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Abstract. New music genres emerge constantly resulting from the in-
fluence of existing genres and other factors. In this paper we propose a
data-driven approach which is able to cluster and classify music samples
according to their type/category. The clustering method uses no previ-
ous knowledge on the genre of the individual samples or on the number
of genres present in the dataset. This way, music tagging is not imposed
by the users’ subjective knowledge about music genres, which may also
be outdated. This method follows a model-based approach to group mu-
sic samples into different clusters only based on their audio features,
achieving a perfect clustering accuracy (100%) when tested with 4 music
genres. Once the clusters are learned, the classification method can cat-
egorize new music samples according to the previously learned created
groups. By using Mahalanobis distance, this method is not restricted to
spherical clusters, achieving promising classification rates: 82%.

Keywords: automatic music genre classification, audio indexing, unsuper-
vised classification.

1 Introduction

Since today’s digital content development triggered the massive use of digital
music, an indexing process is very important to guarantee a correct organiza-
tion of huge databases. While a music genre categorization would be a solution,
this may be hard to achieve (manually): on the one hand, music can be associ-
ated to one or more musical genres, and on the other hand, cultural differences
and human interpretations, make it difficult the attainment of common music
genre taxonomy. For example, an expert could label the Gustav Mahler’s 2nd
symphony as Erudite - late Romantic, while a non-expert could label it as Classi-
cal. Alternatively, an automatic classification based on good audio features may
prevent the occurrence of incoherencies related to manual labeling.

While many supervised automatic music genre classifiers have been pro-
posed, these will always be dependent on a previous manual labeling of the



data [4; 5; 6; 8; 9; 12; 14]. As a consequence, these will be unable to evolve with
the data and automatically build new clusters driven by new values in the fea-
tures. Alternatively, an unsupervised approach would not have this dependency
and would be able to determine the genre of the music samples only based on
their audio features. Nonetheless, only a few unsupervised methods have been
proposed. Rauber et al. [10] proposed a growing hierarchical self-organizing map
(which is a popular unsupervised artificial neural network) with psycho-acoustic
features (loudness and rhythm) to obtain a hierarchical structuring music tree.
Shao et al. [11] proposed an unsupervised clustering method that fed rhythmic
content, Mel-frequency cepstral coefficients (MFCCs), linear prediction coeffi-
cients and delta and acceleration values (improvements in feature extraction) to
a hidden Markov model.

Here we propose not only a methodology for unsupervised clustering but
also for automatic music genre classification. The clustering method consists of
a learning process that is able to cluster music samples based only on their audio
properties and uses no previous knowledge on the genre of the training music
samples. In addition a Model-Based approach is followed to generate clusters
as we do not provide any information about the number of genres in the data
set. The features used are related with rhythm analysis, timbre, and melody,
among others. As these features represent a large number of dimensions, a feature
reduction technique is necessary to reduce the dimensionality of the data. This
clustering method achieves 100% accuracy results with classical, fado, metal and
reggae music samples. After the clustering process is complete, the classification
method can associate new test music samples to the previously created clusters.
For that, the classifier uses Mahalanobis distance so that it can consider clusters
with different shapes, volumes and orientations. An accuracy of 82% is achieved
when classifying new music samples.

In the next section (Feature Extraction) we describe the features we use.
Section 3 explains the Clustering Method while section 4 explains the Classifi-
cation Method. The Results and Conclusions and Future Work are discussed in
sections 5 and 6.

2 Feature Extraction

Feature extraction is the first step to be achieved in both automatic music genre
clustering and classification. In this section, we describe the features we used,
which can be grouped into two distinct groups: computational features (which do
not represent any musical meaning and only describe a mathematical analysis
over a signal) and perceptual features (which mathematically represent music
properties based on the human hearing system).

Since some of the features we used have a very high dimensionality and it
is more efficient to describe them with less dimensions, we used a set of statis-
tical spectrum descriptors (SSD) proposed by Lidy and Rauber [7]. This set of
descriptors includes: the mean, median, variance, skewness, kurtosis, min and



max-values. (Whenever this property is calculated, we mention it in the text
below.)

Computational features are very popular and have been used in many auto-
matic music genre classification studies [3; 4; 5; 6; 8; 9; 14]. To start with we use
a set of timbral texture features proposed by Tzanetakis and Cook [14]. These
include: spectral centroid (which is a measure of the centre of gravity of the
magnitude spectrum), spectral roll-off (which corresponds to the frequency be-
low which there is 85% of the energy of the magnitude spectrum), spectral flux
(which accounts for the energy difference between successive frames of the spec-
trogram), zero-crossing rate (ZCR) (which is a measure of the number of times
the audio waveform crosses the x-axis per time unit), and low energy (which is
the percentage of frames that have lower energy than the average energy over
the whole signal).

We also use the SSD of the MFCCs. The MFCCs are a very popular set of
features based on the auditive human system that uses a Mel-frequency scale to
group the frequency bins. In addition, three other features were also calculated:
the root mean square of the spectrograms, which is an approximation of the
volume (i.e., loudness) of the signal, the bandwidth, an energy-weighted standard
deviation which measures the frequency range of the signal, and the uniformity,
which measures the similarity of the energy levels in the frequency bands [3].

The spectral properties mentioned above can follow two different approaches:
their values can be calculated over each window of a spectrogram or they can be
calculated directly over the spectrum of the whole sound. Usually, these values
are calculated over each window of the spectrogram, and that is the approach
we used here. In addition, whenever we obtain a set of values with significant
dimension (and we do not use their SSDs), we also use means and variances as
features.

The perceptual features we used include rhythmic content, rhythm patterns
and pitch content. The rhythmic content contains information such as the beat,
the tempo, the regularity of the rhythm and time signature. In particular, the
beat has been used in several studies on genre classification [4; 6] and it can
be extracted from the beat histogram [14]. On the other hand, rhythm patterns
represent the loudness sensation for several frequency bands in a time-invariant
frequency representation [7]. We use both the SSDs and the rhythm histogram
of the rhythm patterns. Finally, the pitch content is used to describe melody and
harmony of a music signal. This feature is used quite often in genre classification
leading to good accuracy results [4; 6; 13; 14; 15]. The pitch content can be
extracted from the pitch histogram [15], and it includes the amplitudes and
periods of the highest peaks in the histogram, pitch intervals between the two
most prominent peaks and the overall sums of the histograms.



Fig. 1. The clustering method

3 The Clustering Method

The clustering method aims to organize several music samples into clusters with-
out any initial information besides the feature set values of these samples. This
method consists of several steps as illustrated in Fig. 1, which we describe below.

3.1 The Feature Reduction Stage

After the audio features have been extracted, they have to be analysed to find
clusters of points with similar values. For that, the method starts by representing
the features by data matrix M , whose lines correspond to music samples in the
training set and whose columns correspond to features. So, the ms,f cell of M

contains the value of the fth feature for music sample s.
Once this matrix is built, the method performs some transformations as illus-

trated by box 3 in Fig. 1. In order to set equal importance (scale) to all columns
(features) of the data set matrix, in step 3a the method performs a standard-
ization of matrix M and creates a new matrix T with the same dimension as
matrix M , that is, both matrices are (N × F ), where N is the number of sam-
ples in the training set and F is the number of features. Now, the ts,f cell of T

contains the standardized value of feature f for music s, which is given by

ts,f =
ms,f − m.,f
√

var(Mf )
, (1)



where m.,f is the mean value of the fth column of matrix M , that is,

m.,f =
1

N

N
∑

i=1

mi,f , (2)

and the variance of feature f, var(Mf ), is obtained from

var(Mf ) =
1

N − 1

N
∑

i=1

(mi,f − m.,f)2. (3)

As we will show in Sect. 5, depending on the combination of the initial groups
of features, the number of columns of M and T may be more than 800. Thus,
a strong feature reduction has to be made. So, At step 3b, a sample similarity
matrix S is calculated:

S =











Sim(s1, s1) Sim(s1, s2) . . . Sim(s1, sN)
Sim(s2, s1) Sim(s2, s2) . . . Sim(s2, sN)

...
...

. . .
...

Sim(sN , s1) Sim(sN , s2) . . . Sim(sN , sN )











(4)

Each cell of the symmetric matrix S represents the similarity between two music
samples and it is calculated by the following correlation from values of matrix
T :

Sim(si, sj) =
cov(si, sj)

√

cov(si, si) ·
√

cov(sj , sj)
, (5)

where the covariance between music samples si and sj is given by

cov(si, sj) =
1

F − 1

F
∑

f=1

(tsi,f − tsi,.)(tsj ,f − tsj ,.) , (6)

where tsi,. is the mean value of the ith line of T .
Each line of matrix S, corresponds to a music sample, now characterized

by its similarity (within a range from -1 to +1) to all the other samples in the
training set. On the other hand, each column of S may be seen as a new fea-
ture reflecting the similarity between a music sample and all the other samples.
Clearly, there are as many columns as the number of music samples in the train-
ing set. Thus, with S, the number of features is reduced from the number of
initial attributes, usually very high, to a number which is equal to the size of
the training set, which may be a much smaller number. As we will show in Sect.
5 we obtained good results using a training set of 60 samples.

Since samples of the same genre tend to show high similarities and, thus,
there are strong correlations between the features in S, another reduction in
dimensionality can be obtained by a technique based on Principal Component
Analysis (PCA) [1].



Since S is symmetric, it can be described as S = PΛP T , where P =
[e1, ..., eN ] is the orthogonal matrix of normalized eigenvectors of S, and Λ is
the diagonal matrix of its eigenvalues, λ1, ..., λN , such that λ1 ≥ ... ≥ λN ≥ 0.
Since Λ is symmetric, Λ = Λ

1

2 Λ
1

2 and Λ
1

2 = (Λ
1

2 )T . Thus,

S = P Λ
1

2 Λ
1

2 P T = PΛ
1

2 (Λ
1

2 )T P T = PΛ
1

2 (PΛ
1

2 )T = QQT , (7)

with
Q = P Λ

1

2 . (8)

The lines in matrix Q represent the music samples while the columns represent
new uncorrelated features; see [1] for more details about this PCA-based tech-
nique. The leftmost columns of Q correspond to the most informative features.
Thus, in order to reduce the number of features, we can discard the least in-
formative ones, by ignoring the columns of Q having a variance (given by cells
in Λ) lower that a threshold which we set to 1. We call R to this new reduced
matrix (step 3c) of Fig. 1, which is a copy of the k leftmost columns of Q. This
way we build a k-dimensional space in which music samples are represented: the
k features correspond to the k axis in this new space, and matrix R contains
the values for these features for each music in the training set. We tried other
criteria associated with other threshold values, but this one provided a more
reduced number of columns keeping good results. With this technique, we were
able to drastically reduce the number of initial dimensions, that is, features (in
S) from 60 to 7 final dimensions (in R) when we used the training set described
in Sect. 5. Now, we are able to submit the resulting matrix R to the clustering
stage.

3.2 The Clustering Stage

In the clustering stage (box 4 in Fig. 1) we use the Model-Based Clustering
Analysis (MBCA) as proposed by Fraley and Raftery [2]. This approach uses
no initial information about the number of clusters nor their shape or orienta-
tion. It represents the data by several possible models, which are characterized by
different geometric properties. With this approach, data is represented by a mix-
ture model where each element corresponds to a different cluster. Models with
varying geometric properties are obtained through different Gaussian param-
eterizations and cross-cluster constraints. Partitions (clusters) are determined
by the EM (expectation-maximization) algorithm for maximum likelihood, with
initial agglomerative hierarchical clustering (see [2] for details). This clustering
methodology is based on multivariate normal mixtures. So, the density function
associated to cluster c has the form:

fc(xi|µc, Σc) =
e(− 1

2
(xi−µc)

T Σ−1

c
(xi−µc))

(2π)
p
2 |Σc|

1

2

, (9)

where vector xi represents an element that belongs to cluster c. Clusters are
ellipsoidal and centered at the means µc. The covariance matrix Σc determines



the geometric characteristics of the cluster. This clustering methodology is based
on the parameterization of the covariance matrix in terms of the eigenvalue de-
composition in the form Σc = λcDcAcD

T
c , where Dc is the orthogonal matrix

of eigenvalues, which determines the orientation of the axes. Ac is the diago-
nal matrix whose elements are proportional to the eigenvalues of Σc and which
determines the shape of the ellipsoid. The volume of the ellipsoid is specified
by scalar λc. Characteristics (orientation, shape and volume) of distributions
are estimated from the input data, and can be allowed to vary between clus-
ters, or constrained to be the same for all clusters. Once all models are created,
MBCA uses the Bayesian Information Criterion (BIC) to measure the evidence
of clustering for each pair (model, number of clusters), and the larger the value
of BIC, the stronger the evidence for the pair. So, by choosing the pair having
the larger BIC, the most reliable model is automatically obtained, and then a
vector indicating which music samples belong to which cluster is returned by
this clustering approach. In other words, clusters are automatically formed in a
k-dimensional space, according to data in matrix R.

4 The Classification Method

Once the clusters are learned, the classification method can be used to classify
new music samples (not included in the training set). Fig. 2 shows the steps of
this method, which we describe below.

4.1 Representing New Music Samples in the k-dimensional Space
Built in the Clustering Phase

Given a new (test) music sample st, the classification method starts by repre-
senting it with the same initial feature set as that used in the clustering method.
As a result, the music sample is represented by an F -dimensional vector mst

that contains the feature values for music st, that is mT
st

= [mst,f1
, ..., mst,fF

]
(step 2 in Fig. 2). Recall that matrix M (from Sect. 3.1) is a matrix whose lines
are vectors of this form for the music samples in the training set.

Afterwards, vector mst
needs to be transformed into a new vector that repre-

sents music st in the k-dimensional space built in the clustering process. Firstly,
mst

needs to be standardized (box 3a in Fig. 2). This transformation aims to
set equal importance (scale) to each feature in vector mst

. Despite mst
has only

one value for each feature, this standardization will take into account the feature
values of the music samples in the training set. Thus, the means and standard
deviations calculated by the clustering method are used such that each cell of
the new vector tT

st
= [tst,f1

, ..., tst,fF
] is given by an equation similar to (1):

tst,fi
=

mst,fi
− m.,fi

√

var(Mfi
)

, (10)

where m.,fi
and var(Mfi

) result from (2) and (3) respectively.



Fig. 2. The classification method

Now, the method aims to calculate a similarity vector between music st

and all the samples in the training set. For that, we could use the correlation
given by (5), used to calculate the similarity between the training set samples.
However, since a correlation between non-standardized variables is equivalent
to a covariance between the standardization of those variables, for reasons of
computational weight, we followed this last option to get the same results. So,
once we have vector tst

, the referred standardization corresponds to a new vector
yT

st
= [yst,f1

, ..., yst,fF
] (box 3b in Fig. 2), where yst,fi

is the standardized value
of feature fi for music st, which is given by

yst,fi
=

tst,fi
− tst,.

√

var(Tst
)

. (11)

var(Tst
) stands for the variance associated to the tst,fi

values for sound st along

all features. So, var(Tst
) = 1

F−1

∑F

fi=1 (tst,fi
− tst,.)

2 and tst,. = 1
F

∑F

fi=1 tst,fi
.

At this step we need to relate our music st, now represented by yst
, with

the samples used in the learning process. In order to obtain a similarity vec-
tor bst

(box 3d in Fig.2), we need the information given by the similarity ma-
trix S, which may also be given by another matrix Z – see Appendix for de-
tails concerning matrices S and Z – such that each column of Z is a vector
zT

s = [zs,f1
, ..., zs,fF

] that represents the training set sample s using standard-
ized values. In other words, each of these standardized values zs,fi

is calculated



by

zs,fi
=

ts,fi
− ts,.

√

var(Ts)
. (12)

Thus, vector bst
represents the similarity vector between yst

and each sample
of the training set:

bT
st

=
1

F − 1
yT

st
Z . (13)

Now, by using the information obtained by the PCA-based technique from
Sect. 3.1, that is, with Λ and P , we can transform bst

into a vector ust
, such

that
uT

st
= [ust,1, ..., ust,N ] = bT

st
P Λ−

1

2 , (14)

where N is still the number of samples of the training set.
Similarly to what was mentioned in Sect. 3.1 about the most informative

columns of matrix Q, only the k leftmost cells of uT
st

are used to obtain a final
vector vst

that represents the music sample st in the k-dimensional space learned
by the clustering method. In other words, vst

= [ust,1, ..., ust,k]. In Appendix,
the reader may see a detailed proof that vst

is the representation of music st in
the k-dimensional space learned by the clustering method.

4.2 The Classification Stage

Now that music st is represented in the k-dimensional space learned by the clus-
tering method, we need to relate vst

to the learned clusters (box 5 in Fig. 2).
Mahalanobis distance was adopted for this purpose since it takes into account
the geometric properties of each cluster, which is important since distances take
different impact depending on the data dispersion along each axis. (This charac-
teristic is not achieved when using other metrics such as Euclidean or Manhattan
distances.)

The method calculates the Mahalanobis distance between each cluster cen-
troid and vst

, and proposes the class represented by the cluster having a smaller
distance as the most likely class for music st. In other words, class c will be
associated to vst

if d(vst
, µc, Σ

−1
c ) = min

i
d(vst

, µi, Σ
−1
i ) where:

d(vst
, µi, Σi

−1) = (vst
− µi)

T Σi
−1(vst

− µi) , (15)

where µi = [µi.,1, ..., µi.,k] is the centroid of cluster i, with µi.,f = 1
‖Ci‖

∑

s∈Ci
rs,f .

Ci is cluster i, that is, the set containing all the samples in this cluster, ‖ Ci ‖ is
its size, and rs,f is the value of the fth axis (i.e., final feature) for music s (this
is the value corresponding to the line associated to sample s and fth column of
matrix R, see Sect. 3.1). So, µi represents an average music sample of cluster
i. Finally, Σi reflects the geometric properties of cluster i in the k-dimensional
space:

Σi =











Ei1,1
Ei1,2

. . . Ei1,k

Ei2,1
Ei2,2

. . . Ei2,k

...
...

. . .
...

Eik,1
Eik,2

. . . Eik,k











(16)



and

Eil,p
=

1

‖ Ci ‖ −1

∑

s∈Ci

(rs,l − µi.,l)(rs,p − µi.,p) . (17)

The most heavy calculations needed in the classification phase, such as the
matrix Σ

−1
i for each cluster, can actually be made at the end of the clustering

phase, as all needed data is available for that. This way, the classification of new
music samples is a fast computation.

5 Results

In order to validate our approach, we used classical, metal, and reggae music
samples from Tzanetakis’ GTZAN 1 data collection [14], which has 100 music
samples from several different genres. In addition, we added samples from a
new genre, fado, and therefore, our data collection has 400 music samples (all
represented with a sampling frequency of 22050 Hz, 16 bits, and single channel)
representing 4 different music genres: classical, fado, metal, and reggae.

Table 1. Clustering error percentages for several feature combinations. The features
are: timbral texture features (ttf), rhythm patterns (rssd rh), beat, root mean square
of the spectrogram frames (rmsFrame), MFCCs, spectral centroid + bandwidth +
uniformity (centBandUnif), SSD over spectrogram (specStat), low-energy over sample
spectrum (lener), spectral centroid (scentroid), and ZCR

Feature Combination Error (%)

1 ‘ttf’,‘rssd rh’,‘beat’,‘rmsFrame’,‘mfccs’,‘centBandUnif’ 0
2 ‘ttf’,‘rssd rh’,‘beat’,‘rmsFrame’,‘mfccs’,‘specStat’ 0
3 ‘ttf’, ‘rssd rh’, ‘centBandUnif’ 0
4 ‘ttf’, ‘rssd rh’, ‘specStat’ 2
5 ‘ttf’,‘rssd rh’,‘beat’,‘rmsFrame’,‘mfccs’,‘lener’,‘scentroid’,

‘specStat’ 3
6 ‘ttf’,‘rssd rh’,‘beat’,‘rmsFrame’,‘mfccs’,‘lener’,‘scentroid’,‘zcr’,

‘specStat’ 3

Even though our clustering methodology does not use any information about
the number of genres nor the genre of the samples, we used this labelling infor-
mation to validate the results. Thus, once the clustering process is complete, we
assume that each learned cluster c corresponds to the mostly represented genre
in the cluster, and count the number of samples, oc, in the cluster that have a
different labeling. The overall error percentage is given by e = (100

∑

c oc)/N ,
where N is the number of samples.

1 http://marsyas.info/download/



Table 2. Accuracy of the classification results for 3 different feature combinations

Feature Combination Accuracy rate (%)

1 76.5
2 81.8
3 73.8

In order to validate the clustering methodology (described in Sect. 3), we
used a training set composed of 60 elements (15 music samples from each of
the four music genres mentioned above) and we tested many combinations of
features (from Sect. 2). Table 1 shows the clustering results for the best feature
combinations. The first three combinations have a 0% error rate, which shows
that this approach is able to achieve perfect clustering results (assuming the
initial labelling is correct).

Based on Table 1, it is clear that the third combination uses less features
than the top two combinations. On the other hand, if we look at the clusters
created (Fig. 3), the second combination achieves clustering results that perfectly
match the initial labelling of the data. Nonetheless, this does not mean that
combinations 1 and 3 achieve worse or incorrect results. It may actually be the
case that these two combinations are learning sub-genres within classical, fado
and metal. Each feature in the second combination actually represents a group
of features as the whole number of real audio sub-features this combination
represents is equal to 873.

Once the clusters were learned, we proceeded and classified new music sam-
ples. In order to evaluate the performance of the classification method (described
in Sect. 4), we used a test set with the remaining 85 music samples (not used for
clustering) for each of the four genres, making a total of 340 samples. Tests were
made for clusters learned from each of the first three combinations from Table
1. As can be seen in Table 2, combination 2 achieves the best accuracy (preci-
sion) results with 81.8% correctly classified samples, which is a very satisfactory
result, given this is an unsupervised approach.

6 Conclusions and Future Work

We proposed an unsupervised clustering and classification methodology for au-
tomatic genre classification. This kind of approach has the advantage of being
totally independent of any influence from a human taxonomy. Since music genres
do not present clear boundaries between them, and human genre taxonomy is
hard to be achieved, we believe that an unsupervised approach is more suitable
for music genre classification, while a supervised approach based on previously
labelled data tends to be subjective. Besides, by learning directly from data in
features, an unsupervised approach may automatically detect new genres, which
is not possible for the more static nature of the supervised approaches.
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(a) (b) (c)

Fig. 3. Clustering results for combinations (a) 1, (b) 2 and (c) 3 from table 1. The x-
axis shows the clusters learned, while the y-axis shows the initial labeling of the data.
For instance, figure (a) shows that 8 classical music samples fell in cluster number 1
while 7 classical samples fell in cluster number 2

In order to learn the clusters, the clustering method uses only the audio
features of the training samples, and no previous knowledge on the genre of
the individual samples. In addition, no information on the number of clusters is
given a priori. This method achieves a perfect clustering accuracy (100%) when
tested with four music genres (even though the genre labeling was not used in the
training process, the results agreed with the manual labelling of the data), which
shows that it is possible to achieve good accuracy results using an unsupervised
method. In addition, as discussed in section 5, depending on the audio features
used, the method is also able to find sub-genres within the data.

Once the clusters are learned, the classification method can categorize new
music samples according to the previously learned clusters. This method uses
Mahalanobis distance so that it is able to deal with clusters of different shapes,
volumes and orientations. An 82% classification rate was obtained with four
music genres.

We noticed that some misclassified samples were almost equidistant (in terms
of Mahalanobis distance) to the chosen cluster and their actual cluster. This
suggests that, as future work, a further analysis must be done to detect the
existence of possible patterns of the Mahalanobis distances to every cluster,



for both cases (correct classifications and incorrect ones). Such analysis may
be important, for instance, to decide if a sample that is too distant from all
clusters must be rejected; or to suggest that new clusters ought to be learned
(which should be done by running the clustering mehtod again) because several
samples are approximately equidistant to two given clusters.

Even though we only reported the clustering and classification results for
four music genres, we are currently investigating how the system behaves with
more genres. Although this work is still not finished, we were already able to
confirm that this clustering method can achieve good results with five and six
music genres (at least around 90% clustering accuracy). Working with more
music genres may require the use of more (or different) audio features. There
are other audio features that we did not explore yet but could be important to
discriminate other genres.

Finally, in order to test different feature combinations we simply used a brute
force method, that is, with no prior selection. Instead, a possible filtering over
the extracted features should also be explored in future work, as to only process
those features that present higher variances between music samples.

Appendix

Here we prove that the test samples are represented in the k-dimensional space
learned by the clustering method, that is, that vst

(see Sect. 4.1) is the transla-
tion of test music sample st in this k-dimensional space.

Proof. Let us suppose we want to classify a sound, say the first music of the
training set, which is available in z1, the first column of matrix Z. So, by (13)
b1

T = 1
F−1z1

T Z since now yst
is substituted by z1; z1

T = [z1,1, . . . , z1,F ]. Then

b1
T = [b1,1, . . . , b1,N ] where

b1,j =
1

F − 1

F
∑

i=1

z1,i · zj,i . (18)

Notice that, by statistics theory, (18) and (5) give the same result since
Sim(si, sj) in (5) is a correlation using non-standardized values, and bi,j in (18)
(generalizing from 1 to i) is a covariance using the standardization of those
values. Then, in order to simplify this proof, let us suppose that we want to
classify not just one music from the training set, but the whole training set.
Then it is easy to conclude that

B =
1

F − 1
ZT Z . (19)

B would be obtained instead of b1. Note that B = S, being S the similarity
matrix given by (4), because it contains the similarity vectors between each
training set music and all other music samples.

Now let us work with the entire S as if we wanted to translate all training
sounds into vectors in the k-dimensional space. Then, from (14) we would obtain



G = SP Λ−

1

2 = SP Λ−1Λ
1

2 , but since P T P = I (where I is the identity

matrix) and S = P ΛP T , then G = P ΛP T PΛ−1Λ
1

2 = PΛΛ−1Λ
1

2 = P Λ
1

2 .

But PΛ
1

2 = Q, the matrix characterizing all sounds by the PCA-based
method presented before (see (8)). Since we used a copy of the whole training
set for classification instead of just one music, we obtained a matrix (Q) instead
of a vector u1. Then, choosing the k leftmost columns of this matrix we would
obtain matrix R referred in Sect. 3.1, which contains the representation of the
whole training set in the k-dimensional space. With this, we proved that vst

is
the representation of the test music sample in the k-dimensional space learned
by the clustering method.
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