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APPENDIX A: THE MODEL

This appendix gives a more detailed description of the model presented in Sec. II. Here

we include illustrations of the matrices used in the model and details on matrix rearrange-

ments.

The spectrograms can be defined as an ordered set of T bins or as a sequence of F

frames. Model Mb considers the spectrogram of sound k, that is Sk, as an ordered set of

bins. In order to express the spectrogram in this way, we will assume we have a set of I

basis functions Φ, which is represented as a matrix of size (T × I) whose column vectors are

the temporal basis functions φi. We will also assume that for each sound k we have a set of

spectral source signals represented as a matrix Ck of size (I×F ), where the ith row contains

vector (ck
i )

T . This spectral signal scales basis function φi across frequencies. (Section IV.A

shows how to find Φ and Ck.)

FIG. 14. Illustration of Eq. (A1). (For simplicity, here we did not mark row vectors with

the transpose symbol T .)

By linearly combining a basis function with the corresponding spectral source signals,

we obtain a (T × F ) matrix Bk,i that represents part of the structure in Sk. The whole
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structure in Sk is obtained by linearly combining matrices Bk,i (see Fig. 14):

(Sk)T =

I∑

i=1

Bk,i =

I∑

i=1

φi (c
k
i )

T = ΦCk . (A1)

If we consider only the fth column (or bin) in Bk,i (i.e., b
k,i
f ), Eq. (A1) can be rewritten

as follows:

bk
f =

I∑

i=1

b
k,i
f =

I∑

i=1

φi c
k
i,f . (A2)

where bk
f is the transpose of the fth bin of Sk, and the scalar cki,f is the value of ck

i at

frequency bin f . The basis Φ can be used to describe a single sound, as in Eq. (A1), or the

temporal regularities of a set of related sounds:

((S1)T , (S2)T , . . . , (SK)T ) = Φ (C1,C2, . . . ,CK) . (A3)

As explained in Sec. IV and Appendix C, the temporal basis functions Φ and the spectral

source signals Ck can be obtained by spectral ICA or PCA. (Note that Eq. (A1) does not

correspond exactly to the implementation of the method, because the implementation uses

the extended matrices, as mentioned in Sec. III. See Appendix C for exact details on the

input and output to the function calls of spectral ICA and PCA.)

This model thus far describes the temporal structure, but not the spectral structure

inherent in the spectral source signals ck
i . We can extend the model to describe the spectral

structure in these signals.

We can first construct a new matrix Di of size (F ×K) where each column is the ith

spectral source signal for a different sound, that is, Di = (c1

i , . . . , c
K
i ), for K sounds. In

total there will be I Di matrices, one for each temporal basis function φi. Let us rename

the kth column of Di to di
k (note that di

k = ck
i ).

We will assume we have a set of J basis functions Ψi, represented as a matrix of size

(F × J) where each column vector ψi
j is a spectral basis function. Also, we will assume

we have a vector of coefficients ui
j for each basis function, such that the jth vector scales

basis function ψi
j across sounds. The set of these vectors, Ui, is represented by a matrix

of size (J × K), where the jth row is the vector (ui
j)

T . The linear combination of a basis
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FIG. 15. Illustration of Eq. (A4). (For simplicity, here we did not mark row vectors with

the transpose symbol T .)
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function ψi
j with the corresponding vector of coefficients produces an (F ×K) matrix Di,j

that represents part of the structure in Di. The whole structure in Di is a linear combination

of matrices Di,j (see Fig. 15):

Di =

J∑

j=1

Di,j =

J∑

j=1

ψi
j (ui

j)
T = Ψi Ui . (A4)

As explained in Sec. IV and Appendix C, the spectral basis functions Ψ and matrices of

coefficients Ui can be obtained by ICA or PCA.

When we consider only one column in Di, we can rewrite the previous equation as follow:

di
k =

J∑

j=1

d
i,j
k =

J∑

j=1

ψi
j u

i
j,k , (A5)

where d
i,j
k is the kth column of Di,j, and the scalar ui

j,k is the value of ui
j for sound k.

We can now consider the Eq. (A5) at a given frequency bin f and express di
k,f as follows:

di
k,f =

J∑

j=1

d
i,j
k,f =

J∑

j=1

ψi
j,f u

i
j,k , (A6)

where the scalars di
k,f , d

i,j
k,f , and ψi

j,f are, respectively, the values of di
k, d

i,j
k ,and ψi

j at

frequency bin f .

If instead of considering the rows of Ui, we consider its columns, where vk
i is the kth

column of Ui, we can define a new matrix Vk of size (J × I) with all vectors that refer to

sound k from all Ui matrices: each column in Vk is the kth column of a different Ui, that

is Vk = (vk
1
, . . . ,vk

I ) (see Fig. 16). Considering vk
i,j as the jth value of vk

i , we have that

vk
i,j = ui

j,k, and since cki,f = di
k,f , we can rewrite Eq. (A6) as follows:

cki,f =

J∑

j=1

ψi
j,f v

k
i,j . (A7)

Finally, combining Eqs. (A2) and (A7) it follows that the bins of Sk can be expressed as

bk
f =

I∑

i=1

J∑

j=1

φi ψ
i
j,f v

k
i,j , (A8)

which shows how Sk can be modeled by a set of temporal basis functions Φ, a set of spectral

basis functions Ψ (where Ψ is a three-dimensional matrix of size (F × J × I) whose slices

are the matrices Ψi), and a set of coefficients Vk, that is, Sk = Mb(Φ,Ψ,V
k).
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FIG. 16. Illustration of matrices V.

APPENDIX B: TEMPORAL AND SPECTRAL ANALYSIS

ICA and PCA can be used to model the structure in the spectrogram frames or the

structure in the spectrogram bins. In this section, we describe the differences between these

two types of analysis.

Spectral analysis considers the frames (or power spectra) of Sk as spectral signal mix-

tures, i.e., the spectral signal in each frame is considered to be a linear combination of

independent or uncorrelated spectral source signals (for ICA and PCA, respectively). Here

the goal is to decompose Sk into this set of spectral source signals. For instance, in or-

der to learn the temporal basis functions Φ and find the sets of spectral source signals

C1,C2, . . . ,CK (where Ck has one spectral source signal associated with each temporal ba-

sis function), model Mb does a spectral analysis on matrix ((S1)T , (S2)T , . . . , (SK)T ), where

(S1)T to (SK)T are time aligned, so that this data matrix has one row (or transposed frame)

that corresponds to the start of all K impacts.

Temporal analysis considers the frequency bins of Sk as temporal signal mixtures, i.e.,

the time varying signal in each frequency bin is considered to be a linear combination of
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independent (for ICA) or uncorrelated (for PCA) time varying source signals. Like the

temporal basis functions illustrated in Sec. IV.A.1, these source signals are vectors that

range over the time space (see Sec. II for the definition of time space). Therefore, here we

call them temporal source signals. The goal of temporal analysis is to decompose Sk into

this set of temporal source signals, which here we call Pk. Pk has one temporal source signal

associated with each spectral basis function. For instance, a temporal analysis on matrix

(S1,S2, . . . ,SK) would result in learning a set of spectral basis functions (which here we call

Θ) and finding the sets of temporal source signals P1,P2, . . . ,PK .

Considering the case of one sound, temporal PCA and spectral PCA give equivalent

results, where the role of source signals and basis functions switch: when we consider a

subset of I basis functions from the set of F spectral basis functions and a subset of I

basis functions from the set of T temporal basis functions, learned by temporal or spectral

PCA, respectively, the two types of analysis give equivalent results. Temporal PCA learns

a set of spectral basis functions represented by an (F × I) matrix At (with I 6 F ) and it

finds the corresponding temporal source signals represented by an (I × T ) matrix Yt, while

spectral PCA learns a set of temporal basis functions represented by an (T × I) matrix

As (with I 6 T ) and it finds the corresponding spectral source signals represented by an

(I × F ) matrix Ys. The spectral basis functions learned by temporal PCA are the spectral

source signals found by spectral PCA, that is, At = (Ys)T , and the temporal basis functions

learned by spectral PCA are the temporal source signals found by temporal PCA, that is,

As = (Yt)T .

Therefore, considering the case of one sound only and without extending the matrices (as

discussed at the end of Sec. III), using temporal PCA to learn the spectral basis functions Θ

and find temporal source signals Pk is equivalent to using spectral PCA to learn the temporal

basis functions Φ and find spectral source signals Ck. If the signal mixture matrices consist

of the extended matrices X1 = (−S,S) for temporal analysis, and X2 = (−ST ,ST ) for

spectral analysis, in theory the results are different because since X1 and X2 have different

sizes, (F × 2 T ) and (T × 2F ), respectively, the results consist of matrices of different sizes.
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However, if we ignore the results due to the negative parts in the extended matrices, that

is, if we ignore that the results include −Pk and −Ck, we can consider them equivalent

because Θ = (Ck)T and Φ = (Pk)T . (With more than one sound the results would not

be equivalent because the signal mixture matrices would have different sizes, due to the

spectrograms being concatenated in different ways for temporal and spectral analysis.)

The same does not happen with temporal and spectral ICA. ICA looks for correlations in

the joint statistics of the data: spectral ICA looks for correlations (or structures) across the

frames, while temporal ICA looks for correlations across the bins. Due to ICA’s underlying

assumptions of the statistical model and to the differences in the joint distribution of frames

and bins (Fig. 17), the results obtained by temporal ICA and spectral ICA are not equivalent.

Figure 18 shows that the source signals found by spectral and temporal ICA have different

types of distributions.

The distribution of the frames (Fig. 17a) approximates the distribution assumed by ICA

better than the distribution of the bins (Fig. 17b). Since spectral ICA looks for correla-

tions across the frames, it matches the statistics of the data better than temporal analysis.

Therefore, one can expect spectral ICA to lead to better results than temporal ICA. (This

property applies to all sounds that have the same type of bin and frame joint distribution as

in Fig. 17.) In fact, the temporal basis functions Φ and spectral source signals Ck obtained

by spectral ICA are smother and more easily interpretable than the results obtained by

temporal ICA, which look rougher or noisier (results not shown).

The reason for this is that there is structure that is not represented by the spectral basis

functions learned by temporal ICA. While most plots obtained by spectral ICA (Fig. 18a)

have clear directions that define the data, the same does not happen in the plots obtained by

temporal ICA (Fig. 18b). The lack of ability of the spectral basis functions (from temporal

ICA) to explain the whole structure in the spectrogram results from the difference between

ICA’s underlying assumptions of the statistical model and the joint distribution of the bins

(Fig. 17).
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FIG. 17. Scatter plots of frames and bins from a sound from an aluminum rod (Al1). (a)

Distribution of two frames: This scatter plot shows the values of frame 5 (23 ms) plotted

against the values of frame 15 (81 ms), where each point in the plot corresponds to a different

frequency bin. These frames have high energy in some frequency bins, which correspond to

points far from zero, and low energy in other frequency bins, which correspond to points

close to zero. Since frame 5 occurs earlier in the impact sound, it has more energy than

frame 15. (b) Distribution of two bins: this scatter plot shows the values of bin 71 (6 kHz)

plotted against the values of bin 31 (2.6 kHz), where each point in the plot corresponds to

a different time frame. These bins have high energy in the first time slots (see the points in

the upper right, or lower left) and then the energy decreases until they reach zero. Frames

and bins with high energy were chosen in both plots to avoid having all the points falling

into the neighborhood of zero. The points in the third quadrant of both plots are due to

the negative part of the extended matrices (see the end of Sec. III for details).
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(a)

(b)

FIG. 18. Scatter plots of source signals. Each plot shows one source signal plotted against

another source signal, where both source signals are associated with the same basis function.

The source signals have been found by either spectral or temporal analysis of a spectrogram

from a sound from an aluminum rod (Al1). (a) Results obtained by spectral ICA. (b) Results

obtained by temporal ICA.

APPENDIX C: PCA AND ICA FUNCTION CALLS

This appendix gives details of the implementation of the model presented in Sec. II. As

explained in Sec. III, we use PCA and ICA to learn the sets of basis functions Φ and Ψ. In

order to learn Φ, the implementation of the first part of model Mb uses spectral analysis,
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namely spectral PCA and spectral ICA of spectrograms (see Sec. IV or Appendix B for the

definition of spectral analysis). Afterwards, it learns Ψ by applying PCA and ICA to the

spectral source signals Ck associated with Φ.

The implementation of modelMb with spectral PCA applies matlab’s built in princomp

function to (−X,X)T , where X is the horizontal concatenation of transposed spectrograms

((S1)T , (S2)T , . . . , (SK)T ), and (−X,X)T is the vertical concatenation of −XT and XT .

This produces matrices Φ and CT , where Φ(:, i) = φi, and C is a matrix that contains

C1,C2, . . .CK (where Ck contains vectors ck
1
, . . . , ck

I as well as the results relative to −X),

or more specifically, C(i, :) is a vector that contains ck
i (and −ck

i ) for k ∈ 1, ..., K.

The implementation of the model with spectral ICA applies fastica (Hyvärinen et al.,

2001) to matrix (−X,X). The results shown here were obtained with option g, which

specifies the nonlinearity used in the fixed-point algorithm, set to tanh and option lastEig,

which specifies the number of eigenvectors used in the computation, set to 50. This produces

matrices Φ and C as defined earlier. Note that here a signal mixture is the horizontal

concatenation of one transposed frame from each of the K spectrograms, and there are T

signal mixtures. Therefore I 6 T in Eqs. (2)−(7). (See Sec. III for the definition of signal

mixture and for details on the size of the matrices.)

Once it finds the matrices of spectral signals C1,C2, . . .CK , the implementation of model

Mb rearranges them into matrices Di, where Di = (c1

i , ..., c
K
i ) (see the top of Fig. 15). For

each matrix Di, it applies function princomp to (Di)T or fastica (with the same options

as for spectral ICA) to Di. These calls produce matrices Ψi, and Ui. Finally, it obtains

matrices Vk by rearranging matrices Ui (see Fig. 16). Here a signal mixture is a row of

Di. Since Di is a matrix of size (F ×K) there are F signal mixtures. Therefore, J 6 F in

Eqs. (5)−(7).
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