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ABSTRACT

In the past, repositories of examples of the wethkn Gang-of-
Four design patterns brought insights on the pigtent
contributions of aspect-oriented programming, asll was
providing a suitable case study for subsequentareke In this
paper, we present the first results of an ongoiifigrteto bring
these advantages to a broader range of aspectegtiEmnguages.
We present several implementations in CaesarJvehs@ang-of-
Four patterns. A short analysis follows, in whickamnparison is
made with AspectJ.

Categoriesand Subject Descriptors

D.2.11 Poftware Engineering]: Software Architectures — pat-
terns, information hiding, and languages; D.3P80opgramming
Languages|: Language Constructs and Features—patterns,
classes and objects

General Terms
Design, Languages

Keywords

Design patterns, CaesarJ.

1. INTRODUCTION

Design patterns are a distillation of many realteays for the
purpose of cataloguing and categorizing common raraging

and design practice. The most well-known desigtepas are the
23 Gang-of-four (GoF) patterns, which propose Béxisolutions
for many design and structural issues [9]. Thega&sgion of each
pattern is structured in a number of parts, ineigdpurpose or
intent, applicability, structure of the solutiondacode examples.

As a collection, the GoF patterns provide a rictalogue of
problems and corresponding solutions that can badan large
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and complex systems. A repository of implementatisna good
case study for some kinds of research. It alsoti@sadvantage
that the patterns can be tackled one at a timeeant individual
example can be kept simple. This eases the taskowieone
approaching the collection, specific code exammled/or the
language in which the example is written.

In the GoF book, the examples are coded in langutge were
mainstream (mostly C++) at the time in which theolbovas
published. It was noticed that the patterns proviggy insights

on both the strengths and limitations of the laggsan which the
patterns are coded, as well as providing hintoaghiat language
features could overcome the limitations [3]. Instpaper, we are
mainly concerned with languages for aspect-oriented
programming (AOP) [5].

In recent years, the GoF patterns were used foowsipurposes,
namely as a showcase for some AOP languages L #lustrate
the advantages of a given AOP language over sorher ot
language used as benchmark [17][21], and as a bWasis
tutorials [18]. In some cases, the code examplese waade
publicly available [12], which opened the way fds iuse in
further research [10][20].

Though the GoF patterns proved useful for a nurob@urposes
and there are now many AOP languages availablec[B}ently
most AOP languages lack its own repository of GoF
implementations. To our knowledge, just two repo@s were
developed [12][21], the one in Aspectd being puplavailable.
We believe that it would be beneficial if a widange of aspect-
oriented languages was used to develop implementatiof
patterns such as the GoF. If such repositories wesdable, they
would provide case studies for various kinds oéaesh as well as
facilitating comparisons and assessments.

In this paper, we present the early results of mgomg effort to
develop implementations of the GoF patterns in @mesarJ
language [2]. Examples for seven patterns wereloped. In the
long term, we plan to develop repositories of GoF
implementations in various aspect-oriented langsiagebe used
as a basis for assessing the relative strengthsvaaéinesses of
the languages involved, both relative to each o#met to more
traditional languages.

! The examples are available for download at:
http://ctp.di.fct.unl.pt/~mpm/CaesarJGoF4SPLAT .rar



The rest of this paper is structured as follows:tiSe 2 provides
a short introduction to CaesarJ. Section 3 outlmesapproach to
the task. Section4 provides an initial analysis tife
implementations. Section 5 suggests several oppitigs for
future work and section 6 concludes the paper.

2. INTRODUCTION TO CAESARJ

CaesarXkhares several features with AspectJ [1], presethidy
most popular and widely used AOP language. HowevaesarJ]
also has some important differences frégpectd. This paper
assumes familiarity with Aspecahd outlines the main features of
Caesardby underlining the differences from AspectJ. Forreno
information on CaesarJ, we refer to Aracic et &l [2
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Figure 1. Mechanismsfor reusefor AspectJ and CaesarJ.

CaesarJ uses a joinpoint model that is akin to dfiaAspectJ.
Figure 1 provides an overview of the similaritiesl aifferences
between Aspect] and CaesarJ as regards suppaeufsability.

Parta of Figure 1 outlines AspectJ’s division betweereasable
abstract aspect, a case-specific concrete aspdcthanspecific
application to which aspect functionality is to b@mposed. To
bind the abstract aspect to each case-specifierayst different
concrete sub-aspect is created for each case. Howtere is a
single abstract aspect for all concrete aspecis.dhe of possibly
many alternative implementations, but in Aspecis frozen and
cannot be replaced by an alternative implementatigthout

invasive changes on the source code. By contragaesar] it is
possible to polymorphically replace one implemeatatof the

reusable part of a component with another, withoytact on the
remaining modules of the component (gadf Figure 1).

In addition to plain-Java classes, CaesarJ supposexond kind
of class ¢class) that supportdamily polymorphisni7], i.e. the
capability to treat sets of inner, nested classdgnmrphically,

the same way as methods. These nested classesraeeltirtual

classe415]. The name of any class nested withicclass can be
dynamically bound to different concrete classes different

circumstances, the same way method calls are @miedto the
most specific implementation in plain Java. Fig@reutlines the
structure of a CaesarJ component.
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Figure 2. General structure of CaesarJ component.

An key notion in the CaesarJ approach to desigithé of
collaboration interface(Cl) [16]. A Cl is a top-level abstract
cclass that declares a collaboration between objects,s thu
representing design-level relationships betweetradi®ons such
as those often represented in the abstract typa<lafss diagram.
Figure 2 shows one example of a Cl at the top, aitharbitrary
internal structure involving three classes.

CaesarJ recognizes that component integration ¢sespseveral
parts which should be kept separate and indepen@ieathigher-
level part that provides the general frameworkhis €1, with the
remaining parts extending the CI through inheriéarin addition,
CaesarJ takes into account that there are two sidesmponent
integration: (1) the CaesarJimplementation i.e.,, the
implementation of the component itself and (2) biveding, i.e.,

the glue that integrates the component to a speafplication.
According to these concepts, implementation codss dmt make
references to case-specific classes and is therefarsable. A
CaesarJ implementation corresponds to an abstsgmct in

Aspect] and comprises a top-lexelass module that inherits



from the CI. Likewise, CaesarJ bindings are toplesclass

modules that also inherit from the Cl and encldse lbgic that
glues the component to a specific application. €hesrespond
to the concrete sub-aspects in Aspect). To integihe
component the application, nested classes of Chbsatings can
wrap one or several objects of arbitrary types andrektthem
with additional state and behaviour. CaesarJ wnapperform the
same role as the inter-type declarations and degarents
clauses of AspectJ.

CaesarJ implementations and bindings must betwémm t
provide definitions for all declarations placedtive Cl. Finally,
CaesarJ uses mixin composition [4] to composewiedifferent,
parallel hierarchies of implementations and bindititat extend a
Cl so as to create a single, unified componentallncases
discussed in this paper, it is simply a matterrefiting an empty
cclass that extends the implementation and the binding.

3. APPROACH TAKEN

Both Aspect] and CaesarJ enable aspects to beediwdo a
general part that is applicable to multiple cased a part that
encloses the details specific to the case at Hdodever, CaesarJ
goes significantly further than AspectJ in structgrthose parts.
The parts of a CaesarJ component are clearly separato
different modules whose implementations can bemoltphically
replaced, without impact on the other modules. Reato
Aspect], this provides more opportunities for rel&esenting a
single implementation of each pattern wouldn't illustrate full
extent of CaesarJ's capabilities. We therefore thet aim of
developing multiple implementations of the selegtatterns.

All scenarios used to develop the CaesarJ exanapéebased on
existing repositories rather than invented anew.indJs
independent scenarios yields more credible resnts is more
likely to provide interesting problems and situaso For this
reason, we are basing our work on existing reposgoof

implementations freely available on the Nesee Table 1).

Table 1. Repositories of GoF implementations
publicly available

Repositor Lang-

POSTONY - A ythor 9 URL

name uage
Thinking in http://www.mindview.net/Boo

patterns Bruce Eckel|  Java 2| s/Trpatterns/

Design http://www.patterndepot.com
pattern Java| James Cooper Java 2 |/Put/8/JavaPatterns.htm
companion

http://www.fluffycat.com/Java
Fluffycat Larry Truett, Java 2 -Design-Patterns/
Hannemann et Hannemann/ Java 2/ | http://hannemann.pbwiki.com
al Kiczales | AspectJ |/Design+Patterns
Huston | Vince Huston Java 2 h;tp:// www.vincehuston.org/d
P,

There is a wide range in scenarios, style and imeigations
decisions used for the patterns. For instance, sarf®rs heavily
rely on graphics objects from the Java standards Afile other
repositories are mostly send messages to the @nbkolsome

2 The list of repositories presented in Table 1dsan exhaustive
one. Covering more repositories is a possibiligft for future
work.

cases, the participants in the pattern are instaotelasses from
the Java standard API, though more often theseepresented by
specific classes for a simple scenario. Naturalbta structures
used also vary and in some cases functionality fileenstandard
Java API is used instead. For instance, Eckel t®dor Java’'s
Observer/Observable APl to implement Observer, avhil
Hannemann and Kiczales use weak hash maps andiatsay

The examples developed are those shown in Tallleepatterns
were selected for various reasons. Observer is oftst used to
illustrate CaesarJ's strengths and there its imeigation is
already published [17] and thus represents an iele&y point to
someone approaching CaesarJ. Chain of Responsihit
structurally similar to Observer, though simpleusfj one
participant instead of two) and thus looked a difetdlow up.
Singleton is simple and many people’s entry pointhe GoF,
being selected for these reason. Decorator wasenhtostest the
wrapper mechanism and possibly mixin compositiohstéact
Factory seemed the ideal candidate to test fanulynporphism
and virtual classes. Visitor and Bridge were sekdiecause the
patterns represent interesting structural problesugable for
testing CaesarJ's composition capabilities. See tile analysis
(section 4).

Table 2. Caesar J implementations developed for the GoF

> 9| g6 R 3
= 8 o g I E c T
Abstract factory X X
Bridge X X
Chain of X X
responsibility
Decorator XX
Observet XX
Singleton X
Visitor X X

The component structure supported by Caesar] m®\wadclear
guide as to where each piece of code is to be ghland suggests
the following process:

»  First, analyze of the original example, with théphef a
class diagram. In some cases, the abstract patieof
structure maps directly into a ClI.

* Next, place all implementation code not dependédnt o
case-specific types in the implementation module.

*  Place of all code depending on case-specific typdse
binding module.

»  Create the complete component through an ecgbags
that extends the implementation and the binding.

3 Two different scenarios of Observer by Eckel wistglemented,
with three different implementations.



4. PRELIMINARY ANALYSIS

Structurally, all Caesar] examples are more or EEwplex
variants of the framework outlined in section 2.eQnstance is
Observer, whose case is well-known. Thanks to thieareced
polymorphism, we managed to hold multiple impleraéiohs and
bindings in the same system [17].

4.1 Mechanismsused

Figure 3 outlines the Aspect) and CaesarJ appresathe
integrating an aspect to an application. In Aspettd mapping
between abstractions from the component world strabtions in
the application world is performed in two phaseBstF inner

marker interfaces represent the concepts and eegarents
compose extra members to them. Second, declaratpaiauses
bind the interfaces, and thus the extra membersheoclasses
from the application. One consequence of this aggras that the
extra members lack a proper “home” to encapsutetmt Instead,
those inter-type members are top-level membersmitte aspect.
This explains way Aspect] aspects tend to havetairiternal

structure [17]. By contrast, the use of Caesardibgs with

wrappers means that extra members are encloseldein dwn

modules, which results in a richer internal struetuThis also
explains why Caesar] is less asymmetrical than d3pdn

CaesarJ, the programmer reasons less in termsspécts” and
“base code” than in terms of components and thestituent
modules.

.............. i spect (a) Aspectd appllcatlon
Members for the .
aspects’s internal Objects from the
implementation domain specific
...................................... application
Inter-type
declarations
declare parents
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Figure 3. Mechanismsfor integrating with an application

The fact that Caesar] shares with Aspect] the misrhaof
pointcuts and advice invites some comparisons. i@tezesting
question is whether pointcuts are used the same agayn

AspectJ, or the CaesarJ-specific mechanisms hairdlaence on
the use patterns for pointcuts and advice. It tuyos that in

CaesarJ, pointcuts and advice feature less prothngran with

AspectJ. Thanks to CaesarJ’s more sophisticatedhanésns to
deal with structure, it is possible to separatevidm@ous parts of a
component in different modules to a greater exthan with

Aspect]. One is thus more sparing in the use dfitpais and
advice, whose use is essentially reduced to thgtuef code, i.e.,
in the bindings. The experience gained so far sstggthat in
CaesarJ, pointcuts and advice should be left teettsituations in
which the behaviour to be composed does not follaw
identifiable pattern in the static structure of thgstem, e.g.,
scattered calls to a method or constructor. Th#tdscase in all
uses of pointcuts and advice in the examples predem Table 3.

The Decorator pattern is a good example to illastrthe
differences between the two approaches to pointclWée
developed two different implementations of Decoratme that
uses a pointcut and around advice similar to tliapgsed by
Hannemann and Kiczales [12], and one that resotiset wrapper
mechanism. The use of wrappers conforms more gldeethe
original intent of the pattern, namely in the dymamature of the
compositions [14] and in the possibility of varyittte order with
which decorators are composed [19]. In the contéxCaesarJ,
the approach based on pointcuts and advice iseactas/eruse of
the mechanisms. However, there remains the issappmifcation
specific objects loosing their original identityhese thorough
analysis is left for future work.

Table 3 presents a summary of the use of Caesarttpis, Cls,

implementations and bindings, in the implementaticeferred in
Table 2. As it would be expected, not all examplesude all

features. The exception are the bindings, whichlss what we
expected. Note that some of the constructs availablCaesarJ
are not covered in this paper (e.g., deploy on atpjes the
implementations from Table 2 do not comprise sigfit material
to perform an assessment.

Table 3. Use of mechanismsin the CaesarJ examples.

Use of t_he . pomt_cut cl Imple_,L binding
mechanism: /advice mentation

Abslract No No No Yes

Factory

Bridge No Yes Yes Yes
Chain Of. . Yes Yes Yes Yes
Responsibility

Decor ator No® No No Yes

Observer Yes Yes Yes Yes
Singleton Yes No Yes Yes
Visitor No Yes No Yes

® One scenario does use pointcuts/ advice but indéie we do
not consider it good practice and do not counbitthis reason

The CaesarJ Singleton resembles that in Aspechte sthe
CaesarJ example is based on pointcut and advist ike the
AspectJ example. However, even in this simple exar@aesarJ
provides an opportunity to separate a reusablecadvito an
implementation module. Since the example doesnuitde a Cl,



the implementation is placed at the top of the iithece
hierarchy. Similar design decisions were made ime®f the
other examples.

Since the inter-type declarations of Aspect] camegarded as a
manifestation of mixin composition, we initially pgthesised that
mixins could be used as a more structured altemati the inter-
type declarations, as well as providing direct laage support to
decorators. However, mixin composition in Caesadnot be
used “on the fly": a specific declaration of a @daxtending the
pertinent modules is required for each differemhbmation. This
defeats the aim by Decorator of preventing a coatbiial
explosion of class declarations. In addition, migemposition is
restricted to cclass modules. For these reasoesptimary of
mixins is to compose modules that extend a Cl.

Abstract Factory is really about how to enforce ifam
polymorphism in a language that is not endowed withfeature.
Since Caesarl is, it makes a perfect fit for thitepa However,
due to the nature of the problem, no reusable emeobtained.
Each scenario maps to different, case-specific ¢eele Figure 4).

AbstractSoupFactory

String getLocation()
Soup makeSoup()

Soup

A
AN

BostonSoupFactory HonoluluSoupFactory

Soup makeSoup() Soup makeSoup()

FishChowder 1 FishChowder

VegetableSoup — ChickenSoup

Figure4. Class diagram of the CaesarJ example of the
fluffycat scenario for the Abstract Factory pattern

Visitor is about an inheritance tree to whose @asme may want
to add various different additional operationsgutckly becomes
cumbersome to place the logic for many differen¢raions in
the classes of the tree. The solution proposed isytov is to

provide an accept operation to each of the classesjgh which
a visitor object is passed, containing the logictfee additional
operation. In other words, Visitor embodies the bfem of

double dispatch, i.e., the ability to select a gil®ock of code
based on two different types that can evolve inddpatly. This
is an instance of the more general casenoftiple dispatct6].

Ideally, CaesarJ would support this feature asrdsga family of
types, but it supports only single dispatch basethe type of the
family object associated with the concrete familyhand. This

limitation motivated the proposal by Gasiunas ef{la] of
multiple dispatch on virtual types.

4.2 Reuse

Besides features shared with plain Java, Aspeaiiges one
kind of module to enclose reusable code: abstrapeds. In
CaesarJ, these correspond to two kinds of moduls: add
implementations. Table 4 shows what CaesarJ pattexsult in
such reusable modules and how the results compite the
Aspect]J examples for the same patterns [12].

Depending on the nature of the pattern, differentls of reuse
are obtained. In some cases, only the high levelgde(i.e., the
Cl) is reusable and in others only the implemeatais reusable.

Table 4. Reusable modulesin AspectJ and CaesarJ

Reusable Aspect) CaesarJ _Caesar.]
arts (abstract (Cls) (implemen-
parts aspects) tations)

Abstract
Factory No No No
Bridge No Yes Yes
Chain of
Responsibility ves ves ves
Decorator No No No
Observer Yes Yes Yes
Singleton Yes No Yes
Visitor Yes Yes No

4.3 Reasoning with Collaboration I nterfaces
One advantages of CaesarJ clearly felt relativboitn Java and
Aspect] was when reasoning about the examplesghrolass
diagrams. Cls provide a design-level view of a congnt or sub-
system found in class diagrams but generally abseangaiinstream
languages. For this reason we initially expected €is would be
of help to reason with the overall structure of t@mmponent
when looking at the code. It turned out that cldeggrams of
Caesar] designs provided significant benefits agards
comprehensibility. The diagrams representing thes@al designs
are conceptually closer to the original design ritims than
traditional class diagrams, exposing the relatigmshetween
classes and individual operations more faithfuligrt traditional
class diagrams (e.g., those representing the dagd@mentations
from Table 1). The distinction between top-levehdsdes and
nested classes facilitated the reasoning with tleeadl design, as
well facilitating the task of mapping the origin&dva designs to
CaesarJ designs. The enhanced clarity also apoli¢sp-level
methods. For instance, the factory method from @wesard
design for Abstract Factory (see Figure 4) is aleyel method
placed on the same level as the virtual classes @kposes a
design decision that is absent from traditionaligies because
nested classes are absent from traditional claggains and top-
level methods do not carry the same meaning.



5. FUTURE WORK
5.1 Completethe CaesarJ Repository

The results presented in this paper are the pradimiresults of
an ongoing effort. Our immediate goal is to conmpléie GoF
repository for CaesarJ. It is to be expected that €aesar]
implementation of some patterns will be identicalJava (e.g.,
Iterator). CaesarJ features not covered in thisepapll be
explored (e.g., dynamic deployment) and a more oign
analysis will be carried out. One interesting is@u& assess the
comparative advantages of the wrapper mechanisr AspectJ-
style inter-type declarations. Using inter-type ldestions, target
objects (instances of the original, target classes) additional
members share the same identity. Though inter-tigmdarations
are structurally poorer than wrappers, we conjecttivat this
characteristic may be advantageous in some cases.

5.2 Derive Refactoringsfor CaesarJ

In the past, availability of a GoF repository irgizen language
was used as a basis for pinpointing refactorin@$ far that
language. This work provides similar opportunifiesCaesarJ.

5.3 Larger Case Studies

After developing a repository of GoF implementatipa logical
next step is to apply the insights gained to obgented
frameworks whose structure is based on the patt&his can be
carried out by developing a given system anew, hoough
refactoring experiments on existing systems.

5.4 Extend Work to Other AOP Languages

We aim to cover more aspect-oriented languages.iristance,
the Object Teams language [13] has some featureonmmon
with CaesarJ, namely family polymorphism. One iesting
proposition is to compare Object Teams' support family
polymorphism with CaesarJ’s.

6. CONCLUSION

This paper presents the first results of an ongaiffgrt to
develop a repository of implementations of the Gufterns in
CaesarJ. Examples for seven patterns are presantté short
comparative analysis is made with an existing Agpegpository.
The experience gained suggests that CaesarJ’ désatudeal with
static structure, namely family polymorphism and ckear
separation of implementations and bindings, leadatanore
flexible management of the constituent parts obmmonent and
avoids overusing pointcuts and advice, which aedysrimarily
for glue code.
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