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Abstract—Traditional speech therapy approaches for speech
sound disorders have a lot of advantages to gain from
computer-based therapy systems. In this paper, we propose a
robust phoneme recognition solution for an interactive environ-
ment for speech therapy. With speech recognition techniques
the motivation elements of computer-based therapy systems can
be automated in order to get an interactive environment that
motivates the therapy attendee towards better performances.
The contribution of this paper is a robust phoneme recognition
to control the feedback provided to the patient during a speech
therapy session. We compare the results of hierarchical and
flat classification, with naive Bayes, support vector machines
and kernel density estimation on linear predictive coding
coefficients and Mel-frequency cepstral coefficients.

Keywords-Speech Therapy, Phoneme Detection, Kernel Den-
sity Estimation, Naive Bayes, Support Vector Machines.

I. INTRODUCTION

Speech sound disorders (SSD), which consist of a signif-
icant delay in the acquisition of articulate speech sounds
such as phoneme, syllable, or word, are very common
during childhood. These can be of many different types and
severities, including apraxia of speech, dysarthria, orofacial
myofunctional disorders, among others [1]. As reported
by Guimarães et. al [2] for data on European Portuguese
(EP), 8.8% of preschool-aged children show SSD. Children
with these problems can have difficulty to correctly express
themselves, which may affect their related quality of life, and
in more severe cases, it can affect the natural development of
social skills [3]. If SSD persist when the chid reaches around
9 years of age, even when with minor gravity, it can cause
children to be judged negatively by their peers (e.g. as less
smart, or less interesting), with age-typical speech sounds
creating a barrier to social and academic participation [4].
Speech therapy can (and should) be used to address these
disorders.

Traditional speech therapy approaches for speech sound
disorders have many advantages to gain from computer-
based therapy systems. Some computer tools for speech ther-

apy exist and many such as SpeechViewer [5], SATPAC [6]
and Box of Tricks [7] are widely known as an alternative
approach to the traditional intervention (e.g. providing a
different type of external feedback to the child).

Existing speech therapy tools provide different approaches
in aiding speech therapy. Many complex systems, such as
TERAPERS (for Romanian) and Ortho-Logo-Paedia (OLP),
focus on providing high-quality speech therapy aids and
therapy exercises in different forms [8], [9]. Other systems
target specific aspects of the therapy by providing exercises
in a more fun and entertaining way, like ARticulation TUtoR
(ARTUR) or the Comunica project [10], [11]. ARTUR uses
a virtual tutor, which when needed provides the person with
vocal tract animations. The virtual tutor approach makes
human computer interaction more natural, as described
in [12]. The Comunica [11] framework uses automatic
speech recognition to analyse the children’s vocalizations
(in Spanish) and provide feedback. For EP there are also
some computer aids to speech therapy like a Game for
Vowel Training [13], or the Lisling 3D [14] and VITHEA
[15]. The Interactive Game for Vowel Training is a simple
car racing game where the car actions are controlled by
uttering 5 vowels. In Lisling 3D tasks, such as writing or
selecting words, are given to patients throughout a virtual
3D environment. The VITHEA system is an online platform
where people with aphasia can do exercises from a browser.
Exercises are guided with a virtual tutor. An automatic word
naming recognition module evaluates the patients responses
and provides feedback.

VisualSpeech is an interactive environment for speech
therapy for children with SSD [16]. This paper describes
the speech processing elements of VisualSpeech: the inte-
gration of speech analysis in a visual-feedback loop as a
gamification element of speech and language therapy. By
combining visual-feedback with adapted traditional speech
sound exercises, it is possible to create an environment with
motivation focused elements that can improve children’s



Figure 1. VisualSpeech motivational elements. Progress bar (ice cream)
and reward (virtual button).

performance and engagement in speech therapy sessions.
Figure 1 illustrates a motivational element: the colored rain
is triggered by a virtual button on the screen that the child
can activate. VisualSpeech addresses the first stage of speech
therapy: phoneme productions. Since languages are different
and have a different number and combinations of sounds,
computer tools are language bounded. VisualSpeech was
designed for European Portuguese (EP). This environment
includes motivational elements that aim at keeping the child
motivated and focused in the therapy exercises. In particular,
the environment has a performance bar which indicates how
well the child is performing in the exercise (ice cream in
figure 1). These elements also provide useful feedback to
the child, who can see changes in the environment that
depend on his performance. With a bar that increases or
decreases according to the child’s performance, the child can
be encouraged to outperform his last speech productions.

Since controlling the performance bar is a new task that
requires the speech and language therapists’ (SLT) care
and may divert their attention, this process should have the
option of being automatic. For that reason, while we do not
want to substitute the SLTs, and the final decision should be
theirs, we are investigating ways of making the progress bar
advance automatically. Speech recognition techniques can
provide valuable feedback to the SLTs, suggesting when
to advance the progress bar. To achieve this, we explored
robust speech recognition techniques with EP phonemes
(sections II).

In this paper, we propose a robust phoneme recognition
solution for analyzing the child’s performance in Visual-
Speech. We have focused our attention in exercises that
allow a robust interaction without false negatives that could
be the cause of frustration of the child. While it is our
intention to expand this work so as to cover all EP phonemes,
we started by giving special attention to the a, e, i, o, u
vowels and the EP rhotic consonant sound.

Figure 2. Regions of the mouth.

II. SCORING SPEECH EXERCISES

VisualSpeech focuses on phoneme productions during
speech exercises. In order to have the scores computed
automatically, the environment needs to perform phoneme
recognition. Below we discuss our approach to robust
phoneme recognition: The first step consist of extracting
audio features from the speech productions, (section II-B),
while the second step consists of using those features in a
classification algorithm (section II-C).

A. Speech exercises

As mentioned above, the proposed environment addresses
phoneme productions. Phonemes do not necessarily repre-
sent sounds of letters, since not only a letter can have dif-
ferent sounds in different contexts (words), but also in some
cases a sole letter does not represent anything. To accurately
represent phonemes in written language, the International
Phonetic Alphabet (IPA) is used [17].

While it is our intention to expand this work so as to
cover all EP phonemes, we started by giving special attention
to the a, e, i, o, u vowels. In EP these correspond to the
phonemes /a/, /E/, /i/, /O/, /u/.

Following the suggestion of SLTs, we also addressed the
EP rhotic consonant sound, that is, the sound of R at the
beginning of a word, like in rato (mouse) or double R in
the middle of words, like in carro (car). This sound is
of particular interest because of the accent variations and
because often it is one of the last sounds to be mastered in
childhood [18].

Rennicke and Martins [18] report that this consonant can
be a voiced uvular fricative (/K/), or, less commonly, a
voiceless uvular fricative (/X/). The uvular fricatives are done
with the back of the tongue against the uvula (figure 21).
They can be voiced if there is vibration of the vocal folds,
and voiceless otherwise. This consonant can also be an

1From http://medical-dictionary.thefreedictionary.com



alveolar trill (/r/), which is made with vibrations of the tip of
the tong against the upper alveolar ridge (between the teeth
and the hard palate) for longer than two or three periods.
When produced in this way, the consonant sounds like the
double R in the Spanish word perro (dog). Another variation
is done by a vibration of the palatine uvula, in which case
it is known as uvular trill (/ö/) and it can be stronger or
weaker depending on the vibration. Finally, another not very
common variation is the voiceless velar fricative (/x/), which
is done with the back of the tongue against the soft palate.
Since the voiced uvular fricative is one of the most common
pronunciations, we will use the symbol /K/ when denoting
the EP rhotic consonant in general.

The /K/ sounds included in our study are the following:
/Ka/, /K5/, /K@/, /Ko/ and /Ku/. More details about these
sounds are given in section III-A.

B. Audio features

We extracted two types of features from the speech
productions: linear predictive coding (LPC) coefficients and
Mel-frequency cepstral coefficients (MFCC).

LPC uses a linear predictive model to estimate the spectral
envelope of speech signals. LPC is a fast and simple method
to estimate the main parameters of speech signals. This
method assumes that speech sound results from the vocal
tract as an all-pole filter, that is applied to the larynx vibra-
tions. This approach tries to predict the current window of
a sample as a linear combination of the past windows while
minimizing the error. The goal of LPC is to get p coefficients
of the p linear equations that minimize the prediction error.
Using these coefficients, the formants can be estimated.
These are representations of the acoustic resonance of the
human vocal tract. The number of poles used affects the
number of formants that can be estimated with LPC. In
speech processing, typically 8-14 poles are used, in order
to get lower prediction errors, while at the same time not
fitting individual components of speech. The ideal number
of poles varies according to the speakers gender, age, and
sampling rate of the audio file.

Although the human ear can hear a wide range of
frequencies (20Hz to 20 kHz) our auditory system filters
the spectrum, giving more importance to some frequency
regions than others. These filters are not uniformly spaced,
and our ears have more filters in the lower pitch region of
the spectrum and less on the higher pitch region. To tackle
the non-linear frequency range of the human ear, the Mel
frequency cepstrum (MFC) uses a short-time representation
of the sound’s spectrum with the Mel scale: a nonlinear
frequency scale of triangular filters for the frequencies in
order to approximate the human hear. The coefficients, that
is the MFCCs, are time-varying functions. When given a
windowed input signal, a filter-bank of n triangular filters
is applied and the average spectrum around the center
frequency computed. The resulting features, that is the n

MFCCs, are cepstral arrays. Since the MFCCs are time-
varying, we used the mean of each MFCC to train the
learning algorithms described in section II-C. In other words,
our feature vectors are vectors of n mean values.

C. Phoneme recognition

In order to score the phoneme productions we compared
the performance of three algorithms: the Naive Bayes (NB),
Support Vector Machines (SVM) and Kernel Density Esti-
mation (KDE) [19].

The Naive Bayes is a generative classifier that applies the
Bayes probability theorem. The NB classifier is well suited
when the data dimensionality is high and there is a strong
independence among the dimensions. NB estimates the
probability of a phoneme label by modeling each dimension
independently of the others given the class label (this is the
conditional independence assumption). The phoneme sample
is then classified with the label that maximizes the sample
likelihood.

The SVM is a popular technique, that classifies a sample
into one of two classes. A discriminating hyperplane is
learned from the training data by selecting samples as
support vectors. These support vectors define the hyperplane
that maximizes the margin between the two classes. When
a new sample is up for classification, this technique projects
the sample onto the hyperplane and decides the class of the
sample.

The KDE is an approach to estimate the true probability
density distribution from the training data. This method uses
the entire training set to compute a smoothed estimate of
the true probability density distribution. It applies a Kernel
function to every point of the training set to compute the
contribution of every training sample. This Kernel function
is usually a standard probability distribution function. For
a matter of convenience, we will use a Gaussian Kernel,
K(z) = 1√

2π
e−

1
2 z

2

. To estimate the density function on a
given test point x, the aggregated contributions of all training
samples correspond to

f̂(x) =
1

n

n∑
i=1

K(
x− xi
h

).

In practice the x variable correspond to the MFCCs and
LPCs feature vector. The h parameter is the kernel band-
width, estimated from the data by some method. We fol-
lowed the Silverman’s rule of thumb and used the data
variance σ to set the kernel bandwidth to h = ( 4σ

5

3n )1/5.
Formally, we have one function f̂lj (x) for each label lj of

our problem, where j = 1, ..., L. In our case, we will have
a function f̂lj (x) for each training phoneme sample. Thus,
each training sample contributes exclusively to the density
function of its own label. It is now straightforward to address
the multi-class nature of phoneme detection. Using Bayes’



theorem we can merge all individual density estimates f̂lj (x)
with j = 1, ..., L:

p(l = lj |X = x0) =
πlj f̂lj (x0)∑L
i=1 πif̂li(x0)

,

where πi corresponds to the label i prior. This definition
allow us to compute the probability of one speech sample x0
corresponding to a certain phoneme label lj . To classify test
phonemes, we only need to find the label lj that maximizes
the above expression.

D. Hierarchical vs Flat classifiers

To achieve phoneme scoring the features and classifiers
used in phoneme recognition need to be able to detect all
meaningful speech sounds. To this purpose two different
approaches were experimented, the hierarchical and the flat.
The former aims at classifying in binary in-line fashion, and
the latter all possibilities concurrently. Since in our exper-
iments we used ten different speech sounds the number of
possible combinations for the hierarchical approach are far
too many to try. We selected three different hierarchies based
on the accuracies obtained in preliminary tests: hierarchy 1
orders from best to worse accuracies across both vowels
and phonemes; hierarchy 2 does the same but distinguishes
vowels from phonemes; and hierarchy 3 does the same as
hierarchy 2 but in reverse order. All three hierarchies are
illustrated in figure 3, they are sorted from best to worst
accuracy to minimize misclassification along the binary
decisions of each hierarchy level.

III. EVALUATION

To compare the performance of the different approaches
discussed in the previous section (the flat and the hierarchical
approach with each of the three classification algorithms
discussed and the two types of features) we used two data
sets of speech productions. The results are discussed below.

A. Phoneme Data

In order to address phoneme recognition, we started with
a data set with the EP vowel phonemes /a/, /E/, /i/, /O/,
/u/ [20]. These samples were recorded from 44 different
speakers: 27 child speakers, 11 female adult speakers and
6 male adult speakers. The data set contains a total of 220
manually segmented samples, that is, 44 samples for each
phoneme. (For more details, please see [20].)

Following the suggestion of SLTs, we also created a data
set with the uvular sonorant /K/. This data set was created
from 67 audio recordings performed at Escola Superior
de Saúde do Alcoitão (ESSA). For these recordings the
67 participants read an EP version of a phonetic balanced
short tale ‘The story of Arthur the Rat’ with six words that
include the sound /K/ [21]. 65 adult female speakers and
2 male adult male speakers participated in the recordings.
Most were speech therapy university students but there
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Figure 3. Hierarchical classifiers.

were also some voice professionals participating in these
recordings. The discrepancy is due to speech therapy in
Portugal being essentially a feminine profession (less than
1% of males). The participants were originally from different
regions, which means that the recordings include different
accents.

To create the data set, we manually extracted the section
containing the uvular /K/ followed by a vowel from the six
words with this sound:
• /Ka/ from Rato,
• /K5/ from Terra,
• /K@/ from Respondia and Repente,
• /Ko/ from Terror, and
• /Ku/ from Ruı́nas.

This data set is composed of 827 samples: 530 /Ka/ samples,
57 /K5/ samples, 120 /K@/ samples, 63 /Ko/ samples and 57
/Ku/ samples. Since in spoken EP it is common to have
reduction or deletion of unstressed vowels, some vowels
present in the words above are not heard in some of the
samples. This is the case for /@/ in respondia and repente.

B. Scoring Phonemes

As discussed in section II, in order to score the produced
phonemes, we used hierarchical and flat approaches with
features extracted from LPC (with 22 and 24 poles) and
MFCCs (with 9 to 23 cepstra) on NB, SVM and KDE
classifiers. Here we compare the results of the different



Figure 4. Phonemes detection confusion matrices.

Feature NB SVM KDE KDE Silverman

MFCC 9 82.51 87.93 91.73 89.35
MFCC 10 83.65 88.12 91.73 89.54
MFCC 11 82.89 88.02 91.73 88.78
MFCC 12 81.94 88.02 91.83 89.26
MFCC 13 80.52 87.26 91.54 88.59
... ... ... ... ...

MFCC 21 70.91 85.36 91.25 84.03
MFCC 22 69.87 85.08 91.44 83.65
MFCC 23 67.97 84.79 91.35 83.84

LPC 22 57.13 48.19 0.481939 N/A
LPC 24 58.27 48.29 0.476236 N/A

Table I
ACCURACY RESULTS OF HIERARCHY 1

approaches. For the KDE classifier, we experimented with
a h = 0.2 kernel bandwidth and we also tried the KDE
with the Silverman’s method for bandwidth selection. The
leave-one-out cross-validation method was used to tune all
the parameters.

The results obtained for the hierarchical approach are
presented in tables I, II and III. The first column in the tables
indicates the features used and the number of cepstra and
poles for the MFCCs and LPC, respectively. The remaining
columns show the accuracy results for each of the classifiers
used. The best accuracies are indicated in bold. As illustrated
in the tables, the MFCCs performed much better than LPC.
All methods performed well with accuracies above 80.0%
with the NB performing worse. The best was the KDE

Feature NB SVM KDE KDE Silverman

MFCC 9 82.60 87.83 92.02 90.40
MFCC 10 83.84 88.02 92.11 90.21
MFCC 11 83.08 87.83 92.02 89.64
MFCC 12 82.03 87.93 92.02 89.83
MFCC 13 81.46 87.17 91.73 89.26
... ... ... ... ...

MFCC 21 74.62 85.27 91.54 84.79
MFCC 22 73.67 84.98 91.73 84.32
MFCC 23 73.48 84.70 91.64 84.51

LPC 22 59.98 48.19 53.42 N/A
LPC 24 60.17 48.29 52.95 N/A

Table II
ACCURACY RESULTS OF HIERARCHY 2

Feature NB SVM KDE KDE Silverman

MFCC 9 82.60 87.83 92.02 90.40
MFCC 10 83.84 88.02 92.11 90.21
MFCC 11 83.08 87.93 92.02 89.64
MFCC 12 82.04 87.93 92.02 89.83
MFCC 13 81.46 87.17 91.73 89.26
... ... ... ... ...

MFCC 21 74.62 85.36 91.54 84.79
MFCC 22 73.67 85.08 91.73 84.32
MFCC 23 73.48 84.79 91.64 84.51

LPC 22 52.85 48.19 22.81 N/A
LPC 24 53.80 48.29 22.15 N/A

Table III
ACCURACY RESULTS OF HIERARCHY 3



Feature KDE KDE Silverman

MFCC 9 92.59 93.35
MFCC 10 92.68 94.68
MFCC 11 93.06 94.39
MFCC 12 93.35 95.06
MFCC 13 93.25 94.68
... ... ...

MFCC 21 93.82 92.59
MFCC 22 94.11 92.21
MFCC 23 94.39 91.54

LPC 22 44.20 N/A
LPC 23 41.92 N/A
LPC 24 41.73 N/A

Table IV
ACCURACY RESULTS WITH THE FLAT APPROACH.

method with constant bandwidth. While hierarchy 1 shows
the worst results, there seems to be not much difference
between hierarchies 2 and 3.

The flat classification approach uses KDE for comparison
with the hierarchical classifiers configuration (with both
h = 0.2 bandwidth and Silverman’s method). The results
for all /K/ and vowel phonemes are presented in table IV.
In this approach the standard KDE performed as well as
the hierarchical approach, but worse than the flat KDE with
Silverman’s bandwidth, that reached 95% overall accuracy
making it the best method.

A visualization of the cross-phonemes’ confusion is pre-
sented in figure 4. There was no detected confusion between
phonemes of vowels and /K/. The key message to extract
from these confusion matrices is that the confusion across
the different classes is very low, making these methods
and speech exercises robust to be used in an interactive
environment with children.

IV. CONCLUSIONS

Here we discussed robust phoneme recognition of EP
vowel phonemes and the EP rhotic consonant sound for
a speech therapy environment. The environment includes
motivational elements such as a progress bar. While we
do not want to make the bar fully automatic (since SLTs
should always have some control of the bar), robust phoneme
recognition can give the SLTs valuable feedback, suggesting
when to advance the progress bar.

We explored hierarchical and flat classifiers with NB,
SVM and KDE that use LPC coefficients and MFCCs. The
best results were obtained with the flat KDE with Silver-
man’s bandwidth using MFCCs. A reproducible evaluation
of the cross-phoneme confusion showed it to be robust
enough to be used in interactive environments.

As future work we would like to analyse these speech
recognition methods in the detection of speech disorders.
This is a relatively unexplored topic and far more difficult
task due to the lack of data and literature in the area. We

also plan to explore the recognition of other more complex
utterances and speech productions.
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Portugal, 2014.

[3] C. M. Schuele, “The impact of developmental speech and
language impairments on the acquisition of literacy skills,”
Mental retardation and developmental disabilities research
reviews, vol. 10, no. 3, pp. 176–183, 2004.

[4] T. M. Byuna and E. R. Hitchcock, “Investigating the use
of traditional and spectral biofeedback approaches to inter-
vention for /r/ misarticulation,” American Journal of Speech-
Language Pathology, vol. 21, pp. 207–221, 2012.

[5] F. R. Adams, H. Crepy, D. Jameson, and J. Thatcher, “Ibm
products for persons with disabilities,” in IEEE Global
Telecommunications Conference and Exhibition. Communi-
cations Technology for the 1990s and Beyond. GLOBECOM,
1989, pp. 980–984.

[6] P. Jr. Filipsen, S. Sacks, and S. Neils-Strunja, “Effective-
ness of systematic articulation training program accessing
computers (SATPAC) approach to remediate dentalized and
interdental /s, z/: A preliminary study,” Perceptual & Motor
Skills, vol. 117, no. 2, pp. 559–577, 2013.
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“Designing the user interface of the computer-based speech
training system artur based on early user tests,” Behaviour &
Information Technology, vol. 25, no. 4, pp. 353–365, 2006.

[11] O. Saz, S.-C. Yin, E. Lleida, R. Rose, C. Vaquero, and
W. R Rodrı́guez, “Tools and technologies for computer-aided
speech and language therapy,” Speech Communication, vol.
51, no. 10, pp. 948–967, 2009.

[12] R. Cole, D. W. Massaro, J. De Villiers, B. Rundle, K. Shobaki,
J. Wouters, M. Cohen, J. Beskow, P. Stone, P. Connors,
and D. Solcher, “New tools for interactive speech and
language training: using animated conversational agents in
the classroom of profoundly deaf children,” in MATISSE-
ESCA/SOCRATES Workshop on Method and Tool Innovations
for Speech Science Education, 1999.

[13] M. Carvalho, “Interactive game for the training of portuguese
vowels,” M.S. thesis, Faculdade de Engenharia da Universi-
dade do Porto, 2008.

[14] Y. Rybarczyk, J. Fonseca, and R. Martins, “Lisling 3D:
a serious game for the treatment of portuguese aphasic
patients,” in Proc. 12th conference of the Association for
the Advancement of Assistive Technology in Europe, 2013.

[15] A. Abad, A. Pompili, A. Costa, I. Trancoso, J. Fonseca,
G. Leal, L. Farrajota, and I. P. Martins, “Automatic word
naming recognition for an on-line aphasia treatment system,”
Computer Speech & Language, 2012.

[16] A. Grossinho, S. Cavaco, and J. Magalhaes, “An interactive
toolset for speech therapy,” in Proceedings of Advances
in Computer Entertainment Technology Conference (ACE),
2014.

[17] M. Cruz-Ferreira, “Portuguese (european),” in Handbook of
the International Phonetic Association, A guide to the use of
the international phonetic alphabet. Cambridge, University
Press, 1999.

[18] I. Rennicke and P. Martins, “As realizações fonéticas de
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