplication. 

When we extract various concerns from a code base, we may later conclude that several of 
the resulting aspects are in fact different instances of a common pattern. Different aspects 
may turn out to be variant implementations of the same kind of functionality, but 
sometimes the similarities only become noticeable when we are able to see all the code of 
each concern in one place (commonalities among aspects should also be easier to notice 
after applying Tidy up Internal Aspect Structure (128) to each of them). 

When such commonalities are identified, it is necessary to prepare the internal structure of 
the aspects so that the common parts are amenable to being extracted into a common 
superaspect. In the case of inter-type declarations, the needed action usually entails the 
replacement of the existing introductions with a different implementation, as suggested in 
Replace Inter-type Field with Aspect Map (118) and Replace Inter-type Method with Aspect 
Method (125). 

Mechanics 

• Create an empty superaspect. Make the concrete aspects inherit from the abstract 
aspect. 
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• One by one, use Pull Up Marker Interface (132), Pull Up Field ([47], p.320), Pull Up 
Method ([47], p.322), Pull Up Pointcut (133) and Pull Up Advice (130) to move 
common elements to the superaspect. 

It's usually easier to move the marker interfaces first. 
Pull Up Field ([47], p.320) and Pull Up Method ([47], p.322) cannot be used with 
inter-type declarations, because there will be only one instance of the introduced 
fields for all subaspects. When you want to pull up inter-type fields, consider 
applying Replace Inter-type Field with Aspect Map (118) to the inter-type fields and 
Replace Inter-type Method with Aspect Method (125) to the inter-type methods using 
those fields. 
If you find a signature common to all subaspects but with different logic, add an 
abstract declaration or default definition in the superaspect. 

• Compile and test after each pull. 

6.5.2 Pull Up Advice 

Typical situation 

All subaspects use the same advice acting on a pointcut declared in the superaspect. 

Recommended action 

Move the advice to the superaspect. 

Motivation 

As with other kinds of pulls, this situation is likely to arise when a commonality is being 
extracted from various subaspects. At first sight, it may look that most of the 
considerations applying to Pull Up Method also apply here, but there are important 
differences. There is no polymorphism, and no overriding: all pieces of advice defined 
along the inheritance chain execute whenever one joinpoint is reached. 

Preconditions 

Keep in mind that a piece of advice declared in a superaspect will run as many times as 
there are concrete subaspects weaved into the system. If that is not what you want, leave 
the advice in the subaspects. This won't be a problem if at any given time only one 
concrete subaspect is weaved into the system. 

If the common pointcut over which the advice executes is still duplicated in the various 
subaspects, use Pull Up Pointcut (133) first. 

If at least one of the subaspects use a piece of advice different from the others you should 
not pull up the advice, since pieces of advice cannot be overridden. 

Mechanics 

• Copy the body of the advice in the superaspect. 

• Delete the advice in each of the subaspects. 

• Compile and test. 

6.5.3 Pull Up Declare Parents 

Typical situation 

All subaspects use the same ‘declare parents’. 
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Recommended action 

Move the ‘declare parents’ to the superaspect. 

Motivation 

This refactoring contributes to extract a reusable superaspect out of two or more 
subaspects that duplicate some logic. 

Mechanics 

• Ensure that all ‘declare parents’ assign the same roles to the same participants. 

• Place a copy of the ‘declare parents’ in the superaspect. 

• Delete the ‘declare parents’ in each of the subaspects. 

• Compile and test. 

6.5.4 Pull Up Inter-type Declaration 

Typical situation 

An inter-type declaration would be best placed in the superaspect. 

Recommended action 

Move the inter-type declaration to the superaspect. 

Motivation 

The pull up or push down of inter-type declarations presents issues not generally found in 
other aspect constructs. For this reason, the applicability of this refactoring is more 
restricted than for other Pull Up refactorings. The main motivation of other Pulls is the 
factoring out of commonality out of duplicated code. Occasionally it is also convenient to 
move an element to the superaspect even when there is no duplication, because we simply 
think it is best placed there. This refactoring applies to only this last case. The main reason 
why this is so, is the fact that the number of instances of the introduced member is 
different, depending on where the inter-type declaration is placed in the aspect inheritance 
chain.  

Target objects (i.e. instances of classes affected by the inter-type declaration) will have one 
separate instance of the inter-type member for each subaspect. If the various inter-type 
declarations are factored out to a single declaration in a superaspect, the target objects will 
have a single instance of the introduced member. This situation is roughly similar to when 
an instance member is turned into a static member. Such a transformation is not likely to 
be behaviour preserving, particularly when applied to fields. Also, keep in mind that two or 
more inter-type declarations of the same member will conflict with each other if their 
scopes of visibility overlap. Consequently, if several subaspects declare the same member, 
those members must be private to the subaspects (this would present an additional hurdle, 
if the mechanics entailed first making them public). 

Preconditions 

In the general case, this refactoring can be used only when there is a single instance of the 
inter-type declaration to pull up. Otherwise, whenever inter-type members include both 
fields and methods, deal with the fields first, using Replace Inter-type Field with Aspect 
Map (118) as a follow-up (the inter-type methods may themselves be replaced by something 
else during that process). Pull Up Inter-type Declaration can also be applied to duplicated inter-
type methods that do not refer to inter-type fields. 
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Mechanics 

• Create a new inter-type declaration in the superclass. If the declaration is private, 
relax the access to public and use Introduce Aspect Protection (116). 

• Delete the inter-type declaration in the subaspect. 

• Compile and test. 

6.5.5 Pull Up Marker Interface 

Typical situation 

All subaspects use a marker interface to model the same role. 

Recommended action 

Move the marker interfaces to the superaspect. 

Motivation 

This refactoring contributes to extract a reusable superaspect out of two or more concrete 
subaspects that duplicate some logic.  

Preconditions 

Marker interfaces do not generally need to declare signatures. If the interface is not blank, 
consider first refactoring the code in order to remove the signatures. 

Mechanics 

• Inspect all uses of the interfaces to ensure the roles they model are indeed the 
same. Ensure they have the same name. 

• Create a new interface in the superaspect. If the interfaces are private, you will need 
to change them to protected. 

• Delete the subaspect interfaces. 

• Compile and test. 

Example 

 
public abstract aspect AbstractMediation { 
 //... 
} 
 
public aspect MediationCase1 extends AbstractMediation { 
 private interface Mediator { } 
 //... 
} 
 
public aspect MediationCase2 extends AbstractMediation { 
 private interface Mediator { } 
 //... 
} 

 
public abstract aspect AbstractMediation { 
 protected interface Mediator { } 
 //... 
} 
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public aspect MediationCase1 extends AbstractMediation { 
 protected interface Mediator { } 
 //... 
} 
 
public aspect MediationCase2 extends AbstractMediation { 
 protected interface Mediator { } 
 //... 
} 

6.5.6 Pull Up Pointcut 

Typical situation 

All subaspects declare identical pointcuts. 

Recommended action 

Move the pointcuts to the superaspect. 

Motivation 

The mechanics of this refactoring have strong similarities with that of Pull Up Method ([47], 
p.322). 

Mechanics 

• Inspect the pointcuts to ensure they are identical. If the pointcuts are similar but 
not identical, first see if both capture the same set of joinpoints. Next, change one 
of them into the other. If the pointcuts have different signatures, change the 
signatures to the one you intend to use in the superaspect. 
Often, the pointcuts relate to the same concept and have the same signature, but 
capture different sets of joinpoints in each specific case. In such cases keep the 
pointcuts in the subaspects and place an abstract declaration in the superaspect.  

• Create a copy of the new pointcut in the superaspect. If the pointcuts are private or 
package protected classify the new pointcut as protected. If the pointcut uses other 
pointcuts that are present in the aspects but not in the superaspect, declare the 
corresponding abstract pointcuts on the superaspect. 

• Delete the pointcuts in the subaspects. 

• Compile and test. 

6.5.7 Push Down Advice 

Typical situation 

A piece of advice is used by only some subaspects, or each subaspect requires a different 
advice. 

Recommended action 

Move the advice to the subaspects that use it. 

Motivation 

This situation can arise when we discover that a supposedly reusable piece of advice does 
not cover all cases after all. Since there is no polymorphism with advice, you cannot 
override the advice with a case-specific advice in the subaspect. In these cases, it is 
necessary to place a version of the advice in each subaspect. 
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Mechanics 

• Copy the advice to each subaspect. Check for any imports that the subaspects may 
require resolving the advice’s code. 

• Remove the advice from the superaspect. Check for any imports that may no 
longer be needed. 

• Compile and test. 

Example 

This example is taken from the complete refactoring process described in Chapter 7. 

The following advice comes from ObserverProtocol, the reusable aspect for the Observer 
pattern created by Hannemann and Kiczales [60]: 
 
public abstract aspect ObserverProtocol { 
 //... 
 after(Subject s): subjectChange(s) { 
  Iterator iter = getObservers(s).iterator(); 
  while ( iter.hasNext() ) { 
   updateObserver(s, ((Observer)iter.next())); 
  } 
 } 

Suppose you want to implement a use case similar to Eckel’s flower example of the same 
pattern [39], in which observers are notified only the first time a distinct event occurs, 
avoiding repeated notifications when the same event occurs without other events in 
between. We copy the advice to the subaspect and remove it from ObserverProtocol: 
 
public abstract aspect ObserverProtocol { 
 //... 
 
public aspect ObservingOpen extends ObserverProtocol { 
 //... 
 after(Subject s): subjectChange(s) { 
  Iterator iter = getObservers(s).iterator(); 
  while ( iter.hasNext() ) { 
   updateObserver(s, ((Observer)iter.next())); 
  } 
 } 

You can then add the intended functionality. Naturally, if you have several other subaspects 
of ObserverProtocol that are quite happy to use the former advice, it would be bad style to 
duplicate the advice in each of them. In such cases, it is preferable to parameterise the 
additional behaviour in the advice. 

6.5.8 Push Down Declare Parents 

Typical situation 

A ‘declare parents’ in a superaspect is not relevant for all the subaspects. 

Recommended action 

Move the ‘declare parents’ to the subaspects where it is relevant. 

Motivation 

Push Down Declare Parents is the opposite of Pull Up Declare Parents (130). Declare parent 
clauses are more likely to be found in case-specific concrete subaspects than in abstract 
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superaspects. The concrete aspects are used to inherit some reusable logic from an abstract 
aspect, and the latter does not generally includes ‘declare parents’ clauses. 

Mechanics 

• Add the ‘declare parents’ in all subaspects that require it. Compile and test. 

• Remove the ‘declare parents’ from the superaspect. Compile and test. 

6.5.9 Push Down Inter-type Declaration 

Typical situation 

An inter-type declaration would be best placed in a subaspect. 

Recommended action 

Move the inter-type declaration to the subaspect where it is relevant. 

Motivation 

The pull up or push down of inter-type declarations presents issues not generally found in 
other aspect constructs. It is possible to declare the same member in multiple aspects, but 
their visibility scopes cannot overlap and therefore they must be private. In addition, 
pushing down an inter-type declaration entails replacing a single instance (per target object) 
of the member common to all subaspects with multiple instances (per target object), one 
for each subaspect. In the case of fields, this transformation is not behaviour preserving. 
The same applies to the opposite refactoring, Pull Up Inter-type Declaration (131). In the case 
of methods, Push Down Declare Parents risks leading to duplication. 

Preconditions 

For the above reasons, this refactoring should be used to push down inter-type declarations 
found in a single subaspect. 

Mechanics 

• Copy the declaration in the subaspect. 

• Remove the declaration from the superaspect. 

• Compile and test. 

6.5.10 Push Down Marker Interface 

Typical situation 

A marker interface declared within a superaspect models a role used only in some 
subaspects. 

Recommended action 

Move the marker interface to those subaspects. 

Motivation 

Push Down Marker Interface is the opposite of Pull Up Marker Interface (132), and can be used 
to reverse its effects when they do not turn out as expected. 
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Preconditions 

Inspect the superaspect to ensure it does not include any references to the marker 
interface, besides the declaration itself. If the interface is not private, also ensure no client 
code refers to the interface as belonging to the superaspect. 

Mechanics 

• Declare the marker interface in each of the superaspects. 

• Delete the declaration from the superaspect. 

• Compile and test. 

6.5.11 Push Down Pointcut 

Typical situation 

A pointcut in the superaspect is not used by some subaspects inheriting it. 

Recommended action 

Move the pointcut to those subaspects that use it. 

Motivation 

A pointcut represents a set of interesting events that should trigger some response on the 
part of the aspects. Placing the pointcut in an abstract aspect leads programmers to assume 
that those events are interesting to any descendent of the abstract aspect. When that is not 
so, it can lead to confusion. If some of the aspects do not need the pointcut at all, this is an 
instance of Refused Bequest ([47], p.87) applied to pointcuts. As with the traditional instances 
of this smell, it is advisable to analyse the specific case to be sure this smell is worth 
cleaning. 

In case only the concrete aspects know what are the interesting events, leave a protected 
abstract declaration of the pointcut in the superaspect. In addition, there are cases when 
the pointcut to be pushed down is used by advice or other pointcuts in the superaspect. 
These cases also require an abstract declaration of the pointcut. 

Keep in mind that any inherited abstract declaration must be concretised in all concrete 
subaspects. If you really want to refuse the bequest you can override the inherited pointcut 
with one that doesn't captures any joinpoints, such as in the example below. However, this 
solution does not remove the Refused Bequest smell, and it would be best to use it only as a 
stopgap. 
 
public abstract AbstractAspect { 
 protected abstract pointcut refusedBequest(<parameters>); 
 
public ConcreteAspect extends AbstractAspect { 
 protected pointcut refusedBequest(<parameters>): !within(*); 

Mechanics 

• Declare the pointcut in all subaspects. 

• Remove the pointcut from the superaspect. Leave an abstract declaration if one of 
the cases requiring one applies. 

• Compile and test. 
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• If you did not leave an abstract declaration in the superaspect, remove the pointcut 
from any subaspect that does not need it. 

6.6. Dealing with Legacy Code 
The single refactoring covered in this section was specifically designed for dealing with 
legacy code with published interfaces29. By published interfaces, we mean APIs that are 
used by clients outside the control of the developer, meaning that the developer is not 
authorised or unable to change. 

6.6.1 Partition Constructor Signature 

Typical situation 

A constructor initialises members related to a concern being extracted to an aspect. The 
initialisations use some of the constructor's parameters, which are not required when the 
concern being extracted is not present. 

Recommended action 

Create in the class a constructor devoid of any code relative to the extracted concern, 
including the arguments. Replace the code from original constructor that is not related to 
the extracted concern with a call to the new constructor. Move the original constructor to 
the aspect. 

Motivation 

This awkward situation arises when an interface is tangled with various concerns but for 
some reason cannot be changed, or we want to avoid our refactorings to impact on client 
code. 

This refactoring cannot be applied if the constructor passes arguments to a super call. 
Consider simplifying the hierarchy in other ways, for instance resorting to one of the 
creational patterns proposed in [48]. 

Mechanics 

• Create a new constructor in the class, with a shortened argument list, without the 
arguments related to the crosscutting concern. 

• Move to the new constructor all the statements not related to the crosscutting 
concern. 

• Place a call to this as the first statement in the original constructor, passing only the 
parameters not related to the crosscutting concern. 

• Move the original, modified constructor to the aspect. 

• Append ‘.new’ after the original constructor's name in the aspect. For instance, 
suppose arg1 is not related to the crosscutting concern: 
//In the aspect 
public SomeClass.new(Type1 arg1, Type2 arg2) { 
 this(arg1); 
} 

                                                 
29 This refactoring was derived from the case study described in Chapter 3. The research relating to the 

specific problems of legacy code was not developed further. 
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• In case the aspect is placed in a separate package, check if the constructor’s class is 
declared in the aspect’s import section. Check also if all imports in the host class 
are still necessary: some may have been needed only for arguments moved to the 
aspect. 

• Compile and test. 

Example 

 
public class TangledStack { 
 //... 
 public TangledStack(JFrame frame) { 
  elements = new Object[S_SIZE]; 
  frame.getContentPane().add(_label); 
  text.setText("[]"); 
  frame.getContentPane().add(_text); 
 } 
 //... 
} 

 
public class TangledStack { 
 //... 
 public TangledStack() { 
  elements = new Object[S_SIZE]; 
 } 
 //... 
} 
 
public aspect WindowView { 
 //... 
 public TangledStack.new(JFrame frame) { 
  this(); 
  frame.getContentPane().add(_label); 
  _text.setText("[]"); 
  frame.getContentPane().add(_text); 
 } 
 //... 
} 

A more complete example using this refactoring can be found in the example section of 
Extract Feature into Aspect (90). 
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Chapter 7. Validating Example: 
Refactoring Observer 

This Chapter describes in detail a complete refactoring process using 17 of the refactorings 
proposed in the previous Chapter, serving as a first validation of the refactorings30. The 
example is based on a Java implementation of the Observer design pattern ([48], pp.293-
303) by Bruce Eckel [39], which is refactored into a different implementation in AspectJ. 
From a certain point, the refactoring process is broken into two alternative paths. The first 
path is performed solely in terms of the original code. The second path takes advantage of 
the reusable aspect from the AspectJ implementation by Hannemann and Kiczales [60]. 
Both paths lead to solutions that broadly correspond to the same design. 

Note that “refactoring” was here taken in the strict sense, with all its implications. These 
include the following: 

• All code transformations are performed in small steps. 

• The program is kept in a compilable and running state throughout the entire 
process (i.e. after each refactoring step is completed). 

• Preservation of behaviour is validated by unit tests (most of the time, just one is 
used) that must run successfully as soon as each transformation is completed. 

• No new functionality is introduced during the refactoring process. 

This example is also useful to illustrate how the capabilities of a programming language 
have a profound influence on the design of programs written in that language, and even on 
the very idea of what comprises a good design. Though AspectJ is backwards compatible 
with Java, the two designs are profoundly different. This is compounded by 
implementation issues. The original Java design uses the Observable and Observer types 
from Java’s java.util API, while the AspectJ design relies on internal collections owned by 
aspects. Consequently, the structural changes made during the refactoring process are very 
deep. 

This Chapter is structured as follows. Section 7.1 describes the Observer design pattern. 
Section 7.2 describes the specific instance of Observer that is used as the starting point of 
the refactoring processes described in this Chapter. Sections 7.3 and 7.4 discuss issues of 
the Java implementation of that instance. Section 7.5 describes the test used throughout the 
process to ensure preservation of behaviour. Section 7.6 describes the AspectJ 
implementation that comprises the desirable end of the refactoring processes. Section 7.7 
describes the refactoring processes. 

7.1. The Observer Design Pattern 
The intent of Observer design pattern (also known as Publish-Subscribe) is to “define a 
one-to-many dependence between objects so that when one object changes state, all its 
dependents are notified and updated automatically” [48]. The pattern defines the role of 
subject as the object that generates events that are of interest to several other objects, which 
play the role of observers. Many implementations of this pattern usually include an extra field 
                                                 
30 This refactoring process is also documented in a eclipse project that includes 33 complete snapshots of the 

example’s code. The project is available in www.di.uminho.pt/~jmf/PUBLI/papers/ObserverExample.zip 
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in each of the objects playing the subject role, holding the list of its observers. Observers 
are added to the list by an attach operation and can be removed from the list by a detach 
operation. When the subject gives rise to one of the interesting events – usually a change in 
its state – it must call a notify operation, which comprises traversing the list of registered 
observers and performing the update operation on each of them (see Figure 12, which is 
similar to that used in [48]). 

+Attach(in Observer)
+Detach(in Observer)
+Notify()

Subject

for all o in observers {
   o->Update()
}

+Update()

Observer

+Update()
-observerState
ConcreteObserver

+GetState()
+SetState()

-subjectState
ConcreteSubject

return subjectState

observerState =
   subject->GetState()

 

Figure 12: Structure for the Observer Design Pattern. 

The example in the GoF book [48] is coded in C++ and therefore is based on abstract 
classes to represent the roles of subject and observer. With Java, it is usual to represent 
these roles through interfaces. In each case, the implementing classes are called concrete 
subject and concrete observer, respectively. 

Each observer class defines the specific reaction of their instances to being notified by the 
update operation. What qualifies as an interesting event is exclusively determined by the 
points where the calls to the notify method are made, so programmers must ensure that 
such calls are made consistently and in all suitable places. In large systems, this may 
comprise hundreds or thousands of calls, scattered throughout dozens or hundreds of 
packages. Therefore, ensuring consistency in large systems is hard and error-prone. For the 
same reason, switching from one implementation to another in large systems is a hard and 
tedious task. 

7.2. The Flower Example 
The subject in Eckel’s flower example [39] is one instance of a class representing a flower. 
Its interesting events are its two operations: open its petals and close them. These are 
observed by instances of two unrelated types: bees and humming birds. When the flower 
opens its petals, its observers have breakfast. When the flower closes its petals, its 
observers go to sleep. These reactions are represented by simple messages sent to the 
console. Each of the two flower operations gives rise to a different observing relationship, 
as the observers react differently to the two events and it is possible to support one 
relationship without supporting the other. Reactions of the observers are represented by 
simple messages sent to the console. The system also ensures that the observers only react 
once to each operation. For instance, if the flower executes the open operation twice with 
no close in between, the observers only react to the first open (as we’re going to see, this 
places an additional hurdle to the refactoring process, as the AspectJ implementation did 
not take this issue into account). The example includes one flower, one bee and one bird. 
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7.3. The Java Standard API Observer-Observable Protocol 
Java’s java.util API provides a ready-made implementation of the Observer pattern, 
comprising the Observer interface and the Observable class. 

Subject classes must inherit from Observable, which provides the logic to manage the list 
of subscribed observers. Subject objects notify their observers of an interesting event by 
calling the notifyObservers method, with one of the following alternative signatures: 
 
public void notifyObservers(Object arg) 
public void notifyObservers()  // equivalent to notifyObservers(null) 

This method only notifies the observers if the object was previously marked as having been 
changed, by executing the setChanged method. Observer classes must implement the 
Observer interface, which declares an update method, with the following signature: 
 
void update(Observable o, Object arg) 

Subjects can use the second parameter of type Object to pass data to its observers. In order 
to be general-purpose, the parameter must accept any type, which in Java means 
java.lang.Object. This provides the necessary flexibility but has the disadvantage of placing 
this parameter outside the reach of the type-checker. It is the programmer’s responsibility 
to ensure that subjects and its observers use the same runtime type consistently31. The 
update method contains the actions of the observer objects when they are notified of an 
interesting event, usually a change in the state of the subject. What qualifies as interesting is 
exclusively determined by the calls to this method, made by the objects playing the subject 
role. Programmers using this protocol must ensure that such calls are made in all suitable 
places. This includes calling the setChanged method. In very large systems, this may mean 
hundreds or thousands of calls, scattered throughout dozens or hundreds of packages. This 
of course means that it would be very hard to switch from one implementation to another 
after the system’s structure is in place. 

Besides the usual problems of code scattering and tangling, this Java solution also has the 
following disadvantages: 

• Classes playing the Subject role loose the option of inheriting from some other 
class, because their “single slot of inheritance” is taken by java.util.Observable. The 
observer participants are less limited because they merely implement the 
java.util.Observer interface. Even so, this contributes to clutter their ‘implements’ 
clause with an interface unrelated to class’ primary concern. 

• Inheriting from java.util.Observable increases the memory footprint of each 
instance. Objects playing this role must carry the extra state throughout their entire 
life cycle, even if they only use it during certain phases. 

• Use of inheritance also means that all instances of the subclasses of 
java.util.Observable will carry the extra state, even if only a subset of the instances 
participates in observing relationships. 

• This mechanism does not separate multiple observing relationships. If the instances 
of a class play the subject role in various observing relationships, their observers 
will be notified of the events relating to all of them, and will need to run extra logic 
in order to distinguish one interesting event from the others. It is possible to 
ameliorate this problem by making the subject pass itself as argument in the version 

                                                 
31 This is one of many instances which can benefit from generic types, in order to bring type safety without 

compromising flexibility. 
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of notifyObservers with two arguments, but this merely pushes the filtering logic 
from the subjects to the observers. 

7.4. The Original Java Implementation 
Listing 24 shows the subject class Flower. Listing 25 shows the observer class Bee and 
Listing 26 shows the other observer class (Hummingbird), which is similar. 

Eckel’s design partially circumvents the limitations stated above. The design relies on inner 
classes to isolate, within each class, the code related to the pattern. Instead of directly 
extending the Observer or the Observable types, each of the participants includes an inner 
class that either extends Observable (in the case of subjects) of implements Observer (in 
the case of the observers). Each participant contains one inner class for each of the 
observing relationships. Inner classes provide users of Java a very limited form of multiple 
inheritance, in that inner classes can refer to the members of its enclosing class, even 
private ones. They are still free to inherit from some other class, so they enable the 
enclosing class to make a part of itself inherit from a given class while remaining free to use 
the more traditional use of inheritance. Eckel used this mechanism in both the subject and 
the observer participants. 

This design has the advantage of freeing subjects to inherit from some class useful to their 
implementations other than java.util.Observable (though this particular example does not 
take advantage of this). It also avoids cluttering the observer’s implements clause with one 
more interface. The design manages to localise, within each class, the code related to the 
pattern, but it also produces an even tighter structural relationship between the participants 
and the roles they play in the pattern. This places additional hurdles in a refactoring process 
aiming to switch to another design. 

What even this clever design cannot achieve is full obliviousness [45] from the pattern 
roles. All three participant classes betray the Double Personality (78) smell, i.e. each 
participant contains code related to more than one concern. There is still code tangling, 
because each participant class contains code related to two concerns – the primary concern 
and the role in the pattern. Any method of the subject class – Flower (see Listing 24) – 
performing an interesting operation must still include code relative to the subject role. 
There is still code scattering, because code dealing with the pattern is not modularised. 
Each participant contains one inner class for each of the observing relationships. There is 
much duplication32, which is particularly noticeable in the two observer classes – Bee and 
Hummingbird (see Listing 25 and Listing 26) – which require four inner classes between 
them. Each class duplicates the code related to the two observing relationships and each 
observing relationship requires a duplication of essentially the same logic. 

Note that each of the two observing relationships needs to observe both the open and 
close actions, though for different purposes. This is due to the requirement that an 
observer only reacts to the first occurrence of an operation. If a flower executes its close 
method twice without executing open in between, registered observers only react to the 
first close. Observers of the open operation need to be notified of close, so they know if an 
open is the first to execute or not. Likewise, observations of close must be notified of open 
to know when an execution of close is the first or not. 

                                                 
32 Naturally, we ignore the fact that the two observers are almost identical, as that duplication is specific to the 

present example. 
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public class Flower { 
 private boolean isOpen; 
 private OpenNotifier oNotify = new OpenNotifier(); 
 private CloseNotifier cNotify = new CloseNotifier(); 
 
 public Flower() { 
  isOpen = false; 
 } 
 public void open() { // Opens its petals 
  System.out.println("Flower open."); 
  isOpen = true; 
  oNotify.notifyObservers(); 
  cNotify.open(); 
 } 
 public void close() { // Closes its petals 
  System.out.println("Flower close."); 
  isOpen = false; 
  cNotify.notifyObservers(); 
  oNotify.close(); 
 } 
 public Observable opening() { 
  return oNotify; 
 } 
 public Observable closing() { 
  return cNotify; 
 } 
 private class OpenNotifier extends Observable { 
  private boolean alreadyOpen = false; 
  public void notifyObservers() { 
   if(isOpen && !alreadyOpen) { 
    setChanged(); 
    super.notifyObservers(); 
    alreadyOpen = true; 
   } 
  } 
  public void close() { 
   alreadyOpen = false; 
  } 
 } 
 private class CloseNotifier extends Observable { 
  private boolean alreadyClosed = false; 
  public void notifyObservers() { 
   if(!isOpen && !alreadyClosed) { 
    setChanged(); 
    super.notifyObservers(); 
    alreadyClosed = true; 
   } 
  } 
  public void open() { 
   alreadyClosed = false; 
  } 
 } 
} 

Listing 24: Initial (tangled) form of the Flower subject class. 
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public class Bee { 
 private String name; 
 private OpenObserver openObsrv = new OpenObserver(); 
 private CloseObserver closeObsrv = new CloseObserver(); 
 
 public Bee(String nm) { 
  name = nm; 
 } 
 // An inner class for observing openings: 
 private class OpenObserver implements Observer { 
  public void update(Observable ob, Object a) { 
   System.out.println( 
    "Bee " + name + "'s breakfast time!"); 
  } 
 } 
 // Another inner class for closings: 
 private class CloseObserver implements Observer{ 
  public void update(Observable ob, Object a) { 
   System.out.println( 
    "Bee " + name + "'s bed time!"); 
  } 
 } 
 public Observer openObserver() { 
  return openObsrv; 
 } 
 public Observer closeObserver() {  
  return closeObsrv; 
 } 
} 

Listing 25: Initial (tangled) form of the Bee observer class. 

 
public class Hummingbird { 
 private String name; 
 private OpenObserver openObsrv = new OpenObserver(); 
 private CloseObserver closeObsrv = new CloseObserver(); 
 
 public Hummingbird(String nm) { 
  name = nm; 
 } 
 private class OpenObserver implements Observer{ 
  public void update(Observable ob, Object a) { 
   System.out.println( 
    "Hummingbird " + name + "'s breakfast time!"); 
  } 
 } 
 private class CloseObserver implements Observer{ 
  public void update(Observable ob, Object a) { 
   System.out.println( 
    "Hummingbird " + name + "'s bed time!"); 
  } 
 } 
 public Observer openObserver() { 
  return openObsrv; 
 } 
 public Observer closeObserver() { 
  return closeObsrv; 
 } 
} 

Listing 26: Initial (tangled) version of the Hummingbird observer class 
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7.5. Unit-Testing the Flower Example 
The example uses a JUnit test throughout33. It is an adapted version of the original test 
provided by Eckel. Listing 27 shows a fragment of that test, which in this example also 
doubles as client code. 
 
public class TestObservedFlower extends TestCase { 
 Flower f = new Flower(); 
 Bee ba = new Bee("A"), bb = new Bee("B"); 
 Hummingbird hx = new Hummingbird("X"), hy = new Hummingbird("Y"); 
 
 public void test() { 
  f.opening().addObserver(ba.openObserver()); 
  f.opening().addObserver(bb.openObserver()); 
  f.opening().addObserver(hx.openObserver()); 
  f.opening().addObserver(hy.openObserver()); 
 
  f.closing().addObserver(ba.closeObserver()); 
  f.closing().addObserver(bb.closeObserver()); 
  f.closing().addObserver(hx.closeObserver()); 
  f.closing().addObserver(hy.closeObserver()); 
  // Hummingbird Y decides to sleep in: 
  f.opening().deleteObserver( 
   hy.openObserver()); 
  // A change that interests observers: 
  f.open(); 
  f.open(); // It's already open, no change. 
  // Bee A doesn't want to go to bed: 
  f.closing().deleteObserver( 
   ba.closeObserver()); 
  f.close(); 
  f.close(); // It's already closed; no change 
  f.opening().deleteObservers(); 
  f.open(); 
  f.close(); 
 } 

Listing 27: Test method used throughout as client code. 

There was no need for the test to be in plain Java for the purposes of this refactoring 
example. We took the advantage of AspectJ’s capabilities to solve a few hurdles related to 
the adaptation of the original test. In its original form, Eckel’s unit test printed the various 
messages to the console but did not use JUnit’s assertion mechanism. This went against our 
aim of making the test fully automatic (i.e. without any output to the console), at least when 
running it in the test mode (it would run in the “normal”, or application, mode when 
executing the static main method). Using plain Java, this would entail removing the test’s 
output to the console, but those messages were also the ones that would need to collect in 
the test string, so that in the end it could be compared with a standard string. On the other 
hand, it would be convenient to be able to see the output in the console when running the 
test in application mode (i.e. calling the test class’s static main method). 

We solved these hurdles by placing two inner aspects within the test class. The first aspect 
suppresses output to the console when the test is running in test mode (in order to make it 
automatic), and leaves the messages in place when it is running in application mode (i.e. 
when it runs from the context of the static main method). The second collects the output 
into a string and provides a getter method through which the string can be obtained. It 

                                                 
33 This test implements an use case, rather than test an individual class or method. For this reason, it is 

adequate to regard it as a functional test rather than an unit test, even if it is implemented with JUnit. We 
considered the test sufficient to guarantee preservation of behaviour in this simple example. 
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looked sensible to place the aspects inside the test class because they are intended to be 
active only when the test class itself is included in the system’s build34. 

The test uses the technique of collecting into a string the test’s output, and then comparing 
it with a standard string containing the expected output. Any changes in the string betray a 
change in the behaviour of the participant objects. The test was indeed useful to warn of 
changes in the program’s behaviour on several occasions35. 

Though the aspects were originally made with a specific test in mind, it did not escape us 
that they have a potential to be reusable. For that reason, we placed the generally applicable 
parts in a separate package (called util). Though we did not specifically strive for fully 
reusable aspects when they were created, they proved to be sufficiently general to be reused 
in various refactoring sessions performed on different source bases, including the ones 
presented in this Chapter. Here, we show them exactly as they were used throughout the 
refactoring sessions. 

The structure of these aspects is the usual in these cases: an abstract aspect containing the 
reusable parts and concrete aspects containing the case-specific parts. Listing 28 shows the 
abstract aspect for suppressing output and Listing 29 shows the abstract aspect for 
collecting output. 
 
package util; 
 
/** 
 * This aspect supresses output from objects when they do NOT originate 
 * from joinpoints captured by the abstract pointcut scopeException() 
 */ 
public abstract aspect OutputSupress { 
 /** 
  * Specifies a set of joinpoits that are exempt from the 
  * output supression. 
  */ 
 protected abstract pointcut scopeException(); 
 
 /** 
  * Captures calls to console 
  */ 
 public pointcut allSysOutPrintsWithException(): 
  Pointcuts.allCalls2SystemOutPrints() 
  && !scopeException(); 
 
 /** 
  * Deactivate messages to the console 
  */ 
 void around(): allSysOutPrintsWithException() { 
  //null op 
 } 
} 

Listing 28: OutputSupress abstract aspect 

We dot not consider these aspects fully reusable because not all possible output cases are 
covered by the pointcuts. Nevertheless, some of the pointcuts used – 
call2SystemOutPrintln and allCalls2SystemOutPrints, related to calls to System.out – 
                                                 
34 Note that the fact that an aspect is enclosed within a class does not place limits on the scope of joinpoints 

it can affect. 
35 The most notable situation in which the unit test warned that something was amiss was when an obvious 

error was purposely introduced in the code and yet the test passed. It turned out that we were changing the 
sources from one of the snapshots we were keeping to register the various stages of the refactoring process. 
This warning was useful to make us be on our guard in relation to this kind of mistake. 
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showed such a potential to be reused that we felt it worthwhile to place them in a separate 
aspect containing useful pointcuts, placed in the same package (Listing 30). The intent of 
this aspect is to hold all pointcuts that promise to be useful in various situations. 

The initial form of the complete unit test, including the inner concrete aspects that extend 
the two abstract aspects OutputSupress and OutputCapture, is shown in Listing 31. The 
inner aspects define the case-specific pointcuts scopeException and printScope. Note that 
SpecificOutputCapture declares precedence over SpecificOutputSuppress, ensuring that 
the first aspect has the opportunity to capture the messages sent to the console before the 
SpecificOutputSuppress eliminates these joinpoints. 
 
package util; 
 
public abstract aspect OutputCapture { 
 protected static String resultStr = ""; 
 
 public abstract pointcut printScope(); 
 
 public pointcut messagesFromSystemOutPrintln(Object message): 
  Pointcuts.call2SystemOutPrintln() 
  && printScope() 
  && args(message); 
 
 /** 
  * Capture all messages from System.out.println(Object) 
  */ 
 void around(Object message): messagesFromSystemOutPrintln(message) { 
  resultStr += message.toString() + "\n"; 
  proceed(message); 
 } 
 public static String getResult() { 
  return resultStr; 
 } 
 public static void clearResult() { 
  resultStr = ""; 
 } 
 public static void printResult() { 
  System.out.println("\nCAPTURED OUTPUT:[" + resultStr + "]"); 
 } 
} 

Listing 29: OutputCapture abstract aspect 

 
package util; 
 
public aspect Pointcuts { 
 public pointcut call2SystemOutPrintln(): 
  call(public void java.io.PrintStream.println(Object+)); 
 
 public pointcut allCalls2SystemOutPrints(): 
  call(public void java.io.PrintStream.print*(..)); 
} 

Listing 30: Pointcut aspect of generally applicable pointcuts 
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public class TestObservedFlower extends TestCase { 
 Flower f = new Flower(); 
 Bee ba = new Bee("A"), bb = new Bee("B"); 
 Hummingbird hx = new Hummingbird("X"), hy = new Hummingbird("Y"); 
 public void test() { 
  f.opening().addObserver(ba.openObserver()); 
  f.opening().addObserver(bb.openObserver()); 
  f.opening().addObserver(hx.openObserver()); 
  f.opening().addObserver(hy.openObserver()); 
 
  f.closing().addObserver(ba.closeObserver()); 
  f.closing().addObserver(bb.closeObserver()); 
  f.closing().addObserver(hx.closeObserver()); 
  f.closing().addObserver(hy.closeObserver()); 
  // Hummingbird Y decides to sleep in: 
  f.opening().deleteObserver(hy.openObserver()); 
  // A change that interests observers: 
  f.open(); 
  f.open(); // It's already open, no change. 
  // Bee A doesn't want to go to bed: 
  f.closing().deleteObserver(ba.closeObserver()); 
  f.close(); 
  f.close(); // It's already closed; no change 
  f.opening().deleteObservers(); 
  f.open(); 
  f.close(); 
  String testStr = 
   "Flower open.\n" + 
   "Hummingbird X's breakfast time!\n" + 
   "Bee B's breakfast time!\n" + 
   "Bee A's breakfast time!\n" + 
   "Flower open.\n" + 
   "Flower close.\n" + 
   "Hummingbird Y's bed time!\n" + 
   "Hummingbird X's bed time!\n" + 
   "Bee B's bed time!\n" + 
   "Flower close.\n" + 
   "Flower open.\n" + 
   "Flower close.\n" + 
   "Hummingbird Y's bed time!\n" + 
   "Hummingbird X's bed time!\n" + 
   "Bee B's bed time!\n"; 
  Assert.assertEquals(testStr, SpecificOutputCapture.getResult()); 
 } 
 
 /** This inner aspect supresses output from objects within this package 
  *  when they do NOT originate from within the control flow of main()    */ 
 private static aspect SpecificOutputSuppress extends OutputSupress { 
  protected pointcut scopeException(): 
   cflow(execution( 
    public static void TestObservedFlower*.main(String[]) 
    )); 
 } 
 
 private static aspect SpecificOutputCapture extends OutputCapture { 
  declare precedence: TestObservedFlower.SpecificOutputCapture, 
           TestObservedFlower.SpecificOutputSuppress; 
  public pointcut printScope(): 
   !within(TestObservedFlower.SpecificOutputCapture); 
 } 
 
 public static void main(String args[]) { 
  junit.textui.TestRunner.run(TestObservedFlower.class); 
 } 
} 

Listing 31: Test class for the Flower example of the Observer pattern 
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7.6. The Reusable AOP Implementation of  Observer 
The AspectJ implementation proposed in [60] follows the same structural pattern as the 
aspects used in the test presented above: an abstract (and potentially reusable) aspect – 
ObserverProtocol – dealing with the parts common to all cases (see Listing 32), and a 
concrete subaspect dealing with case-specific parts (see Listing 33 for one specific 
example36, taken from [60]). The common parts are: 

• The subject and observer roles, modelled by inner (marker) interfaces Subject and 
Observer. 

• Maintenance of a mapping from subjects to observers, implemented with a weak 
hash map, the perSubjectObservers field. 

• The update logic, in which changes in the subject trigger updates in the observers. 
This is modelled by a single abstract pointcut subjectChange and the advice acting 
on its joinpoints. 

The parts specific to each individual case are: 

• Binding the subject and observer roles to the concrete classes, implemented with 
‘declare parents’ clauses. 

• The set of changes on the subject that are of interest to its observers, implemented 
by a concrete definition of the abstract pointcut subjectChange. 

• The specific means of updating the observers when the update logic requires it. 
This is implemented by the updateObserver method. 

The most notable thing of the AspectJ implementation is that participant classes become 
completely oblivious to the roles they play in the pattern. None of the disadvantages 
mentioned in relation to the Observer-Observable protocol from the Java standard 
java.lang API applies in this implementation. The classes of participants remain free to 
inherit from other classes, and instances do not expend any additional memory space when 
not participating in observing relationships. The mapping between a subject and its 
observers is maintained by the aspect itself rather than using the mechanism of inter-type 
declarations, which would affect all instances of the introduced classes, throughout their 
entire life cycles. The structure managing the mappings of subjects their list of registered 
observers is defined in the abstract superaspect. One disadvantage of this implementation 
is a possible37 degradation in performance in the case of very large systems involving a very 
large number of participant objects. 

                                                 
36 The sources referred in [60] – labeled version 1.0 – were later updated with a version 1.1. This later version 

was used in this example. 
37 No performance measurement is provided in [60]. 
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import java.util.WeakHashMap; 
import java.util.List; 
import java.util.LinkedList; 
import java.util.Iterator; 
 
public abstract aspect ObserverProtocol { 
 protected interface Subject  { } 
 protected interface Observer { } 
 
 private WeakHashMap perSubjectObservers; 
 
 protected List getObservers(Subject s) { 
  if (perSubjectObservers == null) { 
   perSubjectObservers = new WeakHashMap(); 
  } 
  List observers = (List)perSubjectObservers.get(s); 
  if ( observers == null ) { 
   observers = new LinkedList(); 
   perSubjectObservers.put(s, observers); 
  } 
  return observers; 
 } 
 public void addObserver(Subject s, Observer o) { 
  getObservers(s).add(o); 
 } 
 public void removeObserver(Subject s, Observer o) { 
  getObservers(s).remove(o); 
 } 
 
 protected abstract pointcut subjectChange(Subject s); 
 
 after(Subject s): subjectChange(s) { 
  Iterator iter = getObservers(s).iterator(); 
  while ( iter.hasNext() ) { 
   updateObserver(s, ((Observer)iter.next())); 
  } 
 } 
 
 protected abstract void updateObserver(Subject s, Observer o); 
} 

Listing 32: The reusable ObserverProtocol asbtract aspect 

 
import java.awt.Color; 
import library.ObserverProtocol; 
 
public aspect ColorObserver extends ObserverProtocol { 
 declare parents: Point  implements Subject; 
 declare parents: Screen implements Observer; 
 
 protected pointcut subjectChange(Subject s): 
  call(void Point.setColor(Color)) && target(s); 
 
 protected void updateObserver(Subject s, Observer o) { 
  ((Screen)o).display("Screen updated because color changed."); 
 } 
} 

Listing 33: One concrete subaspect of ObserverProtocol 
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7.7. Refactoring Sessions 
Note that the refactorings described in the next sections follow only a few of many 
possible paths. Though the result should always be similar, it is possible to reach it through 
multiple paths, since each step marks a point from which it is possible to take alternative 
decisions. 

The process presented next has three phases: (1) the extraction of two observing 
relationships into their own aspects – using Extract Feature into Aspect (90) as the general 
framework, (2) next improve their internal structures – by applying Tidy Up Internal Aspect 
Structure (128), and (3) eliminate various duplications between the two resulting aspects by 
applying Extract Superaspect (129). 

The two alternative paths diverge at the start of the second phase. In the first path, we tidy 
up the aspects and use Extract Superaspect (129) to obtain the common superaspect. In the 
second path, we take advantage of the framework provided by the ObserverProtocol 
abstract aspect. In this case, there is no need to specifically apply Extract Superaspect (129) to 
the two aspects, because we add the ObserverProtocol aspect early in the course of this 
refactoring path. 

Code fragments are used to illustrate various details. Changes from the previous state are 
highlighted in bold. 

7.7.1 First Phase: Feature Extraction 

We start by extracting the relationship related with watching Flower.open. There are three 
inner classes related with this concern, Flower.OpenNotifier, Bee.OpenObserver and 
Hummingbird.OpenObserver (see Listings 23-25). We apply Extract Inner Class into 
Standalone (99) to Flower.OpenNotifier, yielding the following standalone class: 
 
import java.util.Observable; 
import java.util.Observer; 
 
public class OpenNotifier extends Observable { 
 private Flower _enclosing; 
 private boolean alreadyOpen = false; 
 public OpenNotifier(Flower flower) { 
  _enclosing = flower; 
 } 
 public void notifyObservers() { 
  if(_enclosing.isOpen() && !this.alreadyOpen) { 
   this.setChanged(); 
   super.notifyObservers(); 
   this.alreadyOpen = true; 
  } 
 } 
 public void close() { 
  this.alreadyOpen = false; 
 } 
} 

This refactoring also entailed the prior extraction, using Extract Method ([47], p.110), of a 
getter method for Flower.isOpen: 
 
public class Flower { 
 private boolean isOpen; 
 private OpenNotifier oNotify = new OpenNotifier(this); 
 //... 
 boolean isOpen() { 
  return isOpen; 
 } 
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Next, we would like to do the same with Bee.OpenObserver and 
Hummingbird.OpenObserver but there are two problems here. One is that each contains 
an action – print a message to the console – that should be considered as part of the 
enclosing class’s primary functionality. This is dealt with by applying Extract Method ([47], 
p.110) to the code fragment in each class. On Bee is as follows: 
 
public class Bee { 
 //... 
 void breakfastTime() { 
  System.out.println("Bee " + name + "'s breakfast time!"); 
 } 
 // An inner class for observing openings: 
 private class OpenObserver implements Observer { 
  public void update(Observable ob, Object a) { 
   breakfastTime(); 
  } 
 } 

On Hummingbird the refactoring is similar: 
 
public class Hummingbird { 
 //... 
 void breakfastTime() { 
  System.out.println("Hummingbird " + name + "'s breakfast time!"); 
 } 
 private class OpenObserver implements Observer{ 
  public void update(Observable ob, Object a) { 
   breakfastTime(); 
  } 
 } 

The other problem is that both classes would have the same name after being turned into 
standalones. Since they are almost identical, it would be simpler to make them the same. 
However, each must hold a field referring to its enclosing class, which are of different 
types. Our solution is to use Extract Interface ([47], p.341) so that the field of inner class can 
be of the resulting interface type. 
 
public interface BreakfastTaker { 
 public void breakfastTime(); 
} 

This in turn forces us to make the breakfastTime methods public. 
 
public class Bee implements BreakfastTaker { 
 //... 
 public void breakfastTime() { 
  //... 
 
public class Hummingbird implements BreakfastTaker { 
 //... 
 public void breakfastTime() { 
  //... 

Next, we apply Extract Inner Class into Standalone (99) and use the new interface as the type 
of the enclosing object. 
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import java.util.Observable; 
import java.util.Observer; 
 
public class OpenObserver implements Observer { 
 private BreakfastTaker _enclosing; 
 public OpenObserver(BreakfastTaker enclosing) { 
  _enclosing = enclosing; 
 } 
 public void update(Observable ob, Object a) { 
  _enclosing.breakfastTime(); 
 } 
} 
 
public class Bee implements BreakfastTaker { 
 //... 
 private OpenObserver openObsrv = new OpenObserver(this); 
 
public class Hummingbird implements BreakfastTaker { 
 //... 
 private OpenObserver openObsrv = new OpenObserver(this); 

The code if now ripe for the extraction of the various elements to an aspect. The blank 
aspect ObservingOpen is created. 
 
public aspect ObservingOpen { 
} 

Next, we apply the following refactorings: 

• Move Field from Class to Inter-type (104) to field Flower.oNotify. The private access of 
oNotify is temporarily relaxed to package-protected. 

• Move Method from Class to Inter-type (106) to the Flower.opening method. 

• Extract Fragment into Advice (94) to the call to Flower.oNotify.notifyObservers. 

• Extract Fragment into Advice (94) to the call to Flower.oNotify.close. 

These refactorings move all code using oNotify to the aspect, so it is now possible to make 
it private again. The aspect now has the following contents: 
 
import java.util.Observable; 
 
public aspect ObservingOpen { 
 private OpenNotifier Flower.oNotify = new OpenNotifier(this); 
 public Observable Flower.opening() { 
  return oNotify; 
 } 
 pointcut flowerOpen(Flower flower): 
  execution(void open()) && this(flower); 
 after(Flower flower) returning : flowerOpen(flower) { 
  flower.oNotify.notifyObservers(); 
 } 
 pointcut flowerClose(Flower flower): 
  execution(void close()) && this(flower); 
 after(Flower flower): flowerClose(flower) { 
  flower.oNotify.close(); 
 } 
} 

Flower became clean of any code related to the first observing relationship: 
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import java.util.Observable; 
import java.util.Observer; 
 
public class Flower { 
 private boolean isOpen; 
 private CloseNotifier cNotify = new CloseNotifier(); 
 
 public Flower() { 
  isOpen = false; 
 } 
 boolean isOpen() { 
  return isOpen; 
 } 
 private void setIsOpen(boolean newValue) { 
  isOpen = newValue; 
 } 
 public void open() { // Opens its petals 
  System.out.println("Flower open."); 
  setIsOpen(true); 
  cNotify.open(); 
 } 
 public void close() { // Closes its petals 
  System.out.println("Flower close."); 
  setIsOpen(false); 
  cNotify.notifyObservers(); 
 } 
 public Observable closing() { 
  return cNotify; 
 } 
 private class CloseNotifier extends Observable { 
  private boolean alreadyClosed = false; 
  public void notifyObservers() { 
   if(!isOpen() && !alreadyClosed) { 
    setChanged(); 
    super.notifyObservers(); 
    alreadyClosed = true; 
   } 
  } 
  public void open() { 
   alreadyClosed = false; 
  } 
 } 
} 

The next step is to extract from the observer classes Bee and Hummingbird all the 
remaining elements related to this concern. We apply Move Field from Class to Inter-type (104) 
to Bee.openObsrv. As often happens with private fields, this forces us to relax the access 
from private to package-protected. As recommended by Move Field from Class to Inter-
type (104), the following ‘declare warning’ was created: 
 
 declare warning: 
  get(OpenObserver Bee.openObsrv) 
  && !within(ObservingOpen): 
  "field Bee.openObsrv accessed outside aspect."; 

The ‘declare warning’ signalled an occurrence of the field outside the aspect, in the 
Bee.openObserver method. This method also belongs to this concern, so we move it next, 
using Move Method from Class to Inter-type (106). After compiling again, there was no more 
warnings, so the ‘declare warning’ is removed and the access to openObsrv field is made 
private again. Next, similar refactorings are applied to Hummingbird. After this, the 
observers are devoid of any code related the first observation relationship, save for the 
implements clause referring to BreakfastTaker: 
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public class Bee implements BreakfastTaker { 
 private String name; 
 private CloseObserver closeObsrv = new CloseObserver(); 
 
 public Bee(String nm) { 
  name = nm; 
 } 
 public void breakfastTime() { 
  System.out.println("Bee " + name + "'s breakfast time!"); 
 } 
 // Another inner class for closings: 
 private class CloseObserver implements Observer{ 
  public void update(Observable ob, Object a) { 
   System.out.println("Bee " + name + "'s bed time!"); 
  } 
 } 
 public Observer closeObserver() {  
  return closeObsrv; 
 } 
} 
 
public class Hummingbird implements BreakfastTaker { 
 private String name; 
 private CloseObserver closeObsrv = new CloseObserver(); 
 
 public Hummingbird(String nm) { 
  name = nm; 
 } 
 public void breakfastTime() { 
  System.out.println("Hummingbird " + name + "'s breakfast time!"); 
 } 
 private class CloseObserver implements Observer{ 
  public void update(Observable ob, Object a) { 
   System.out.println("Hummingbird " + name + "'s bed time!"); 
  } 
 } 
 public Observer closeObserver() {  
  return closeObsrv; 
 } 
} 

At this point, the aspect contains the following code: 
import java.util.Observable; 
import java.util.Observer; 
 
public aspect ObservingOpen { 
 private OpenNotifier Flower.oNotify = new OpenNotifier(this); 
 private OpenObserver Hummingbird.openObsrv = new OpenObserver(this); 
 private OpenObserver Bee.openObsrv = new OpenObserver(this); 
 public Observable Flower.opening() { 
  return oNotify; 
 } 
 public Observer Hummingbird.openObserver() {  
  return openObsrv; 
 } 
 pointcut flowerOpen(Flower flower): execution(void open()) && this(flower); 
 after(Flower flower) returning : flowerOpen(flower) { 
  flower.oNotify.notifyObservers(); 
 } 
 pointcut flowerClose(Flower flower):  
  execution(void close()) && this(flower); 
 after(Flower flower): flowerClose(flower) { 
  flower.oNotify.close(); 
 } 
 public Observer Bee.openObserver() {  
  return openObsrv;  
 } 
} 
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The next task comprises the extraction of the second observing relationship into a second 
aspect, which comprises a similar sequence of steps. Naturally, this exposes a significant 
amount of duplication between the two aspects. This can be dealt with after both concerns 
are modularised within their respective aspects. The following steps are: 

• Apply Extract Inner Class to Standalone (99) to the CloseNotifier class within Flower. 

• Create a new blank aspect ObservingClose. 

• Apply Move Field from Class to Inter-type (104) to the field Flower.cNotify, whose 
access is temporarily relaxed from private to package-protected. Using this 
refactoring entails creating a ‘declare warning’ which exposes three points in Flower 
still using the field. 

• Apply Move Method From Class to Inter-type (106) to Flower.closing. This removes one 
of the warnings. The import statements in Flower can now be removed. 

• Apply Extract Fragment into Advice (94) to the calls to cNotify.open and cNotify. 
notifyObservers. This removes the two remaining warnings, so the field 
Flower.cNotify is made private again and the ‘declare warning’ is removed. 

From this point on, Flower is clean of any code related to observing relationships (see 
Listing 34). 
 
public class Flower { 
 private boolean isOpen; 
 
 public Flower() { 
  isOpen = false; 
 } 
 boolean isOpen() { 
  return isOpen; 
 } 
 private void setIsOpen(boolean newValue) { 
  isOpen = newValue; 
 } 
 public void open() { // Opens its petals 
  System.out.println("Flower open."); 
  setIsOpen(true); 
 } 
 public void close() { // Closes its petals 
  System.out.println("Flower close."); 
  setIsOpen(false); 
 } 
} 

Listing 34: Clean version of the Flower class. 

Next, we deal with the remaining code in the observer participants, Bee and Hummingbird. 
The first thing is to unify both CloseObserver inner classes within Bee and Hummingbird 
so that Extract Inner Class into Standalone (99) can be applied to both classes simultaneously, 
yielding a single standalone class. This entails (1) applying Extract Method ([47], p.110) to 
create the bedtimeSleep method in each of them, (2) use Extract Interface ([47], p.341) to 
extract BedtimeSleep. This repeats the actions that resulted in the extraction of the 
breakfastTime method and in the creation of the BreakfastTaker interface: 
 
public interface BedtimeSleeper { 
 public void bedtimeSleep(); 
} 

Now we can use Extract Inner Class into Standalone (99) to both CloseObserver inner classes 
to produce the following common standalone class: 
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import java.util.Observer; 
import java.util.Observable; 
 
public class CloseObserver implements Observer { 
 private BedtimeSleeper _enclosing; 
 public CloseObserver(BedtimeSleeper enclosing) { 
  _enclosing = enclosing; 
 } 
 public void update(Observable ob, Object a) { 
  _enclosing.bedtimeSleep(); 
 } 
} 

We then move all remaining members related to the extracted concern to the second 
aspect: 

• Apply Move Field From Class to Inter-type (104) to Bee.closeObsrv. 

• Apply Move Method From Class to Inter-type (106) to Bee.closeObserver. 

• Apply Move Field From Class to Inter-type (104) to Hummingbird.closeObsrv. 

• Apply Move Method From Class to Inter-type (106) to Hummingbird.closeObserver. 

The import statements in Bee and Hummingbird can now be removed. The only remaining 
code in the participants relating to the observing relationships is the implements clauses 
referring to BreakfastTaker and BedtimeSleeper. We now use Replace Implements with Declare 
Parents (108) to both Bee and Hummingbird, relative to these interfaces. 
 
public aspect ObservingOpen { 
 declare parents: (Bee || Hummingbird) implements BreakfastTaker; 
 
public aspect ObservingClose { 
 declare parents: (Bee || Hummingbird) implements BedtimeSleeper; 

Now all participants are completely free of any code related to extracted concerns (see 
Listings 34-36). 
 
public class Bee { 
 private String name; 
 
 public Bee(String nm) { 
  name = nm; 
 } 
 public void breakfastTime() { 
  System.out.println("Bee " + name + "'s breakfast time!"); 
 } 
 public void bedtimeSleep() { 
  System.out.println( "Bee " + name + "'s bed time!"); 
 } 
} 

Listing 35: Clean version of the Bee class 
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public class Hummingbird { 
 private String name; 
 
 public Hummingbird(String nm) { 
  name = nm; 
 } 
 public void breakfastTime() { 
  System.out.println("Hummingbird " + name + "'s breakfast time!"); 
 } 
 public void bedtimeSleep() { 
  System.out.println("Hummingbird " + name + "'s bed time!"); 
 } 
} 

Listing 36: Clean version of the Hummingbird class 

The refactorings made until now cleaned the participant’s code but it also created several 
standalone classes and interfaces that provide little functionality. In addition, these are used 
only by the aspects. Therefore we proceed to inline them, which has the advantage that 
absolutely all the code related to the concerns is now within the two aspects, which makes 
it easier to reason with. 

We thought of inlining the interfaces first, but then we noticed we couldn’t, because the 
former inner classes OpenObserver and CloseObserver depend on them. So we inline 
these classes first, as well as OpenNotifier and CloseNotifier, using Inline Class within 
Aspect (102) for each of them in turn. Next, we inline the BreakfastTaker and 
BedtimeSleeper interfaces, using Inline Interface within Aspect (103). All code related to the 
two concerns is finally completely modularised within their respective aspects (see Listing 
37). 
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import java.util.Observable; 
import java.util.Observer; 
 
public aspect ObservingOpen { 
 private interface BreakfastTaker { 
  public void breakfastTime(); 
 } 
 declare parents: (Bee || Hummingbird) implements BreakfastTaker; 
 
 static class OpenNotifier extends Observable { 
  private Flower _enclosing; 
  private boolean alreadyOpen = false; 
  public OpenNotifier(Flower flower) { 
   _enclosing = flower; 
  } 
  public void notifyObservers() { 
   if(_enclosing.isOpen() && !this.alreadyOpen) { 
    this.setChanged(); 
    super.notifyObservers(); 
    this.alreadyOpen = true; 
   } 
  } 
  public void close() { 
   this.alreadyOpen = false; 
  } 
 } 
 static class OpenObserver implements Observer { 
  private BreakfastTaker _enclosing; 
  public OpenObserver(BreakfastTaker enclosing) { 
   _enclosing = enclosing; 
  } 
  public void update(Observable ob, Object a) { 
   _enclosing.breakfastTime(); 
  } 
 } 
 private OpenNotifier Flower.oNotify = new OpenNotifier(this); 
 private OpenObserver Hummingbird.openObsrv = new OpenObserver(this); 
 private OpenObserver Bee.openObsrv = new OpenObserver(this); 
 
 public Observable Flower.opening() { 
  return oNotify; 
 } 
 pointcut flowerOpen(Flower flower): 
  execution(void open()) && this(flower); 
 after(Flower flower) returning : flowerOpen(flower) { 
  flower.oNotify.notifyObservers(); 
 } 
 pointcut flowerClose(Flower flower): 
  execution(void close()) && this(flower); 
 after(Flower flower): flowerClose(flower) { 
  flower.oNotify.close(); 
 } 
 
 public Observer Bee.openObserver() { 
  return openObsrv; 
 } 
 public java.util.Observer Hummingbird.openObserver() { 
  return openObsrv; 
 } 
} 

Listing 37: ObservingOpen just after the extraction process. 
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7.7.2 Second Phase: Restructure the Internals of  the Aspect 

As can be attested from examining Listing 37, the internal structure of the aspects is 
confusing. It contains much duplication, as well as several inner classes and interfaces for 
whose existence there is no longer a compelling reason (particularly if we want to do 
without the Observer/ Observable pair from java.util). In addition, both aspects betray the 
Aspect Laziness (80) smell. The next phase of this refactoring process is to improve the 
internal structure of the aspects, by eliminating duplication and Aspect Laziness (80). 

Let’s briefly consider the available options when working with a traditional OO system. 
Suppose we’re dealing with a concern whose implementation code is scattered throughout 
many classes and packages and we would like to replace it. What would be the right 
approach? An adequate answer, particularly when the system is large, would be to add a 
new layer abstracting the details of the existing implementation. This would make the 
scattered implementation easier to replace, but it would entail the patient refactoring of the 
system until the new layer completely hides all specific details. The refactoring process 
would be supported by tests targeting the new layer. When the layer is in place, the 
developers could develop a new implementation, side-by-side with the old one, against the 
new layer’s interface. They would leverage the tests so that they could run them against 
both the old implementation and the new. As soon as the new implementation is complete, 
it becomes possible to switch modules and rebuild the system with the new 
implementation. With large systems, such a process can take months. 

When the concern is modularised, we have more options. We can (1) continue to refactor 
the aspects’ internals in order to transform the existing implementation into the one we 
want, but it is also feasible to (2) simply develop a new aspect from scratch or take an off-
the-shelf solution, and plug it in the system in place of the old. What is shown next is the 
first option. 

Tidying Up the Aspect 

The next step is to use Tidy Up Internal Aspect Structure (128) on each of them in turn. Not 
only will this make their internal structures better organised, it will make them more 
amenable to later apply Extract Superaspect (129), in order to eliminate the duplication that 
exists between them. We next show the refactoring of one aspect38, ObservingOpen. When 
that process is completed, a similar one is carried out on ObservingClose. 

We start by using Generalise Target Type with Marker Interface (113) to expose the duplication 
in inter-type declarations resulting from Extract Feature into Aspect (90). This entails creating 
the inner marker interfaces within the aspects that represent the pattern roles – subject and 
observer. 
 
public aspect ObservingOpen { 
 private interface Subject {} 
 private interface Observer {} 
 
 declare parents: Flower implements Subject; 
 declare parents: (Bee || Hummingbird) implements Observer; 

This causes a name conflict because the aspect now contains two elements named 
Observer. We resolve this by removing the import to java.util.Observer and making all 
references specify the full compound name. 
 

                                                 
38 We adopted this strategy to ensure that if some hurdle would arise, there would be a need to backtrack only 

once. Provided the first refactoring is successful, it is easier to repeat the steps with the second case, relying 
on the experience gained from the first. 
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import java.util.Observable; 
import java.util.Observer; 
 
public aspect ObservingOpen { 
 //... 
 static class OpenNotifier extends Observable { 
  //... 
 } 
 static class OpenObserver implements Observer { 
  //... 
 } 
 //... 
 public Observable Flower.opening() { 
  return oNotify; 
 } 
 //... 
 public Observer Bee.openObserver() {  
  return openObsrv;  
 } 
 public Observer Hummingbird.openObserver() {  
  return openObsrv; 
 } 
} 

 
import java.util.Observable; 
import java.util.Observer; 
 
public aspect ObservingOpen { 
 //... 
 static class OpenNotifier extends java.util.Observable { 
  //... 
 } 
 static class OpenObserver implements java.util.Observer { 
  //... 
 } 
 //... 
 public java.util.Observable Flower.opening() { 
  return oNotify; 
 } 
 //... 
 public java.util.Observer Bee.openObserver() {  
  return openObsrv;  
 } 
 public java.util.Observer Hummingbird.openObserver() {  
  return openObsrv; 
 } 
} 

We first apply Generalise Target Type with Marker Interface (113) to the Flower type. We replace 
all references to Flower with Subject, including inside the inner class OpenNotifier. This 
results in a compiler error, because the Subject interface does not declare the isOpen 
method, used by OpenNotifier. 
 
public aspect ObservingOpen { 
 //... 
 static class OpenNotifier extends java.util.Observable { 
  private Subject _enclosing; 
  private boolean alreadyOpen = false; 
 
  public void notifyObservers() { 
   if(_enclosing.isOpen() && !this.alreadyOpen) { 
    this.setChanged(); 
    super.notifyObservers(); 
    this.alreadyOpen = true; 
   } 
  } 
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We use Extend Marker Interface with Signature (113) as a stopgap (since we plan to remove 
OpenNotifier and the other inner classes shortly after). 
 
public aspect ObservingOpen { 
 //... 
 public abstract boolean Subject.isOpen(); 

This in turn forces us to make the Flower.isOpen method public. 
 
public class Flower { 
 //... 
 public boolean isOpen() { 
  return isOpen; 
 } 

We next apply Generalise Target Type with Marker Interface (113) to Bee and Hummingbird. 
This enables us to remove the inner interface BreakfastTaker, because we can now use 
Observer in its place. We also need to use Extend Marker Interface with Signature (113) again, 
to extend Observer with the case-specific signature of breakfastTime. 
 
 private interface BreakfastTaker { 
  public void breakfastTime(); 
 } 
 
 declare parents: (Bee || Hummingbird) implements BreakfastTaker; 
 
 static class OpenObserver implements java.util.Observer { 
  private BreakfastTaker _enclosing; 
  public OpenObserver(BreakfastTaker enclosing) { 
   _enclosing = enclosing; 
  } 
  public void update(java.util.Observable ob, Object a) { 
   _enclosing.breakfastTime(); 
  } 
 } 

 
 private interface BreakfastTaker { 
  public void breakfastTime(); 
 } 
 public abstract void Observer.breakfastTime(); 
 
 static class OpenObserver implements java.util.Observer { 
  private Observer _enclosing; 
  public OpenObserver(Observer enclosing) { 
   _enclosing = enclosing; 
  } 
  public void update(java.util.Observable ob, Object a) { 
   _enclosing.breakfastTime(); 
  } 
 } 

This step also eliminated some duplication in the openObserver method, which is 
introduced twice (to the Bee and Hummingbird classes). 
 
 public java.util.Observer Bee.openObserver() {  
  return openObsrv;  
 } 
 public java.util.Observer Hummingbird.openObserver() {  
  return openObsrv; 
 } 

 
 public java.util.Observer Observer.openObserver() {  
  return openObsrv; 
 } 
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The aspect now only refers to the concrete participants in the ‘declare parents’ clause (see 
Listing 38). 
 
public aspect ObservingOpen { 
 private interface Subject {} 
 private interface Observer {} 
 
 declare parents: Flower implements Subject; 
 declare parents: (Bee || Hummingbird) implements Observer; 
 
 public abstract boolean Subject.isOpen(); 
 
 public abstract void Observer.breakfastTime(); 
 
 static class OpenNotifier extends java.util.Observable { 
  private Subject _enclosing; 
  private boolean alreadyOpen = false; 
  public OpenNotifier(Subject flower) { 
   _enclosing = flower; 
  } 
  public void notifyObservers() { 
   if(_enclosing.isOpen() && !this.alreadyOpen) { 
    this.setChanged(); 
    super.notifyObservers(); 
    this.alreadyOpen = true; 
   } 
  } 
  public void close() { 
   this.alreadyOpen = false; 
  } 
 } 
 static class OpenObserver implements java.util.Observer { 
  private Observer _enclosing; 
  public OpenObserver(Observer enclosing) { 
   _enclosing = enclosing; 
  } 
  public void update(java.util.Observable ob, Object a) { 
   _enclosing.breakfastTime(); 
  } 
 } 
 private OpenNotifier Subject.oNotify = new OpenNotifier(this); 
 private OpenObserver Observer.openObsrv = new OpenObserver(this); 
 
 public java.util.Observable Subject.opening() { 
  return oNotify; 
 } 
 pointcut flowerOpen(Subject subject): 
  execution(void open()) && this(subject); 
 after(Subject subject) returning : flowerOpen(subject) { 
  subject.oNotify.notifyObservers(); 
 } 
 pointcut flowerClose(Subject subject): 
  execution(void close()) && this(subject); 
 after(Subject subject): flowerClose(subject) { 
  subject.oNotify.close(); 
 } 
 
 public java.util.Observer Observer.openObserver() {  
  return openObsrv; 
 } 
} 

Listing 38: ObservingOpen aspect after using Generalise Target Type with Marker 
Interface 
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The next step is to remove Aspect Laziness (80), by replacing the inter-type state and 
behaviour with similar, but dynamic functionality. When everything is in place, we can 
replace in the client code (in this case the JUnit test) the calls to the original inter-type 
methods to calls to new aspect methods. To some extent, what follows is an elaborated 
instance of Replace Inter-type Field with Aspect Map (118), using Replace Inter-type Method with 
Aspect Method (125) as a follow-up. The difference in this case is that they target inner 
classes rather than inter-type fields. This step adds a mapping structure to the aspect, as 
well as its associated logic. 
 
import java.util.WeakHashMap; 
import java.util.List; 
import java.util.ArrayList; 
 
public aspect ObservingOpen { 
 //... 
 private WeakHashMap subject2ObserversMap = new WeakHashMap(); 
 
 private List getObservers(Subject subject) { 
  List observers = (List)subject2ObserversMap.get(subject); 
  if(observers == null) { 
   observers = new ArrayList(); 
   subject2ObserversMap.put(subject, observers); 
  } 
  return observers; 
 } 
 public void addObserver(Subject subject, Observer observer) { 
  List observers = getObservers(subject); 
  if(!observers.contains(observer)) 
   observers.add(observer); 
  subject2ObserversMap.put(subject, observers); 
 } 
 public void removeObserver(Subject subject, Observer observer) { 
  getObservers(subject).remove(observer); 
 } 
 public void clearObservers(Subject subject) { 
  getObservers(subject).clear(); 
 } 

As prescribed in Replace Inter-type Method with Aspect Method (125), we add a notifyObservers 
method to the aspect, providing the same functionality as OpenNotifier.notifyObservers. 
The new method uses a new boolean field that we introduce to Subject, used for the same 
purposes as OpenNotifier. 
 
 private boolean Subject.alreadyOpen = false; 
 
 private void notifyObservers(Subject subject) { 
  if(subject.isOpen() && !subject.alreadyOpen) { 
   subject.alreadyOpen = true; 
   List observers = getObservers(subject); 
   for(ListIterator it = observers.listIterator(); it.hasNext();) { 
    ((Observer)it.next()).breakfastTime(); 
   } 
  } 
 } 

Also as prescribed in Replace Inter-type Method with Aspect Method (125), we add a ‘declare 
warning’ exposing all places where the old logic is placed. This ‘declare warning’ targets the 
Subject.opening method, which is the accessor method for the instance of the inner class 
OpenNotifier. 
 
 declare warning: call(java.util.Observable opening()): 
  "opening() called here."; 
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Compiling again exposes six warnings, all placed in the unit test. We proceed to replace the 
original calls with calls to the aspect logic: 
 
 public void test() { 
  f.opening().addObserver(ba.openObserver()); 
  f.opening().addObserver(bb.openObserver()); 
  f.opening().addObserver(hx.openObserver()); 
  f.opening().addObserver(hy.openObserver()); 
 
  f.closing().addObserver(ba.closeObserver()); 
  f.closing().addObserver(bb.closeObserver()); 
  f.closing().addObserver(hx.closeObserver()); 
  f.closing().addObserver(hy.closeObserver()); 
  // Hummingbird Y decides to sleep in: 
  f.opening().deleteObserver(hy.openObserver()); 
 
  // A change that interests observers: 
  f.open(); 
  f.open(); // It's already open, no change. 
  // Bee A doesn't want to go to bed: 
  f.closing().deleteObserver(ba.closeObserver()); 
  f.close(); 
  f.close(); // It's already closed; no change 
  f.opening().deleteObservers(); 

 
 public void test() { 
  ObservingOpen.aspectOf().addObserver(f, ba); 
  ObservingOpen.aspectOf().addObserver(f, bb); 
  ObservingOpen.aspectOf().addObserver(f, hx); 
  ObservingOpen.aspectOf().addObserver(f, hy); 
 
  f.closing().addObserver(ba.closeObserver()); 
  f.closing().addObserver(bb.closeObserver()); 
  f.closing().addObserver(hx.closeObserver()); 
  f.closing().addObserver(hy.closeObserver()); 
  // Hummingbird Y decides to sleep in: 
  ObservingOpen.aspectOf().removeObserver(f, hy); 
 
  // A change that interests observers: 
  f.open(); 
  f.open(); // It's already open, no change. 
  // Bee A doesn't want to go to bed: 
  f.closing().deleteObserver(ba.closeObserver()); 
  f.close(); 
  f.close(); // It's already closed; no change 
  ObservingOpen.aspectOf().clearObservers(f); 

When we run the test, the red flag appears: the test failed. After analysing the results, we 
learn that the problem is due to the two implementations traversing the list of observers in 
opposite orders. This is not an important issue in this case, so we solve the problem by 
reversing the order in which the observers are subscribed: 
 
  ObservingOpen.aspectOf().addObserver(f, hy); 
  ObservingOpen.aspectOf().addObserver(f, hx); 
  ObservingOpen.aspectOf().addObserver(f, bb); 
  ObservingOpen.aspectOf().addObserver(f, ba); 

We compile and test again: the test passes. If we do not attach importance to the order in 
which the observers are notified, the refactored implementation can now be considered as 
providing the same behaviour as before. After deleting all the code related to the original 
implementation, ObservingOpen is as shown in Listing 39. 
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public aspect ObservingOpen { 
 private interface Subject {} 
 private interface Observer {} 
 
 declare parents: Flower implements Subject; 
 declare parents: (Bee || Hummingbird) implements Observer; 
 
 public abstract boolean Subject.isOpen(); 
 public abstract void Observer.breakfastTime(); 
 
 static class OpenNotifier extends java.util.Observable { 
  private Subject _enclosing; 
  private boolean alreadyOpen = false; 
  public OpenNotifier(Subject flower) { 
   _enclosing = flower; 
  } 
  public void notifyObservers() { 
   if(_enclosing.isOpen() && !this.alreadyOpen) { 
    this.setChanged(); 
    super.notifyObservers(); 
    this.alreadyOpen = true; 
   } 
  } 
  public void close() { 
   this.alreadyOpen = false; 
  } 
 } 
 static class OpenObserver implements java.util.Observer { 
  private Observer _enclosing; 
  public OpenObserver(Observer enclosing) { 
   _enclosing = enclosing; 
  } 
  public void update(java.util.Observable ob, Object a) { 
   _enclosing.breakfastTime(); 
  } 
 } 
 private OpenNotifier Subject.oNotify = new OpenNotifier(this); 
 private OpenObserver Observer.openObsrv = new OpenObserver(this); 
 
 public java.util.Observable Subject.opening() { 
  return oNotify; 
 } 
 pointcut flowerOpen(Subject subject): execution(void open()) && 
this(subject); 
 after(Subject subject) returning : flowerOpen(subject) { 
  subject.oNotify.notifyObservers(); 
 } 
 pointcut flowerClose(Subject subject): execution(void close()) && 
this(subject); 
 after(Subject subject): flowerClose(subject) { 
  subject.oNotify.close(); 
 } 
 public java.util.Observer Observer.openObserver() {  
  return openObsrv; 
 } 
} 

Listing 39: ObservingOpen after being completely tidied up 
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Tidying Up the Second Aspect 

Improving the internal structure of ObservingClose takes essentially the same steps as with 
ObservingOpen. Briefly, these are: 

• Eliminate the imports to java.util.Observable and java.util.Observer, changing the 
code to make direct references to the complete name. 

• Start applying Generalise Target Type with Marker Interface (113), which entails the prior 
creation of private inner interfaces Observer and Subject. 

• Apply Generalise Target Type with Marker Interface (113) to Flower: replacing references 
to this type with Subject. Extend Marker Interface with Signature (113) is used to 
introduce the isOpen method to Subject, as was done with the first aspect. 

• Apply Generalise Target Type with Marker Interface (113) to Bee and Hummingbird, 
which are replaced by Observer. During this process the BedtimeSleeper interface 
is eliminated, as well as the corresponding ‘declare parents’. Extend Marker Interface 
with Signature (113) is used again to introduce the bedtimeSleep method to 
Observer. 

• Use Replace Inter-type Field with Aspect Map (118) with Replace Inter-type Method with 
Aspect Method (125) to add the new implementation to ObservingClose. Following 
Replace Inter-type Method with Aspect Method (125), a ‘declare warning’ is added to 
expose calls to the closing accessor method for the CloseNotifier object: 

 
    declare warning: 
    call(java.util.Observable closing()): 
    "closing() called here."; 

• Following the places exposed by the ‘declare warning’, the calls in client (test) code 
are replaced. Again, we reverse the order in which the observers are registered. We 
remove the ‘declare warning’ and compile, and the test runs successfully. 

After these transformations, ObservingClose is as shown in Listing 40. 
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import java.util.WeakHashMap; 
import java.util.List; 
import java.util.ArrayList; 
import java.util.ListIterator; 
 
public aspect ObservingClose { 
 private interface Subject {} 
 private interface Observer {} 
 
 public abstract boolean Subject.isOpen(); 
 public abstract void Observer.bedtimeSleep(); 
 private boolean Subject.alreadyClosed = false; 
 
 private WeakHashMap subject2ObserversMap = new WeakHashMap(); 
 
 private List getObservers(Subject subject) { 
  List observers = (List)subject2ObserversMap.get(subject); 
  if(observers == null) { 
   observers = new ArrayList(); 
   subject2ObserversMap.put(subject, observers); 
  } 
  return observers; 
 } 
 public void addObserver(Subject subject, Observer observer) { 
  List observers = getObservers(subject); 
  if(!observers.contains(observer)) 
   observers.add(observer); 
  subject2ObserversMap.put(subject, observers); 
 } 
 public void removeObserver(Subject subject, Observer observer) { 
  getObservers(subject).remove(observer); 
 } 
 public void clearObservers(Subject subject) { 
  getObservers(subject).clear(); 
 } 
 private void notifyObservers(Subject subject) { 
  if(!subject.isOpen() && !subject.alreadyClosed) { 
   subject.alreadyClosed = true; 
   List observers = getObservers(subject); 
   for(ListIterator it = observers.listIterator(); it.hasNext();) { 
    ((Observer)it.next()).bedtimeSleep(); 
   } 
  } 
 } 
 pointcut flowerOpen(Subject subject): 
  execution(void open()) && this(subject); 
 after(Subject subject) returning : flowerOpen(subject) { 
  subject.alreadyClosed = false; 
 } 
 pointcut flowerClose(Subject subject): 
  execution(void close()) && this(subject); 
 after(Subject subject): flowerClose(subject) { 
  notifyObservers(subject); 
 } 
 
 declare parents: Flower implements Subject; 
 declare parents: (Bee || Hummingbird) implements Observer; 
} 

Listing 40: ObservingClose after being completely tidied up 
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7.7.3 Third Phase: Extracting Common Code to a Superaspect 

Taken individually, the aspects just refactored are better formed. Together, they betray a 
strong dose of the Duplicated Code smell. As Beck and Fowler state in [47], page 76: “If you 
see the same code structure in more than one place, you can be sure that your program will 
be better if you find a way to unify them”. Therefore, the next task is clear: eliminate the 
Duplicated Code smell, by eliminating the duplication that exists between ObservingOpen 
and ObservingClose. This is done using Extract Superaspect (129) to create a superaspect and 
pull the common logic up to it. This is done through the following steps: 

• Create the ObservingRelationships blank abstract aspect. 

• Aspects ObservingOpen and ObservingClose are made to extend 
ObservingRelationships. 

• Use Pull Up Marker Interface (132) on the Subject and Observer inner interfaces of 
both aspects, to move them to ObservingRelationships. Their access is relaxed 
from private to protected. 

• Use Pull Up Field ([47], p.320) on the subject2ObserversMap fields of both aspects. 

• Use Pull Up Method ([47], p.322) on the methods getObservers, addObserver, 
removeObserver and clearObservers of both aspects. 

We would like to use Pull Up Method ([47], p.322) on the notifyObservers method as well, 
but this depends on case-specific members in various points of the method. The 
notifyObservers method from ObservingOpen uses the isOpen and breakfastTime 
methods and the alreadyOpen field, and ObservingClose has similar dependencies. For this 
reason we leave an abstract declaration of notifyObservers in the superaspect. 

We also have the option of using Pull Up Pointcut (133) to the flowerOpen and flowerClose 
pointcuts, but as they are case-specific. We should at most place abstract declarations in the 
superaspect. We refrain from doing that at this stage. This is one of the advantages of 
refactoring: decisions are not set in stone, and one can always change its mind later, and 
then refactor. Therefore, the aspects take the final forms as shown in Listing 41, Listing 42 
and Listing 43. 
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import java.util.WeakHashMap; 
import java.util.List; 
import java.util.ArrayList; 
import java.util.ListIterator; 

public abstract aspect ObservingRelationships { 
 protected interface Subject {} 
 protected interface Observer {} 
 
 protected WeakHashMap subject2ObserversMap = new WeakHashMap(); 
 protected List getObservers(Subject subject) { 
  List observers = (List)subject2ObserversMap.get(subject); 
  if(observers == null) { 
   observers = new ArrayList(); 
   subject2ObserversMap.put(subject, observers); 
  } 
  return observers; 
 } 
 public void addObserver(Subject subject, Observer observer) { 
  List observers = getObservers(subject); 
  if(!observers.contains(observer)) 
   observers.add(observer); 
  subject2ObserversMap.put(subject, observers); 
 } 
 public void removeObserver(Subject subject, Observer observer) { 
  getObservers(subject).remove(observer); 
 } 
 public void clearObservers(Subject subject) { 
  getObservers(subject).clear(); 
 } 
 protected abstract void notifyObservers(Subject subject); 
} 

Listing 41: ObservingRelationships abstract aspect 

import java.util.WeakHashMap; 
import java.util.List; 
import java.util.ArrayList; 
import java.util.ListIterator; 

public aspect ObservingOpen extends ObservingRelationships { 
 public abstract boolean Subject.isOpen(); 
 public abstract void Observer.breakfastTime(); 
 private boolean Subject.alreadyOpen = false; 
 
 protected void notifyObservers(Subject subject) { 
  if(subject.isOpen() && !subject.alreadyOpen) { 
   subject.alreadyOpen = true; 
   List observers = getObservers(subject); 
   for(ListIterator it = observers.listIterator(); it.hasNext();) { 
    ((Observer)it.next()).breakfastTime(); 
   } 
  } 
 } 
 private pointcut flowerOpen(Subject subject): 
  execution(void open()) && this(subject); 
 after(Subject subject) returning : flowerOpen(subject) { 
  notifyObservers(subject); 
 } 
 protected pointcut flowerClose(Subject subject): 
  execution(void close()) && this(subject); 
 after(Subject subject): flowerClose(subject) { 
  subject.alreadyOpen = false; 
 } 
 
 declare parents: Flower implements Subject; 
 declare parents: (Bee || Hummingbird) implements Observer; 
} 

Listing 42: Final form of the ObservingOpen aspect 
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import java.util.WeakHashMap; 
import java.util.List; 
import java.util.ArrayList; 
import java.util.ListIterator; 
 
public aspect ObservingClose extends ObservingRelationships { 
 public abstract boolean Subject.isOpen(); 
 public abstract void Observer.bedtimeSleep(); 
 private boolean Subject.alreadyClosed = false; 
 
 protected void notifyObservers(Subject subject) { 
  if(!subject.isOpen() && !subject.alreadyClosed) { 
   subject.alreadyClosed = true; 
   List observers = getObservers(subject); 
   for(ListIterator it = observers.listIterator(); it.hasNext();) { 
    ((Observer)it.next()).bedtimeSleep(); 
   } 
  } 
 } 
 private pointcut flowerOpen(Subject subject): 
  execution(void open()) && this(subject); 
 after(Subject subject) returning : flowerOpen(subject) { 
  subject.alreadyClosed = false; 
 } 
 protected pointcut flowerClose(Subject subject): 
  execution(void close()) && this(subject); 
 after(Subject subject): flowerClose(subject) { 
  notifyObservers(subject); 
 } 
 
 declare parents: Flower implements Subject; 
 declare parents: (Bee || Hummingbird) implements Observer; 
} 

Listing 43: Final form of the ObservingClose aspect 

7.7.4 Alternative Refactoring Path 

The previous sections show how to use refactoring to gradually transform an 
implementation in Java into an implementation in AspectJ. However, a reusable aspect 
providing the same functionality [60] – ObserverProtocol – is already available. It is 
reasonable to ask whether would it be possible to take advantage of this aspect while 
refactoring the aspects. That can indeed be accomplished, by including the 
ObserverProtocol abstract aspect at a certain point in the refactoring process. This 
comprises an alternative path to the transformations presented in the previous sections. 

We start at point at which the extraction process (section 7.7.1) was completed. The 
existing structure must be tidied up as was done previously, but in this case 
ObserverProtocol is introduced as a ready-made superaspect, rather than adding similar 
functionality to the existing aspects, which would later need to be extracted into its own 
superaspect. This refactoring process involves adding fewer amounts of new code 
compared to the previous one, because the framework is already set by ObserverProtocol. 
Only the concrete parts are missing. 

Tidying Up the Aspect 

We again use the strategy of tackling one aspect first, and then the other. We start by using 
Tidy Up Internal Aspect Structure (128) on ObervingOpen. This refactoring prescribes the use 
of Generalise Target Type with Marker Interface (113), which requires adding the marker 
interfaces representing the participant roles in the pattern – Subject and Observer. This 
time we don’t have to add them to the aspects as before, because they are already declared 
in ObserverProtocol. Instead, we make ObservingOpen inherit from ObserverProtocol. 
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This in turn forces us to perform several adjustments. One is the conflict caused by two 
elements having the name Observer, which we again resolve by removing the import to 
java.util.Observer and making all references to this interface use the full compound name. 
The other is the creation of the definitions required by the abstract declarations in 
ObserverProtocol – the subjectChange pointcut and the updateObserver method. At this 
stage we start with a blank definition of updateObserver, while subjectChange is already 
created with the expression capturing the events of interest: 
 
 protected pointcut subjectChange(Subject subject): 
  execution(void Subject+.open()) && this(subject); 
 protected void updateObserver(Subject s, Observer o) { } 

At this intermediate stage, ObservingOpen’s internal structure is rather confused, having 
reached its maximum intensity of smells (see Listing 44). Fortunately, modularisation puts 
us in a good position to start rationalising it. 
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import java.util.Observable; 
 
public aspect ObservingOpen extends ObserverProtocol { 
 protected pointcut subjectChange(Subject subject): 
  execution(void Subject+.open()) && this(subject); 
 protected void updateObserver(Subject s, Observer o) { } 
 
 private interface BreakfastTaker { 
  public void breakfastTime(); 
 } 
 declare parents: (Bee || Hummingbird) implements BreakfastTaker; 
 
 static class OpenNotifier extends Observable { 
  private Flower _enclosing; 
  private boolean alreadyOpen = false; 
  public OpenNotifier(Flower flower) { 
   _enclosing = flower; 
  } 
  public void notifyObservers() { 
   if(_enclosing.isOpen() && !this.alreadyOpen) { 
    this.setChanged(); 
    super.notifyObservers(); 
    this.alreadyOpen = true; 
   } 
  } 
  public void close() { 
   this.alreadyOpen = false; 
  } 
 } 
 static class OpenObserver implements java.util.Observer { 
  private BreakfastTaker _enclosing; 
  public OpenObserver(BreakfastTaker enclosing) { 
   _enclosing = enclosing; 
  } 
  public void update(Observable ob, Object a) { 
   _enclosing.breakfastTime(); 
  } 
 } 
 private OpenNotifier Flower.oNotify = new OpenNotifier(this); 
 private OpenObserver Hummingbird.openObsrv = new OpenObserver(this); 
 private OpenObserver Bee.openObsrv = new OpenObserver(this); 
 
 public Observable Flower.opening() { 
  return oNotify; 
 } 
 pointcut flowerOpen(Flower flower): 
  execution(void open()) && this(flower); 
 after(Flower flower) returning : flowerOpen(flower) { 
  flower.oNotify.notifyObservers(); 
 } 
 pointcut flowerClose(Flower flower): 
  execution(void close()) && this(flower); 
 after(Flower flower): flowerClose(flower) { 
  flower.oNotify.close(); 
 } 
 
 public java.util.Observer Bee.openObserver() {  
  return openObsrv;  
 } 
 public java.util.Observer Hummingbird.openObserver() {  
  return openObsrv; 
 } 
} 

Listing 44: ObservingOpen as subaspect of ObserverProtocol 
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The code’s first rationalisation step is to apply Generalise Target Type with Marker 
Interface (113). This entails assigning the roles to the participants by means of a ‘declare 
parents’: 
public aspect ObservingOpen extends ObserverProtocol { 
 declare parents: Flower implements Subject; 
 declare parents: (Bee || Hummingbird) implements Observer; 
 //... 

We apply Generalise Target Type with Marker Interface (113) to the Flower type first. We replace 
all references to Flower with Subject, and again we use Extend Marker Interface with 
Signature (113) to extend Subject with the isOpen signature, which in turn forces us again to 
make the Flower.isOpen method public. 
 
public class Flower { 
 //... 
 public boolean isOpen() { 
  return isOpen; 
 } 
 
public aspect ObservingOpen extends ObserverProtocol { 
 declare parents: Flower implements Subject; 
 declare parents: (Bee || Hummingbird) implements Observer; 
 
 protected pointcut subjectChange(Subject subject): 
  execution(void Subject+.open()) && this(subject); 
 
 protected void updateObserver(Subject s, Observer o) { } 
 
 public abstract boolean Subject.isOpen(); 

Next, we replace references to Bee and Hummingbird with references to the Observer 
marker interface, which again enables us to replace references to the inner interface 
BreakfastTaker with references to Observer, and remove BreakfastTaker, as well as the 
‘declare parents’ based on it. We also use Extend Marker Interface with Signature (113) again, 
this time to extend Observer with the breakfastTime signature. 
 
 public OpenObserver(BreakfastTaker enclosing) { 
  _enclosing = enclosing; 
 } 
 
 static class OpenObserver implements java.util.Observer { 
  private BreakfastTaker _enclosing; 
  public OpenObserver(BreakfastTaker enclosing) { 
   _enclosing = enclosing; 
  } 
  public void update(Observable ob, Object a) { 
   _enclosing.breakfastTime(); 
  } 
 } 

  
 public OpenObserver(BreakfastTaker enclosing) { 
  _enclosing = enclosing; 
 } 
 public abstract void Observer.breakfastTime(); 
 //... 
 static class OpenObserver implements java.util.Observer { 
  private Observer _enclosing; 
  public OpenObserver(Observer enclosing) { 
   _enclosing = enclosing; 
  } 
  public void update(Observable ob, Object a) { 
   _enclosing.breakfastTime(); 
  } 
 } 
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As before, the replacements of Bee and Hummingbird also enable us to eliminate the 
duplication in the introductions of the field openObsrv and the method openObserver to 
Bee and Hummingbird. It is worth noting that passing ‘this’, which now refers to an 
instance of Observer, to the constructor of OpenObserver only resolves because we first 
replaced all references to BreakfastTaker with Observer. 
 
 private OpenObserver Hummingbird.openObsrv = new OpenObserver(this); 
 private OpenObserver Bee.openObsrv = new OpenObserver(this); 
 //... 
 public java.util.Observer Bee.openObserver() {  
  return openObsrv;  
 } 
 public java.util.Observer Hummingbird.openObserver() {  
  return openObsrv; 
 } 

  

 private OpenObserver Observer.openObsrv = new OpenObserver(this); 
 //... 
 public java.util.Observer Observer.openObserver() { 
  return openObsrv;  
 } 

This completes the application of Generalise Target Type with Marker Interface (113) to the 
Flower, Bee and Hummingbird types. From this point on, the participants are referred only 
in the role-assigning ‘declare parents’. In the process, we noticed that the pointcuts 
flowerOpen and subjectChange are identical, so we removed flowerOpen, replacing it by 
subjectChange in the advice. 

Listing 45 shows ObservingOpen at this point. Its internal structure again benefited from 
some tidying up. Further improvements demand that the existing implementation, still 
based on inner classes implementing the Observable/Observer protocol from java.util, be 
replaced by the implementation defined in ObserverProtocol. Only then, it becomes 
possible to remove the inner classes and the dependence on the Observable/Observer 
protocol from java.util. 
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import java.util.Observable; 
 
public aspect ObservingOpen extends ObserverProtocol { 
 protected pointcut subjectChange(Subject subject): 
  execution(void Subject+.open()) && this(subject); 
 protected void updateObserver(Subject s, Observer o) { } 
 
 private interface BreakfastTaker { 
  public void breakfastTime(); 
 } 
 declare parents: (Bee || Hummingbird) implements BreakfastTaker; 
 
 static class OpenNotifier extends Observable { 
  private Flower _enclosing; 
  private boolean alreadyOpen = false; 
  public OpenNotifier(Flower flower) { 
   _enclosing = flower; 
  } 
  public void notifyObservers() { 
   if(_enclosing.isOpen() && !this.alreadyOpen) { 
    this.setChanged(); 
    super.notifyObservers(); 
    this.alreadyOpen = true; 
   } 
  } 
  public void close() { 
   this.alreadyOpen = false; 
  } 
 } 
 static class OpenObserver implements java.util.Observer { 
  private BreakfastTaker _enclosing; 
  public OpenObserver(BreakfastTaker enclosing) { 
   _enclosing = enclosing; 
  } 
  public void update(Observable ob, Object a) { 
   _enclosing.breakfastTime(); 
  } 
 } 
 private OpenNotifier Flower.oNotify = new OpenNotifier(this); 
 private OpenObserver Hummingbird.openObsrv = new OpenObserver(this); 
 private OpenObserver Bee.openObsrv = new OpenObserver(this); 
 
 public Observable Flower.opening() { 
  return oNotify; 
 } 
 pointcut flowerOpen(Flower flower): 
  execution(void open()) && this(flower); 
 after(Flower flower) returning : flowerOpen(flower) { 
  flower.oNotify.notifyObservers(); 
 } 
 pointcut flowerClose(Flower flower): 
  execution(void close()) && this(flower); 
 after(Flower flower): flowerClose(flower) { 
  flower.oNotify.close(); 
 } 
 
 public java.util.Observer Bee.openObserver() {  
  return openObsrv;  
 } 
 public java.util.Observer Hummingbird.openObserver() {  
  return openObsrv; 
 } 
} 

Listing 45: ObservingOpen after some tidying up. 
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An analysis of both implementations reveals a few hurdles. ObserverProtocol expects the 
events triggering the reactions of the observers to be represented by a single pointcut – 
subjectChange – but in this particular case, it is convenient to use two. In addition, this case 
requires that notification of all observers in the subject’s list depend on the result of a test 
(if it is the first time that the event occurs). Only if the test succeeds are the subject’s 
registered observers notified. This test relies on the alreadyOpen field of the OpenNotifier 
inner class. The same functionality can be obtained after moving that field to Flower, as an 
inter-type declaration. The problem is that the point where that test should be made is in 
place within ObserverProtocol, in the advice linked to the subjectChange pointcut: 
 
 protected abstract pointcut subjectChange(Subject s); 
 after(Subject s): subjectChange(s) { 
  Iterator iter = getObservers(s).iterator(); 
  while ( iter.hasNext() ) { 
   updateObserver(s, ((Observer)iter.next())); 
  } 
 } 

This means that ObserverProtocol must be modified so that it can be used in this example. 
Since a subaspect cannot override the advice inherited from its superaspect, the advice 
itself will have to be pushed down from ObserverProtocol to ObservingOpen. There is 
also a piece of functionality missing in ObserverProtocol: the ability to clear all observers 
subscribing to a given subject. We address this last hurdle by adding to ObserverProtocol 
the following method: 
 
public abstract aspect ObserverProtocol { 
 //... 
 public void clearObservers(Subject s) { 
  getObservers(s).clear(); 
 } 

Next, we add a new alreadyOpen field to Subject, as an inter-type declaration.  
 
public aspect ObservingOpen extends ObserverProtocol { 
 //... 
 private boolean Subject.alreadyOpen = false; 

We use Push Down Advice (133) on the advice triggered by subjectChange. ObservingOpen 
now has two pieces of advice on this pointcut, related to the old and new implementations 
respectively. Having two advice of the same kind on the same pointcut is clearly bad style, 
but in this case we tolerate it because the advice related to the old implementation is about 
to be removed. We now add to the new implementation the logic still missing, which relies 
on the alreadyOpen field introduced to Subject. This involves adapting the advice pulled 
down from ObserverProtocol according to the rules of this case: 
 
public aspect ObservingOpen extends ObserverProtocol { 
 //... 
 protected pointcut subjectChange(Subject subject): 
  execution(void Subject+.open()) && this(subject); 
 after(Subject s): subjectChange(s) { 
  Flower f = (Flower)s; 
  if(f.isOpen() && !f.alreadyOpen) { 
   Iterator iter = getObservers(s).iterator(); 
   while ( iter.hasNext() ) { 
    updateObserver(s, ((Observer)iter.next())); 
   } 
  } 
 } 

We add the advice on the pointcut related to the execution of the close method of Flower 
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public aspect ObservingOpen extends ObserverProtocol { 
 //... 
 pointcut flowerClose(Subject flower): 
  execution(void close()) && this(flower); 
 
 after(Subject flower): flowerClose(flower) { 
  if (subject instanceof Flower) { 
   ((Flower)subject).alreadyOpen = false; 
  } 
 } 

We finish this part by filling the aspect method updateObserver with the suitable logic: 
 
public aspect ObservingOpen extends ObserverProtocol { 
 //... 
 protected void updateObserver(Subject s, Observer o) { 
  o.breakfastTime(); 
  ((Flower)s).alreadyOpen = true; 
 } 

The new implementation is ready to be tested. However, we still do not have a test ready, 
because this time the changes impact on client code. This time we choose to create a new 
test rather than changing the existing one. This enables us to backtrack easily, in case 
something unexpected happens. Adding a new test requires a prior restructuring of the test 
class, by factoring out the initialisation code in the setUp method and cleanup code in the 
tearDown method (see Listing 46). Note that both the setUp and tearDown methods are 
called automatically by JUnit’s TestCase class. This is the classic JUnit procedure for 
ensuring that the order of the tests is irrelevant and the tests do not interfere with each 
other. 
 
public class TestObservedFlower extends TestCase { 
 Flower f = new Flower(); 
 Bee ba = new Bee("A"),  
   bb = new Bee("B"); 
 Hummingbird 
  hx = new Hummingbird("X"),  
  hy = new Hummingbird("Y"); 
 public void setUp() { 
  f = new Flower(); 
  ba = new Bee("A");  
  bb = new Bee("B"); 
  hx = new Hummingbird("X");  
  hy = new Hummingbird("Y"); 
 } 
 public void tearDown() { 
  f = null; 
  ba = null;  
  bb = null; 
  hx = null;  
  hy = null; 
  SpecificOutputCapture.clearResult(); 
 } 
 private static String expectedOutput() { 
  return //... 
 } 
 
 public void test() { 
  //... 
 } 
 //... 
} 

Listing 46: Restructured version of test class. 
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We now add a new test (see Listing 47), which is a copy of the original test, but based on 
the new implementation. Note that the test string – returned by the expectedOutput 
method – is the same for both tests, which ensures that the behaviour being tested is the 
same in both cases. We also take the care to reverse the order with which the observers are 
registered, for same reason as before. 
 
public class TestObservedFlower extends TestCase { 
 //... 
 public void test2() { 
  ObservingOpen.aspectOf().addObserver(f, hy); 
  ObservingOpen.aspectOf().addObserver(f, hx); 
  ObservingOpen.aspectOf().addObserver(f, bb); 
  ObservingOpen.aspectOf().addObserver(f, ba); 
 
  f.closing().addObserver(ba.closeObserver()); 
  f.closing().addObserver(bb.closeObserver()); 
  f.closing().addObserver(hx.closeObserver()); 
  f.closing().addObserver(hy.closeObserver()); 
  // Hummingbird Y decides to sleep in: 
  ObservingOpen.aspectOf().removeObserver(f, hy); 
 
  // A change that interests observers: 
  f.open(); 
  f.open(); // It's already open, no change. 
  // Bee A doesn't want to go to bed: 
  f.closing().deleteObserver(ba.closeObserver()); 
 
  f.close(); 
  f.close(); // It's already closed; no change 
  ObservingOpen.aspectOf().clearObservers(f); 
 
  f.open(); 
  f.close(); 
  Assert.assertEquals(expectedOutput(), SpecificOutputCapture.getResult()); 
 } 
 //... 
} 

Listing 47: New test for the second implementation of ObservingOpen. 

We compile and test: it passes. Again, both implementations can now be said to provide 
the same behaviour. 

We now remove the old implementation and the original test. We could consider one last 
tidying to do: the extension of the Observer interface with the breakfastTime method is 
still in place. Though we could replace it with type conversions within the method where it 
is breakfastTime used, it is rather convenient in this case, because it is affecting two 
different and unrelated types. For this reason we choose to leave it there. See Listing 48 for 
the second final version of ObservingOpen. 

We now perform a very similar sequence of steps to the second aspect (see Listing 49), 
only this time there was no need to make any more methods public. The test class also has 
two test methods temporarily, but in the end includes only the one shown in Listing 50. 
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import java.util.Iterator; 
 
public aspect ObservingOpen extends ObserverProtocol { 
 declare parents: Flower implements Subject; 
 declare parents: (Bee || Hummingbird) implements Observer; 
 
 private boolean Subject.alreadyOpen = false; 
 public abstract void Observer.breakfastTime(); 
 
 protected pointcut subjectChange(Subject subject): 
  execution(void Subject+.open()) && this(subject); 
 after(Subject s): subjectChange(s) { 
  Flower f = (Flower)s; 
  if(f.isOpen() && !f.alreadyOpen) { 
   Iterator iter = getObservers(s).iterator(); 
   while ( iter.hasNext() ) { 
    updateObserver(s, ((Observer)iter.next())); 
   } 
  } 
 } 
 pointcut flowerClose(Subject flower): 
  execution(void close()) && this(flower); 
 after(Subject subject): flowerClose(subject) { 
  if (subject instanceof Flower) { 
   ((Flower)subject).alreadyOpen = false; 
  } 
 } 
 
 protected void updateObserver(Subject s, Observer o) { 
  o.breakfastTime(); 
  ((Flower)s).alreadyOpen = true; 
 } 
} 

Listing 48: Second Final version of ObservingOpen. 

import java.util.Iterator; 
 
public aspect ObservingClose extends ObserverProtocol { 
 declare parents: Flower implements Subject; 
 declare parents: (Bee || Hummingbird) implements Observer; 
 
 public abstract void Observer.bedtimeSleep(); 
 private boolean Subject.alreadyClosed = false; 
 
 protected pointcut subjectChange(Subject subject): 
  execution(void Subject+.close()) && this(subject); 
 after(Subject subject): subjectChange(subject) { 
  Flower f = (Flower)subject; 
  if(!f.isOpen() && !f.alreadyClosed) { 
   Iterator iter = getObservers(subject).iterator(); 
   while ( iter.hasNext() ) { 
    updateObserver(subject, ((Observer)iter.next())); 
   } 
  } 
 } 
 pointcut flowerOpen(Subject flower): 
  execution(void open()) && this(flower); 
 after(Subject subject) returning : flowerOpen(subject) { 
  if (subject instanceof Flower) { 
   ((Flower)subject).alreadyClosed = false; 
  } 
 } 
 protected void updateObserver(Subject s, Observer o) { 
  o.bedtimeSleep(); 
  ((Flower)s).alreadyClosed = true; 
 } 
} 

Listing 49: Final version of ObservingClose 
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 public void test() { 
  ObservingOpen.aspectOf().addObserver(f, hy); 
  ObservingOpen.aspectOf().addObserver(f, hx); 
  ObservingOpen.aspectOf().addObserver(f, bb); 
  ObservingOpen.aspectOf().addObserver(f, ba); 
 
  ObservingClose.aspectOf().addObserver(f, hy); 
  ObservingClose.aspectOf().addObserver(f, hx); 
  ObservingClose.aspectOf().addObserver(f, bb); 
  ObservingClose.aspectOf().addObserver(f, ba); 
 
  // Hummingbird Y decides to sleep in: 
  ObservingOpen.aspectOf().removeObserver(f, hy); 
 
  // A change that interests observers: 
  f.open(); 
  f.open(); // It's already open, no change. 
 
  // Bee A doesn't want to go to bed: 
  ObservingClose.aspectOf().removeObserver(f, ba); 
 
  f.close(); 
  f.close(); // It's already closed; no change 
  ObservingOpen.aspectOf().clearObservers(f); 
 
  f.open(); 
  f.close(); 
  Assert.assertEquals(expectedOutput(), SpecificOutputCapture.getResult()); 
 } 

Listing 50: Refactored version of the test for the Flower example. 

7.8. Discussion 
The refactoring process presented in this Chapter demonstrates that extractions based on 
inter-type declarations do not change the original design. They merely modularise it. The 
OOP paradigm led to a decentralised design that was still in place it was modularised 
within an aspect, though it was no longer suitable. Designs like this must be improved, if 
not downright replaced, after they are extracted to aspects. Yet, it still makes sense to first 
modularise the code, because improvements are easier to achieve when we can benefit 
from the advantages of modularity. 

The refactoring example also shows how hard is to achieve reusable modules, even with 
AOP. The abstract, “reusable” aspect for the Observer pattern had to undergo invasive 
changes just to be used in Eckel’s simple example. We nevertheless believe that this aspect 
has the potential to be further developed in order to encompass a wider variety of 
situations, though that will almost certainly come at the cost of making its design more 
complex. 
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Chapter 8. Related Work 

This chapter highlights contributions that bear a relation to our work or that potentially 
have an impact on its future directions. Each section of this chapter covers a different 
angle, discussing works related to that angle. In section 8.1 we refer to an overview that 
covers the subject of this thesis. In section 8.2, we refer to a work focusing the same case 
study we describe in Chapter 4. Our work relates to the manual application of refactorings, 
which pose particular problems. In section 8.3, we refer to works proposing guidelines that 
tackle such problems. Style guidelines bear a close relationship to our work, as refactorings 
and code smells are just one of various possible ways way to express them (we also argue 
they are particularly effective at that). In section 8.4, we cover the subject of general style 
guidelines. We dedicate the following two sections to the specific cases of refactorings and 
code smells: in section 8.5, we survey proposals of AO refactorings by other authors, and 
in 8.6 we discuss code smells. In section 8.7, we refer to a work related to proving the 
preservation of behaviour in AO refactorings whose continuation promises to have an 
impact on ours. Finally, in section 8.8 we mention potential problems and pitfalls of AOP 
whose solutions may include style rules. 

8.1. General Overview 
Van Deursen et al. [36] provide an overview of the state of art in the area of aspect mining 
and refactoring. Though their main concern seems to be tools for the automatic detection 
of aspects, they also mention several open questions about refactoring to aspects. These 
include: 

• “How can existing code smells be used to identify candidate refactorings?” 

• “How can the introduction of aspects be described in terms of a catalogue of new 
refactorings?” 

In this thesis, we contribute to answering these two questions. 

8.2. Assessing the GoF Pattern Implementations Code 
In [49], Garcia et al provide a quantitative study comparing the OO and AO versions of 
the code examples by Hannemann and Kiczales [60], which comprises the case study 
presented in Chapter 4. Their study is based on well-known software engineering attributes 
such as separation of concerns, coupling, cohesion and size. They performed minor 
modifications on the code examples, to ensure the equivalence between the two versions. 
In addition, they increased the number of participant classes playing pattern roles. Their 
study was based on both the original code and their extended versions. 

Their findings generally confirm the claims by Hannemann and Kiczales [60] that AspectJ 
implementations improve on those in Java, but there are qualifications. In particular, their 
study indicates that only 4 (rather than 12) of the patterns yield reusable AspectJ 
implementations: Mediator, Observer, Composite, and Visitor. Garcia et al. remark that in 
general, reusable elements lead to a decrease in the programming effort by requiring fewer 
operations and lines of code to be written. However, some of the metrics they employed 
yielded worse measurements for the AspectJ implementations of some patterns – 
Flyweight, Command, Chain of Responsibility, Memento, Prototype, Singleton and 



184 Chapter 8. Related Work 

 

Strategy – than in the respective OO implementations. Garcia et al. remark that these 
patterns are very simple and do not enable a reasonable degree of reuse. 

Garcia et al. also complain about the complexity in using some of the reusable aspects, 
which translates in some unfavourable measurements in some of patterns – Memento, 
Strategy and Chain of Responsibility. Interestingly, they do not include Composite in this 
group, which we single out in our own complaints about complexity (see 4.3.2). One 
possible explanation for the discrepancy is the fact that our views are based solely on the 
original examples, while the more complex versions created by Garcia et al. may provide a 
different picture. 

8.3. Guidelines on How to Approach the Source Code 
The team in charge of developing AJDT [169] is working on tool support for object-to-
aspect refactorings. In [28] Clement et al. present their plans on that front and describe 
how existing functionality provided for the eclipse IDE [179] – such as the planned 
crosscutting “diff” view – could be used to assist in extracting advices from a code base. In 
addition, Clement et al. provide some general guidelines for performing an extraction of an 
aspect from its code base to an aspect. One particularly useful tip, which we include in our 
refactorings, is to use the AspectJ ‘declare warning’ statement to capture all the scattered 
places in the code where the tangled logic to be extracted resides. 

In [91] Laddad prescribes several guidelines to ensure AO refactorings for concern 
extraction are applied in a safe way. These involve the creation of a first version of the 
pointcut, based on a case-by-case enumeration of the interesting joinpoints, followed by its 
replacement with a semantically more meaningful pointcut, based on wildcards. Laddad 
also proposes a mechanism based on AspectJ’s ‘declare error’ mechanism to verify whether 
two different pointcut expressions capture exactly the same set of joinpoints (described in 
section 6.2). In addition, Laddad recommends that in the beginning, aspects be developed 
with a restricted scope, often affecting the methods of a single class, in order to make it 
simpler to test their impact on the base code. Only afterwards should the scope of the 
aspect widen, when its functionality is already tested with the restricted case. In other 
words, Laddad expresses the view that pointcuts should be bounded, in the sense proposed 
by McEachen and Alexander [107]: “bounded pointcuts are pointcuts defined such that 
they only match join points from packages and classes present in the original environment 
that the aspect was specifically developed and tested for. Unbounded pointcuts can potentially 
match join points beyond the original environment.” 

Considering that at present there is no adequate tool support for AO refactorings, and that 
aspects can potentially impact a large number of joinpoints across an entire system, 
procedures such as those proposed by Laddad are essential to any refactoring process 
targeting non-trivial systems. 

8.4. General Style Rules 
In the last few years many projects were undertaken to assess the applicability of AO 
techniques [159][62] to various domains, covering various areas of applicability, including 
image processing [109], exception detection and handling [98], web-based applications [78] 
and distribution and persistence [146]. Few authors of these projects draw conclusions 
about the appropriate AO style. One of the few works that partially focus on style issues is 
the one by Kersten and Murphy [78], who explored a case study of the use of AOP to the 
(re)development of ATLAS, a web-based learning environment initially developed in C++. 
Kersten and Murphy report that at the start of the project they did not pay much attention 
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to the style in which they used the constructs of AspectJ. As the application grew to be 
over 50 classes and aspects, it became increasingly difficult to understand and test the 
classes, because of the way in which they were using aspects was making it hard to reason 
about how all the code fit together. To help manage the complexity, they began to 
constrain and stylise the aspect code. In the process, they derived the following three 
aspect style rules: 

 Exceptions introduced by a weave must be handled in the code comprising the weave. This rule 
means that if the code being introduced into a method can raise an exception, it 
should be wrapped in a try block that handled that exception. 

 Advise weaves must maintain the pre- and post conditions of a method. This rule, together 
with the first, ensures that an aspect does not change the contract between a class 
and its clients. This is to ensure that classes affected by aspects continue to fit in 
the existing class structure. 

 Before advise weaves must not include a return statement. This rule was meant to ensure that 
the code defined in the main body of the method is always run. This rule is now 
obsolete: in the present version of AspectJ, a return within a before advice 
(assuming the advised joinpoint is related to the execution of methods) does not 
prevent the method from running. 

We find the rules to be sound, but they only scratch the surface of the style space. The 
versions of AspectJ used in the study were very early (versions 0.2.0beta4 through beta10). 
Consequently, the authors do not cover many issues arising from the more mature AspectJ. 
For instance, Laddad provides a more elaborate description of how to handle exceptions in 
the Exception Introduction pattern he presents in his book ([90], p.260), and further elaborates 
on the subject in [91]. The work by Kersten and Murphy was focused on building a new 
architecture (there was an initial version of ATLAS, developed in C++), while our work 
focuses on finding novel code transformations. 

8.5. Proposals for Aspect-Oriented Refactorings 
Iwamoto and Zhao announced in [73] their intention to build a catalogue of AO 
refactorings. They present a catalogue of 24 refactorings, but the information provided 
about them is limited to the names of the refactorings. The refactorings we document in 
this thesis include a description of the situations where the refactoring applies, mention of 
preconditions, detailed mechanics and code examples. 

Hanenberg et al. [58] also propose three AO refactorings – Extract Advice, Extract 
Introduction and Separate Pointcut. Their Extract Advice corresponds to our Extract Fragment into 
Advice refactoring (94). The collection of refactorings presented in this thesis goes deeper in 
exploring the refactoring space, providing more detail and tackling issues such as the 
tidying up of the internal structure of aspects resulting from extraction processes. 

We do not subscribe the recommendation by Hanenberg et al., proposed in their Extract 
Advice refactoring, to use around advice in the general case. We think that in cases where 
either before or after advice can be used, these should be used in preference to around, 
because it makes the scope of the advice easier to perceive at a first look at the code. The 
around advice is also more powerful than is often needed. In the case of code using around 
advice without a strict need for it, we envision refactorings such as Change Around Advice to 
Before and Change Around Advice to After Returning. Their proposed Extract Introduction 
refactoring corresponds to our Move Field from Class to Inter-type (104) and Move Method from 
Class to Inter-type (106) refactorings, which provide more detail. Separate Pointcut relates to 
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evolution of pointcuts and has no correspondence in our collection. This refactoring argues 
that, just as it is beneficial to organise our systems using small methods with meaningful 
names, we should do the same with pointcuts. 

Rura [139] documented aspect aware versions of some of the traditional OO refactorings, 
using giving new preconditions and transformation steps. Rura also contributes with a 
collection of very low-level aspect-oriented refactorings, for instance the creation of empty 
aspects, methods, pointcuts, and deletion of unreferenced classes and class members. Rura 
also contributes with a few refactorings for manipulating members across classes and 
aspects, which partially overlap with the extraction refactorings we document in section 
6.3. All descriptions are done in a style akin to that of Opdyke [125], which is succinct and 
does not include code examples. 

Laddad presents a collection of refactorings [91] with a significant utility value, particularly 
to developers of J2EE applications. The refactorings vary widely in both level and scope of 
applicability, including generally applicable refactorings like Extract Interface Implementation, 
Extract Method Calls, and Replace Override with Advice, but also concern-specific refactorings 
such as Extract Concurrency Control and Extract Contract Enforcemement. In addition, some 
refactorings belong to the category of “refactoring to patterns” such as those presented by 
Kerievsky [76] – Extract Worker Object Creation and Replace Argument Trickle by Wormhole. 
These two refactorings are based on two of the design patterns presented by Laddad in [90] 
– Worker Object Creation ([90], p.247) and Wormhole ([90], p.256) respectively. The Extract 
Exception Handling refactoring as presented in [91] goes towards a variant implementation of 
the Exception Introduction pattern ([90], p.260). 

We believe programmers would benefit if Laddad’s refactorings were presented in the same 
format as used by Fowler et al. [47] and Kerievsky [76], and which we use as well (some 
refactorings are presented with only a mention of its name and a brief motivating 
paragraph). A mechanics section would be particularly beneficial, having proved very useful 
as a checklist, and to lead developers through the safest sequences of steps, in preference to 
riskier or less convenient ones. The important step-by-step guidelines proposed by Laddad 
for creating a new aspect and subsequently evolving it are included in the code example 
illustrating the use of Extract Method Calls, but not in several other refactorings to which 
they also apply (Laddad places some reminders). A mechanics section would make that part 
process clearer, and would clarify the relations between refactorings. 

We noticed that several of Laddad’s refactorings, namely the problem-specific ones, can be 
decomposed into simpler, lower level steps – always an important thing with (manual) 
refactoring. During our work on the mechanics of the refactorings that are documented in 
Chapter 6, we focused on the minute details of the refactoring process, enabling us to 
improve their characterisation. In some cases, this led us to decompose the refactoring 
under study into several smaller steps. For instance, Split Abstract Class into Aspect and 
Interface (109) and Change Abstract Class to Interface (88) were initially conceived as a single 
refactoring. The pair comprising Extract Inner Class to Standalone (99) and Inline Class within 
Aspect (102) was likewise meant to perform what is a single logical transformation: moving 
an inner class from a class to an aspect. We believe similar benefits can be obtained by 
similarly approaching Laddad’s refactorings – some of the resulting lower level steps would 
correspond to existing steps, while others would possibly yield new refactorings. 

8.6. Proposals for Aspect-Oriented Code Smells 
Hanenberg et al. [58] do not elaborate on code smells, but we can infer from Separate 
Pointcut that these authors consider anonymous pointcuts to be a code smell. 
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Laddad [91] does not pinpoint the code smells that his refactorings are supposed to 
remove. We think that the material presented by Laddad has the potential to throw new 
light on existing OO code smells or to yield new ones. For instance, his Extract Method Calls 
and Replace Argument Trickle by Wormhole refactorings respectively suggest the Scattered Method 
Calls and Argument Trickle smells. Further research is required to discover latent smells and 
assess their feasibility and applicability. 

Tonella and Ceccato [153] base their work on the assumption that interfaces are often (not 
necessarily always) related to concerns other than the one pertaining to the system’s main 
decomposition. This is an Interface Implementation smell, though the authors do not name it 
this way. They provide specific guidelines for when an interface implementation is a 
symptom of a latent aspect and present a tool for mining and extracting aspects based on 
these criteria, and report on experimental results. These extractions are also covered by the 
refactorings we document in this thesis. The authors also point out various issues that can 
arise in a typical extraction of an interface implementation into an aspect. Our refactorings 
prescribe procedures to deal with all these issues. 

To our knowledge, no work besides ours deals with the potentially bad internal structure of 
aspects resulting from extraction processes. With the exception of the work by Tonella and 
Ceccato [153], we do not have knowledge of any other work explicitly covering the issue of 
AO code smells. 

8.7. Proving the Preservation of  Behaviour 
In [29] and [30] Cole and Borba propose programming laws from which refactorings for 
AspectJ can be derived. The authors focus on the use of their laws to derive existing 
refactorings such as those proposed in [91], [58] and [73], and describe two case studies in 
which the laws were tested, comprising the extraction of concurrency control and 
distribution respectively. Many, though not all, of the laws relate to the extraction of 
crosscutting concerns to aspects, and therefore there is some overlap between the 
refactorings they derive and our own extraction refactorings (see section 6.3). However, 
their main emphasis is to provide proofs that the transformations are behaviour preserving, 
while we focus on covering new ground in the refactoring space. Nevertheless, the authors 
remark that extraction procedure for the second case study is generalisable, because its 
implementation of distribution is commonly used, and claim that it is possible to derive a 
concern-specific Extract Distribution refactoring. 

8.8. Potential Pitfalls 
Though they do not use this name, several authors [73][58][154][162] call into attention 
what we call the fragile base code problem (see beginning of Chapter 6), in some cases 
illustrating it with some code examples. These authors conclude that existing OO 
refactorings [47] cannot be applied to code bases with aspects. We believe these problems 
can be ameliorated if adequate procedures are followed [91]. These include adoption of an 
appropriate style for programming and evolving aspect constructs, particularly pointcuts. 
Such a style also entails following the rule, proposed by Laddad, that aspects be placed as 
near the code they affect, in order to guarantee as much as possible that programmers are 
aware of potential problems when changes are made to the base code or the aspects. 

To tackle the fragile base code problem, Hanenberg et al. [58] propose aspect-aware 
refactorings – refactorings that take into account the presence of aspects and preserve 
behaviour by updating any pointcuts that may be affected by the transformation – and 
propose a set of enabling conditions to preserve the observable behaviour. By the author’s 
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admission, these conditions must be automatically verified by an aspect-aware tool, as the 
manual verification is an exhausting task, even in small systems. Hanenberg et al. announce 
a tool providing a subset of the functionality they deem desirable. 

McEachen and Alexander [107] call into attention a series of problems that can arise in 
situations of a software system being composed of classes and aspects that originate from 
two or more independent development teams. In case components that include aspects are 
distributed without source code, various situations can arise in which the lack of awareness 
of unknown or undocumented assumptions can lead to negative phenomena, including 
compilers errors, unexpected behaviour and inconsistent behaviour. These problems are 
reminiscent of the fragile base class problem [114], and McEachen and Alexander do 
indeed reference that work. It is certain that the solutions to the problems mentioned by 
McEachen and Alexander require tools and techniques not presently available, but part of 
the solution also involves style rules. One case that can be discerned already is the case of 
unbounded pointcuts. Unbounded pointcuts risk weaving more joinpoints than those 
initially intended, and therefore McEachen and Alexander recommend that unbounded 
pointcuts be avoided, unless compelling reasons exist for them to being this way. 
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Chapter 9. Conclusions 

This Ph.D. thesis contributes to characterise a new style appropriate for aspect-oriented 
source code, using refactorings and code smells as a means to express it. In this Chapter, 
we review our central results and primary contributions, and propose several ideas for 
future research. 

9.1. Contributions 
The underlying goal of this thesis is to contribute to the characterisation of a new 
programming style, appropriate for aspect-oriented source code. We aim to build a 
collection of refactorings and code smells capable of expressing part of such a style, in the 
same way the refactorings and code smells documented by Fowler et al. successfully 
represent a notion of good style for OO source code. Though various authors proposed 
various aspect-oriented refactorings [73][58][91], none pinpointed the code smells those 
refactorings are supposed to remove. 

The primary contributions of this thesis are the collections of novel refactorings for the 
AspectJ programming language. In addition, we propose various code smells that provide 
the broad motivation for using the refactorings. We examine the traditional OO smells and 
propose that some of them be used as indicators of the presence of crosscutting concerns 
in OO source code (see section 5.1). We also define two novel code smells – Double 
Personality (78) and Abstract Class (80) – to also help to detect crosscutting concerns in 
existing OO code. In addition, we propose the Aspect Laziness (80) smell, which is specific 
to aspects. All code smells are presented in Chapter 5. 

The refactorings are documented in Chapter 6, in a style and level of detail akin to that 
used in Fowler’s book [47], including a motivation section and code examples. The 
descriptions contribute to establish the context in which use of the refactoring can be 
beneficial. They are divided into three groups, plus one special case. The three main groups 
of refactorings comprise: 

1. Ten refactorings for the extraction of crosscutting concerns from Java code bases 
to aspects. 

2. Six refactorings for improving the internals of aspects, particularly aspects resulting 
from extractions performed with the refactorings of the previous group. 

3. Eleven refactorings to deal with the extraction of common code from multiple 
aspects and for moving aspect-specific constructs between superaspects and 
subaspects. 

The most original refactorings documented in this thesis are the ones from the second 
group. We characterise the potential bad internal structure of aspects that result from 
extraction processes through an aspect-specific smell – Aspect Laziness (80). The 
refactorings from the second group can remove this smell from existing aspects. 

In addition to the three main groups of refactorings, we defined one refactoring to deal 
with the separation of concerns in the signature of constructors that are part of published 
interfaces. 
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The refactorings are validated through a refactoring example in which seventeen of the 
refactorings are used. The refactorings used come from all the three main groups 
mentioned above, and include all the refactorings from the second group. 

9.2. Publications 
At the moment of finishing this thesis, the contributions are presented/documented in the 
following publications: 

 [116] and [121] state the aims of this Ph.D. project. [121] also presents a few early 
findings. 

 [118] presents the first case study and documents five refactorings that were 
derived from that study. 

 [119] presents a short analysis of the code examples that comprised our second case 
study in the light of ease of use and reusability. 

 [115] is a technical report documenting all twenty-eight refactorings, in a style and 
format similar to the ones used in [47] and [76]. We chose to document this part of 
our work through a technical report because we concluded that it would be 
extremely tricky to document refactorings in conference proceedings. The 
problems are due to space constraints and the fact that small sets of refactorings are 
not likely to be considered a substantial enough contribution to be accepted by the 
review boards of prestigious international conferences. 

 [123] presents most of the refactorings, reviews the traditional OO code smells in 
light of AOP, proposes several novel aspect-oriented code smells, including one 
that is specific to aspects. It presents considerations of various orders, including the 
effects of crosscutting in the design of existing OO systems. It also surveys related 
work and proposes several new directions of research in this field. 

 [120] presents a refactoring process of a Java code base into an AspectJ equivalent, 
using seventeen of the refactorings documented in [118]. It is complemented with 
an eclipse project, available online, presenting dozens of complete snapshots of the 
code being refactored. 

 [122] is a position paper for a workshop expressing the view that research 
specifically targeting issues of style play an important role in the current state-of-
the-art in AO refactoring. 

9.3. Future Research 
In this section, we put forth various ideas for continuing and/or extending the work 
described in this thesis. 

9.3.1 Maturing the Refactorings 

There is scope for maturing the refactorings proposed in this thesis. This entails testing the 
refactorings with different code bases, particularly larger and more complex ones. 

We consider the possibility that the composite refactorings such as Extract Feature into 
Aspect (90) and Tidy Up Internal Aspect Structure (128) will evolve to give origin to various 
refactorings in the conventional sense, or to be turned into an introductory text to a group 
of related refactorings. 
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9.3.2 Pinpointing Other Code Smells 

In addition to the traditional OO smells we analysed in terms of AOP in Chapter 5, there 
are a few other smells we believe can be useful in detecting crosscutting concerns, but 
which we did not sufficiently explore to pinpoint suitable refactorings to remove them. We 
single out Parallel Inheritance Hierarchies ([47], p.83) and Combinatorial Explosion ([76], p.45 and 
[158] p.109) may be indicative of the presence of crosscutting concerns in some cases. 
Combinatorial Explosion, as proposed by Wake [158] is a variant of Parallel Inheritance 
Hierarchies ([47], p.83). We think it is worth investigating whether these smells could be 
considered symptoms of the tyranny of the dominant decomposition [150] in some cases. 

Besides existing OO smells, there are many latent aspect-specific smells waiting to be 
discovered. For instance, privileged aspects: the rationale for avoiding them is the same as 
for avoiding the use of public data. As Colyer and Clement remark in [31], aspect privilege 
confers the general privilege to see any private state anywhere, while one often wishes to 
express privilege with respect to a single class or a restricted set of classes. Presently, this is 
not possible with AspectJ. Unfortunately, privileged aspect may be unavoidable in cases 
affecting multiple packages and in which the aspect needs access to non-public (e.g. 
protected and package-protected) data. Refactoring the affected code bases to expose the 
non-public data is one alternative. We need to study uses of privileged aspects to assess 
whether common patterns can be found, and pinpoint refactorings that tackle this issue. 

9.3.3 Developing Other Refactoring Ideas 

We detected a few latent refactorings in the material from our case studies. Next, follow a 
few examples of ideas for refactorings which look promising but which were not yet fully 
explored: 

 Replace Throws with Declare Error – many existing instances of Java code throw an 
exception upon detection of illegal situations. Some of these situations can be 
specified by statically determinable pointcuts, in which case it is more effective to 
replace them with a ‘declare error’ clause. 

 Remove Signatures from Inner Interface – As a rule, marker interfaces do not declare 
operations, so it is worth exploring a refactoring to remove the operations declared 
by an inlined interface. 

 Replace Downcast with Interface Extension – We proposed Extend Marker Interface with 
Signature (113) to resolve dependencies to concrete types caused by calls to type-
specific methods. This idea can be taken further by completely removing 
dependencies on a type, namely type casts, to the point of removing the import of 
the type. 

More refactoring experiments are likely to yield other refactorings. Further experiments 
should target code bases with different characteristics than the ones used for this thesis. 
For instance, the case studies used would not be appropriate to develop refactorings to deal 
with exceptions – the first code base (Chapter 3) did not use them extensively enough, and 
the code examples from the second case study (Chapter 4) did not use them at all. 

In addition, there are many possible variants to the refactorings proposed in this thesis. 
One example is to extract common code from multiple, similar aspects through an Extract 
Subaspect refactoring instead of an Extract Superaspect (129). 
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9.3.4 Covering Other Language Characteristics 

The refactorings we derived are the result from two specific case studies, where not every 
possible AspectJ construct is used. New research should cover the remaining aspect 
constructs, as well as the interactions between these and traditional Java constructs. We 
next mention two subjects. 

Non Singleton Aspect Association 

Our work so far concentrated on singleton aspects. In future, we expect to cover other 
kinds of aspect association in order to obtain a clearer idea of the advantages and 
disadvantages of non-singleton aspects, e.g., when should they be preferred and what 
refactorings should be used to transform singleton aspects. 

Pointcut style 

At present, refactorings and code smells specifically targeting pointcuts are still a largely 
unexplored area. AspectJ’s pointcut protocol comprises a rich language for quantification 
and is likely to yield an equally rich pattern language for refactoring pointcut expressions, as 
well as their interaction with advice. Laddad gives some suggestions on how to evolve 
pointcuts [91] but further research is needed on the adequate use of pointcut designators 
(e.g. smells to expose inadequately coded pointcuts), and how best to evolve pointcut 
expressions. 

9.3.5 Refactorings for Restructuring the Remaining Base Code 

The refactorings documented in Chapter 6 cover the restructuring of the code within 
aspects resulting from the extraction of crosscutting concerns, taking advantage of the 
newfound modularisation. We did not focus our work on the impact of such extractions on 
the remaining code base. Since many designs become more complex to take into account 
crosscutting effects, it is likely that in some cases the extraction of crosscutting concerns 
into aspects will provide the opportunity to further simplify the structure of the remaining 
code base. Further research is required to find patterns in refactored OO code bases and 
what post-extraction refactorings would be desirable. 

9.3.6 Refactorings to Cope with Published Interfaces 

Refactoring legacy code entails dealing with published interfaces, i.e. interfaces used by 
clients that developers cannot, or are not at liberty to change. Occasionally the tangling 
resulting from the presence of crosscutting concerns is present in the signatures, in which 
case it cannot be readily removed. In such cases, developers have the option to refactor 
towards rather than to a goal, while a deprecation policy is pursued. We partially dealt with 
that issue when we characterised the refactoring Partition Constructor Signature (137). We did 
not continue our work in that direction after we abandoned the first case study, but we 
deem this subject worthy of further research. 

9.3.7 Developing Opposite Refactorings 

In this thesis, we did not specifically aim to provide opposites for each of the proposed 
refactorings. Instead, we preferred to focus on extending the space of known refactorings. 
Nevertheless, opposites are important to enable developers to backtrack, whenever they 
find out they took a wrong turn, and because opposites are sometimes useful in their own 
right (e.g. pull up vs. push down refactorings). 
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9.3.8 Updating to New Language Versions 

During the final months when this thesis was being written, important developments for 
the AspectJ language were under way. These promise to have an impact on some of the 
constructs of AspectJ. One is the update of AspectJ to attain compatibility with the latest 
version of Java (Java 1.5, codenamed “Tiger” [5]). Java 1.5 includes several new important 
features, including generics and metadata. In addition, the merge of AspectJ and 
Aspectwerkz [175] was announced [171]. These developments will yield a new version of 
the language called AspectJ 5 [173]. Though AspectJ 5 is likely to keep a backwards 
compatibility with most characteristics of the preceding version, this may have an impact 
on notions of good style. The rationale is the same as presented in Chapter 1: AspectJ 5 
promises to achieve some effects better than the present version, and therefore the 
previous ways of doing things should be considered bad style. Therefore, the advent of 
AspectJ 5 may motivate new code smells and the corresponding refactorings. 

9.3.9 Comparing AspectJ with AHEAD 

The adoption of the AHEAD tool for the continuing development of WorkSCo, the first 
case study, was one of the primary motives for abandoning it in preference of the code 
examples presented in Chapter 4. However, the availability of a code base based on 
AHEAD opens the way to make some interesting comparisons between AHEAD and 
AspectJ. 

This would possibly entail undertaking something close to the original aim for the first case 
study, to develop an AspectJ version of WorkSCo. This task would provide the 
opportunity to assess the relative strengths and limitations of both tools. One hypothesis 
that was contemplated when AHEAD was adopted, but not pursued, was to find out 
whether AspectJ could emulate AHEAD (and vice versa). Our experience with WorkSCo 
(see Chapter 3) suggests that the answer is negative, but it remains to be confirmed, and to 
find out exactly why and to what extent. 
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Appendix A 
Refactorings Documented by Fowler 

Add Parameter Pull Up Constructor Body 
Change Bidirectional Association to 
Unidirectional 

Pull Up Field 

Change Reference to Value Pull Up Method 
Change Unidirectional Association to 
Bidirectional 

Push Down Field 

Change Value to Reference Push Down Method 
Collapse Hierarchy Remove Assignments to Parameters 
Consolidate Conditional Expression Remove Control Flag 
Consolidate Duplicate Conditional Fragments Remove Middle Man 
Convert Procedural Design to Objects Remove Parameter 
Decompose Conditional Remove Setting Method 
Duplicate Observed Data Rename Method 
Encapsulate Collection Replace Array with Object 
Encapsulate Downcast Replace Conditional with Polymorphism 
Encapsulate Field Replace Constructor with Factory Method 
Extract Class Replace Data Value with Object 
Extract Hierarchy Replace Delegation with Inheritance 
Extract Interface Replace Error Code with Exception 
Extract Method Replace Exception with Test 
Extract Subclass Replace Inheritance with Delegation 
Extract Superclass Replace Magic Number with Symbolic Constant
Form Template Method Replace Method with Method Object 
Hide Delegate Replace Nested Conditional with Guard Clauses
Hide Method Replace Parameter with Explicit Methods 
Inline Class Replace Parameter with Method 
Inline Method Replace Record with Data Class 
Inline Temp Replace Subclass with Fields 
Introduce Assertion Replace Temp with Query 
Introduce Explaining Variable Replace Type Code with Class 
Introduce Foreign Method Replace Type Code with State/Strategy 
Introduce Local Extension Replace Type Code with Subclasses 
Introduce Null Object Self Encapsulate Field 
Introduce Parameter Object Separate Domain from Presentation 
Move Field Separate Query from Modifier 
Move Method Split Temporary Variable 
Parameterise Method Substitute Algorithm 
Preserve Whole Object Tease Apart Inheritance 
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Appendix B 
Code smells described by Beck and 
Fowler 

Smell Common Refactorings 
Alternative Classes with 
Different Interfaces 

Rename Method, Move Method 

Comments Extract Method, Introduce Assertion 
Data Class Move Method, Encapsulate Field, Encapsulate Collection 
Data Clumps Extract Class, Introduce Parameter Object, Preserve Whole Object 
Divergent Change Extract Class 
Duplicated Code Extract Method, Extract Class, Pull Up Method, Form Template 

Method 
Feature Envy Move Method, Move Field, Extract Method 
Inappropriate Intimacy Move Method, Move Field, Change Bidirectional Association to 

Unidirectional, Replace Inheritance with Delegation, Hide Delegate 
Incomplete Library Class Introduce Foreign Method, Introduce Local Extension 
Large Class Extract Class, Extract Subclass, Extract Interface, Replace Data 

Value with Object 
Lazy Class Inline Class, Colapse Hierarchy 
Long Method Extract Method, Replace Temp with Query, Replace Method with 

Method Object, Decompose Conditional 
Long Parameter List Replace Parameter with Object, Introduce Parameter Object, 

Preserve Whole Object 
Message Chains Hide Delegate 
Middle Man Remove Middle Man, Inline Method, Replace Delegation with 

Inheritance 
Parallel Inheritance 
Hierarchies 

Move Method, Move Field 

Primitive Obsession Replace Data Value with Object, Extract Class, Introduce Parameter 
Object, Replace Array with Object, Replace Type Code with Class, 
Replace Type Code with Subclasses, Replace Type Code with 
State/Strategy 

Refused Bequest Replace Inheritance with Delegation 
Shotgun Surgery Move Method, Move Field, Inline Class 
Speculative Generality Collapse Hierarchy, Inline Class, Remove Parameter, Rename 

Method 
Switch Statements Replace Conditional with Polymorphism, Replace Type Code with 

Subclasses, Replace Type Code with State/Strategy, Replace 
Parameter with Explicit Methods, Introduce Null Object 

Temporary Field Extract Class, Introduce Null Object 
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Appendix C 
Additional refactorings from 
www.refactoring.com 

Convert Dynamic to Static Construction Refactor Architecture by Tiers 
Convert Static to Dynamic Construction Remove Double Negative 
Extract Package Replace Assignement with Initialization 
Hide presentation tier-specific details from the 
business tier 

Replace Conditional with Visitor 

Introduce A Controller Replace Iteration with Recursion 
Introduce Business Delegate Replace Recursion with Iteration 
Introduce Synchronizer Token Replace Static Variable with Parameter 
Localize Disparate Logic Reverse Conditional 
Merge Session Beans Split Loop 
Move Business Logic to Session Use a Connection Tool 
Move Class Wrap entities with session 
Reduce Scope of Variable  
 



 

200 

 



 

201 

Appendix D 
Refactorings to patterns by Kerievsky 

Chain Constructors Move Creation Knowledge to Factory 
Compose Method Move Embellishment to Decorator 
Encapsulate Classes with Factory Replace Conditional Dispatcher with Command 
Encapsulate Composite with Builder Replace Conditional Logic Strategy 
Extract Adapter Replace Constructors with Creation Methods 
Extract Composite Replace Hard-Coded Notifications with 

Observer 
Extract Parameter Replace Implicit Language with Interpreter 
Form Template Method Replace Implicit Tree with Composite 
Inline Singleton Replace One/Many Distinctions with 

Composite 
Introduce Null Object Replace State-Altering Conditionals with State 
Introduce Polymorphic Creation with Factory 
Method 

Replace Type Code with Class 

Limit Instantiation with Singleton Unify Interfaces 
Move Accumulation to Collecting Parameter Unify Interfaces with Adapter 
Move Accumulation to Visitor  
 



 

202 

 



 

203 

Appendix E 
Code smells described by Kerievsky 

Smell Refactorings 
Alternative Classes with Different 
Interfaces 

Unify Interfaces with Adapter 

Combinatorial Explosion Replace Implicit Language with Interpreter 

Conditional Complexity 

Replace Conditional Logic with Strategy 
Move Embellishment to Decorator 
Replace State-Altering Conditionals with State 
Introduce Null Object 

Duplicated Code 

Form Template Method 
Introduce Polymorphic Creation with Factory Method
Chain Constructors 
Replace One/Many Distinctions with Composite 
Extract Composite 
Unify Interfaces with Adapter 
Introduce Null Object 

Indecent Exposure Encapsulate Classes with Factory 

Large Class 
Replace Conditional Dispatcher with Command 
Replace State-Altering Conditionals with State 
Replace Implicit Language with Interpreter 

Lazy Class Inline Singleton 

Long Method 

Compose Method 
Move Accumulation to Collecting Parameter 
Replace Conditional Dispatcher with Command 
Move Accumulation to Visitor 
Replace Conditional Logic with Strategy 

Oddball Solution Unify Interfaces with Adapter 

Primitive Obsession 

Replace Type Code with Class 
Replace State-Altering Conditionals with State 
Replace Conditional Logic with Strategy 
Replace Implicit Tree with Composite 
Replace Implicit Language with Interpreter 
Move Embellishment to Decorator 
Encapsulate Composite with Builder 

Solution Sprawl Move Creation Knowledge to Factory 

Switch Statements Replace Conditional Dispatcher with Command 
Move Accumulation to Visitor 
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Appendix F 
Code smells and symptoms described by 
Wake 

Symptoms Smell 
Duplication 

Methods and/or classes have similar behaviour but 
different names Alternative classes with Different Interfaces

Similar code 
Code with similar effects Duplicated Code 

Names 
Two different names for the same thing Inconsistent Names 
Name is compound word, including a type name 
Hungarian notation (type indicator used as prefix) 
Variable named after type rather than intent 

Type Embedded in Name 

One- or two-character name 
Name without vowels 
Numbered variables 
Odd abbreviations 
Name that doesn’t reflect its real use or meaning 

Uncommunicative Name 

Code within a Method 
// or /* */ Comments 
Complex expression using &&, ||, ! Complicated Boolean Expression 
Large number of lines in method Long Method 
Large number of parameters Long Parameter List 
Constant embedded in code Magic Number 
Comparison against null Null Check 
Complex if statement 
Conditional test before body of code Special Case 

switch keyword used 
Several if statements in a row (comparing the same 
item) 
Use of instanceof 

Simulated Inheritance (Switch Statement) 

Class 
Large number of instance variables in class 
Large number of methods in class 
Large number of lines in class 

Large Class 

Complexity 
Variable, parameter, field, code fragment, method, or 
class never referenced 

Dead Code (May also be Specultive 
Generailty) 

Code more general/complicated than it needs to be Speculative Generailty 
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Symptoms Smell 

Data 
Public fields (or just setters and getters), but little 
behaviour in class Data Class 

Same 2-3 items occur together in classes and 
parameter lists 
Fields named with similar substrings 
Allternating declarations of fields and methods 

Data Clump 

Primitive types (int, string, etc.) 
Constants and enumerations Primitive Obsession 

String constants for field names  
Fields are sometimes set, sometimes null Temporary Field 

Inheritance 
Subclass is too tied to parent’s data or methods Inappropriate Intimacy (Subclass Form) 
Class has little code in it Lazy Class 
Subclass throws exception on method the parent 
requires 
Inherited method doesn’t work 
Clients refer to subclass but never hold reference to 
the parent class 
Subclass isn’t (conceptually, behaviorally) an example 
of the parent class 

Refused Bequest 

Responsibility 
Class manipulates another class’s data Feature envy 
Class relies too much on how another class works Inappropriate Intimacy (General Form) 
Chain of calls: a.b().c().d() Message Chain 
Delegation: f() { delegate.f(); } Middle Man 

Accomodating Change 
Introducing new class requires multiple classes at 
various points in its hierarchy 
Each level of hierarchy deals with a different attribute

Combinatorial Explosion 

Same class changes for different reasons Divergent change 
Adding a subclass in one hierarchy requires 
corresponding subclasses in other hierarchies 
Subclasses in two separate hierarchies use the same 
prefixes 

Parallel Inheritance Hierarchies 

Multiple classes must change for a single decision Shotgun Surgery 
Working with Libraries 

Library doesn’t have a feature you need Incomplete Library Class 
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Appendix G – AspectJ Quick Reference 

Aspects at top-level (or static in types) 

aspect A { … } 
defines the aspect A 

privileged aspect A { … } 
 A can access private fields and methods 
aspect A extends B implements I, J { … } 
  B is a class or abstract aspect, I and J are interfaces 
aspect A percflow( call(void Foo.m()) ) { … } 

an instance of A is instantiated for every control flow 
through calls to m() 

 
general form: 

[ privileged ] [ Modifiers  ] aspect Id 
[ extends Type ] [ implements TypeList ]  
[ PerClause ] { Body }  

where PerClause is one of 
 pertarget ( Pointcut ) 
 perthis ( Pointcut ) 
 percflow ( Pointcut ) 
 percflowbelow ( Pointcut ) 
 issingleton () 

 
Pointcut definitions  in types 

private pointcut pc() : call(void Foo.m()) ; 
a pointcut visible only from the defining type 

pointcut pc(int i) : set(int Foo.x) && args(i) ; 
a package-visible pointcut that exposes an int. 

public abstract pointcut pc() ; 
an abstract pointcut that can be referred to from anywhere.   

abstract pointcut pc(Object o) ; 
an abstract pointcut visible from the defining package.  Any 
pointcut that implements this must expose an Object. 
 

general form: 
abstract [Modifiers] pointcut Id ( Formals )  ; 
[Modifiers] pointcut Id ( Formals ) : Pointcut ; 

 
Advice declarations  in aspects 

before () : get(int Foo.y) { ... } 
runs before reading the field int Foo.y 

after () returning : call(int Foo.m(int)) { ... } 
runs after calls to int Foo.m(int) that return normally 

after () returning (int x) : call(int Foo.m(int)) { ... } 
same, but the return value is named x in the body 

after () throwing : call(int Foo.m(int)) { ... } 
runs after calls to m that exit abruptly by throwing an 
exception 

after () throwing (NotFoundException e) : call(int Foo.m(int)) 
{ ... } 

runs after calls to m that exit abruptly by throwing a 
NotFoundException.  The exception is named e in the body 

after () : call(int Foo.m(int)) { ... } 
runs after calls to m regardless of how they exit 

before(int i) : set(int Foo.x) && args(i) { ... } 
runs before field assignment to int Foo.x.  The value to be 
assigned is named i in the body 

before(Object o) : set(* Foo.*) && args(o) { ... } 
runs before field assignment to any field of Foo.  The value 
to be assigned is converted to an object type (int to Integer, 
for example) and named o in the body 

int around () : call(int Foo.m(int)) { ... } 

runs instead of calls to int Foo.m(int), and returns an int.  In 
the body, continue the call by using proceed(), which has 
the same signature as the around advice.   

int around () throws IOException : call(int Foo.m(int)) { ... } 
same, but the body is allowed to throw IOException 

Object around () : call(int Foo.m(int)) { ... } 
same, but the value of proceed() is converted to an Integer, 
and the body should also return an Integer which will be 
converted into an int 

 
general form: 
[ strictfp ] AdviceSpec [ throws TypeList ] : Pointcut { Body } 
where AdviceSpec  is one of 

before ( Formals ) 
after ( Formals )  
after ( Formals ) returning [ ( Formal ) ] 
after ( Formals ) throwing  [ ( Formal )  ]  
Type around ( Formals )  
 

Special forms   in advice 

thisJoinPoint 
 reflective information about the join point. 
thisJoinPointStaticPart 

the equivalent of thisJoinPoint.getStaticPart(), but may 
use fewer resources. 

thisEnclosingJoinPointStaticPart 
 the static part of the join point enclosing this one. 
proceed ( Arguments ) 

only available in around advice.  The Arguments must be 
the same number and type as the parameters of the advice.   

 
Inter-type Member Declarations in aspects 

int Foo . m ( int i ) { ... } 
a method int m(int) owned by Foo, visible anywhere in the 
defining package.  In the body, this refers to the instance of 
Foo, not the aspect. 

private int Foo . m ( int i ) throws IOException { ... } 
a method int m(int) that is declared to throw IOException, 
only visible in the defining aspect.  In the body, this refers 
to the instance of Foo, not the aspect. 

abstract int Foo . m ( int i ) ; 
 an abstract method int m(int) owned by Foo 
Point . new ( int x, int y ) { ... } 

a constructor owned by Point.   In the body, this refers to 
the new Point, not the aspect. 

private static int Point . x ; 
a static int field named x owned by Point and visible only in 
the declaring aspect 

private int Point . x = foo() ; 
a non-static field initialized to the result of calling foo().  In 
the initializer, this refers to the instance of Foo, not the 
aspect. 

 
general form: 

[ Modifiers ] Type Type . Id ( Formals ) 
[ throws TypeList ] { Body } 

abstract [ Modifiers ] Type Type . Id ( Formals ) 
[ throws TypeList ]  ; 

[ Modifiers ] Type . new ( Formals )  
[ throws TypeList ] { Body } 

[ Modifiers ] Type Type . Id [ = Expression ] ; 
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Other Inter-type Declarations  in aspects 

declare parents : C extends D; 
declares that the superclass of C is D.  This is only legal if D 
is declared to extend the original superclass of C.   

declare parents :  C implements I, J ; 
 C implements I and J 
declare warning : set(* Point.*) && !within(Point) : “bad set”; 

the compiler warns “bad set”  if it finds a set to any field of 
Point outside of the code for Point 

declare error : call(Singleton.new(..)) : “bad construction” ; 
the compiler signals an error “bad construction” if it finds a 
call to any constructor of Singleton 

declare soft : IOException : execution(Foo.new(..)); 
any IOException thrown from executions of the constructors 
of Foo are wrapped in org.aspectj.SoftException 

declare precedence : Security, Logging, * ; 
at each join point, advice from Security has precedence over 
advice from Logging, which has precedence over other 
advice. 
 

general form 
declare parents : TypePat extends Type ; 
declare parents : TypePat implements TypeList  ; 
declare warning : Pointcut : String ; 
declare error : Pointcut : String ; 
declare soft : Type : Pointcut ; 
declare precedence : TypePatList ; 

 
Primitive Pointcuts 
call ( void Foo.m(int) )  
 a call to the method void Foo.m(int) 
call ( Foo.new(..) ) 
 a call to any constructor of Foo 
execution ( * Foo.*(..) throws IOException ) 

the execution of any method of Foo that is declared to throw 
IOException 

execution ( !public Foo .new(..) ) 
the execution of any non-public constructor of Foo 

initialization ( Foo.new(int) ) 
the initialization of any Foo object that is started with the 
constructor Foo(int) 

preinitialization ( Foo.new(int) ) 
the pre-initialization (before the super constructor is called) 
that is started with the constructor Foo(int) 

staticinitialization( Foo )  
 when the type Foo is initialized, after loading 
get ( int Point.x ) 
  when int Point.x is read 
set ( !private * Point.* ) 
 when any non-private field of Point is assigned 
handler ( IOException+ )  

when an IOException or its subtype is handled with a catch 
block 

adviceexecution() 
the execution of all advice bodies 

within ( com.bigboxco.* ) 
any join point where the associated code is defined in the 
package com.bigboxco 

withincode ( void Figure.move() ) 
any join point where the associated code is defined in the 
method void Figure.move() 

withincode ( com.bigboxco.*.new(..) ) 
any join point where the associated code is defined in any 
constructor in the package com.bigoxco. 

cflow ( call(void Figure.move()) ) 
any join point in the control flow of each call to void 
Figure.move().  This includes the call itself. 

cflowbelow ( call(void Figure.move()) ) 

any join point below the control flow of each call to void 
Figure.move().  This does not include the call. 

if  ( Tracing.isEnabled()  ) 
any join point where Tracing.isEnabled()  is true.  The 
boolean expression used can only access static members, 
variables bound in the same pointcut, and thisJoinPoint 
forms. 
 

this ( Point ) 
any join point where the currently executing object is an 
instance of  Point 

target ( java.io.InputPort  ) 
any join point where the target object is an instance of  
java.io.InputPort 

args ( java.io.InputPort, int ) 
any join point where there are two arguments, the first an 
instance of java.io.InputPort, and the second an int 

args ( *, int ) 
any join point where there are two arguments, the second of 
which is an int. 

args ( short, .., short ) 
any join point with at least two arguments, the first and last 
of which are shorts 

Note: any position in this, target, and args can be replaced 
with a variable bound in the advice or pointcut. 

 
general form: 

call(MethodPat) 
call(ConstructorPat) 
execution(MethodPat) 
execution(ConstructorPat) 
initialization(ConstructorPat) 
preinitialization(ConstructorPat) 
staticinitialization(TypePat) 
get(FieldPat) 
set(FieldPat) 
handler(TypePat) 
adviceexecution() 
within(TypePat) 
withincode(MethodPat) 
withincode(ConstructorPat) 
cflow(Pointcut) 
cflowbelow(Pointcut) 
if(Expression) 
this(Type | Var) 
target(Type | Var) 
args(Type | Var , …) 

where MethodPat is: 
 [ModifiersPat] TypePat [TypePat . ] IdPat ( TypePat | 
.., … )  

[ throws ThrowsPat ] 
ConstructorPat is: 
 [ModifiersPat ] [TypePat . ] new ( TypePat | .. , …)  

[ throws ThrowsPat ] 
FieldPat is: 
 [ModifiersPat] TypePat [TypePat . ] IdPat 
TypePat is one of: 
 IdPat [ + ] [ [] … ] 
 ! TypePat 
 TypePat && TypePat 
 TypePat || TypePat 
 ( TypePat ) 
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