
An Annotated Repository for MATLAB Code
António Relvas

NOVA LINCS
DI-NOVA/FCT

Portugal

Nuno C. Marques
NOVA LINCS
DI-NOVA/FCT

Portugal
Email: nmm@fct.unl.pt

Miguel P. Monteiro
NOVA LINCS
DI-NOVA/FCT

Portugal
Email: mtpm@fct.unl.pt

Glauco Carneiro
Universidade Salvador

UNIFACS
Brazil

Email: glauco.carneiro@unifacs.br

Abstract—Currently, there is the need for systems to manage
repositories of MATLAB code bases capable of supporting global
queries and feed their results to analyses components. Such
features are not directly supported in current platforms. This
paper presents a repository management system that supports
queries over semi-automatically annotated code files and are
able to associate them to higher level concepts. To meet this
need, this paper proposes an approach that equips the repository
with support for sophisticated queries over its stored code base
and allows patterns to emerge from such queries, namely for
visualisation and further analysis. This is achieved through
the synergistic combination of a token-based metrics extraction
component and a relational model fed by an ubiquitous data
mining process. The code base is represented by means of
relational knowledge, enabling intelligent queries that can be
extended with new code metrics. Presently, query results are
being used for the detection of concerns, including those whose
code is scattered over multiple modular units. This paper outlines
the proposed system’s architecture and presents a proof-of-
concept implementation developed for MATLAB programs. It
is evaluated by means of a set of illustrative queries over a seed
repository of MATLAB systems.

Index Terms—MATLAB, Concern, Self Organizing Map, Ubi-
SOM, Advanced Data Exploration, Software Repository Man-
agement System

I. INTRODUCTION

The MATLAB language is known to lack support for
fully fledged modules capable of enclosing most concerns
typically present in MATLAB systems [1] [2]. Its basic units
of modularity are m-files (MATLAB code files) and toolboxes,
comprising folders of m-files and optionally sub-folders. The
latter often correspond to standalone programs or libraries
made available for the user community. Lack of modularity
makes it hard to obtain well-organised code that is easy to
read and reuse [1] [3]–[5]. These shortcomings motivated
ongoing research to study the symptoms induced by the lack
of modularity [3] and use of that knowledge for the detection
of unmodularised concerns in existing systems [6] [5].

The above research on concern detection techniques is
centred on the idea of decomposing m-files into its low-level
elements [3] and derive a number of metrics based on that
information [6] [5]. A number of analysis components can
subsequently be plugged into the system to derive higher-level
information. Further details are given in section II.

Developing and maturing the concern detection techniques
entailed the assembling of repositories of many MATLAB

systems in order to exercise and test functionalities. A number
of metrics were derived, which were extracted from the code
base by means of a tool that includes a lexical analyser
for MATLAB [3] [6] [5]. Activities on the code repository
included the performing of many kinds of search, e.g., to find
new patterns, perform studies, check results. Initially, it was
carried out by the metrics extraction tool. As search patterns
tended to become increasingly elaborate and structured, the
motivation for mounting the entire repository in a more
intelligent system arose. This paper presents the outcome of
that effort.

This paper presents a repository management system that
exposes low-level data and allows the plugging of new analysis
and visualisation components, which can be added over time.
The repository management system could compute many of
the queries previously supported by the lexical analyser tool
and much else besides. It supports queries over automatically
added annotations received from a data mining process and
related annotations made by humans. Among other things, the
system is able to expose associations between m-files based
on higher level concepts.

Past work illustrated one potential use of the proposed
repository through the implementation of a high level knowl-
edge from a Self Organizing Map (SOM) data mining
model that derives patterns from the code to enable the
semi-automatic detection of (possibly unmodularised) con-
cerns [6] [5]. By semi-automatic, we mean a process that
starts with a machine learning classification phase, whose
output can be corrected by a human or enriched by new
annotations. We implemented a relational database and an
associated web interface through which query results produced
by the UbiSOM algorithm [7] are made available for further
processing.

The rest of this paper is organised as follows. Section II
describes the token-based technique used to decompose m-
files. Next, section III describes the system’s architecture and
the relational model that enables a wide variety of queries
over the code. Section IV illustrates how an external concern
mining model can be used to automatically provide concern
relevant tagging for all m-files in the repository. Section V
presents a number of queries that illustrate the repository’s
capabilities. Section VI provides a short discussion of this
work and section VII concludes the paper.

DOI reference number: 10.18293/SEKE2019-137



II. USE CASE: CONCERN DETECTION

This section relates to past research on the detection of
concerns in MATLAB code bases [3] [5] and describes an
use case for the annotated repository.

A concern is any abstraction, concept or cohesive set of
functionalities that would ideally be enclosed in its own
module, for the sake of comprehensibility and ease of main-
tenance and evolution [8]. Ideally, each individual concern
would map to a different unit of modularity (e.g., an m-file
or a function in MATLAB), with each unit having a single,
primary concern. However, several factors contribute to this
not being so in practice. The limited and incipient nature
of MATLAB’s modules and limited programming experience
from many users, among other issues, contribute to many
concerns remaining unmodularised. As a consequence, poten-
tially useful and reusable pieces of code are left scattered
throughout a system’s m-files and functions, and tangled
with conceptually unrelated code. Scattering and tangling are
the two dual symptoms usually observed in the code when
modularity support is deficient [9] [8]. Tangling is particularly
harmful to the comprehensibility of all concerns found in the
modular unit, including the primary concern [1] [4] [3].

The concern detection technique explored in this paper
bases the representation of an entire code base of a repository,
comprising all systems stored in it, on the decomposition of
each and every code file into tokens, i.e., the lexical elements
extracted by means of the lexical analyser. The subset of
tokens that are words (keywords and identifiers) plays an
important role in the concern detection approach. It is based
on the the idea that specific groups of word tokens can be
associated to specific concerns, with individual tokens being
associated to one concern at most. Patterns of occurrence
of such tokens can be used to identify the presence of the
associated concern in the code unit.

Presently, this approach is focused on function names, par-
ticularly names of functions from standard MATLAB libraries,
because they are deemed more intention-revealing and are
common to many MATLAB systems. Such names provide a
measure of guarantee that the technique will operate uniformly
in most systems. Programmer defined variable names are not
currently considered because they are more variable across a
repository of systems developed by many different teams.

The examples shown in section V serve as an illustration
of the technique. They are focused on concern verification
of function arguments, which relates to the processing that
many MATLAB functions must carry out at the beginning
to determine in which ”mode” they were called (e.g., by
finding out how many arguments it received). It is associated
to a group of tokens that include nargin, varargin and
varargout.

III. THE RELATIONAL MODEL

This section describes a relational model for a MATLAB
seed code repository. It is important to note that although the
system presented in this paper was developed as a proof of
concept focused on MATLAB systems, its design – described

here – was created in view of covering a broader range of
systems and programming languages.

The annotated repository was developed with the purpose
of accommodating in one place all the data needed to per-
form exploratory analyses on MATLAB code, by means of
advanced analysis components. The diversity and quantity of
data being generated called for a powerful solution for data
storage and query support. For this reason, a relational data
model was adopted (e.g., [10]). It represents all data as tuples,
grouped into relations. Note that all tokens are stored into the
model: not just word tokens but also symbolic tokens, literals,
etc. Such a model can easily be implemented in a relational
database management system. A MySQL solution proved to
be sufficient for the Web component of the system, while data
analysis is based on snapshots of the systems in the repository,
taken at the time of analysis of relevant information stored in
a SQLite database.

The relational model represents the toolboxes, m-files and
their complete contents (including comments, though presently
they are not used). New systems, toolboxes and m-files can
be added and similarly represented, including new versions of
existing elements. Two main entities represent the organisation
of all the systems into toolboxes and m-files and taking into
account the possibility of multiple versions of these elements.
Each m-file is in turn decomposed into code lines containing
MATLAB code and thus stored. To reconstruct the original
file (e.g., for visualisation or for some other subsequent
processing), the model provides a separate entity to represent
lines with comments only.

Tokens are the main subject of the analysis in this paper.
Figure 1 depicts the main entities and relations for modeling
the relation of MATLAB tokens and annotations within the
repository according to the notation used by Silberschatz et.
al. [11]. Blocks are intermediate entities grouping one or
several lines and that are part of an m-file. Relations between
toolboxes, m-files, code blocks, lines and tokens are simple
one-to-many relations. For instance, a given line is always
part of a block, which is always part of some m-file. Though
an m-file is not necessarily organized into functions, we are
mainly interested in that set of m-files since our focus is on
MATLAB modularity. Under that view, blocks will always
belong to some function, which in turn always belongs to some
m-file. Decomposition of the entire code base along these lines
requires just some basic parsing functionality added to the
lexical analyser tool. Each block ends either with the end
keyword or when another clearly defined block (e.g., a new
function or control structure) begins. During design, we chose
to also model each line of code in the repository as a tuple of
the entity Lines_mfiles identified by its unique line_id
identification code. The line number within the m-file and the
block unique id are also unique identifiers for each line in
the repository.

A token instance refers to individual occurrences of a
given token. For instance, the various occurrences in the code
of the while keyword can be said to be instances of the
while token. The present token-based approach requires the



Lines_mfiles Lines_tokens Tokens Concerns

block token concernci name nameline_id code

hasin

line

Annotationsannotation

describes

Clusters

mfile

tag by

cluster text

text

identifyBlocks-mfiles has

Models

model desc

detect is a

Fig. 1. Part of the system ER diagram for token related entities.

identification of each token instance, which is done by the
lexical analyser tool. Each line comprises a sequence of token
instances (order and position are important). Each non-empty
line comprises at least one token instance or is a pure comment
line in Fig. 1. Since a line can contain more than one instance
of a given token, a weak entity (Lines_tokens in Fig. 1)
is used to represent it. That weak entity is identified by the
line_id of the Lines_mfiles entity and token position
within the line (attribute ic). So, it is possible to know the
line containing the token instance (attribute line from entity
Lines_mfiles). This way, an indirect relation is made
where each token instance is associated to its code or name.
A token can also be associated to a given concern and a
concern can be associated to several tokens — represented
by the identify relation in Fig. 1. The design takes into
account that future analyses may approach the code repository
based on many different selection criteria. Annotations are also
easily added using the Lines_tokens weak entity. This
way a new entity Annotations is used so that users can
add annotations when relevant Lines_tokens are found
in Fig. 1. A simple annotation revision process is already
supported: only accepted annotations will be shown in the final
user interface.

During tool tests there was often a need to look for
different combinations of two or more tokens or token-concern
combinations. For instance, it was useful to find and visualize
in what context some combinations occur in different m-files.
The query can be done directly with a regular expression on
the code field of entity Lines_mfiles, but this search is
slow and slow to write. Besides, it will always be ineffective
because limited to a single code line. As an alternative, the web
interface performs a quick generation of queries in SQL (over
the relational model). To obtain results quickly, the search is
done on a first token after which an inner join is added for
each additional token, of the resulting relation with itself. This
way, it is possible to identify a sequence of elements (tokens
or concerns) that are associated in the same m-file (through
entity Lines_tokens). If they are relevant, extra constraints
can be added to the query. For example, it is possible to
specify a limit on the number of rows (or tokens) between
the occurrences of both search tokens (the ic field of entity

Lines_tokens is essential for a correct result).
The code base used as testing material for the present

research originates from a repository of MATLAB programs
and toolboxes originally assembled to test a compiler for MAT-
LAB [12]. It comprises 35 193 m-files organised by toolboxes
and covering various application domains, downloaded from
Sourceforge and GitHub [12]. The repository was already used
in previous work for concern mining [6] [5].

The output of a fully automatic concern mining compo-
nent can be easily related with this system. The relational
model aims to be generic and should support hierarchical
unsupervised machine learning methods. The simultaneous
reference to several concern mining models is supported
by means of an aggregation between entities Models and
its detected Clusters. Such aggregation can be used for
tagging Blocks-mfiles entries with the cluster assigned
by a model, resulting from a data mining process over the
repository. Also some unsupervised learning methods discover
models where clusters can be related with other clusters (e.g.
in hierarchical clustering methods). This way, each block in
the repository can be assigned to a cluster derived from the
concern mining model and the resulting cluster can be a sub-
cluster of another related cluster. Moreover, no restriction
is made regarding sharing of clusters among models (this
could be useful in situations where related models identify
the same kind of clusters). Finally, Block-mfiles tagging
can be continuously updated by a ubiquitous data mining
process (such as illustrated in section IV) or can be directly
assigned/revised by means of a human made model (which
probably entails laborious manual m-file cluster identification
and correction tasks). The concern mining model presented in
previous work [5] is used in the illustrative results presented
in section V.

IV. VALIDATION USING UBISOM OUTPUT MODELS FOR
CONCERN MINING

The system’s design should provide for a continuous in-
coming stream and storage of MATLAB code files. Analysis
and mining of its contents can be done based on ubiquitous
data mining algorithms [13]. The UbiSOM algorithm was
selected as an illustrative validation of this approach [5].
Appropriate support was developed for the continuous analysis



of data, approached as a data stream in which new m-files and
toolboxes can be continuously added. The use of metrics to
characterize the relevant blocks of code in the various m-files
makes it possible to represent those blocks as a set of measures
for different concerns, i.e., a set of feature-value pairs that
is also stored in the database in a patterns entity. Each
new set of such value pairs can be analyzed by means of the
UbiSOM algorithm [7]. Note that each concern gives rise to
its own specific value for each metric considered.

The UbiSOM component performs a continuous analysis
of the data stream and maintains a SOM summarising all m-
files in the repository and its contents, updating it whenever
new contents are added. The relational model can deal with
multiple SOM instances, all of which are represented in the
database. This opens the way for (suitably trained) users to
specify queries over the repository (using SQL) that also use
SOM information to perform selections based of higher-level
concepts. Note that each resulting SOM model and related
query results can immediately become internally accessible to
the system for subsequent processing.

The SOM model used consists of a fixed rectangular grid of
units. Each unit can be seen as a generalisation of representa-
tions of sets of m-files with similar metric values – also called
a prototype [14]. In the relational model, the patterns entity
can also represent the various units of the SOM – again as
sets of feature-value pairs. This way, for a given SOM model
it is possible to associate each m-file to the SOM unit whose
vector of metric values is closer to it (Euclidean distance is
used for this purpose). The SOM community would call this
unit the best matching unit (BMU) for that m-file. Various
sub-sets of units in contiguous areas of the SOM, are also
aggregated into regions of similar units in the SOM, whose
information is stored as tuples in the database. Regions and
units are represented in the entity Clusters.

V. ILLUSTRATIVE QUERIES

This section presents results that can be derived from mining
the seed code base for higher level concepts. We call these
intelligent queries. To facilitate comparison of results, we use
an already published set of metrics and corresponding SOM
model as an illustrative example [5] and which is copied into
the database.

The set of concerns and related metric values are used as
different dimensions or positions in the pattern vector fed
to UbiSOM. The study refers to two disjoint clusters of m-
files that were labelled as regions A1 and A3 in the original
dataset [6] [5]. We retain the A1 and A3 labels in the database
mainly to facilitate the task of readers wanting to make the
connection with previous work [6] [5]. The description that
follows does not depend on details from the other study.
Though no m-file can belong to two clusters simultaneously,
the previous analysis revealed the simultaneous presence of
two or more concerns in those clusters [5]. This is a clear
indicator of code tangling, which in turn is a clear indicator of
deficient modularity [3] [6] [5]. From this, it can be concluded
that the situation in which multiple concerns are found in the

Fig. 2. Code view in the web system.

same m-file arises often. Several such cases are reported in
that study [6] [5]. In it, A1 and A3 correspond to two SOM
regions that represent two disjoint sets of m-files.

One of the concerns detected in m-files from the A1 and
A3 clusters is verification of function arguments. It relates to
functions that were prepared to be called in several different
”modes”, which are selected on the basis of the number
of arguments that were passed upon its call. The previous
study calls them schizophrenic functions [6] [5]. Typically,
such functions use the nargin function from the MATLAB
standard library and/or related functions. nargin returns the
number of input arguments given in the call. A glimpse of
code pattern based on calls to nargin is provided in Fig. 2
and Table II. In many cases, these nargin calls are made
in a considerable number of points at the start of the code’s
schizophrenic function.

To illustrate the use of queries that join the relational rep-
resentation of the SOM model with the data in the repository,
a query is next shown, which returns the number of tokens
associated to a given concern for each m-file covered any
of the two regions A1 and A3, i.e., A1 or A3 [6] [5].
These regions represent the set of m-files that also give rise
to high metric values relative to the concern verification of
function arguments. Restricting the query to the set of m-
files from regions A1 or A3, facilitates the analysis. Note
that the restriction could be specified on the basis of other
concerns (also restricted to A1 or A3 in this case). These
are an examples of high-level restrictions that would be hard
to express without the intelligent assistant for an annotated
repository presented in the current paper.

TABLE I
CONTENT (TOP 5 COUNTS) HIGHER LEVEL CONCEPTS QUERY

Cluster Sub-cluster m-file linesCount VFACount
per m-file per m-file

A3 19 31424 779 202
A3 19 12311 480 67
A3 79 9252 950 49
A1 739 30854 452 45
A1 799 24100 162 40



Table I shows an output example of this query. It
represents the dataset restricted to clusters A3 or A1

(column Cluster), SOM unit identifications (column
Sub-cluster), the respective m-file id (column m-file),
the number of lines of code of each m-file (column
linesCount) and the number of tokens associated to con-
cern verification of function arguments (column VFACount).
After the query, we learn that the m-file with id = 31424
has 202 tokens associated to the concern under analysis (a
significantly high value, with 26 occurrences per 100 lines of
code). Table II shows a few code lines where token nargin
occurs, in some cases complemented with the following lines
for clarity. It is used in lines 185-189 and again in 195-200.
In the second example, nargin checks whether the function
receives zero arguments. In the third example, an error is
issued in case the number of arguments equals 1.

TABLE II
SQL CODE PATTERN ’%ARGIN%’ IN M-FILE=31324

line code
1

185–189

195–200

The system’s current implementation is a web prototype
that pays special attention to code visualization. The code
view enables token highlighting and provides pop-overs for
various kinds of information as illustrated in Fig. 2. A frame
is also available for searching non-contiguous token sequences
in repositories as illustrated in Fig. 3. It also provides a
TreeMap view (not shown) suitable for the visualisation of
hierarchical data, e.g., toolboxes > m-files > concern [15],
[16]. A visualization of the SOM model is also provided,
which allows the selection of elements to derive a database
relation of m-files belonging to specific SOM units and their
regions.

VI. DISCUSSION

One may ask why a relational model was used instead of
say a noSQL-type model. Granted, noSQL-type and graph
databases may offer specific advantages in some cases. How-
ever, we opted for a relational model because token-based data
comprises a significantly structured domain. The relational
model facilitates integration with additional components and
transaction support to cope with the addition of new annota-
tions on the part of different users. It also facilitates efficiency
gains for some queries, which are left for future work.
Mathworks1 maintains the MATLAB Central website,

which aims to provide the best support for MATLAB. It

1The leading company proprietary and developing MATLAB language.

Fig. 3. Example of the web interface frame for token sequences.

has a forum that is claimed to contain 110, 000 answered
questions and a File Exchange toolbox repository for sharing
code, where developers can easily import their toolboxes from
GitHub [17]. As in every other software repository that we
are aware of, the focus is on the toolbox. All toolboxes can be
tagged and some of those toolboxes have online tutorials or
even Webinars. There is also an area for MATLAB code exam-
ples, conveniently indexed by main topics in the language (e.g.
matrixes and arrays) and highlighting to toolsets with example
code. Each function also points to code examples. Unfortu-
nately, MATLAB developers do not seem to have direct query
access to that huge repository of code. We searched many
repositories in several other major programming languages but
failed to find a system managing a repository of MATLAB
programs and toolboxes that supports global analyses and
enables extraction of higher-level concepts. By contrast, this
paper proposes a software repository enabling searches down
to the level of tokens and which are still able to link results
to the enclosing toolbox.

Tokens are usually defined as the smallest individual ele-
ments of any program. Queries over tokens allow the search
of all the information in the repository. As token usages
are also very diverse and case specific, there is a need for
higher level searches, namely over concerns. However, there
are too many possible types of tokens and token combinations.
The use of concerns in queries allow for a more direct
representation of the concepts involved in the reasoning of
software developers when working on the code, thus bridging
an important conceptual gap. To search for concerns, we need
to resort to their manifestation in the code, by means of metrics
on code patterns [5]. The present work is based on concern
metrics and also relates to past research work on that category
of metrics [18] [19].

It should be noted that the higher level concepts used
in the illustrative queries are the combinations of concerns
used in section V, which refers to our recent work on this
front [5]. Presently, the database contains just the clusters and
regions explained in that model [5]. Searches over the higher



level concepts with combinations of concerns proved very
promising for several kinds of search regarding the concerns
present in the code. However, the database and supporting site
are more general. It is a relevant subject for this research to
find other UbiSOM models (possibly with new metrics) that
may answer different questions. The system is general enough
to frame and annotate results from new knowledge discovery
models and we are available to collaborate with the community
to add new models to the system.

Past work used the UbiSOM algorithm to explore the related
set of concern metrics [5], through which manual analyses of
SOM results led to the detection of many cases of the joint
occurrence of multiple concerns in a single m-file. However
that method was still based on a generic data mining tool and
unable to query a software repository. The repository here
described uses the SOM as a data-mining tool to identify
clusters of m-files having similar patterns regarding possible
distinct sets of concern metrics. The SQL queries that can
be devised over such clusters provide the advanced user with
higher level concepts. Such queries result in sets of m-files
available in the repository. A visual web interface allows end-
users (namely MATLAB programmers) to search over relevant
higher level concepts, such as the illustrative schizophrenic
functions concept described in V.

VII. CONCLUSION

This paper proposes a software repository management
system supporting intelligent queries over MATLAB code files
and able to associate them to higher level concepts. This is
achieved by the synergistic combination of a token extraction
tool, a relational database and the advanced exploratory capa-
bilities of a Self-Organizing Map. A web interface supports
queries over the resulting knowledge stored in a relational
model. The latter supports a token-based advanced exploration
of the repository. Higher level concepts from SOMs – based
on software concerns – can be used by programmers, by
means of the web interface. A demonstration web site with
full illustrative examples of such higher level concepts and
supplementary material is available 2. In addition, direct access
to the repository database is freely available for research
purposes.

Regarding future work, SOMs can be used for tackling
problems other than those covered in this paper. SOM models
are already available in our database, which opens the way for
extending the present annotation with additional data mining
processes. For instance, WEBSOM [20] is a classical use of
SOM to document clustering. Line comments provide another
interesting opportunity: if we approach them as documents,
the joint inclusion of such a SOM in our database comprises
a promising topic for future work on mining.

REFERENCES

[1] J. M. Cardoso, J. M. Fernandes, and M. P. Monteiro, “Adding aspect-
oriented features to matlab,” in Fifth International Conference on
Aspect-Oriented Software Development (AOSD 2016), 2006.

2http://bit.ly/MatlabAnnotatedRepository

[2] T. Aslam, J. Doherty, A. Dubrau, and L. Hendren, “Aspectmatlab: An
aspect-oriented scientific programming language,” in Proceedings of the
9th International Conference on Aspect-Oriented Software Development,
pp. 181–192, ACM, 2010.

[3] M. Monteiro, J. Cardoso, and S. Posea, “Identification and charac-
terization of crosscutting concerns in matlab systems,” in Conference
on Compilers, Programming Languages, Related Technologies and
Applications (CoRTA 2010), Braga, Portugal, pp. 9–10, 2010.

[4] J. M. Cardoso, J. M. Fernandes, M. P. Monteiro, T. Carvalho, and
R. Nobre, “Enriching matlab with aspect-oriented features for develop-
ing embedded systems,” Journal of Systems Architecture, vol. 59, no. 7,
pp. 412–428, 2013.

[5] N. Cavalheiro Marques, M. Monteiro, and B. Silva, “Analysis of a token
density metric for concern detection in matlab sources using ubisom,”
Expert Systems, vol. 35, no. 4, 2018.

[6] M. P. Monteiro, N. C. Marques, B. Silva, B. Palma, and J. Cardoso, “To-
ward a token-based approach to concern detection in matlab sources,” in
proceedings of the 18th Portuguese Conference on Artificial Intelligence,
pp. 573–584, Springer, 2017.

[7] B. Silva, Exploratory Cluster Analysis from Ubiquitous Data Streams
using Self-Organizing Maps. PhD thesis, Faculdade de Ciências e
Tecnologia da Universidade Nova de Lisboa, 12 2016. Manuscipt
available at: http://hdl.handle.net/10362/19974.

[8] P. Tarr, H. Ossher, W. Harrison, and S. M. Sutton Jr, “N degrees of
separation: multi-dimensional separation of concerns,” in Proceedings
of the 21st international conference on Software engineering, pp. 107–
119, ACM, 1999.

[9] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C. Lopes, J.-M. Lo-
ingtier, and J. Irwin, “Aspect-oriented programming,” in Proceedings of
11th European Conference on Object-Oriented Programming, pp. 220–
242, Springer, 1997.

[10] E. F. Codd, “A relational model of data for large shared data banks,”
Communications of the ACM, vol. 13, pp. 377–387, June 1970.

[11] A. Silberschatz, H. F. Korth, and S. Sudarshan, Database system
concepts. New York: McGraw-Hill, 6 ed., 2010.

[12] J. Bispo and J. M. P. Cardoso, “A matlab subset to c compiler targeting
embedded systems,” Software: Practice and Experience, vol. 47, no. 2,
pp. 249–272, 2017.

[13] J. Gama, Knowledge Discovery from Data Streams. Chapman &
Hall/CRC, 1st ed., 2010.

[14] T. Kohonen, “Self-organized formation of topologically correct feature
maps,” Biological cybernetics, vol. 43, no. 1, pp. 59–69, 1982.

[15] G. Langelier, H. Sahraoui, and P. Poulin, “Visualization-based anal-
ysis of quality for large-scale software systems,” in Proceedings of
the 20th IEEE/ACM international Conference on Automated software
engineering, pp. 214–223, ACM, 2005.

[16] B. Shneiderman, “Tree visualization with tree-maps: 2-d space-filling
approach,” ACM Transactions on graphics (TOG), vol. 11, no. 1, pp. 92–
99, 1992.

[17] “Math Works matlab central website.” https://www.mathworks.com/
matlabcentral/. Accessed: 2019-01-22.

[18] E. Figueiredo, C. Sant’Anna, A. Garcia, T. T. Bartolomei, W. Cazzola,
and A. Marchetto, “On the maintainability of aspect-oriented software:
A concern-oriented measurement framework,” in Proceedings of the
12th European Conference on Software Maintenance and Reengineering,
pp. 183–192, IEEE, 2008.

[19] E. Figueiredo, C. Sant’Anna, A. Garcia, and C. Lucena, “Applying and
evaluating concern-sensitive design heuristics,” Journal of Systems and
Software, vol. 85, no. 2, pp. 227–243, 2012.

[20] S. Kaski, T. Honkela, K. Lagus, and T. Kohonen, “Websom–self-
organizing maps of document collections1,” Neurocomputing, vol. 21,
no. 1-3, pp. 101–117, 1998.


