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ABSTRACT 
In the past, repositories of examples of the well-known Gang-of-
Four design patterns brought insights on the potential 
contributions of aspect-oriented programming, as well as 
providing a suitable case study for subsequent research. In this 
paper, we present the first results of an ongoing effort to bring 
these advantages to a broader range of aspect-oriented languages. 
We present several implementations in CaesarJ of seven Gang-of-
Four patterns. A short analysis follows, in which a comparison is 
made with AspectJ. 

Categories and Subject Descriptors 
D.2.11 [Software Engineering]: Software Architectures – pat-
terns, information hiding, and languages; D.3.3 [Programming 
Languages]: Language Constructs and Features—patterns, 
classes and objects 

General Terms 
Design, Languages 

Keywords 
Design patterns, CaesarJ. 

1. INTRODUCTION 
Design patterns are a distillation of many real systems for the 
purpose of cataloguing and categorizing common programming 
and design practice. The most well-known design patterns are the 
23 Gang-of-four (GoF) patterns, which propose flexible solutions 
for many design and structural issues [9]. The presentation of each 
pattern is structured in a number of parts, including purpose or 
intent, applicability, structure of the solution and code examples. 

As a collection, the GoF patterns provide a rich catalogue of 
problems and corresponding solutions that can be found in large 

and complex systems. A repository of implementations is a good 
case study for some kinds of research. It also has the advantage 
that the patterns can be tackled one at a time and each individual 
example can be kept simple. This eases the task of someone 
approaching the collection, specific code examples and/or the 
language in which the example is written. 

In the GoF book, the examples are coded in languages that were 
mainstream (mostly C++) at the time in which the book was 
published. It was noticed that the patterns provide many insights 
on both the strengths and limitations of the languages in which the 
patterns are coded, as well as providing hints as to what language 
features could overcome the limitations [3]. In this paper, we are 
mainly concerned with languages for aspect-oriented 
programming (AOP) [5]. 

In recent years, the GoF patterns were used for various purposes, 
namely as a showcase for some AOP languages [12], to illustrate 
the advantages of a given AOP language over some other 
language used as benchmark [17][21], and as a basis for 
tutorials [18]. In some cases, the code examples were made 
publicly available [12], which opened the way for its use in 
further research [10][20]. 

Though the GoF patterns proved useful for a number of purposes 
and there are now many AOP languages available [5], currently 
most AOP languages lack its own repository of GoF 
implementations. To our knowledge, just two repositories were 
developed [12][21], the one in AspectJ being publicly available. 
We believe that it would be beneficial if a wider range of aspect-
oriented languages was used to develop implementations of 
patterns such as the GoF. If such repositories were available, they 
would provide case studies for various kinds of research as well as 
facilitating comparisons and assessments. 

In this paper, we present the early results of an ongoing effort to 
develop implementations of the GoF patterns in the CaesarJ 
language [2]. Examples for seven patterns were developed1. In the 
long term, we plan to develop repositories of GoF 
implementations in various aspect-oriented languages, to be used 
as a basis for assessing the relative strengths and weaknesses of 
the languages involved, both relative to each other and to more 
traditional languages. 

                                                                 
1 The examples are available for download at:  

http://ctp.di.fct.unl.pt/~mpm/CaesarJGoF4SPLAT.rar 
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The rest of this paper is structured as follows. Section 2 provides 
a short introduction to CaesarJ. Section 3 outlines our approach to 
the task. Section 4 provides an initial analysis of the 
implementations. Section 5 suggests several opportunities for 
future work and section 6 concludes the paper. 

2. INTRODUCTION TO CAESARJ 
CaesarJ shares several features with AspectJ [1], presently the 
most popular and widely used AOP language. However, CaesarJ 
also has some important differences from AspectJ. This paper 
assumes familiarity with AspectJ and outlines the main features of 
CaesarJ by underlining the differences from AspectJ. For more 
information on CaesarJ, we refer to Aracic et al [2]. 
 

(a) AspectJ 

 

(b) CaesarJ 

Figure 1. Mechanisms for reuse for AspectJ and CaesarJ. 
 

CaesarJ uses a joinpoint model that is akin to that of AspectJ. 
Figure 1 provides an overview of the similarities and differences 
between AspectJ and CaesarJ as regards support for reusability. 
Part a of Figure 1 outlines AspectJ’s division between a reusable 
abstract aspect, a case-specific concrete aspect and the specific 
application to which aspect functionality is to be composed. To 
bind the abstract aspect to each case-specific system, a different 
concrete sub-aspect is created for each case. However, there is a 
single abstract aspect for all concrete aspects. It is one of possibly 
many alternative implementations, but in AspectJ it is frozen and 
cannot be replaced by an alternative implementation without 
invasive changes on the source code. By contrast, in CaesarJ it is 
possible to polymorphically replace one implementation of the 
reusable part of a component with another, without impact on the 
remaining modules of the component (part b of Figure 1). 

In addition to plain-Java classes, CaesarJ supports a second kind 
of class (cclass) that supports family polymorphism [7], i.e. the 
capability to treat sets of inner, nested classes polymorphically, 
the same way as methods. These nested classes are termed virtual 
classes [15]. The name of any class nested within a cclass can be 
dynamically bound to different concrete classes in different 
circumstances, the same way method calls are late bound to the 
most specific implementation in plain Java. Figure 2 outlines the 
structure of a CaesarJ component. 

 

Figure 2. General structure of CaesarJ component. 

An key notion in the CaesarJ approach to design is that of 
collaboration interface (CI) [16]. A CI is a top-level abstract 
cclass that declares a collaboration between objects, thus 
representing design-level relationships between abstractions such 
as those often represented in the abstract types of a class diagram. 
Figure 2 shows one example of a CI at the top, with an arbitrary 
internal structure involving three classes. 

CaesarJ recognizes that component integration comprises several 
parts which should be kept separate and independent. The higher-
level part that provides the general framework is the CI, with the 
remaining parts extending the CI through inheritance. In addition, 
CaesarJ takes into account that there are two sides to component 
integration: (1) the CaesarJ implementation, i.e., the 
implementation of the component itself and (2) the binding, i.e., 
the glue that integrates the component to a specific application. 
According to these concepts, implementation code does not make 
references to case-specific classes and is therefore reusable. A 
CaesarJ implementation corresponds to an abstract aspect in 
AspectJ and comprises a top-level cclass module that inherits 
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from the CI. Likewise, CaesarJ bindings are top-level cclass 
modules that also inherit from the CI and enclose the logic that 
glues the component to a specific application. These correspond 
to the concrete sub-aspects in AspectJ. To integrate the 
component the application, nested classes of CaesarJ bindings can 
wrap one or several objects of arbitrary types and extend them 
with additional state and behaviour. CaesarJ wrappers perform the 
same role as the inter-type declarations and declare parents 
clauses of AspectJ. 

CaesarJ implementations and bindings must between them 
provide definitions for all declarations placed in the CI. Finally, 
CaesarJ uses mixin composition [4] to compose the two different, 
parallel hierarchies of implementations and bindings that extend a 
CI so as to create a single, unified component. In all cases 
discussed in this paper, it is simply a matter of creating an empty 
cclass that extends the implementation and the binding. 

3. APPROACH TAKEN 
Both AspectJ and CaesarJ enable aspects to be divided into a 
general part that is applicable to multiple cases and a part that 
encloses the details specific to the case at hand. However, CaesarJ 
goes significantly further than AspectJ in structuring those parts. 
The parts of a CaesarJ component are clearly separated into 
different modules whose implementations can be polymorphically 
replaced, without impact on the other modules. Relative to 
AspectJ, this provides more opportunities for reuse. Presenting a 
single implementation of each pattern wouldn’t illustrate the full 
extent of CaesarJ’s capabilities. We therefore set the aim of 
developing multiple implementations of the selected patterns. 

All scenarios used to develop the CaesarJ examples are based on 
existing repositories rather than invented anew. Using 
independent scenarios yields more credible results and is more 
likely to provide interesting problems and situations. For this 
reason, we are basing our work on existing repositories of 
implementations freely available on the Net2 (see Table 1). 

Table 1. Repositories of GoF implementations 
publicly available 

Repository 
name  

Author 
Lang-
uage 

URL 

Thinking in 
patterns 

Bruce Eckel Java 2 
http://www.mindview.net/Boo
ks/TIPatterns/ 

Design 
pattern Java 
companion 

James Cooper Java 2 
http://www.patterndepot.com
/put/8/JavaPatterns.htm 

Fluffycat Larry Truett Java 2 http://www.fluffycat.com/Java

-Design-Patterns/ 

Hannemann et 
al 

Hannemann/ 
Kiczales 

Java 2/ 
AspectJ 

http://hannemann.pbwiki.com
/Design+Patterns 

Huston Vince Huston Java 2 http://www.vincehuston.org/d
p/ 

 

There is a wide range in scenarios, style and implementations 
decisions used for the patterns. For instance, some authors heavily 
rely on graphics objects from the Java standard APIs while other 
repositories are mostly send messages to the console. In some 

                                                                 
2 The list of repositories presented in Table 1 is not an exhaustive 

one. Covering more repositories is a possibility, left for future 
work. 

cases, the participants in the pattern are instances of classes from 
the Java standard API, though more often these are represented by 
specific classes for a simple scenario. Naturally, data structures 
used also vary and in some cases functionality from the standard 
Java API is used instead. For instance, Eckel resorts to Java’s 
Observer/Observable API to implement Observer, while 
Hannemann and Kiczales use weak hash maps and array lists. 

The examples developed are those shown in Table 2. The patterns 
were selected for various reasons. Observer is most often used to 
illustrate CaesarJ’s strengths and there its implementation is 
already published [17] and thus represents an ideal entry point to 
someone approaching CaesarJ. Chain of Responsibility is 
structurally similar to Observer, though simpler (just one 
participant instead of two) and thus looked a direct follow up. 
Singleton is simple and many people’s entry point to the GoF, 
being selected for these reason. Decorator was chosen to test the 
wrapper mechanism and possibly mixin composition. Abstract 
Factory seemed the ideal candidate to test family polymorphism 
and virtual classes. Visitor and Bridge were selected because the 
patterns represent interesting structural problems suitable for 
testing CaesarJ’s composition capabilities. See also the analysis 
(section 4). 
 

Table 2. CaesarJ implementations developed for the GoF 
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Abstract factory  X X   

Bridge   X  X 

Chain of 
responsibility 

  X X  

Decorator    X X  

Observer3 X X     

Singleton    X  

Visitor X  X   
 

The component structure supported by CaesarJ provides a clear 
guide as to where each piece of code is to be placed and suggests 
the following process: 

• First, analyze of the original example, with the help of a 
class diagram. In some cases, the abstract part of the 
structure maps directly into a CI. 

• Next, place all implementation code not dependent of 
case-specific types in the implementation module. 

• Place of all code depending on case-specific types in the 
binding module. 

• Create the complete component through an empty cclass 
that extends the implementation and the binding. 

                                                                 
3 Two different scenarios of Observer by Eckel were implemented, 

with three different implementations. 



4. PRELIMINARY ANALYSIS 
Structurally, all CaesarJ examples are more or less complex 
variants of the framework outlined in section 2. One instance is 
Observer, whose case is well-known. Thanks to the enhanced 
polymorphism, we managed to hold multiple implementations and 
bindings in the same system [17]. 

4.1 Mechanisms used 
Figure 3 outlines the AspectJ and CaesarJ approaches to 
integrating an aspect to an application. In AspectJ, the mapping 
between abstractions from the component world to abstractions in 
the application world is performed in two phases. First, inner 
marker interfaces represent the concepts and declare parents 
compose extra members to them. Second, declare parents clauses 
bind the interfaces, and thus the extra members, to the classes 
from the application. One consequence of this approach is that the 
extra members lack a proper “home” to encapsulate them. Instead, 
those inter-type members are top-level members within the aspect. 
This explains way AspectJ aspects tend to have a flat internal 
structure [17]. By contrast, the use of CaesarJ bindings with 
wrappers means that extra members are enclosed in their own 
modules, which results in a richer internal structure. This also 
explains why CaesarJ is less asymmetrical than AspectJ. In 
CaesarJ, the programmer reasons less in terms of “aspects” and 
“base code” than in terms of components and their constituent 
modules. 

 

 

Figure 3. Mechanisms for integrating with an application 

The fact that CaesarJ shares with AspectJ the mechanism of 
pointcuts and advice invites some comparisons. One interesting 
question is whether pointcuts are used the same way as in 

AspectJ, or the CaesarJ-specific mechanisms have an influence on 
the use patterns for pointcuts and advice. It turns out that in 
CaesarJ, pointcuts and advice feature less prominently than with 
AspectJ. Thanks to CaesarJ’s more sophisticated mechanisms to 
deal with structure, it is possible to separate the various parts of a 
component in different modules to a greater extent than with 
AspectJ. One is thus more sparing in the use of pointcuts and 
advice, whose use is essentially reduced to that of glue code, i.e., 
in the bindings. The experience gained so far suggests that in 
CaesarJ, pointcuts and advice should be left to those situations in 
which the behaviour to be composed does not follow an 
identifiable pattern in the static structure of the system, e.g., 
scattered calls to a method or constructor. That is the case in all 
uses of pointcuts and advice in the examples presented in Table 3. 

The Decorator pattern is a good example to illustrate the 
differences between the two approaches to pointcuts. We 
developed two different implementations of Decorator, one that 
uses a pointcut and around advice similar to that proposed by 
Hannemann and Kiczales [12], and one that resorts to the wrapper 
mechanism. The use of wrappers conforms more closely to the 
original intent of the pattern, namely in the dynamic nature of the 
compositions [14] and in the possibility of varying the order with 
which decorators are composed [19]. In the context of CaesarJ, 
the approach based on pointcuts and advice is a case of overuse of 
the mechanisms. However, there remains the issue of application 
specific objects loosing their original identity, whose thorough 
analysis is left for future work. 

Table 3 presents a summary of the use of CaesarJ pointcuts, CIs, 
implementations and bindings, in the implementations referred in 
Table 2. As it would be expected, not all examples include all 
features. The exception are the bindings, which is also what we 
expected. Note that some of the constructs available in CaesarJ 
are not covered in this paper (e.g., deploy on object) as the 
implementations from Table 2 do not comprise sufficient material 
to perform an assessment. 

 

Table 3. Use of mechanisms in the CaesarJ examples. 
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not consider it good practice and do not count it for this reason. 

The CaesarJ Singleton resembles that in AspectJ, since the 
CaesarJ example is based on pointcut and advice, just like the 
AspectJ example. However, even in this simple example CaesarJ 
provides an opportunity to separate a reusable advice into an 
implementation module. Since the example does not include a CI, 
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the implementation is placed at the top of the inheritance 
hierarchy. Similar design decisions were made in some of the 
other examples. 

Since the inter-type declarations of AspectJ can be regarded as a 
manifestation of mixin composition, we initially hypothesised that 
mixins could be used as a more structured alternative to the inter-
type declarations, as well as providing direct language support to 
decorators. However, mixin composition in CaesarJ cannot be 
used “on the fly”: a specific declaration of a cclass extending the 
pertinent modules is required for each different combination. This 
defeats the aim by Decorator of preventing a combinatorial 
explosion of class declarations. In addition, mixin composition is 
restricted to cclass modules. For these reasons, the primary of 
mixins is to compose modules that extend a CI. 

Abstract Factory is really about how to enforce family 
polymorphism in a language that is not endowed with the feature. 
Since CaesarJ is, it makes a perfect fit for the pattern. However, 
due to the nature of the problem, no reusable code was obtained. 
Each scenario maps to different, case-specific code (see Figure 4). 
 

 

Figure 4. Class diagram of the CaesarJ example of the 
fluffycat scenario for the Abstract Factory pattern 

 

Visitor is about an inheritance tree to whose classes one may want 
to add various different additional operations. It quickly becomes 
cumbersome to place the logic for many different operations in 
the classes of the tree. The solution proposed by Visitor is to 
provide an accept operation to each of the classes, through which 
a visitor object is passed, containing the logic for the additional 
operation. In other words, Visitor embodies the problem of 
double dispatch, i.e., the ability to select a given block of code 
based on two different types that can evolve independently. This 
is an instance of the more general case of multiple dispatch [6]. 
Ideally, CaesarJ would support this feature as regards a family of 
types, but it supports only single dispatch based on the type of the 
family object associated with the concrete family at hand. This 

limitation motivated the proposal by Gasiunas et al [11] of 
multiple dispatch on virtual types. 

4.2 Reuse 
Besides features shared with plain Java, AspectJ provides one 
kind of module to enclose reusable code: abstract aspects. In 
CaesarJ, these correspond to two kinds of module: CIs and 
implementations. Table 4 shows what CaesarJ patterns result in 
such reusable modules and how the results compare with the 
AspectJ examples for the same patterns [12]. 

Depending on the nature of the pattern, different levels of reuse 
are obtained. In some cases, only the high level design (i.e., the 
CI) is reusable and in others only the implementation is reusable. 

 

Table 4. Reusable modules in AspectJ and CaesarJ 

Reusable 
parts: 

AspectJ 
(abstract 
aspects) 

CaesarJ 
(CIs) 

CaesarJ 
(implemen-

tations) 
Abstract 
Factory 

No No No 

Bridge No Yes Yes 

Chain of 
Responsibility 

Yes Yes Yes 

Decorator No No No 

Observer Yes Yes Yes 

Singleton Yes No Yes 

Visitor Yes Yes No 
 

4.3 Reasoning with Collaboration Interfaces 
One advantages of CaesarJ clearly felt relative to both Java and 
AspectJ was when reasoning about the examples through class 
diagrams. CIs provide a design-level view of a component or sub-
system found in class diagrams but generally absent in mainstream 
languages. For this reason we initially expected that CIs would be 
of help to reason with the overall structure of the component 
when looking at the code. It turned out that class diagrams of 
CaesarJ designs provided significant benefits as regards 
comprehensibility. The diagrams representing the CaesarJ designs 
are conceptually closer to the original design intentions than 
traditional class diagrams, exposing the relationships between 
classes and individual operations more faithfully than traditional 
class diagrams (e.g., those representing the Java implementations 
from Table 1). The distinction between top-level classes and 
nested classes facilitated the reasoning with the overall design, as 
well facilitating the task of mapping the original Java designs to 
CaesarJ designs. The enhanced clarity also applies to top-level 
methods. For instance, the factory method from the CaesarJ 
design for Abstract Factory (see Figure 4) is a top level method 
placed on the same level as the virtual classes. This exposes a 
design decision that is absent from traditional designs because 
nested classes are absent from traditional class diagrams and top-
level methods do not carry the same meaning. 
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5. FUTURE WORK 
5.1 Complete the CaesarJ Repository 
The results presented in this paper are the preliminary results of 
an ongoing effort. Our immediate goal is to complete the GoF 
repository for CaesarJ. It is to be expected that the CaesarJ 
implementation of some patterns will be identical to Java (e.g., 
Iterator). CaesarJ features not covered in this paper will be 
explored (e.g., dynamic deployment) and a more thorough 
analysis will be carried out. One interesting issue is to assess the 
comparative advantages of the wrapper mechanism w.r.t. AspectJ-
style inter-type declarations. Using inter-type declarations, target 
objects (instances of the original, target classes) and additional 
members share the same identity. Though inter-type declarations 
are structurally poorer than wrappers, we conjecture that this 
characteristic may be advantageous in some cases. 

5.2 Derive Refactorings for CaesarJ 
In the past, availability of a GoF repository in a given language 
was used as a basis for pinpointing refactorings [20] for that 
language. This work provides similar opportunities for CaesarJ. 

5.3 Larger Case Studies 
After developing a repository of GoF implementations, a logical 
next step is to apply the insights gained to object-oriented 
frameworks whose structure is based on the patterns. This can be 
carried out by developing a given system anew, or through 
refactoring experiments on existing systems. 

5.4 Extend Work to Other AOP Languages 
We aim to cover more aspect-oriented languages. For instance, 
the Object Teams language [13] has some features in common 
with CaesarJ, namely family polymorphism. One interesting 
proposition is to compare Object Teams’ support for family 
polymorphism with CaesarJ’s. 

6. CONCLUSION 
This paper presents the first results of an ongoing effort to 
develop a repository of implementations of the GoF patterns in 
CaesarJ. Examples for seven patterns are presented and a short 
comparative analysis is made with an existing AspectJ repository. 
The experience gained suggests that CaesarJ’ features to deal with 
static structure, namely family polymorphism and a clear 
separation of implementations and bindings, lead to a more 
flexible management of the constituent parts of a component and 
avoids overusing pointcuts and advice, which are used primarily 
for glue code. 
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