
Implementing Design Patterns in CaesarJ:
an Exploratory Study

Edgar Sousa
Departamento de Informática

Universidade do Minho
Campus de Gualtar

4710-057 Braga
PORTUGAL

Miguel P. Monteiro
Departamento de Informática

Faculdade de Ciências e Tecnologia
Universidade Nova de Lisboa

2829-516 Caparica
PORTUGAL

ABSTRACT
In the past, repositories of examples of the well-known Gang-of-
Four design patterns brought insights on the potential
contributions of aspect-oriented programming, as well as
providing a suitable case study for subsequent research. In this
paper, we present the first results of an ongoing effort to bring
these advantages to a broader range of aspect-oriented languages.
We present several implementations in CaesarJ of seven Gang-of-
Four patterns. A short analysis follows, in which a comparison is
made with AspectJ.

Categories and Subject Descriptors
D.2.11 [Software Engineering]: Software Architectures – pat-
terns, information hiding, and languages; D.3.3 [Programming
Languages]: Language Constructs and Features—patterns,
classes and objects

General Terms
Design, Languages

Keywords
Design patterns, CaesarJ.

1. INTRODUCTION
Design patterns are a distillation of many real systems for the
purpose of cataloguing and categorizing common programming
and design practice. The most well-known design patterns are the
23 Gang-of-four (GoF) patterns, which propose flexible solutions
for many design and structural issues [9]. The presentation of each
pattern is structured in a number of parts, including purpose or
intent, applicability, structure of the solution and code examples.

As a collection, the GoF patterns provide a rich catalogue of
problems and corresponding solutions that can be found in large

and complex systems. A repository of implementations is a good
case study for some kinds of research. It also has the advantage
that the patterns can be tackled one at a time and each individual
example can be kept simple. This eases the task of someone
approaching the collection, specific code examples and/or the
language in which the example is written.

In the GoF book, the examples are coded in languages that were
mainstream (mostly C++) at the time in which the book was
published. It was noticed that the patterns provide many insights
on both the strengths and limitations of the languages in which the
patterns are coded, as well as providing hints as to what language
features could overcome the limitations [3]. In this paper, we are
mainly concerned with languages for aspect-oriented
programming (AOP) [5].

In recent years, the GoF patterns were used for various purposes,
namely as a showcase for some AOP languages [12], to illustrate
the advantages of a given AOP language over some other
language used as benchmark [17][21], and as a basis for
tutorials [18]. In some cases, the code examples were made
publicly available [12], which opened the way for its use in
further research [10][20].

Though the GoF patterns proved useful for a number of purposes
and there are now many AOP languages available [5], currently
most AOP languages lack its own repository of GoF
implementations. To our knowledge, just two repositories were
developed [12][21], the one in AspectJ being publicly available.
We believe that it would be beneficial if a wider range of aspect-
oriented languages was used to develop implementations of
patterns such as the GoF. If such repositories were available, they
would provide case studies for various kinds of research as well as
facilitating comparisons and assessments.

In this paper, we present the early results of an ongoing effort to
develop implementations of the GoF patterns in the CaesarJ
language [2]. Examples for seven patterns were developed1. In the
long term, we plan to develop repositories of GoF
implementations in various aspect-oriented languages, to be used
as a basis for assessing the relative strengths and weaknesses of
the languages involved, both relative to each other and to more
traditional languages.

1 The examples are available for download at:

http://ctp.di.fct.unl.pt/~mpm/CaesarJGoF4SPLAT.rar

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
SPLAT 2008, March 31, 2008, Brussels, Belgium.
Copyright © 2008 ACM 978-1-60558-144-6/08/0003…$5.00.

The rest of this paper is structured as follows. Section 2 provides
a short introduction to CaesarJ. Section 3 outlines our approach to
the task. Section 4 provides an initial analysis of the
implementations. Section 5 suggests several opportunities for
future work and section 6 concludes the paper.

2. INTRODUCTION TO CAESARJ
CaesarJ shares several features with AspectJ [1], presently the
most popular and widely used AOP language. However, CaesarJ
also has some important differences from AspectJ. This paper
assumes familiarity with AspectJ and outlines the main features of
CaesarJ by underlining the differences from AspectJ. For more
information on CaesarJ, we refer to Aracic et al [2].

(a) AspectJ

(b) CaesarJ

Figure 1. Mechanisms for reuse for AspectJ and CaesarJ.

CaesarJ uses a joinpoint model that is akin to that of AspectJ.
Figure 1 provides an overview of the similarities and differences
between AspectJ and CaesarJ as regards support for reusability.
Part a of Figure 1 outlines AspectJ’s division between a reusable
abstract aspect, a case-specific concrete aspect and the specific
application to which aspect functionality is to be composed. To
bind the abstract aspect to each case-specific system, a different
concrete sub-aspect is created for each case. However, there is a
single abstract aspect for all concrete aspects. It is one of possibly
many alternative implementations, but in AspectJ it is frozen and
cannot be replaced by an alternative implementation without
invasive changes on the source code. By contrast, in CaesarJ it is
possible to polymorphically replace one implementation of the
reusable part of a component with another, without impact on the
remaining modules of the component (part b of Figure 1).

In addition to plain-Java classes, CaesarJ supports a second kind
of class (cclass) that supports family polymorphism [7], i.e. the
capability to treat sets of inner, nested classes polymorphically,
the same way as methods. These nested classes are termed virtual
classes [15]. The name of any class nested within a cclass can be
dynamically bound to different concrete classes in different
circumstances, the same way method calls are late bound to the
most specific implementation in plain Java. Figure 2 outlines the
structure of a CaesarJ component.

Figure 2. General structure of CaesarJ component.

An key notion in the CaesarJ approach to design is that of
collaboration interface (CI) [16]. A CI is a top-level abstract
cclass that declares a collaboration between objects, thus
representing design-level relationships between abstractions such
as those often represented in the abstract types of a class diagram.
Figure 2 shows one example of a CI at the top, with an arbitrary
internal structure involving three classes.

CaesarJ recognizes that component integration comprises several
parts which should be kept separate and independent. The higher-
level part that provides the general framework is the CI, with the
remaining parts extending the CI through inheritance. In addition,
CaesarJ takes into account that there are two sides to component
integration: (1) the CaesarJ implementation, i.e., the
implementation of the component itself and (2) the binding, i.e.,
the glue that integrates the component to a specific application.
According to these concepts, implementation code does not make
references to case-specific classes and is therefore reusable. A
CaesarJ implementation corresponds to an abstract aspect in
AspectJ and comprises a top-level cclass module that inherits

static inheritance

Application A

Abstract aspect

Concrete aspect A Concrete aspect B Concrete aspect C

Application B Application C

static inheritance

static inheritance

Application A

Abstract aspect

Concrete aspect A Concrete aspect B Concrete aspect C

Application B Application C

static inheritance

wraps

«Binding»

Definition for
Abstraction 2

Application
specific class 1

Application
specific class 2

«Implementation»

Definition for
Abstraction 1

«Collaboration Interface»

Abstraction 2

Abstraction 3

Abstraction 2

Complete definition for
the CaesarJ component

Domain specific application

Definition for
Abstraction 3

wraps

«Binding»

Definition for
Abstraction 2
Definition for
Abstraction 2

Application
specific class 1

Application
specific class 2

Application
specific class 1

Application
specific class 1

Application
specific class 2

Application
specific class 2

«Implementation»

Definition for
Abstraction 1

«Implementation»

Definition for
Abstraction 1
Definition for
Abstraction 1

«Collaboration Interface»

Abstraction 2

Abstraction 3

Abstraction 2

«Collaboration Interface»

Abstraction 2Abstraction 2

Abstraction 3Abstraction 3

Abstraction 2Abstraction 2

Complete definition for
the CaesarJ component
Complete definition for
the CaesarJ component

Domain specific application

Definition for
Abstraction 3
Definition for
Abstraction 3

polymorphic layer

Application A

Component implemen-
tation 1

Binding for A Binding for B Binding for C

Application B Application C

polymorphic layer

Component implemen-
tation 2

Component implemen-
tation 3

polymorphic layer

Application A

Component implemen-
tation 1

Binding for A Binding for B Binding for C

Application B Application C

polymorphic layer

Component implemen-
tation 2

Component implemen-
tation 3

from the CI. Likewise, CaesarJ bindings are top-level cclass
modules that also inherit from the CI and enclose the logic that
glues the component to a specific application. These correspond
to the concrete sub-aspects in AspectJ. To integrate the
component the application, nested classes of CaesarJ bindings can
wrap one or several objects of arbitrary types and extend them
with additional state and behaviour. CaesarJ wrappers perform the
same role as the inter-type declarations and declare parents
clauses of AspectJ.

CaesarJ implementations and bindings must between them
provide definitions for all declarations placed in the CI. Finally,
CaesarJ uses mixin composition [4] to compose the two different,
parallel hierarchies of implementations and bindings that extend a
CI so as to create a single, unified component. In all cases
discussed in this paper, it is simply a matter of creating an empty
cclass that extends the implementation and the binding.

3. APPROACH TAKEN
Both AspectJ and CaesarJ enable aspects to be divided into a
general part that is applicable to multiple cases and a part that
encloses the details specific to the case at hand. However, CaesarJ
goes significantly further than AspectJ in structuring those parts.
The parts of a CaesarJ component are clearly separated into
different modules whose implementations can be polymorphically
replaced, without impact on the other modules. Relative to
AspectJ, this provides more opportunities for reuse. Presenting a
single implementation of each pattern wouldn’t illustrate the full
extent of CaesarJ’s capabilities. We therefore set the aim of
developing multiple implementations of the selected patterns.

All scenarios used to develop the CaesarJ examples are based on
existing repositories rather than invented anew. Using
independent scenarios yields more credible results and is more
likely to provide interesting problems and situations. For this
reason, we are basing our work on existing repositories of
implementations freely available on the Net2 (see Table 1).

Table 1. Repositories of GoF implementations
publicly available

Repository
name

Author
Lang-
uage

URL

Thinking in
patterns

Bruce Eckel Java 2
http://www.mindview.net/Boo
ks/TIPatterns/

Design
pattern Java
companion

James Cooper Java 2
http://www.patterndepot.com
/put/8/JavaPatterns.htm

Fluffycat Larry Truett Java 2 http://www.fluffycat.com/Java

-Design-Patterns/

Hannemann et
al

Hannemann/
Kiczales

Java 2/
AspectJ

http://hannemann.pbwiki.com
/Design+Patterns

Huston Vince Huston Java 2 http://www.vincehuston.org/d
p/

There is a wide range in scenarios, style and implementations
decisions used for the patterns. For instance, some authors heavily
rely on graphics objects from the Java standard APIs while other
repositories are mostly send messages to the console. In some

2 The list of repositories presented in Table 1 is not an exhaustive

one. Covering more repositories is a possibility, left for future
work.

cases, the participants in the pattern are instances of classes from
the Java standard API, though more often these are represented by
specific classes for a simple scenario. Naturally, data structures
used also vary and in some cases functionality from the standard
Java API is used instead. For instance, Eckel resorts to Java’s
Observer/Observable API to implement Observer, while
Hannemann and Kiczales use weak hash maps and array lists.

The examples developed are those shown in Table 2. The patterns
were selected for various reasons. Observer is most often used to
illustrate CaesarJ’s strengths and there its implementation is
already published [17] and thus represents an ideal entry point to
someone approaching CaesarJ. Chain of Responsibility is
structurally similar to Observer, though simpler (just one
participant instead of two) and thus looked a direct follow up.
Singleton is simple and many people’s entry point to the GoF,
being selected for these reason. Decorator was chosen to test the
wrapper mechanism and possibly mixin composition. Abstract
Factory seemed the ideal candidate to test family polymorphism
and virtual classes. Visitor and Bridge were selected because the
patterns represent interesting structural problems suitable for
testing CaesarJ’s composition capabilities. See also the analysis
(section 4).

Table 2. CaesarJ implementations developed for the GoF

T

hi
nk

in
g

in

pa
tt

er
ns

D
P

 J
av

a
co

m
pa

ni
on

F
lu

ff
yc

at

H
an

ne
m

an
n

et
 a

l

H
us

to
n

Abstract factory X X

Bridge X X

Chain of
responsibility

 X X

Decorator X X

Observer3 X X

Singleton X

Visitor X X

The component structure supported by CaesarJ provides a clear
guide as to where each piece of code is to be placed and suggests
the following process:

• First, analyze of the original example, with the help of a
class diagram. In some cases, the abstract part of the
structure maps directly into a CI.

• Next, place all implementation code not dependent of
case-specific types in the implementation module.

• Place of all code depending on case-specific types in the
binding module.

• Create the complete component through an empty cclass
that extends the implementation and the binding.

3 Two different scenarios of Observer by Eckel were implemented,

with three different implementations.

4. PRELIMINARY ANALYSIS
Structurally, all CaesarJ examples are more or less complex
variants of the framework outlined in section 2. One instance is
Observer, whose case is well-known. Thanks to the enhanced
polymorphism, we managed to hold multiple implementations and
bindings in the same system [17].

4.1 Mechanisms used
Figure 3 outlines the AspectJ and CaesarJ approaches to
integrating an aspect to an application. In AspectJ, the mapping
between abstractions from the component world to abstractions in
the application world is performed in two phases. First, inner
marker interfaces represent the concepts and declare parents
compose extra members to them. Second, declare parents clauses
bind the interfaces, and thus the extra members, to the classes
from the application. One consequence of this approach is that the
extra members lack a proper “home” to encapsulate them. Instead,
those inter-type members are top-level members within the aspect.
This explains way AspectJ aspects tend to have a flat internal
structure [17]. By contrast, the use of CaesarJ bindings with
wrappers means that extra members are enclosed in their own
modules, which results in a richer internal structure. This also
explains why CaesarJ is less asymmetrical than AspectJ. In
CaesarJ, the programmer reasons less in terms of “aspects” and
“base code” than in terms of components and their constituent
modules.

Figure 3. Mechanisms for integrating with an application

The fact that CaesarJ shares with AspectJ the mechanism of
pointcuts and advice invites some comparisons. One interesting
question is whether pointcuts are used the same way as in

AspectJ, or the CaesarJ-specific mechanisms have an influence on
the use patterns for pointcuts and advice. It turns out that in
CaesarJ, pointcuts and advice feature less prominently than with
AspectJ. Thanks to CaesarJ’s more sophisticated mechanisms to
deal with structure, it is possible to separate the various parts of a
component in different modules to a greater extent than with
AspectJ. One is thus more sparing in the use of pointcuts and
advice, whose use is essentially reduced to that of glue code, i.e.,
in the bindings. The experience gained so far suggests that in
CaesarJ, pointcuts and advice should be left to those situations in
which the behaviour to be composed does not follow an
identifiable pattern in the static structure of the system, e.g.,
scattered calls to a method or constructor. That is the case in all
uses of pointcuts and advice in the examples presented in Table 3.

The Decorator pattern is a good example to illustrate the
differences between the two approaches to pointcuts. We
developed two different implementations of Decorator, one that
uses a pointcut and around advice similar to that proposed by
Hannemann and Kiczales [12], and one that resorts to the wrapper
mechanism. The use of wrappers conforms more closely to the
original intent of the pattern, namely in the dynamic nature of the
compositions [14] and in the possibility of varying the order with
which decorators are composed [19]. In the context of CaesarJ,
the approach based on pointcuts and advice is a case of overuse of
the mechanisms. However, there remains the issue of application
specific objects loosing their original identity, whose thorough
analysis is left for future work.

Table 3 presents a summary of the use of CaesarJ pointcuts, CIs,
implementations and bindings, in the implementations referred in
Table 2. As it would be expected, not all examples include all
features. The exception are the bindings, which is also what we
expected. Note that some of the constructs available in CaesarJ
are not covered in this paper (e.g., deploy on object) as the
implementations from Table 2 do not comprise sufficient material
to perform an assessment.

Table 3. Use of mechanisms in the CaesarJ examples.

Use of the
mechanism:

pointcut
/advice

CI
Imple-

mentation
binding

Abstract
Factory

No No No Yes

Bridge No Yes Yes Yes

Chain of
Responsibility

Yes Yes Yes Yes

Decorator No(*) No No Yes

Observer Yes Yes Yes Yes

Singleton Yes No Yes Yes

Visitor No Yes No Yes
(*) One scenario does use pointcuts/ advice but in this case we do
not consider it good practice and do not count it for this reason.

The CaesarJ Singleton resembles that in AspectJ, since the
CaesarJ example is based on pointcut and advice, just like the
AspectJ example. However, even in this simple example CaesarJ
provides an opportunity to separate a reusable advice into an
implementation module. Since the example does not include a CI,

Inter-type
declarations

declare parents

Objects from the

domain specific
application

(a) AspectJ

Marker interfaces

Aspect

Extra state
and behaviour

Members for the
aspects’s internal
implementation

application

Inter-type
declarations

declare parents

Objects from the

domain specific
application

(a) AspectJ

Marker interfaces

Aspect

Extra state
and behaviour

Members for the
aspects’s internal
implementation

application

Glue to bind the
component to
the application

Objects from the
domain specific

application

(b) CaesarJ

Reusable part of
the component’s
implementation

CaesarJ
wrappers

CaesarJ component application

Glue to bind the
component to
the application

Objects from the
domain specific

application

(b) CaesarJ

Reusable part of
the component’s
implementation

CaesarJ
wrappers

CaesarJ component application

the implementation is placed at the top of the inheritance
hierarchy. Similar design decisions were made in some of the
other examples.

Since the inter-type declarations of AspectJ can be regarded as a
manifestation of mixin composition, we initially hypothesised that
mixins could be used as a more structured alternative to the inter-
type declarations, as well as providing direct language support to
decorators. However, mixin composition in CaesarJ cannot be
used “on the fly”: a specific declaration of a cclass extending the
pertinent modules is required for each different combination. This
defeats the aim by Decorator of preventing a combinatorial
explosion of class declarations. In addition, mixin composition is
restricted to cclass modules. For these reasons, the primary of
mixins is to compose modules that extend a CI.

Abstract Factory is really about how to enforce family
polymorphism in a language that is not endowed with the feature.
Since CaesarJ is, it makes a perfect fit for the pattern. However,
due to the nature of the problem, no reusable code was obtained.
Each scenario maps to different, case-specific code (see Figure 4).

Figure 4. Class diagram of the CaesarJ example of the
fluffycat scenario for the Abstract Factory pattern

Visitor is about an inheritance tree to whose classes one may want
to add various different additional operations. It quickly becomes
cumbersome to place the logic for many different operations in
the classes of the tree. The solution proposed by Visitor is to
provide an accept operation to each of the classes, through which
a visitor object is passed, containing the logic for the additional
operation. In other words, Visitor embodies the problem of
double dispatch, i.e., the ability to select a given block of code
based on two different types that can evolve independently. This
is an instance of the more general case of multiple dispatch [6].
Ideally, CaesarJ would support this feature as regards a family of
types, but it supports only single dispatch based on the type of the
family object associated with the concrete family at hand. This

limitation motivated the proposal by Gasiunas et al [11] of
multiple dispatch on virtual types.

4.2 Reuse
Besides features shared with plain Java, AspectJ provides one
kind of module to enclose reusable code: abstract aspects. In
CaesarJ, these correspond to two kinds of module: CIs and
implementations. Table 4 shows what CaesarJ patterns result in
such reusable modules and how the results compare with the
AspectJ examples for the same patterns [12].

Depending on the nature of the pattern, different levels of reuse
are obtained. In some cases, only the high level design (i.e., the
CI) is reusable and in others only the implementation is reusable.

Table 4. Reusable modules in AspectJ and CaesarJ

Reusable
parts:

AspectJ
(abstract
aspects)

CaesarJ
(CIs)

CaesarJ
(implemen-

tations)
Abstract
Factory

No No No

Bridge No Yes Yes

Chain of
Responsibility

Yes Yes Yes

Decorator No No No

Observer Yes Yes Yes

Singleton Yes No Yes

Visitor Yes Yes No

4.3 Reasoning with Collaboration Interfaces
One advantages of CaesarJ clearly felt relative to both Java and
AspectJ was when reasoning about the examples through class
diagrams. CIs provide a design-level view of a component or sub-
system found in class diagrams but generally absent in mainstream
languages. For this reason we initially expected that CIs would be
of help to reason with the overall structure of the component
when looking at the code. It turned out that class diagrams of
CaesarJ designs provided significant benefits as regards
comprehensibility. The diagrams representing the CaesarJ designs
are conceptually closer to the original design intentions than
traditional class diagrams, exposing the relationships between
classes and individual operations more faithfully than traditional
class diagrams (e.g., those representing the Java implementations
from Table 1). The distinction between top-level classes and
nested classes facilitated the reasoning with the overall design, as
well facilitating the task of mapping the original Java designs to
CaesarJ designs. The enhanced clarity also applies to top-level
methods. For instance, the factory method from the CaesarJ
design for Abstract Factory (see Figure 4) is a top level method
placed on the same level as the virtual classes. This exposes a
design decision that is absent from traditional designs because
nested classes are absent from traditional class diagrams and top-
level methods do not carry the same meaning.

AbstractSoupFactory

Soup

String getLocation()

Soup makeSoup()

BostonSoupFactory

FishChowder

Soup makeSoup()

VegetableSoup

…

HonoluluSoupFactory

FishChowder

Soup makeSoup()

ChickenSoup

…

AbstractSoupFactory

Soup

String getLocation()

Soup makeSoup()

AbstractSoupFactory

Soup

String getLocation()

Soup makeSoup()

BostonSoupFactory

FishChowder

Soup makeSoup()

VegetableSoup

…

BostonSoupFactory

FishChowder

Soup makeSoup()

VegetableSoup

…

HonoluluSoupFactory

FishChowder

Soup makeSoup()

ChickenSoup

…

HonoluluSoupFactory

FishChowder

Soup makeSoup()

ChickenSoup

…

5. FUTURE WORK
5.1 Complete the CaesarJ Repository
The results presented in this paper are the preliminary results of
an ongoing effort. Our immediate goal is to complete the GoF
repository for CaesarJ. It is to be expected that the CaesarJ
implementation of some patterns will be identical to Java (e.g.,
Iterator). CaesarJ features not covered in this paper will be
explored (e.g., dynamic deployment) and a more thorough
analysis will be carried out. One interesting issue is to assess the
comparative advantages of the wrapper mechanism w.r.t. AspectJ-
style inter-type declarations. Using inter-type declarations, target
objects (instances of the original, target classes) and additional
members share the same identity. Though inter-type declarations
are structurally poorer than wrappers, we conjecture that this
characteristic may be advantageous in some cases.

5.2 Derive Refactorings for CaesarJ
In the past, availability of a GoF repository in a given language
was used as a basis for pinpointing refactorings [20] for that
language. This work provides similar opportunities for CaesarJ.

5.3 Larger Case Studies
After developing a repository of GoF implementations, a logical
next step is to apply the insights gained to object-oriented
frameworks whose structure is based on the patterns. This can be
carried out by developing a given system anew, or through
refactoring experiments on existing systems.

5.4 Extend Work to Other AOP Languages
We aim to cover more aspect-oriented languages. For instance,
the Object Teams language [13] has some features in common
with CaesarJ, namely family polymorphism. One interesting
proposition is to compare Object Teams’ support for family
polymorphism with CaesarJ’s.

6. CONCLUSION
This paper presents the first results of an ongoing effort to
develop a repository of implementations of the GoF patterns in
CaesarJ. Examples for seven patterns are presented and a short
comparative analysis is made with an existing AspectJ repository.
The experience gained suggests that CaesarJ’ features to deal with
static structure, namely family polymorphism and a clear
separation of implementations and bindings, lead to a more
flexible management of the constituent parts of a component and
avoids overusing pointcuts and advice, which are used primarily
for glue code.

7. ACKNOWLEDGMENTS
This work was partially supported by projects SOFTAS
(POSI/EIA/60189/2004) and AMADEUS (POCTI, PTDC/EIA/
70271/2006) funded by Fundação para a Ciência e Tecnologia,
and project AspectGrid (GRID/GRI/81880/2006). Three
anonymous reviewers gave feedback that helped to improve the
paper and provided useful ideas to be explored in future work.

8. REFERENCES
[1] Aspectj project home page, http://www.eclipse.org/aspectj/.

[2] Aracic I., Gasiunas V., Mezini M., Ostermann K. Overview
of CaesarJ. Transactions on Aspect-Oriented Software
Development I. Springer LNCS vol. 3880, 2006.

[3] Baumgartner G., Läufer K., Russo V. F. On the interaction of
Object-oriented Design Patterns and Programming
Languages. Technical report CSD-TR-96-020, Purdue
University, Feburary 1996.

[4] Bracha G., Cook W. Mixin-Based Inheritance. Proceedings
of ECOOP/OOPSLA 1990.

[5] Brichau J., Haupt M. Report describing survey of aspect
languages and models. AOSD-Europe Deliverable D12,
AOSD-Europe-VUB-01, May 2005.

[6] Chambers C. Object-oriented multi-methods in Cecil.
ECOOP ’92, Utrecht, The Netherlands, 1992.

[7] Ernst E. Family polymorphism. ECOOP 2001, Heidelberg,
Germany, 2001.

[8] Filman R. E., Elrad T., Clarke S., Aksit M. Aspect-Oriented
Software Development. Addison Wesley 2005.

[9] Gamma, E., Helm, R., Johnson, R., Vlissides, J., Design
Patterns – Elements of Reusable Object-Oriented Software,
Addison-Wesley, 1994.

[10] Garcia A., Sant'Anna C., Figueiredo E., Kulesza U., Lucena
C., Staa A. Modularizing Design Patterns with Aspects: A
Quantitative Study. LNCS TAOSD I, Springer vol. 3880,
2006.

[11] Gasiunas V., Mezini M., Ostermann K. Dependent types.
ooPSLA 2007, Montréal, Canada 2007.

[12] Hannemann, J., Kiczales, G., Design Pattern implementation
in Java and in AspectJ, OOPSLA 2002, Seattle, USA, 2002.

[13] Herrmann S. Object teams: Improving modularity for
crosscutting collaborations. Net. Object Days, Erfurt,
Germany, 2002.

[14] Hirschfeld R., Lämmel R., Wagner M. Design Patterns and
Aspects – Modular Designs with Seamless Run-Time
Integration. 3rd German GI Workshop on AOSD, 2003.

[15] Madsen O. L., Moller-Pedersen B., Virtual classes: a
powerful mechanism in object-oriented programming.
OOPSLA’89, New Orleans, Louisiana, USA, 1989.

[16] Mezini M., Ostermann M. Integrating independent compo-
nents with on-demand remodularization, OOPSLA 2002,
Seattle, USA, 2002.

[17] Mezini M., Ostermann K. Untangling Crosscutting Concerns
with Caesar. Cap. 8 of [8].

[18] Miles R. AspectJ Cookbook. O'Reilly 2004.

[19] Monteiro M. P., Fernandes J. M., Pitfalls of AspectJ
Implementations of Some of the Gang-of-Four Design
Patterns. DSOA’2004 workshop, Málaga, Spain, 2004.

[20] Monteiro M.P., Fernandes J.M. Towards a Catalogue of
Refactorings and Code Smells for AspectJ. LNCS TAOSD I,
Springer vol. 3880, 2006.

[21] Rajan H., Design Patterns in Eos, PLoP '07, Monticello,
Illinois USA, September 2007.

