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This paper presents a statistical data-driven method for learning intrinsic structures of impact
sounds. The method applies principal and independent component analysis to learn low-dimensional
representations that model the distribution of both the time-varying spectral and amplitude structure.
As a result, the method is able to decompose sounds into a small number of underlying features that
characterize acoustic properties such as ringing, resonance, sustain, decay, and onsets. The method
is highly flexible and makes no a priori assumptions about the physics, acoustics, or dynamics of the
objects. In addition, by modeling the underlying distribution, the method can capture the natural
variability of ensembles of related impact sounds. © 2007 Acoustical Society of America.
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I. INTRODUCTION

When an object is struck, the sound that it produces is
determined by the physical properties of the object, such as
its size, geometry, and material, and also by the characteris-
tics of the event, like the force and location of impact. It is
possible to derive physical models of impact sounds given
the relationship between the physical and dynamic properties
of the object, and the acoustics of the resulting sound. Mod-
els of sounds have proven useful in many fields, such as
sound recognition, identification of events or properties !like
material or length" of the objects involved, sound synthesis,
virtual reality, and computer graphics. However, physical
models are limited because of the a priori knowledge they
require and because they do not successfully model all the
complexities of real sounds.

One model of impact sounds is the resonance model
proposed by Gaver !1994, 1988". This model consists of a
sum of amplitude-decaying sine waves:

y!t" = %
n=1

N

!ne−"nt sin!#nt" , !1"

where #n is the frequency of partial n, !n is the initial am-
plitude of this partial, and e−"nt is decay function of the same
partial. The values of parameters #, !, and " can be set from
mathematical expressions derived from physics for a limited
set of very simple geometries for which the functions of
frequency, amplitude, and decay are known. It is also pos-
sible to deal with more complex geometries by fitting the
parameters to recorded sounds !Pai et al. 2001". A limitation
of this simplified, knowledge-based model is that it fails to
account for the rich structure and variability of real impact

sounds. For instance, it fails to model the complex structure
of the attack and the variability of sounds resulting from
roughness in the surfaces. A solution to overcome this prob-
lem was proposed by van den Doel et al. !2001"; however,
some knowledge about the surfaces of the objects and their
contact dynamics is still required. Other physical models
have been proposed !e.g., Avanzini and Rocchesso, 2001a, b;
Lambourg et al., 2001", but as with the above-noted models,
they require knowledge of the acoustics, as well as the phys-
ics, dynamics of contact, and the surface texture of the ob-
jects.

In order to obtain a detailed description of the modes of
vibration and parameters of objects with complex geom-
etries, some knowledge-based techniques use rigid body
simulators developed for computer graphics !James et al.,
2006; O’Brien et al., 2001, 2002". These approaches permit
the synthesis of very realistic sounds; however, they are
computationally intensive and they require a detailed de-
scription of the objects.

A more fundamental limitation of all these approaches,
however, is that it is difficult to derive from natural impact
sounds intrinsic acoustic properties beyond those that are
explicitly modeled by the equations. For instance, how can a
ringing property or a nonexponential decay be modeled by
Eq. !1"?

This leads to another motivation for this work, which is
the extraction of intrinsic features from sounds. Algorithms
have been developed to extract basic features of impact
sounds, such as the decay rates or the average spectra, but
these approaches fail to capture the acoustic richness and
variability that is characteristic of natural impact sounds.

In this paper, we propose a statistical data-driven
method for learning the intrinsic features that govern the
acoustic structure of impact sounds. The method aims to
characterize the structures that are common to sounds of the
same type !for instance, if the impacts on the same rod have
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a ringing property, the method should be able to learn a
characterization of this intrinsic structure", as well as their
variability !using the same example, the method should also
capture the subtle variability of the ringing property in dif-
ferent impacts". At the same time, it aims for low dimen-
sional representations of the sounds. This method requires no
a priori knowledge and is used to create models of impact
sounds that represent a rich variety of structure and variabil-
ity in the sounds. The method is not restricted to learn an
explicit set of properties of the sounds, and it has shown to
be able to learn properties such as ringing, resonance, sus-
tain, decay, and sharp onsets. To the best of our knowledge,
this is the first statistical approach for modeling impact
sounds.

II. MODELING INTRINSIC STRUCTURES

Our goal is to learn the intrinsic structure of sounds: We
aim to decompose sounds in terms of the set of component
signals that best describes them. For convenience, we as-
sume the sounds are initially represented by a spectrogram,
S. !Here we will refer to the rows of S, which are the power
of frequencies over time, as frequency bins or bins, and we
will refer to the columns of S, each of which is the power
spectrum at a given time, as frames". Even though our
method can be applied to a broader variety of sounds, here
we will focus on impact sounds. To illustrate the data, Fig. 1
shows the spectrograms of two impact sounds on an alumi-
num rod !more details on how these sounds were produced
and digitized are given in Sec. III".

Natural sounds of the same type have a rich variability
in their acoustic structure. For example, different impacts on
the same rod can generate very different acoustic waveforms.

In natural environments there is variability due to reverbera-
tion and background noise, but even when the sounds are
recorded in anechoic conditions, there is variability that is
due to factors such as the slight variations in the impact force
and location !see Sec. III for details on the recording condi-
tions". Figures 1–3 show that, even though different impacts
on the same rod have very similar spectra, the relative power

FIG. 1. Two spectrograms S !in decibels" of sounds !Al1 on the left and Al3
on the right" from impacts on an aluminum rod at approximately the same
location and with approximately the same force !these spectrograms have
been normalized". The relative power and temporal behavior of the partials
varies from one instance to the other. For instance, in the left spectrogram,
partial b1 starts with a lower amplitude than partial a1, while in the right
spectrogram partial b2 starts with a higher amplitude than a2. The same
happens with partials c and d: c1 is weaker than d1, while c2 is stronger than
d2. Another example is the partial above 15 kHz. In the left spectrogram,
this partial, f1, is stronger than partial c1, while in the right spectrogram c2
is the strongest of the two. In fact, in the second spectrogram the partial
above 15 kHz does not even appear.

FIG. 2. Power spectra of four different impacts on aluminum !Al1, Al3,
Al10, and Al19 from top to bottom" at approximately the same location and
with approximately the same force. The relative power of the partials varies
from one impact to another. !The partials are marked with the same labels as
in Fig. 1." Again, it can be seen that the relative powers of partials a, b, c,
and d vary in the four power spectra. Also note that partial f appears in the
first, third, and fourth lines !f1, f3, and f4" but it is absent from the second
line. Another interesting feature that can be observed is how the shape of the
power spectrum changes from one sound to the next. For instance, note how
partial a1 is better defined than a4.

FIG. 3. The decay shape of the partial at 3.95 kHz in decibels !which is
partial e in Figs. 1 and 2" for four different impacts on an aluminum rod
!Al1, Al3, Al10, and Al19 from top to bottom" at approximately the same
location and with approximately the same force. The temporal behavior of
the partials varies from one impact to another; there is variability in the
decay rate and beat pattern of this frequency bin. Note, for instance, the
irregularities marked with an a in the first line, and notches b and c in the
second and third lines. Also of interest is the consistency of the beating,
which suggests that this rod has two close modes of vibration.
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and temporal behavior of the partials varies from one in-
stance to the other. These differences cannot be explained by
a simple variation in amplitude of the whole spectrogram.

In spite of these variations, when these sounds are heard
they are often perceptually very similar, that is, impacts from
similar objects or materials have some common intrinsic
structures that listeners can identify. Our goal is not to de-
velop a perceptual model but rather to construct a model that
learns the common intrinsic structures of similar sounds as
well as their variability.

The model discussed here represents the sounds in terms
of a set of component signals, in other words, it represents
them in a new coordinate system. The form of the basis
functions in the new coordinate system depends on the initial
representation of the data, which here is the spectrogram.
The frames are initially represented in an F-dimensional
space with one dimension for each frequency bin f; let us
call this space the frequency space. The bins are initially
represented in a T-dimensional space, which we will call
time space, with one dimension for each time frame t. A
spectral basis function consists of a vector in the frequency
space !that is, a spectra", while a temporal basis function
consists of a vector in the time space !which can be thought
of as a spectra’s amplitude envelope". Using spectrograms as
the initial representation allows us to model the sounds in
spaces defined by spectral and temporal basis functions.
!Section IV contains graphical examples of these basis func-
tions."

Given that the spectrogram S, of size !F$T", is defined
over a discrete set of frequencies, f ! &f1 , . . . , fF', and a dis-
crete set of time instants, t! &t1 , . . . , tT', we can define S as
an ordered set of bins or as a sequence of frames. !Here we
use only the power spectrum, and we ignore the phase com-
ponent." The model, which we call the bin model, or Mb,
expresses the spectrogram S as an ordered set of bins. These
are modeled as linear combinations of temporal basis func-
tions !i:

b f = %
i=1

I

!ici,f , !2"

where b f is the transpose of the fth bin of S. !i is scaled at
this bin by coefficient ci,f.

1 The value of I depends on the
technique used to lear the basis functions !i. Here I%T !see
Sec. III and Appendix C in the supplementary material for
further details". The basis functions !i describe the temporal
regularities in the bins in the data set, that is, in S. These
basis functions can describe a single sound, or the temporal
regularities of a set of related sounds simply by including the
appropriate spectrogram bins in the data set. !Section IV A
shows how to learn !i." The vectors of coefficients are com-
monly called source signals. Since the vector that consists of
the coefficients that are associated with basis function !i,
that is ci= !ci,f1

, . . . ,ci,fF
"T, ranges over the frequency space,

here we call it a spectral source signal. !For graphical ex-
amples of spectral source signals see Sec. IV A." Spectral
source signal ci scales basis function !i across frequencies.

In order to represent the spectrograms of different
sounds with a fixed basis " !where " represents the set of

temporal basis functions !i", the model requires different
spectral source signals to scale each basis function !i, i.e.,
there will be one set of spectral source signals for each
sound. We distinguish these variables with an upper index k,
that is, the set of spectral source signals associated with
sound k, which is the set containing c1

k , . . . ,cI
k, is represented

by Ck.2 We can thus rename some of the above-used vari-
ables to take into account the sound they refer to. Equation
!2" can thus be rewritten as

b f
k = %

i=1

I

!ici,f
k , !3"

where b f
k is the transpose of the fth bin of Sk, i.e., the spec-

trogram of sound k, and the scalar ci,f
k is the fth element of

ci
k.

If we consider all F bins in Sk, Eq. !3" can be rewritten
as

!Sk"T = " Ck, !4"

where the ith column of matrix " contains !i, and the ith
row of Ck contains !ci

k"T. !See Appendix A in the supplemen-
tary material for figures of the matrices."

Thus far, Mb describes the temporal structure, but not
the spectral structure inherent in the spectral source signals
ci

k. We can extend Mb to consider the regularities in the spec-
tral source signals for an ensemble of related sounds. Instead
of describing the temporal shape of a given bin, this part of
the model describes the spectral source signals ci

k. These sig-
nals are modeled as a linear combination of spectral basis
functions # j

i:

ci
k = %

j=1

J

# j
i vi,j

k , !5"

where the scalar vi,j
k is a scaling coefficient. The spectral

basis functions # j
i describe the spectral regularities in the

spectral signals. Again, the value of J depends on the tech-
nique used to learn the basis functions # j

i. Here, J%F !see
Appendix C in the supplementary material for further de-
tails". !Section IV B shows how to learn # j

i."
We can now consider the previous equation at a given

frequency bin f and express ci,f
k as follows:

ci,f
k = %

j=1

J

& j,f
i vi,j

k , !6"

where ci,f
k , and & j,f

i are the values of ci
k, and # j

i at frequency
bin f , respectively. !In other words, they are the fth values of
vectors ci

k and # j
i, respectively."

Finally, combining Eqs. !3" and !6" it follows that the
bins of Sk can be expressed as

b f
k = %

i=1

I

%
j=1

J

!i& j,f
i vi,j

k . !7"

This shows that Sk can be modeled by temporal bases ",
spectral bases $ !where $ contains all spectral basis func-
tions # j

i", and a set of coefficients Vk !where Vk contains
coefficients vi,j

k ", that is, Sk=Mb!" ,$ ,Vk". !For more details
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and figures of the matrices used in this model, see Appendix
A in the supplementary material."

The model is thus defined by two sets of basis functions,
and the objective is to find the sets of basis functions with
which the data can be better described: ideally only a few
basis functions would be needed to accurately describe the
data with less redundancy. In Sec. IV, we show that the basis
functions can be learned effectively by redundancy reduction
techniques.

As mentioned before, we can define Sk as an ordered set
of bins or as a sequence of frames. Model Mb describes the
data as an ordered set of bins, and it is possible to build an
alternative model that describes the data as a sequence of
frames. Yet depending on the techniques used to learn the
basis functions, model Mb is more appropriate than the alter-
native model, in the sense that it may give a better descrip-
tion of the statistics of the data used in this study !see Sec. III
for a description of the data and Appendix B in the supple-
mentary material for further details". Therefore, here we fo-
cus only on model Mb, and we do not describe the alternative
model.

III. METHODS AND TECHNIQUES

We used a set of impact sounds that were produced us-
ing four rods with the same length and diameter, but made of
different materials. A wooden rod, with a much shorter
length but the same diameter, was used as a mallet. Several
impacts on each rod were recorded in an anechoic chamber.
The location of the impacts and the impact force varied
slightly from one instance to the next, since the rods were hit
by hand. The sounds were digitized using a sampling fre-
quency of 44 100 Hz.

The spectrograms of the sounds were computed using a
11.6 ms sliding Hanning window. Successive frames over-
lapped by 5.8 ms. Like with any other system that uses spec-
trograms, there is a trade off between spectral and temporal
resolution. Even though the type of structures obtained for
different resolutions is the same, the choice of spectral versus
temporal resolution affects the representation: the shapes of
the structures obtained differ slightly; for instance a structure
that includes a sharp onset can look more or less sharp de-
pending on the resolution. Here, we only report the results
obtained using an intermediate resolution of 512–point fast
Fourier transform.

We use principal component analysis !PCA" and inde-
pendent component analysis !ICA" to learn the sets of basis
functions from Sec. II. PCA and ICA are redundancy reduc-
tion techniques that look for the axes that best describe the
distribution of the data. These techniques are used to repre-
sent high dimensional data in a !usually lower dimensional"
space with less redundancy. The data are expressed as a lin-
ear transformation of the basis functions !i.e., the axes that
define the new space". Given a set of M source signals of
size N #represented by an !M $N" matrix Y with one signal
per row$ mixed into a set of M signal mixtures #represented
by an !M $N" matrix X with one signal mixture per row$
PCA and ICA learn a !M $M" matrix W that allows extract-
ing the source signals from matrix X:

Y = WX . !8"

If A=W−1 this equation can be rewritten as

X = AY . !9"

The two techniques differ importantly in the way they
model the distribution of the data, and in their constraints.
PCA is a second-order statistical method that assumes a
Gaussian distribution and is restricted to orthogonal basis
functions !that are the eigenvectors of the data covariance
matrix". This technique decomposes a set of signal mixtures
into a set of decorrelated signals and can be used to reduce
the dimensionality of the data by considering I basis func-
tions, where I'M !in which case only I source signals are
obtained". ICA is a generative model that decomposes a set
of signal mixtures into a set of maximally independent
source signals. This higher-order statistical method models
multivariate data with non-Gaussian distributions and is not
restricted to orthogonal basis functions. ICA contains PCA as
a special case when the marginal distributions of signals are
assumed to be Gaussian and the bases are restricted to be
orthogonal. #For more details on ICA and PCA, see
Hyvärinen et al. !2001" or Stone !2004".$

For instance, in the case of the first part of Mb and when
we consider K impact sounds, matrix X consists of the hori-
zontal concatenation of transposed spectrograms
!!S1"T , !S2"T , . . . , !SK"T", A is the spectral basis ", and Y is
the horizontal concatenation of the matrices of spectral
source signals !C1 ,C2 , . . . ,CK". A signal mixture is the con-
catenation of one transposed frame from each of the K spec-
trograms, and there are T signal mixtures. Therefore, I%T in
Eqs. !2"–!7".

We used a built-in function from MATLAB to do PCA and
the Fast ICA software package by Hyvärinen et al. !2001" to
do ICA !for more details see Appendix C in the supplemen-
tary material". Because both PCA and ICA model the varia-
tion around the data mean, we used both the data matrix and
its negative, i.e., we used the extended matrix !−ST ,ST", so
that the mean would be zero. This was done so that the
model described the signal rising and falling from zero,
rather than the spectrogram mean.

IV. RESULTS

In this section, we show how to learn representations of
the intrinsic structures of impact sounds. We show that the
method developed in Sec. II can be used to characterize the
structures of a single sound or the structures of sets of related
sounds. In the latter case, the method learns representations
of the structures that are common to the set of sounds and
models their natural variability.

Section IV A explores the first part of the model, which
is characterized by the temporal basis functions ", while
Sec. IV B explores the second part of the model, which is
characterized by the spectral basis functions $. Finally, Sec.
IV C illustrates how the natural variability of related sounds
is represented by the model.

J. Acoust. Soc. Am., Vol. 121, No. 6, June 2007 S. Cavaco and M. S. Lewicki: Modeling intrinsic structures of impact sounds 3561



A. Temporal basis functions "

There are two ways of applying ICA and PCA to spec-
trograms: these techniques can be used to do a spectral
analysis of Sk, in which the signal mixtures and source sig-
nals are considered to be spectra, or a temporal analysis of
Sk, in which the signal mixtures and source signals are con-
sidered to be temporal signals. Spectral analysis considers
the frames !or power spectra" of Sk as a linear combination
of independent or uncorrelated spectral source signals !for
ICA and PCA, respectively". Here the goal is to decompose
Sk into this set of spectral source signals. !For more details
see Appendix B in the supplementary material."

In order to learn the set of temporal basis functions "
and decompose the spectrograms into sets of spectral source
signals, we apply spectral PCA and ICA to the spectrogram
of a single impact or to the spectrograms of different impacts
on the same rod. For instance, in order to learn the temporal
basis functions " and find the sets of spectral source signals
C1 ,C2 , . . . ,CK for K sounds, model Mb does a spectral
analysis on matrix !!S1"T , !S2"T , . . . , !SK"T", where !S1"T to
!SK"T are time aligned, so that the matrix has one row !or
transposed frame" that corresponds to the start of all K im-
pacts. The temporal basis functions " are time varying func-
tions that represent temporal properties of different subspec-
tra of the sounds. Each spectral source signal !ci

k" is
associated with a particular temporal basis function !!i" that
represents a component of the signal’s temporal behavior.

1. One impact sound

We start with the spectrogram S of a single sound. Fig-
ures 4!a" and 4!b" show six out of the ten most dominant
basis functions !i.e., !1–!10" learned by ICA.3 As can be
seen, ICA is able to isolate temporal properties of the sound:
see for instance !b in Fig. 4!a", which represents a ringing
property of the sound, !d in the same figure, which represent
a decay property of the sound, !a in Fig. 4!a" and !e in Fig.
4!b", which represent sustain properties, and the sharp basis
functions like !a and !d in Fig. 4!b", and !c in Fig. 4!a"
which are related to impact !i.e., attack" properties of the
sounds.

While ICA can model the data using nonorthogonal ba-
sis functions, PCA models the data with orthogonal bases.
Consequently, the temporal basis functions learned by PCA
can differ from those learned by ICA. Figure 5 illustrates the
results obtained by PCA of the spectrogram of the sound of
an impact on an aluminum rod. This figure shows that the
dominant basis function, !1, has a much smoother shape
than the other basis functions. This basis function shapes the
overall decay of all partials. In fact, the results show that
PCA extracts a dominant basis function !1 that represents
most of the temporal structure of the sound !Fig. 6". On
average, this basis function accounts for more than 68% of
the temporal variation in S. This property of the dominant
basis function is due to the lack of variation in the spectral
structure of the sound over time. !As an example of this
regularity, Fig. 1 shows that there is not much variation in
which partials are active over time." !1 has the ability to
account for the temporal behavior of this spectral structure.

To illustrate this point, Fig. 7 shows the average power spec-
trum of a sound from an impact on an aluminum rod and
spectral source signal c1

Al2 obtained by PCA of the spectro-
gram of this sound. !1 describes the temporal behavior of
spectra c1

Al2, which, as can be seen in Fig. 7, is very similar
to the sound’s power spectrum, which represents the spectral
structure of the sound over time.

FIG. 4. Temporal basis functions " learned by ICA of the spectrogram of:
!a" a sound !Al2" from an impact on an aluminum rod; !b" a sound !Zn2"
from an impact on a zinc plated steel rod. In each case, six out of the ten
most dominant basis functions are shown in decreasing order of dominance
from top to bottom. The corresponding spectral source signals for Al2 !c"
and Zn2 !d" are shown also from top to bottom.
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Other less significant basis functions account for tempo-
ral behaviors that differ from the overall decay shape de-
scribed by !1. For example, the temporal shapes of !2 and
!3 account for variations in the temporal behavior of sub-
spectra c2

Al2 and c3
Al2 !Fig. 5". !Note also that these subspectra

contain common partials with the spectral structure of the
sound, but, as can be easily seen in this figure, they account
for much less of the spectral structure of S than c1

Al2 does.
The same is true for other sounds. The less variance a basis
function accounts for, the fewer partials its spectral source
signal shares with S." In contrast to what was seen with ICA,
these basis functions are not as directly related to temporal
properties of the sounds. !Note that since the same sound,
Al2, was used in both Figs. 4!a" and 5, these are directly
comparable."

As seen earlier, ICA obtains a greater variety of basis

function shapes: some are similar to the most significant
PCA basis functions, but ICA is also able to learn basis func-
tions that capture structures besides decay. In fact, there
seems to be a more direct relation between the shape of the
basis functions learned by ICA and temporal properties like
ringing, resonance, decay, impact !or attack", etc. As a con-
sequence, ICA needs more basis functions to explain the
variance of S !Fig. 6". On average, the most significant basis
function !!1" accounts only for about 27% of the temporal
variation in S compared to 68% for PCA.

Up to this point, we have considered the basis functions;
now we will consider the spectral source signals. Because
here we consider the spectrogram S of a single sound, there
is only one spectral source signal ci

k associated with each
basis function !i. This source signal consists of the partials
that have the time varying shape described by !i. In other
words, the source signals consist of partials that have similar
time varying shape. Unlike the source signal of the dominant
basis function obtained by PCA, with ICA there is no source
signal that accounts for most of the spectral structure in S.
ICA separates partials with different time varying shapes into
different spectral source signals, which is better suited to
represent the variability in the sounds. This point is illus-
trated by Figs. 4!c" and 4!d", which show the spectral source
signals for six out of the ten most dominant basis functions
obtained by spectral ICA. As can be seen, when ICA is used,
the partials in one spectral source signal are typically not
present in the remaining source signals. From another per-
spective, ICA learns basis functions that more directly relate
to the underlying acoustic properties. This desirable effect
allows ICA to extract more interesting temporal structures of
the sounds than those seen with PCA.

2. Ensemble of impact sounds

We will now consider the more general case of an en-
semble of impacts on the same rod. In this case, the data
matrix is defined over a set of K sounds aligned at time zero.
The result of applying spectral ICA or PCA to this data is a
set of temporal basis functions " and K sets of spectral
source signals Ck. The temporal basis functions " model the
common temporal properties of the sounds, and each set of
spectral source signals Ck represents the spectra of sound k

FIG. 5. Temporal basis functions " and spectral source signals !CAl2" ob-
tained by PCA of the spectrogram of a single sound !Al2" from an impact on
an aluminum rod. !a" The first three basis functions are shown from top to
bottom. !b" The first three spectral source signals are shown from top to
bottom.

FIG. 6. Percentage of variance explained by the basis functions in ". The
spectrograms from ten impact sounds from each rod !aluminum in black,
zinc plated steel in dark grey, steel in light grey, and wood in white" were
used. " was learned by spectral analysis on one spectrogram at a time. The
ten results obtained for each rod were averaged. Only the values for the first
six or ten temporal basis functions are shown. The dots on the curves show
the cumulative sums of the percentages. In !a" " was learned by PCA. In !b"
" was learned by ICA.

FIG. 7. Power spectrum of a sound !Al2" from an impact on an aluminum
rod. The bottom line shows the power spectrum. The line on the top shows
spectral source signal c1

Al2 found by PCA of the spectrogram of this sound.
Note how both lines show high energy on the same partials. !Here, the
source signal c1

Al2 looks different than in Fig. 5 because it is plotted in a
logarithmic scale."
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that have the temporal properties described by ". The spec-
tral source signals !say ci

k1 and ci
k2" associated with the same

basis function !i are the subspectra !of sounds k1 and k2,
respectively" that share the temporal property described by
!i.

The results for multiple impacts resemble those for a
single impact due to the similarity in the underlying acoustic
structure across impacts. This is clear with the basis func-
tions learned by ICA, for instance, compare !a in Figs. 4!a"
and 8!a", and is particularly obvious with the most dominant
basis function learned by PCA, for instance, compare the
first line from Figs. 5!a" and 9!a". Even though the temporal
basis functions in these figures are not exactly the same, they
have very similar shapes.

Because more impacts on the same rod imply more vari-
ability, some acoustic structures that were represented by a
single basis function in Section IV A 1, are now represented
by multiple basis functions. For example, the ringing struc-
ture represented by !b in Fig. 4!a" is now represented by
both !c and !e in Fig. 8!a". In order to illustrate how the
temporal variability is represented, we will examine these
two basis functions more carefully. By inspecting the spec-
tral source signals associated with !c and !e !see second
and third plots in the middle column of Fig. 10" we can

conclude that these two basis functions represent the tempo-
ral behavior of the partial at 3.95 kHz. In some impacts this
partial has a temporal shape that is more closely described by
!c !observe that for Al1 there is a peak in cc

Al1 but not in
ce

Al1", while in other impacts the partial’s temporal shape is
more closely described by !e !for Al3 there is a peak in ce

Al3

but not in cc
Al3". Still in other impacts a mixture of both !c

and !e is required to describe the partial’s temporal shape
!Al2 has a peak in both cc

Al2 and cc
Al2".

Even though on average the basis functions account for
a smaller percentage of variance than in Sec. IV A 1 and
more basis functions are needed to explain the same percent-
age of variance, the difference is not significant. For in-
stance, the ten most dominant basis functions learned by
spectral ICA of a single sound account for at most 88% of
the variance, while when a set of ten sounds is used, the
same number of basis functions explains at most 84% of the
variance of the data.4 Spectral PCA shows similar results: six
basis functions suffice to explain around 99% of the variance
on a single sound, while for a set of ten sounds, six basis
functions can explain around 96% of the variance !Figs. 6
and 11".

The results shown here were obtained from sounds re-
corded in an anechoic chamber; however, we also tested the
model with sounds recorded in a normal room !with back-
ground noise and reverberation". In this case, S represented
not only the structure of the sound, but also the structure of
the background noise. Consequently, apart from the temporal
basis functions that accounted for the temporal structure of
the sound, spectral PCA and ICA also learned some basis
functions that described the temporal structure of the back-
ground noise !data not shown".

The results are dependent on the sounds analyzed. Fig-
ure 8 shows that impacts on different rods are characterized
by different basis functions. For instance, some of the basis
functions that characterize impacts on aluminum have a
longer duration than the basis functions that characterize im-
pacts on wood. If sounds with different characteristics are
used, the basis functions will reflect those characteristics.

B. Spectral basis functions $

The sets of spectral source signals C1 , . . . ,CK represent
the subspectra associated with the temporal basis functions
in ". Even though each Ck is specific to an individual sound

FIG. 8. Temporal basis functions " learned by ICA of the set of: !a" ten
sounds from impacts on an aluminum rod; !b" ten sounds from impacts on a
zinc plated steel rod; and !c" ten sounds from impacts on a wooden rod. In
each figure, six out of the ten most dominant basis functions are shown in
decreasing order of dominance from top to bottom.

FIG. 9. Temporal basis functions " and spectral source signals Ck obtained
by PCA of the set of ten impacts on an aluminum rod. !a" The first three
basis functions are shown from top to bottom. !b" The first spectral source
signal for sounds Al1, Al2, and Al3.
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k, the sets of source signals do share common structures.
This can be seen in Fig. 10. The middle column shows the
spectral source signals obtained by spectral ICA of the set of
ten sounds from an aluminum rod. Although the source sig-
nals show considerable variability, there is still much com-
mon structure. The same observations can be made on the
results from spectral PCA #see Figs. 9!b" and 12!b"$.

As explained in Sec. II, we can extend the approach to
model the regularities in the spectral source signals. In the
extended model, these regularities are represented by the set
of spectral basis functions $, which is learned by applying
PCA or ICA to matrices of spectral source signals, such that
$i consists of the spectral basis functions that represent the
regularities of the source signals associated with the tempo-

FIG. 10. Left column: Temporal basis functions !a, !c, !e, and ! f from Fig. 8!a". These are learned by ICA of the set of ten sounds from impacts on an
aluminum rod. Middle column: The corresponding spectral source signals for sounds Al1, Al2, and Al3. Right column: Spectral basis functions $ obtained
by analysis of the spectral source signals. The first and third figures in this column show the first three spectral basis functions from $a and $c learned by
PCA. The second and fourth figures in this column show the first three spectral basis functions from $a and $c learned by ICA.

FIG. 11. Percentage of variance explained by the basis functions in "
learned by spectral analysis on the set of ten impacts on an aluminum rod
!black", the set of ten impacts on a zinc plated steel rod !dark grey", the set
of ten impacts on a steel rod !light grey", and the set of ten impacts on a
wooden rod !white". Only the values for the first six or ten temporal basis
functions are shown. The dots on the curves show the cumulative sums of
the percentages. In !a" " was learned by PCA. In !b" " was learned by ICA.
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ral basis function !i, that is, the regularities of source signals
ci

1 , . . . ,ci
K. !$i contains basis functions # 1

i , . . . ,# J
i , and $

contains sets $1 , . . . ,$I."
Figure 12 shows the results obtained by PCA of the

spectral source signals from PCA of the set of ten impacts on
a steel rod.5 Since PCA models the data with orthogonal
bases, all basis functions within each set $i are orthogonal.
Comparing #1

1 with c1
St1, it can be seen that the energy found

in spectrum c1
St1 is being represented by this spectral basis

function. For instance, note the three peaks between 2 and
4 kHz in both lines. Even though c1

St2 and c1
St3 have peaks in

the same region, they show less energy in these partials. This
variability is accounted for in part by other spectral basis
functions in $1 and in part by Vk. Note how v1,1

St1 has a much
higher value than v1,1

St2 and v1,1
St3.

PCA can also be applied to the spectral source signals
that have been obtained by spectral ICA. The first and third
graphs in the right column of Fig. 10 show the results ob-
tained by PCA of the spectral source signals from ICA of the
set of ten impacts on the same aluminum rod. The set of
spectral basis functions $a represents the regularities of the
spectral source signals associated with !a. For instance, note
how # 1

a represents the peaks close to 6 and 7 kHz, which
can be seen in ca

Al1 and ca
Al2. Since these peaks are much

lower !or negative" in ca
Al3, va,1

Al3 has a much lower value than
va,1

Al1 and va,1
Al2 !these coefficients are not shown here".

The number of basis functions considered is arbitrary
and depends on the application. It depends on how much of
the structure of the sounds one needs to model. To com-
pletely represent the structure of the sounds, we need to be
able to model all variability in all spectral source signals ci

k,

and, therefore, we must consider all basis functions in $.
However, the results show that when PCA is used there is a
dominant component in each set $i that represents most of
the structure in the spectral source signals ci

k. Thus, often a
very good approximation of source signals ci

k can be ob-
tained by using a small subset of $i.

Finally, we show some results from ICA of the spectral
source signals that have been obtained by spectral ICA.
Since the spectral basis functions learned by ICA are not
restricted to be orthogonal, and not many sounds !and con-
sequently not many spectral source signals"were used in this
study, the basis functions $ learned by ICA are more tuned
to specific spectral source signals, that is, they resemble
more closely the shape of specific spectral source signals. As
a consequence, the representations obtained by ICA are less
compact than the representations obtained by PCA. The sec-
ond and fourth graphs in the right column of Fig. 10 show
the results obtained by ICA of the spectral source signals
from spectral ICA of the set of ten impacts on an aluminum
rod. It is interesting to note the similarities between indi-
vidual spectral basis functions and spectral source signals.
For instance, compare # 1

a to ca
Al1, and # 2

a to ca
Al2. See also

how similar # 1
c, # 2

c, and # 3
c are.

C. Variability

Natural sounds have significant variability as was illus-
trated in Figs. 1–3. Because model Mb is adapted to represent
the distribution of the ensemble of impact sounds, it also
captures this variability. The variability is represented by dif-
ferent basis functions !like !c and !e in Fig. 10" and by the
distribution of the coefficients vi,j

k . To illustrate this, Fig. 13
shows that by giving different values to the coefficients vi,j

k ,
one can use different combinations of the temporal and spec-
tral structures represented by the basis functions in " and $
to simulate the variability present in the sounds. By ran-
domly sampling the coefficients vi,j

k , we can generate differ-

FIG. 12. Top row: Temporal basis functions " and spectral source signals
Ck obtained by spectral PCA of the set of ten impacts on a steel rod. !a" First
!most dominant" basis function. !b" First spectral source signal for sounds
St1, St2, and St3. Bottom row: Spectral basis functions $ and coefficients
Vk !for k! &St1 ,St2 , . . . ,St7'" obtained by PCA of the source signals. !c"
First three spectral basis functions from $1. !d" Coefficients for spectral
basis functions #1

1 to #3
1. The jth line, kth column shows v1,j

k , that is, the
coefficient for sound k and basis function # j

1.

FIG. 13. The decay shape of the partial at 3.95 kHz !which is partial e in
Figs. 1 and 2" from different spectrograms of impacts on an aluminum rod.
!a" The original partials show considerable variability. The partials !from top
to bottom" were extracted from the spectrograms of sounds Al2, Al4, Al9,
and Al10. !The partial from Al10 looks different in Fig. 3 because there it
was plotted in a logarithmic scale." !b" The synthesized partials have a
similar range of variability. The partials were extracted from four synthe-
sized spectrograms. See the text for details.

3566 J. Acoust. Soc. Am., Vol. 121, No. 6, June 2007 S. Cavaco and M. S. Lewicki: Modeling intrinsic structures of impact sounds



ent instances from the model distribution. Figure 13!a"
shows the variation in the partial at 3.95 kHz, and Fig. 13!b"
shows four different synthesis instances of the same partial
!3.95 kHz", each extracted from a different synthesized spec-
trogram. To synthesize the spectrograms, we used the tem-
poral basis functions !"" learned by spectral ICA of the
spectrograms of ten aluminum rod impacts, the spectral basis
functions !$" learned by PCA of the corresponding spectral
source signals, and the coefficients obtained for one of the
sounds !VAl4". To simulate the variability caused by !c and
!e !from Fig. 10" we varied the weightings of these two
basis functions. That was done by varying the values of vc

Al4

and ve
Al4 for each synthesized spectrogram. The values were

randomly sampled from the coefficient’s distribution. !Note
that in this way we are also varying the weightings of $c

and $e." Figure 13 confirms that model Mb is suited to rep-
resent the natural variability of the sounds. The variations
obtained by the model are similar to those in the ensemble of
impact sounds #compare the variations in Fig. 13!a" to those
in Fig. 13!b"$.

V. DISCUSSION AND CONCLUSIONS

Our main goal here was to develop a data-driven method
for learning a representation of the intrinsic structures of im-
pact sounds. We showed that, by using PCA and ICA, it is
possible to build a model that uses temporal and spectral
basis functions that represent the intrinsic temporal and spec-
tral structures of the sounds. The method can be used to
characterize the structures of a single sound or the structures
common to a set of impact sounds, in which case it also
captures the natural variability in the structures. Obviously, if
the method receives different inputs, it produces different
outputs, but if the sounds are of the same type, the structures
that the method learns are comparable. For instance, the re-
sults of analyzing one sound versus several sounds of the
same type are very similar. The model does not require any a
priori knowledge of the physics, acoustics, or dynamics of
the objects and events and is able to represent the underlying
acoustical structures in the sounds, which could offer advan-
tages over previous knowledge-based models.

The temporal structures of the sounds are represented by
the temporal basis functions ", which are learned by spectral
analysis of the spectrograms. The spectral structures of the
sounds are represented by the spectral basis functions $,
which are obtained in a second step by PCA or ICA of the
spectral source signals associated with the temporal basis
functions ".

Spectral ICA is able to decompose spectrograms into a
small number of underlying features !represented in the tem-
poral basis functions "" that characterize acoustic properties
such as ringing, resonance, sustain, decay, and onsets. Since
the method is not restricted to learn explicit features !or
structures" of the sounds, the representations obtained in-
clude new information that was not represented by previous
!physical" models. For instance, features that are more ab-
stract than simple decay rate or average spectra, like features
that characterize ringing, or decay shapes that are not expo-
nential, can now be modeled and easily extracted from the

sounds. Spectral PCA gives compact representations of the
temporal structures in the spectrograms. For instance, six ba-
sis functions can explain 96% or more of the variance of the
data !see Sec. IV A 2". Such low dimensional characteriza-
tions of the data can present advantages over previous physi-
cal models. For example, since impact sounds can have hun-
dreds of partials !van den Doel et al., 2002", modeling them
with Eq. !1" would mean using a very big N. When the
objective is to model only the perceptually relevant portions
of the sound, many less partials can be used !that is, N can be
substantially smaller", yet determining which partials should
be used is also a difficult question !van den Doel et al.,
2002".

Brown and Smaragdis !2004" have used ICA to separate
different notes from two-note musical trills. In another study
the same authors have used non-negative matrix factorization
!NMF", which is another redundancy reduction technique, to
analyze polyphonic musical passages !Smaragdis and
Brown, 2003". Although these approaches are related to
those presented here, their goal was to separate notes from
musical segments with more than two notes. Even though the
analyses used in both these studies resemble our analysis
method, there are some fundamental differences. The main
difference is that we are partitioning individual sounds ac-
cording to the temporal behavior of the partials, whereas in
their studies the sounds are being segmented according to
events; we are interested in representing the structure of
sounds of the same type efficiently, whereas they are inter-
ested in segmenting sound events. Also, while their analyses
are appropriate for highly harmonic sounds, transient sounds
with high structure variability are better described by our
method, given that here individual sounds are represented by
more than one temporal and spectral basis functions.

Most work with redundancy reduction techniques !like
ICA, PCA, NMF, singular value decomposition, and sparse
coding" and spectrograms or other time-frequency structures
!like constant Q-transforms and wavelets", focus on the
source separation problem, and, as with the above-mentioned
two studies, it segments sounds according to events !e.g.,
Barros et al., 2002; Casey and Westner, 2000; Smaragdis,
2004; Virtanen, 2004". Some MPEG-7 audio features are ob-
tained using similar techniques, and there has been work on
sound classification, recognition, and event detection using
these features !e.g., Kim et al., 2004; Xiong et al., 2003". All
these studies use techniques similar to those used in the
method presented here, but their goals are very different and,
to the best of our knowledge, the method presented is the
first to partition individual sounds according to the temporal
behavior of the partials. Even though this paper does not
discuss sound classification and recognition, the basis func-
tions learned by the method presented here, may be particu-
larly useful to such applications.

Although here we have only considered impact sounds,
namely impacts on rods, we predict that this model can be
used to represent other types of transient acoustic events. The
work presented considers only the spectral content of the
signals. Nonetheless, there is also complex structure in the
phase of the signals, which is important for synthesizing
sound waveforms from the model.
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Appendices A, B, and C. This document can be reached via
a direct link in the online article’s HTML reference section
or via the EPAPS homepage !http://www.aip.org/pubservs/
epaps.html".

1Here matrices are represented in bold upper case, vectors, which are col-
umn vectors unless the transpose is used, are represented in bold lower
case, and scalars are represented in lower case. The horizontal concatena-
tion of matrices A and B is !A ,B".

2We use upper indexes to distinguish different variables of the same type, so
for instance X1 and X2 are two different matrices of the same type. Lower
indices are used to index values within a matrix or vector.

3In order to make the graphs more readable, some of the basis functions !i
and corresponding spectral source signals ci

k have been multiplied by −1.
4Since the basis functions given by PCA are orthogonal, the sum of the
variances that they explain gives the total variance explained. However, the
same is not true for the basis functions given by ICA, which are not re-
stricted to being orthogonal. In this case, the sum of the variances may
correspond to a quantity that is bigger than the actual variance explained by
the basis functions.

5In order to make the graphs more readable, some of the basis functions # j
i

and corresponding coefficients vi,j
k have been multiplied by −1.
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