
An Experience Report from the Migration of
Legacy Software Systems to Microservice based

Architecture
Hugo Henrique S. da Silva

Universidade Salvador (UNIFACS)
Salvador-Bahia, Brazil

contato@hugohenrique.com.br

Glauco de F. Carneiro
Universidade Salvador (UNIFACS)

Salvador-Bahia, Brazil
glauco.carneiro@unifacs.br

Miguel P. Monteiro
Universidade Nova de Lisboa (UNL)

Lisboa, Portugal
mtpm@fct.unl.pt

Abstract—Context: The literature provides evidence of chal-
lenges and difficulties related to the migration of legacy soft-
ware systems to a microservice based architecture. The idea
of microservices stipulates that the software be organized as a
suite of small, modular, and independently deployed services, in
which each service runs on its own process and communicates
through well-defined, lightweight mechanisms to serve a business
goal. However, the literature lacks step-by-step guidelines telling
practitioners how to accomplish the migration from an existing,
monolithic structure to a microservice based architecture. Goal:
Discuss lessons learned from the migration of legacy software sys-
tems to microservices-based architecture. Method: We conducted
two studies (a pilot and a case study) aiming at characterizing the
relevants steps of such guidelines. Results: We report the steps
and challenges observed during the migration reported in this
study. Conclusion: We identify at least three main phases that
drive the migration process.

Index Terms—monolithic legacy systems, exploratory study,
microservices

I. INTRODUCTION

Microservices relate to an architectural style inspired by
service-oriented computing [1] and comprise a promising solu-
tion to efficiently build and manage complex software systems
[2]. Adoption of a microservices-based architecture promises
to obtain cost reduction, quality improvement, agility, and
decreased time to market. Microservices can be approached as
the software equivalent of Lego bricks: after they are proven
to work they fit together appropriately. They are an option to
construct complex solutions in less time than with traditional
architectures [2].

Many legacy software systems moved to the cloud without
prior adjustments in their architecture for the new infrastruc-
ture. Many of them have been originally placed in virtual
machines and deployed in the cloud, assuming the charac-
teristics of resources and services of a traditional data center.
This approach fails to reduce costs, improve performance and
maintainability [3].

A open question concerns the steps that should be followed
to migrate a monolithic legacy system to a microservices-
based architecture. To the best of our knowledge, just a
few works discussed this issue [4]–[6]. To fill this gap, we

present the lessons learned when migrating two legacy sys-
tems, which were acquired in a two-phase study. It addresses
the following Research Question (RQ): Which steps should
be performed to support the migration of legacy software
systems to microservices-based architecture? Lessons learned
helping practitioners from industry and academia in migrating
legacy systems to microservices can contribute in encourage
the embracing of this challenge.

The rest of this paper is organized as follows. Section
II discusses the main shortcomings of a monolithic legacy
system and map them to possible solutions provided by the
microservice-based architecture. In Section III, we report a
two-phase study in which the first phase is a pilot study aimed
at identifying key steps of the migration process as well as
improvement opportunities. The second phase is presented in
Section IV and comprises a case study to apply a reviewed
and improved version of the steps performed in the first
study. Section V reports lessons learned and discusses tasks
related to the migration based on experience acquired. Section
VI discusses opportunities for future research and provides
concluding remarks.

II. MONOLITHIC VS MICROSERVICES

The use of single executable artefacts or monoliths and
the modularization of their abstractions, rely on the sharing
of resources of the same machine (memory, databases and
files) [1]. Since the parts of a monolithic system depend on
shared resources, they are not independently executable [1],
[7], [8]. Large monolithic systems are difficult to maintain
and evolve due to their complexity [1]. Tracking down bugs
in these conditions requires much effort and is thus likely to
diminish team productivity [1]. Moreover, adding or updating
libraries risks producing inconsistent systems that either do not
compile/run or worse, misbehave [1]. A change performed
on a monolithic system entails the re-building of the whole
application. As the system evolves, it becomes ever more
difficult to mantain it and keep track of its original architecture.
This can result in recurring downtimes, specially for large
projects, hindering development, testing, and maintenance
activities [1]. Monolithic systems under these conditions are



prone to stop working and become unable to provide part or all
of their functionality. They also suffer from scalability issues.
To deal with the shortcomings of this type of applications
and to handle an unbound number of requests, developers
create new instances of them and split the load among these
instances. Unfortunately, this approach is not effective, since
the increased traffic will be targeted only to a subset of
the modules, causing difficulties for the allocation of new
resources for other components [1]. Microservices should be
small and independent enough to allow the rapid development,
(un)pluggability, independent evolution and harmonious coex-
istence. Microservices have been referred as a solution to most
of the shortcomings of monolithic architecture. They use small
services to remove and deploy parts of the system, enable the
use of different frameworks and tookits and to attain increased
scalability and better overall system resilience. A microservice
architecture can make use of the elasticity and better pricing
model of cloud environments [9].

Next follows a non-exhaustive list of advantages that stand
out when using microservices: cohesive and loosely coupled
services [10]; independent implementation of each microser-
vice and thus adaptability [11]; independence of multifunc-
tional, autonomous and organized teams to provide commer-
cial value, not just technical characteristics [11]; independence
of domain concepts [10]; freedom from potential side effects
(SPoF) in services; encourage of the DevOps culture [9], which
basically represents the idea of decentralizing skills concen-
tration into multifunctional teams, emphasizing collaboration
between developers and teams, ensuring reduced lead time and
greater agility during software development.

III. A TWO-PHASE STUDY

This section describes the design and settings of a two-
phase exploratory study with the goal of identifying relevant
and effective steps of a migration of legacy systems to a
microservices-based architecture. Exploratory studies are in-
tended to lay the groundwork for further empirical work [12].
The study aims to address the following RQ: What would
be the set of effective steps to migrate legacy systems to a
microservices-based architecture? The specific research ques-
tions (SRQ’s) derived from the base RQ are as follows: SRQ1:
How to find features in a legacy application so that they
can be subsequently modularized and become a candidate
to a microservice-based architecture? and SRQ2: How to
migrate the best candidate features to a microservice-based
architecture?
The Study Protocol. The first author of this paper carried out
the tasks of the reported study, after discussing the strategies,
experiences and impressions with the other two authors. To
answer the research questions (primary and secondaries),
all steps registered by the first author in manuscripts were
analyzed. The Legacy Systems. Candidate applications for
this study should match the following characteristics: (1) be a
legacy application, (2) have a monolithic architecture that does
not have its functionalities modularized, (3) show symptoms
of scattering and tangling, and (4) structurally correspond to

Fig. 1. Entities and Associated Features Scattered and Tangled in ePromo

the Big Ball of Mud anti-pattern [13]. Expected Outcome. In
contrast, we expect the evolved version of the application to be
be more coherent, loosely coupled, showing a modular decom-
position more aligned to the services it provides [14]. We also
expect to witness an increase in the autonomy of developing
teams within the organization, as new functionalities can be
localized within specific services [14].

DDD Key Concepts. To accomplish the tasks of this study,
we used key Domain-Driven Design (DDD) concepts to trans-
late functionalities into domain and subdomain and thereby
support the migration. A Bounded Context is a subsystem
in the solution space with clear boundaries that distinguish
it from other subsystems [15]. Bounded Context aids in the
separation of contexts to understand and address complexities
based on business intentions. The Domain in the broad sense
is all the knowledge around the problem one is trying to
solve. Therefore, it can refer to either the entire Business
Domain, or just a basic or support area. In a Domain, we
try to turn a technical concept with a model (Domain Model)
into something understandable. The Domain Model is the
organized and structured knowledge of the problem. This
model should represent the vocabulary and main concepts of
the domain problem and identify the relationships between
all entities. It should act as a communication tool for all
involved, creating a very important concept in DDD, which is
Ubiquitous Language. This model could be a diagram, code
examples or even written documentation of the problem. The
important thing is that the Domain Model must be accessible
and understandable by all involved in the project.

A. The Pilot Study

The ePromo system was selected as the subject of the Pilot
study. It comprises a typical example of a corporate/business
coupon web system implemented in the PHP programming
language for the management of outreach campaigns. The web
server is Nginx and its features include: creation of personal-
ized offers and issuance of tickets made by the customer. All
functionalities are implemented in a large artifact, connected to
a single relational database (MySQL), whereas Memcached is
used as a memory cache system, including data related to the
sessions - signs of a monolithic application. Due to the sudden
growth of demand for coupons, the application started to face



problems in this specific component, which led to interruptions
in the system operation.

In order to answer SRQ1 (find features to be subsequently
modularized and turned into microservice candidates), the
participant applied a manual identification of candidate fea-
tures and their respective relationships, by navigating among
the directories and files and identifying the purposes of each
class. Figure 1 illustrates the identified entities were: Offer,
OfferPoint, Ticket, Requirement, Timer, User,
Company in the beginning of the pilot study. By analysing
the features associated to these entities, we acquired an initial
perception of how they are tangled and scattered in the code. In
fact, the functionalities are the reference to build the context
map. It is worth mentioning that during the elaboration of
the context map based on information retrieved from the
source code, it was possible to recognize the entities and the
candidates for value object’s and aggregate roots. At this time,
we had the opportunity to spot code tightly coupled to the web
framework, right at the initial browsing stage.

We decided to deal with one feature at a time, based on
the list of features. We started with the functionality that
would have lowest impact when compared to the others. This
would enable the validation of boundaries between features
with the least risk of side effects. Considering that the business
rules were scattered throughout the controllers with significant
duplication, additional effort to identify the various function-
alities involved was required. This scenario also indicated a
symptom of tangling.

When analyzing the TicketsController artifact it was
noticeable that it has many responsibilities and that its business
rules were scattered. It needed extensive refactoring, including
extraction of clear layers for different levels of abstraction.
Each layer would be represented by a folder, which entails
structural changes at that level, within the repository’s source
root.

New directories have been created: Application,
Domain and Infrastructure. Folder Application
is to be devoid of business logic and be responsible for
connecting the user interface to the lower layers, i.e., the
application layer will be able to communicate with the do-
main layer, which will act as a sort of public API for the
application. It will accept requests from the outside world and
return answers appropriately. Folder Domain is to harbour
all concepts, rules and business logic of the application, such
as the user entity or the user repository. These files will be
stored according to the context identified in previous steps.
Folder Infrastructure is to host the implementations
concerning technical features, which provide support to the
layers above, namely persistence, and communication over
networks.

At this point, we applied the Command pattern [16] to
minimize coupling and deal with the tangled code with scat-
tered business rules and identified in the controllers of the
application. Command encapsulates a request as an object,
thereby parametrizing clients with different requests, queue
or log requests, and support undoable operations [16]. Based

Fig. 2. ePromo Modularized Version (End of the Pilot Study)

on TicketController, Command was used to uncouple
the controller from the user interface logic. When looking at
the commands, we should be able to spot the goal of that
code snippet. The controller is to pass just the information
needed by the command - CreatingTicket in this case -
to forward to the handler, which will handle the acceptance of
the command and will complete its task. This approach brings
several advantages, namely: (1) the functionality can run in
any part of the application; (2) the controller will no longer
have business rules, doing just what is proposed above; (3) as
a result of decoupling, the tests can be made easier. The new
version of the modularized system is presented in Figure 2.

B. Lessons Learned from the Pilot Study

Based on the experience gained in the pilot study, we
can answer SRQ1 as explained in the following. In Section
III-A, we described that the identification of functionalities
faced difficulties due to the existence of lots of classes with
repeated business rules and scattered throughout. This situation
is typified as the Anemic Model anti-pattern1. Therefore,
identifying business resources requires much effort. During
the identification and mapping of the business contexts, we
noticed that despite the sudden growth of demand for coupons,
the number of features candidates for microservices may
not be indicative of the use of a microservice architecture.
There is not a positive trade-off between the advantages of
microservices and the corresponding costs and effort required
to manage it [2]. Although microservices approaches offer
substantial benefits, the corresponding architecture requires
extra machinery, which may also impose substantial costs [2].
This would will give rise to greater complexity, which is
incompatible with the relative simple scenario now perceived
through the map of contexts. Therefore, the decision for the
migration should bear in mind the extra effort required to
work on automated deployment, monitoring, failure, eventual
consistency, and other factors introduced by a microservice
architecture. For these reasons, we decided not to opt for the
migration, and keep ePromo in its new modularized version.

At this point, we reached a preliminary list of lessons
learned comprised of two main parts: part 1 related to the
restructuring of the legacy system to a modularized version

1https://martinfowler.com/bliki/AnemicDomainModel.html



Fig. 3. A Traditional Monolithic Legacy Software System (Case Study)

and part 2 related to migration of the modularized version
to microservices. Part 1 of the lessons learned are related to
the (a) identification of candidate functionalities that can be
modularized in legacy applications; (2) analysis of relation-
ships and organizational dependencies in the legacy system;
(3) identification of each domain and sub-domain. In the
sequence, part 2 of the lessons learned is related to the (4)
selection of the candidates according to their importance to
the domain and the application itself; (5) conversion of the
candidate functionalities to microservices.

IV. THE CASE STUDY

The goal of this case study is to analyze an effective
way to find candidate functionalities to be modularized in
legacy applications to be later converted into microservices.
Target System for the Case Study. Figure 3 illustrates a
typical scenario of the eShop system. It is an online store
in which users can browse a product catalog. The system
provides functionalites such as user authentication, catalogue
of products, special offers, and payments. All functionalities
are implemented in the PHP programming language in a ”big
module”, connected to a single relational database (MySQL).
The system runs as a single artifact on a Nginx web server.
The size of the source code increased dramatically over
the years, as stakeholders asks for ever more changes and
new functionalities. To deal with such requests, developers
struggled to deliver new releases, which demanded ever more
effort.

Part I - Migrating the Legacy System to a Modularized
Version. We manually identified the candidate functionalities
by navigating among the directories and files to find out the
purpose of each artifact as was done for the pilot study. Figure
3 illustrates the entities Identity, Basket, Marketing,
Catalog, Ordering and Payment related to the identified
functionalities. This is the result of the first step aimed at
identifying main functionalities and responsabilities in view of
a tentative establishment of boundaries between them. Next,
we planned to break down the main module into units. The
key to this task was the use of bounded contexts ans their
respective relationships, as represented in Figure 4. We applied
in each bounded context the following DDD key concepts:
aggregate root, value objects and domain services. These
concepts help to manage domain complexity and ensures

Fig. 4. A Context Map for the Monolithic Legacy Software System (Case
Study)

clarity of behavior within the domain model. After identifying
contexts, we sorted them by level of complexity, starting with
the simpler ones to validate the context mapping. We also
placed the contexts into well-defined layers, expressing the
domain model and business logic, eliminating dependencies
on infrastructure, user interfaces and application logic, which
often get mixed with it. We should concentrate all the code
related to domain model in one layer, isolating it from the user
interface, application and infrastructure parts [15]. In some
cases, we can apply the Strangler pattern [6] to deal with the
complexity of the module to be refactored.

A folder should be created for each of the bounded
contexts and within each folder, three new folders should
be added, one for each layer: Domain, Application,
Infrastructure. They contain the source code necessary
for this bounded context to work. It is crucial to consider
the domain models and their invariants and to recognize
entities, value objects and also aggregate roots. We should
maintain the source code in these folders as described in
the sequence. Folder Application contains all application
services, command and command handlers. Folder Domain
contains the classes with existing tatical patterns in the DDD,
such as: Entities, Value Objects, Domain Events,
Repositories, Factories. Folder Infrastructure
provides technical capabilities to other parts of the application,
isolating all domain logic from the details of the infrastructure
layer. The latter contains, in more detail, the code for sending
emails, post messages, store information in the database,
process HTTP requests, make requests to other servers. Any
structure and library related to ”the outside world”, such as
network and file systems, should be used or called by the
infrastructure layer.

Part II - Migrating from the Modularized version to Mi-
croservices At this point, our focus is the analysis of the
previously developed context map and the assessment of
the feasibility of decomposing each identified context into
microservice candidates. In this case, during the analysis of
the context map, it is required understanding and identifying
the organizational relationships and dependencies. This is
analogous to domain modeling, which can start relatively
superficially and gradually increase levels of detail.



Fig. 5. An Evolved Monolithic Legacy System (Case Study)

The most commonly used way to decompose an application
into smaller parts is based on layered segmentation based
on user interface, business logic and database responsibilities.
However, this is prone to give rise to coupling between mod-
ules, causing the replication of business logic in the application
layers [1] - coupling defines the degree of dependency between
components or modules of an application. The microservice
proposal to circumvent this problem entails segmenting the
system into smaller parts with fewer responsibilities. In addi-
tion, it also considers domain, focus and application contexts,
yielding a set of autonomous services, with reduced coupling.

In order to answer SRQ2, the bounded contexts from DDD
are used to organize and identify microservices [17]. Many
proponents of the microservice architecture use Eric Evans’s
DDD approach, as it offers a set of concepts and techniques
that support the modularization in software systems. Among
these tools, Bounded Context is used to identify and organize
the microservices. Evans made the case for bounded contexts
as facilitating the creation of smaller and more coherent com-
ponents (models), which should not be shared across contexts.
In the context map shown in Figure 4, the arrow is used to
facilitate identification of upstream/downstream relationships
between contexts. When a limited context has influence over
another (due to factors of a less technical nature), provision
of some service or information this relationship is considered
upstream. However, the limited contexts that consume it
comprise a downstream relationship [15].

Correct identification of bounded contexts using DDD and
breaking a large system across them is an effective way of
defining microservice boundaries. Newman points out that
bounded contexts represent autonomous business domains
(i.e., distinct business capabilities) and therefore are the appro-
priate starting point for identifying boundaries for microser-
vices. Using DDD and bounded contexts lowers the chances of
two microservices needing to share a model and corresponding
data space, risking a tight coupling. Avoiding data sharing
facilitates treating each microservice as an independent de-
ployment unit. Independent deployment increases speed while
still maintaining security within the overall system. DDD and
bounded contexts seems to make a good process for designing
components [14]. Note however, that it is still possible to use
DDD and still end up with quite large components, which

Fig. 6. A New Based Microservices Software System (Case Study)

go against the principles of the microservice architecture. In
sum, smaller is better. An important service feature is its
low number of responsibilities, which is reinforced by the
definition of the Single Responsibility Principle (SRP) [18].
Each service must have a well-defined boundary between
the modules, which should be independently created and
published, through an automated deployment process. A team
can work on one or several Bounded Context’s, with each
serving as a foundation for one or several microservices.
Changes and new features are supposed to related to just one
Bounded Context and thus just one team [10].

Keeping all data on a single basis is contrary to the
decentralized data management feature of microservices. The
strategy is to move resources vertically by decoupling the
primary feature along its data and redirect all front-end appli-
cations to the new APIs. Having multiple applications using
the data from a centralized database is the primary lock to
decouple the data along with the service.

Migrating data from an existing application is a complex
process. It requires special care, which depends on the specific
situation. During the migration of the eShop database, we
decided to perform it in small chunks. We selected the tables
related to each service and create a new database schema
(MySQL) for the respective service. We then migrated them
one by one. The database was not particularly large and
this approach was applied without side effects. However, this
approach may not be the most efficient, depending on the size
of the database to be migrated. Each specific scenario must
be analyzed in its terms. To perform the migration, we used
Doctrine Migrations2. Figure 6 shows the architecture of the
new system based on microservices.

V. LESSONS LEARNED

As a result of the experience gained in the two-phase
study reported before, we identified four key challenges in

2https://www.doctrine-project.org/projects/migrations.html



the migration process. The first, is related to the identification
of functionalities. This is not trivial, especially in cases of
large modules through which functionalities are scattered and
tangled among themselves. This is in fact a recurring issue
already discussed in the literature [19]. The second challenge
is the definition of optimal boundaries among candidate fea-
tures for microservices. Once these limits are established,
there follows the third challenge, to decide which will be
converted to microservices. After this decision, we should
face the fourth challenge, related to carefully analyze these
candidate microservices regarding their respective granularity
and respective cohesion.

The literature already addressed the decomposition problem
for identifying modules, packages, components, and ”tradi-
tional” services, mainly by means of clustering techniques
upon design artifacts or source code. However, boundaries
between modules defined using these approaches were too
flexible and allowed software to evolve into instances of Big
Ball of Mud [13]. Although much was written on the value
of cohesive services and the power of bounded contexts, there
appears to be a void in the guidance on how to identify these
in practice [20]. The main issue is that those people trying
to determine service boundaries are technologists looking for
a technological solution but defining cohesive, capability-
aligned service boundaries instead requires domain expertise.
To accomplish this, a modelling exercise should be carried out
independently of the specific technology used.

Applying the aforementioned strategies yielded multiple
autonomous microservices, each with its own database. For
communication between the microservices, we use HTTP com-
munication mechanisms as API Restful and also asynchronous
communication with an EventBus implementation, running
RabbitMQ3. As shown in figure 6, each of the microservices
now work with an independent relational database, except the
Marketing service because it is an auxiliary service. For
this one, we chose to use an in-memory database.

VI. CONCLUSIONS

Migrating a legacy application is often a hard and complex
work. It rarely can be performed without significant effort. To
the best of our knowledge, there are frameworks that can be
used to support practitioners during the development (forward
engineering) of microservice-based systems, such as Spring
Cloud 4 and Hystrix 5, just to name a few. However, none
of them provides full support to the three migration phases.
To fill this gap, this paper present the lessons learned to
support the stated migration. We believe that the availability
these lessons learned can support and encourage practitioners
from the industry and academia to perform this type of
migration. Considering that these lessons learned is based on
our experience on a specific two-phase study. We also plan
to conduct a survey with practitioners from the industry to
characterize their perception regarding challenges faced during

3https://www.rabbitmq.com
4http://projects.spring.io/spring-cloud/
5https://github.com/Netflix/Hystrix

this type of migration, characteristics of possible processes
they may have used for this purpose and opinion about the
lessons learned reported.

REFERENCES

[1] N. Dragoni, S. Giallorenzo, A. L. Lafuente, M. Mazzara, F. Montesi,
R. Mustafin, and L. Safina, “Microservices: yesterday, today, and tomor-
row,” in Present and Ulterior Software Engineering. Springer, 2017,
pp. 195–216.

[2] A. Singleton, “The economics of microservices,” IEEE Cloud Comput-
ing, vol. 3, no. 5, pp. 16–20, 2016.

[3] G. Toffetti, S. Brunner, M. Blöchlinger, J. Spillner, and T. M. Bohnert,
“Self-managing cloud-native applications: Design, implementation, and
experience,” Future Generation Computer Systems, vol. 72, pp. 165–
179, 2017.

[4] M. Kalske, N. Mäkitalo, and T. Mikkonen, “Challenges when moving
from monolith to microservice architecture,” in Current Trends in Web
Engineering. Springer, Cham, 2017, pp. 32–47.

[5] F. Leymann, U. Breitenbücher, S. Wagner, and J. Wettinger, “Native
cloud applications: Why monolithic virtualization is not their founda-
tion,” in Cloud Computing and Services Science. Springer, Cham, 2016,
pp. 16–40.

[6] D. Taibi, V. Lenarduzzi, and C. Pahl, “Processes, motivations, and issues
for migrating to microservices architectures: An empirical investigation,”
IEEE Cloud Computing, vol. 4, no. 5, pp. 22–32, 2017.

[7] C. Richardson, “Microservices: Decomposing applications for deploya-
bility and scalability,” 2014.

[8] ——, “Pattern: Monolithic architecture,” Posjećeno, vol. 15, p. 2016,
2014.

[9] A. Balalaie, A. Heydarnoori, and P. Jamshidi, “Microservices architec-
ture enables devops: migration to a cloud-native architecture,” IEEE
Software, vol. 33, no. 3, pp. 42–52, 2016.

[10] E. Wolff, Microservices: Flexible Software Architecture. Addison-
Wesley Professional, 2016.

[11] S. Millett, Patterns, Principles and Practices of Domain-Driven Design.
John Wiley & Sons, 2015.

[12] C. B. Seaman, “Qualitative methods in empirical studies of software
engineering,” IEEE Transactions on software engineering, vol. 25, no. 4,
pp. 557–572, 1999.

[13] J. O. Coplien and D. C. Schmidt, Pattern languages of program design.
ACM Press/Addison-Wesley Publishing Co., 1995.

[14] S. Newman, Building microservices: designing fine-grained systems. ”
O’Reilly Media, Inc.”, 2015.

[15] E. Evans, Domain-driven design: tackling complexity in the heart of
software. Addison-Wesley Professional, 2004.

[16] E. Gamma, Design patterns: elements of reusable object-oriented soft-
ware. Pearson Education India, 1995.

[17] I. Nadareishvili, R. Mitra, M. McLarty, and M. Amundsen, Microservice
Architecture: Aligning Principles, Practices, and Culture. ” O’Reilly
Media, Inc.”, 2016.

[18] R. C. Martin, “The single responsibility principle,” The principles,
patterns, and practices of Agile Software Development, vol. 149, p. 154,
2002.

[19] H. Ossher and P. Tarr, “Multi-dimensional separation of concerns and
the hyperspace approach,” in Software Architectures and Component
Technology. Springer, 2002, pp. 293–323.

[20] M. McLarty, “Designing a microservice system.” [Online]. Available:
http://www.apiacademy.co/designing-a-system-of-microservices


