
Safe Session-Based Concurrency1

with Shared Linear State2

Pedro Rocha and Lúıs Caires3

We introduce CLASS, a session-typed, higher-order, core language that sup-4

ports concurrent computation with shared linear state. We believe that CLASS5

is the first proposal for a foundational language able to flexibly express realistic6

concurrent programming idioms, with a type system ensuring all the following7

three key properties: CLASS programs never misuse or leak stateful resources8

or memory, they never deadlock, and they always terminate. CLASS owes these9

strong properties to a propositions-as-types foundation based on Linear Logic,10

which we conservatively extend with logically motivated constructs for share-11

able affine state. We illustrate CLASS expressiveness with several examples12

involving memory-efficient linked data structures, sharing of resources with13

linear usage protocols, and sophisticated thread synchronisation, which may14

be type-checked with a perhaps surprisingly light type annotation burden.15

1 Introduction16

Stateful programming involving concurrency and shared state plays a prominent17

role in modern software development, but, in practice, getting concurrent code18

right is still quite hard for common developers. Typical sources of “bugs” include19

resource leaks (forgetting to release unused memory or close a socket), violation20

of resource state preconditions (writing to a closed file or sending out-of-order21

messages), races (data invariant breaking, erratic sharing of resources), dead-22

locks (indefinite wait for lock release or incoming messages), livelocks, and even23

general non-termination. Fifty years ago Hoare noted [39]: “Parallel programs24

are particularly prone to time-dependent errors, which either cannot be detected25

by program testing nor by run-time checks. It is therefore very important that26

a high-level language designed for this purpose should provide complete secu-27

rity against time-dependent errors by means of a compile-time check”. It does28

not come as a surprise that finding ways to approximate such certainly very29

ambitious goal is still today the object of exciting intense research.30

In this paper, we approach this challenge by leveraging the propositions-31

as-types (PaT) paradigm towards the realm of concurrency and shared state.32

PaT is known to offer a unifying framework connecting logic, computation, and33

programming languages. Since the seminal work of Curry and Howard [40], it34

is a prolific structuring concept for designing and reasoning about programming35

languages (see [76]). Remarkably, languages derived within PaT intrinsically36

satisfy crucial properties: type preservation (since reduction corresponds to cut-37

reduction), confluence (since computation corresponds to proof simplification),38

deadlock freedom (as a consequence of cut-elimination) and livelock freedom /39

termination (as a consequence of strong normalisation).40

2 Pedro Rocha and Lúıs Caires

Although PaT has a traditional focus on functional computation, the emer-41

gence of linear logic has progressively motivated interpretations of stateful/re-42

sourceful computation [72, 1, 14, 2, 12], eventually leading to the discovery of43

tight correspondences between session types and linear logic [21, 26, 75]. These44

systems already capture aspects of state change, namely in the sequential exe-45

cution of session protocols, thus raising the question of whether such approaches46

could be extended to express notions of shared mutable state, subject to inter-47

ference, as found in typical imperative and concurrent programs. Recently, such48

challenge was addressed by several works [9, 60, 62]. In particular, [62] developed49

a first basic shared state model enjoying all the aforementioned strong properties50

of PaT. However, although [62] supports higher-order shareable store for pure51

values of replicated type, it forbids linear objects, such as stateful processes or52

data structures with update in-place, to be stored and shared as in languages53

like Java, Rust, and in the CLASS core language we introduce herein.54

In this work, we develop a novel, more fundamental approach to shared state55

and PaT, and introduce CLASS, a typed, higher-order, session based core lan-56

guage that supports general concurrent computation with dynamically allocated57

shared linear (more precisely, affine) state. We believe that CLASS is the first58

proposal for a foundational language. able to flexibly express realistic concur-59

rent programming idioms, while ensuring all the following three key properties60

by static typing: CLASS programs never misuse or leak stateful resources or61

memory, they never deadlock, and they always terminate.62

Despite the strength of its type system, CLASS expressiveness and effec-63

tiveness substantially overcomes limitations of related works, as we show with64

compelling program examples that can be algorithmically typed for memory65

safety, dead- and live-lock freedom with a perhaps surprisingly light type anno-66

tation burden. CLASS owes these strong properties to is PaT foundation based67

on Second-Order Linear Logic, already known to capture the polymorphic ses-68

sion calculus and the linear System F [68], but which we conservatively extend69

with novel logically motivated constructs for shareable affine state, also based70

on DiLL co-exponentials [34, 62], but to which we give here a different, more71

general and fundamental interpretation.72

1.1 Overview73

Amain novelty and source of CLASS’s expressiveness, flexibility and strong meta-74

theoretical properties resides in its mechanism for shared state composition. It is75

interesting to overview such mechanism in the context of the basic composition76

and interaction principles of the fundamental linear logic interpretations [21, 26,77

75]. Our computational model is structured around processes that interact via78

binary sessions, the basic composition rules being mix and cut.79

P ⊢ ∆1;Γ Q ⊢ ∆2;Γ

P || Q ⊢ ∆1, ∆2;Γ
[Tmix]

P ⊢ ∆1, x : A;Γ Q ⊢ ∆2, x : A;Γ

P |x| Q ⊢ ∆1, ∆2;Γ
[Tcut]

The mix rule types the independent composition of processes P and Q, which80

do not share any free names and run side-by-side without interacting. This is81

Safe Session-Based Concurrency with Shared Linear State 3

captured by the implicit disjointness of their linear typing contexts ∆1 and82

∆2, declaring the types of their interaction channels. Interactive composition is83

expressed by the cut rule, which connects exactly two processes P and Q through84

a single linear session x with dual typed endpoints (x : A and x : A), following85

Abramsky’s idea of “cut as interactive composition” [1].86

Intuitively, duality of endpoint (session) types ensures that all interactions87

between P and Q on x always matches: when P sends, Q receives; when Q offers,88

P choses; and likewise for all types. Notice that sharing a single channel x be-89

tween the threads P and Q is important to ensure acyclicity of proof structures,90

and cut-elimination/deadlock absence. But P,Q may use an arbitrary number91

of linear channels, in ∆1, ∆2, to also compose with other processes.92

Shared composition in session types is available for replicated “server” objects93

!x(y);P , typed by the linear logic exponential type bang !A. Contraction of the94

dual exponential type why-not ?A allows an unbounded number of usages of95

such replicated server object to be introduced in client processes. In the dyadic96

presentation of linear logic (cf. [5, 11]), contraction is expressed by moving ?-97

typed names into the unrestricted context Γ , with the [T?] rule.98

!x(y);P ⊢ x :!A;Γ

Q ⊢ ∆;Γ, x : A
[T?]

?x;Q ⊢ ∆,x :?A;Γ

!x(y);P |x| ?x;Q ⊢ ∆;Γ

...

R ⊢ ∆, y : A;Γ, x:A
[Tcall]

call x(y);R ⊢ ∆;Γ, x:A

Names in Γ may be used unrestrictedly; each call (typed by [Tcall]) spawns a99

fresh copy of the server body at type y : A, to be used by the client at type100

y : A, in a linear binary session. By the typing rule for !A (promotion) such copy101

does not depend on linear resources. Thus, interaction with replicated objects102

as captured by the exponentials !A and ?A implements a copy semantics where103

each call obtains a new private stateless copy of the same object.104

In this work, we introduce a third composition mechanism, allowing processes105

to concurrently share mutex memory cells, storing linear state. Mutex memory106

cells and their usages are typed respectively by a pair of dual modalities S•A and107

U•A, whose logical rules are motivated by Differential Linear Logic (DiLL) [34],108

in particular cocontraction, expressed by the type rule [Tsh].109

P ⊢ ∆,x : U•A;Γ Q ⊢ ∆′, x : U•A;Γ
[Tsh]

share x {P || Q} ⊢ ∆,∆′, x : U•A;Γ

While sharing of replicated objects corresponds to contraction of ?A types,110

shared usage of mutex cells corresponds to cocontraction of U•A types. Apart111

from the explicit use of [Tsh], the type system ensures that memory cells are112

always used linearly. The shared usage x : U•A is free in the conclusion of the113

typing rule, therefore a memory cell may be shared by an arbitrary number of114

processes, by nested iterated use of cocontraction.115

Moreover, cocontraction also ensures that concurrent processes may share a116

single mutex cell (just like [Tcut] wrt. binary sessions). This constraint comes117

4 Pedro Rocha and Lúıs Caires

from the linear logic discipline, and it is important to ensure deadlock freedom.118

As discussed in Concluding Remarks, this does not hinder CLASS expressiveness119

- e.g., a single mutex cell may act as a gateway to further bundles of shared120

state, organised in resource hierarchies, as our examples illustrate - and even121

suggests convenient concurrent programming structuring techniques.122

To access a mutex memory cell in its (unlocked) full state, typed by U•A, the123

client uses a take operation. Take waits for acquiring the cell lock and reads its124

contents. The cell then transitions to the (locked) empty state, typed by U◦A.125

The taking client becomes the sole responsible for filling back the cell contents,126

using a put operation. This will restore the cell to the full state, releasing its127

lock, and making it accessible to other concurrent threads waiting to take it.128

Our mutex memory cell object is thus akin to a behaviourally typed incarnation129

of Concurrent Haskell MVars [42] or Rust std::sync::Mutex objects [43].130

To ensure safe releasing of a memory cell, its contents are required to be of131

affine type ∧A. Affine objects are well-behaved disposable values, that when dis-132

carded, safely dispose all resources they hereditarily refer to, this being ensured133

by the linear logic typing.134

We illustrate the introduced concepts with a simple example, where two135

concurrent threads compete to set on an initially off flag, but only one may136

win. The flag iteratively announces its state to the client with either #Off or137

#On. If the state is off, the client must select #turnOn, if the state is on, it will138

remain on. Process flag(f) implements the flag (at name f) in the off state, and139

process on(f) in the on state, defined thus140

flag(f) = #Off f ; case f{ | #turnOn : affine f ; on(f) }
on(f) = #On f ; affine f ; on(f)

The flag object is typed with the (linear) usage protocol defined by the coinduc-141

tive type Flag below, such that flag(f) ⊢ f : Flag and on(f) ⊢ f : Flag142

type corec Flag = ⊕{ |#Off : N{ |#turnOn : ∧Flag}, |#On : ∧Flag}

We now consider a scenario where a flag object is shared via a mutex memory143

cell c initially storing a off flag of type ∧Flag among two concurrent clients.144

client(c, id) ⊢ c : U•Flag; id : int
client(c, id) =
take c(f);
case f {
|#Off : println id+ “: wins.’;

#turnOn f ;
put c(f); release c

|#On : println id+ “: looses.’;
put c(f); release c

}

main() ⊢ ∅
main() =
cut { cell c(f.affine f ; flag(f))

|c : U•Flag|
share c {

client(c, 1)
||
client(c, 2)

}
}

When running main() exactly one of the threads (executing the same code, just145

with a different id) will turn the flag on and win, the other will loose. Notice146

Safe Session-Based Concurrency with Shared Linear State 5

that all threads drop usage of the memory cell c using release, which corresponds147

to DiLL coweakening ([34]).148

When considering a new core language, in particular with a static typing149

discipline, it is necessary to argue about its expressiveness, and aim for a better150

perception about how natural programs get past its typing rules, and about how151

types help in structuring programs. In this paper, we approach these concerns by152

showcasing many interesting examples that challenge the expressiveness of the153

CLASS language and type system on realistic concurrent programming scenarios.154

We have developed many more examples, distributed with our implementation,155

combining imperative, higher-order functional, and session-based programming156

styles. For all these programs, strong guarantees of memory safety, deadlock-157

freedom, termination, and absence of “dynamic bugs”, even in the presence of158

blocking primitives and higher-order state, are compositionally certified by our159

lightweight type discipline based on Propositions-as-Types and Linear Logic.160

1.2 Outline and Contributions161

We believe that CLASS is the first proposal for a foundational language able to162

flexibly express realistic concurrent programming idioms while ensuring by typ-163

ing three key properties: CLASS programs never misuse or leak stateful resources164

or memory, they never deadlock, and they always terminate.165

In Section 2 we formally present the core language CLASS, its type system and166

operational semantics. Our model builds on the propositions-as-types approach167

to session-based concurrency [21, 26, 74], extending Second-Order Classical Lin-168

ear Logic with inductive/coinductive types, affine types, and novel primitives for169

shareable first-class mutex reference cells for linear state.170

In Section 3 we state and prove type preservation (Theorem 3.1), progress171

(Theorem 3.2) which implies deadlock-freedom, and strong normalisation (The-172

orem 3.3), which also implies livelock absence. Our proof uses a logical relations173

argument, extended with an interesting technique to handle shared state inter-174

ference, which we believe is exploited here for the first time.175

Given the strong properties of its type system, it is of course very important176

to substantiate our claims about CLASS expressiveness. In Section 4 we illustrate177

the expressiveness of CLASS language and type system by going through a series178

of compelling examples. Namely, we discuss a general technique for sharing linear179

protocols, a shareable linked list with update in-place, a shareable buffered chan-180

nel, using a linked list with pointers to tail and head nodes, and executing send181

and receive operations in O(1) time; the dining philosophers, illustrating tech-182

niques that rely on our type structure to encode resource acquisition hierarchies;183

a generic barrier for n threads; and a Hoare style monitor with await/notify con-184

ditions, where our implementation of the condition’s process queue is supported185

by a dynamic linked data structure, as in real systems code.186

Section 5 discusses related work. Section 6 offers concluding remarks and187

suggests further research. Complete definitions and detailed proofs to all results188

are provided in the Appendix.189

6 Pedro Rocha and Lúıs Caires

2 The Core Language and its Type System190

We present the core language, type system, and operational semantics of CLASS.191

The language is based on a PaT correspondence with Linear Logic, so terms of192

the language correspond to proof rules. We start by types and duality.193

Definition 2.1 (Types). Types A,B of CLASS are defined by

A,B ::= X | 1 | ⊥ | ANB | A⊕B | AOB | A⊗B
| !A | ?A | ∃X.A | | ∀X.A | µX. A | νX. A
| ∧A | ∨A | S•A | S◦A | U•A | U◦A

Types in the first two rows correspond to propositions of Second-Order Classical194

Linear Logic, extended with inductive/coinductive types (µ, ν). Types comprise195

variables (X), units (1, ⊥), multiplicatives (⊗, O), additives (⊕, N), exponentials196

(!, ?) and quantifiers (∃, ∀). The third row extends this basic type system with197

affine (∧,∨) and new modalities (S•,U•,S◦,U◦) to type shared affine state.198

Duality is the involution operation A 7→ A on types, corresponding to Linear199

Logic negation, defined by200

1 = ⊥ A⊗B = AOB A⊕B = A NB

!A = ?B ∃X.A = ∀X.A µX. A = νX. {X/X}(A)
∧A = ∨A S•A = U•A S◦A = U◦A

Duality captures symmetry in process interaction, as manifest in the cut rule.201

In our system, typing judgments have the form P ⊢η ∆;Γ . The typing context202

∆;Γ is dyadic [4, 15, 59, 21], where ∆ is handled linearly and Γ is unrestricted;203

both ∆ and Γ assign types to names. The index η is a finite map that holds204

coinduction hypothesis to type corecursive processes, as detailed later.205

Definition 2.2. The typing rules of CLASS are presented in Figs. 1 to 5.206

The type system corresponds, via propositions-as-types [21, 26, 74], to Second-207

Order Classical Linear Logic (Fig. 1) with inductive/coinductive types (Fig. 2),208

affinity (Fig. 3) and extended with constructs for shared mutable state (Figs. 4209

- 5). The basic composition rules are [Tmix] and [Tcut], which correspond to210

mix and cut of Linear Logic, respectively. [Tmix] types a parallel composition211

P || Q, where P and Q run in parallel without interfering. On the other hand,212

[Tcut] types linear interactive composition P |x : A| Q: processes P and Q213

run concurrently and communicate through a private linear session x, session214

endpoints being typed by dual types A/A. When the cut type annotation does215

not play any role, we may omit it and write P |x| Q. In examples, for readibility,216

we use cut {P |x| Q} and par {P || Q} instead of P |x| Q and P || Q, respectively.217

For the basic process constructs [21, 26, 74, 18], ⊗/O type send and re-218

ceive, ⊕/N type choice and offer (in examples we use labelled choice) , !/? type219

replicated servers and their invocation, ∀/∃ type receive and send of types, im-220

plementing polymorphic processes.221

Safe Session-Based Concurrency with Shared Linear State 7

[T0]
0 ⊢η ∅;Γ

P ⊢η ∆′;Γ Q ⊢η ∆;Γ
[Tmix]

P || Q ⊢η ∆′, ∆;Γ

[Tfwd]
fwd x y ⊢η x : A, y : A;Γ

P ⊢η ∆′, x : A;Γ Q ⊢η ∆,x : A;Γ

P |x : A| Q ⊢η ∆′, ∆;Γ
[Tcut]

[T1]
close x ⊢η x : 1;Γ

Q ⊢η ∆;Γ
[T⊥]

wait x;Q ⊢η ∆,x : ⊥;Γ

P1 ⊢η ∆,x : A;Γ P2 ⊢η ∆,x : B;Γ
[TN]

case x {|inl : P1, |inr : P2} ⊢η ∆,x : ANB;Γ

Q1 ⊢η ∆′, x : A;Γ
[T⊕l]

x.inl;Q1 ⊢η ∆′, x : A⊕B;Γ

Q2 ⊢η ∆′, x : B;Γ
[T⊕r]

x.inr;Q2 ⊢η ∆′, x : A⊕B;Γ

P1 ⊢η ∆1, y : A;Γ P2 ⊢η ∆2, x : B;Γ
[T⊗]

send x(y.P1);P2 ⊢η ∆1, ∆2, x : A⊗B;Γ

Q ⊢η ∆, z : A, x : B;Γ
[TO]

recv x(z);Q ⊢η ∆,x : AOB;Γ

P ⊢η y : A;Γ
[T!]

!x(y);P ⊢η x :!A;Γ

Q ⊢η ∆;Γ, x : A
[T?]

?x;Q ⊢η ∆,x :?A;Γ

P ⊢η y : A;Γ Q ⊢η ∆;Γ, x : A
[Tcut!]

y.P |!x : A| Q ⊢η ∆;Γ

Q ⊢η ∆, z : A;Γ, x : A
[Tcall]

call x(z);Q ⊢η ∆;Γ, x : A

P ⊢η ∆,x : {B/X}A;Γ
[T∃]

sendty x(B);P ⊢η ∆,x : ∃X.A;Γ
Q ⊢η ∆,x : A;Γ

[T∀]
recvty x(X);Q ⊢η ∆,x : ∀X.A;Γ

Fig. 1: Typing Rules I: Second-Order CLL.

P ⊢η′ ∆, z : A;Γ η′ = η,X(z, w⃗) 7→ ∆, z : Y ;Γ
[Tcorec]

corec X(z, w⃗);P [x, y⃗] ⊢η {y⃗/w⃗}∆,x : νY. A; {y⃗/w⃗}Γ

η = η′, X(x, y⃗) 7→ ∆,x : Y ;Γ
[Tvar]

X(z, w⃗) ⊢η {w⃗/y⃗}∆, z : Y ; {w⃗/y⃗}Γ

P ⊢η ∆,x : {µX. A/X}A;Γ
[Tµ]

unfoldµ x;P ⊢η ∆,x : µX. A;Γ

P ⊢η ∆,x : {νX. A/X}A;Γ
[Tν]

unfoldν x;P ⊢η ∆,x : νX. A;Γ

Fig. 2: Typing Rules II: Induction and Coinduction.

8 Pedro Rocha and Lúıs Caires

P ⊢η a : A, b⃗ : ∨B⃗, c⃗ : U•C⃗;Γ
[Taffine]

affine⃗b,⃗c a;P ⊢η a : ∧A, b⃗ : ∨B⃗, c⃗ : U•C⃗;Γ

[Tdiscard]
discard a ⊢η a : ∨A;Γ

Q ⊢η ∆, a : A;Γ
[Tuse]

use a;Q ⊢η ∆, a : ∨A;Γ

Fig. 3: Typing Rules III: Affinity.

Coinductive types are introduced by rule [Tcorec]. It types corecursive pro-222

cesses corec X(z, w⃗);P [x, y⃗], with parameters z, w⃗ bound in P , that are instan-223

tiated with the arguments x, y⃗ (free in the process term). By convention, the224

coinductive behaviour, of type νY. A, of a corecursive process is always offered225

in the first argument z. According to [Tcorec], to type the body P of a core-226

cursive process, the map η is extended with a coinductive hypothesis binding227

the process variable X to the typing context ∆, z : Y ;Γ , so that when typing228

the body P of the corecursion we can appeal to X, which intuitively stands for229

P itself, and recover its typing invariant. Crucially, the type variable Y is free230

only in z : A. This causes corecursive calls to be always applied to names z′ that231

hereditarily descend from the initial corecursive argument z, a necessary condi-232

tion for strong normalisation (Theorem 3.3), and morally corresponds to only233

allowing corecursive calls on “smaller” argument sessions (of inductive type).234

Rule [Tvar] types a corecursive call X(z, w⃗) by looking up in η for the corre-235

sponding binding and renaming the parameters with the arguments of the call.236

Inductive and coinductive types are explicitly unfolded with [Tµ] and [Tν].237

To simplify the presentation in program examples, we omit explicit unfolding238

actions, and write inductive and coinductive type definitions with equations of239

the form rec A = f(A) and corec B = f(B) instead of A = µX. f(X) and240

B = νX. f(X), respectively. Similarly, we write corecursive process definitions241

as Q(x, y⃗) = f(Q(−)) instead of Q(x, y⃗) = corec X(z, w⃗); f(X(−)) [x, y⃗], while242

of course respecting the constraints imposed by typing rules [Tvar] and [Tcorec].243

Affinity Affinity is important to model discardable linear resources, and plays244

an important role in CLASS. An affine session can either be used as a linear245

session or discarded. The typing rules for the affine modalities are in Fig. 3.246

Affine sessions are introduced by rule [Taffine] that promotes a linear a : A to247

an affine session a : ∧A. It types affine⃗b,⃗c a;P , which provides an affine session248

at a and continues as P , and follows the structure of a standard promotion rule.249

A session a may be promoted to affine if it only depends on resources that250

can be disposed, i.e. resources that satisfy some form of weakening capability,251

namely: coaffine sessions bi of type ∨Bi, that can be discarded; full cell usages252

ci of type with U•Ci, that can be released; and unrestricted sessions in Γ , which253

are implicitly ?-typed. The dependencies of an affine object on coaffine or full254

cell objects are explicitly annotated b⃗, c⃗ in the process term, to instrument the255

operational semantics, but we often omit them and simply write affine a;P .256

Safe Session-Based Concurrency with Shared Linear State 9

P ⊢η ∆, a : ∧A;Γ
[Tcell]

cell c(a.P) ⊢η ∆, c : S•A;Γ
[Trelease]

release c ⊢η c : U•A;Γ

[Tempty]
empty c ⊢η c : S◦A;Γ

Q ⊢η ∆, a : ∨A, c : U◦A;Γ
[Ttake]

take c(a);Q ⊢η ∆, c : U•A;Γ

Q1 ⊢η ∆1, a : ∧A;Γ Q2 ⊢η ∆2, c : U•A;Γ
[Tput]

put c(a.Q1);Q2 ⊢η ∆1, ∆2, c : U◦A;Γ

Fig. 4: Typing Rules IV: Reference Cells.

The coaffine endpoint ∨A of an affine session, dual of ∧A, has two operations:257

use and discard. Rule [Tuse] types a process use a;Q that uses a coaffine session a258

and continues as Q, it is a dereliction rule. [Tdiscard] types the process discard a259

that discards a coaffine session a, it is a weakening rule.260

Shared Mutable State Shared state is introduced in CLASS by typed con-261

structs that model mutex memory cells, and associated cell operations allowing262

its use by client code, defined by the tying rules in Fig. 4.263

At any moment a cell may be either full or empty, akin to the MVars of264

Concurrent Haskel [42]. A full cell on c, written cell c(a.P), is typed S•A by rule265

[Tcell]. Such cell stores an affine session of type ∧A, implemented at a by P .266

All objects stored in cells are required to be affine, so that memory cells may267

always be safely disposed without causing memory leaks. An empty cell on c, of268

type S◦A, and written empty c, is typed by rule [Tempty].269

Client processes manipulate cells via take, put and release operations. These270

operations apply to names of cell usage types - U•A (full cell usage) and U◦A271

(empty cell usage) - which are dual types of S•A and S◦A, respectively. At any272

given moment, a client thread owning a U•A-typed usage to a cell may execute273

a take operation, typed by rule [Ttake]. The take operation take c(a);Q waits274

to acquire the cell mutex c, and reads its contents into parameter a, the linear275

(actually coaffine, of type ∨A) usage for the object stored in the cell; the cell276

becomes empty, and execution continues as Q.277

It is responsibility of the taking thread to put some value back in the empty278

cell, thus releasing the lock, causing the cell to transition to the full state. The put279

operation put c(a.Q1);Q2 is typed by [Tput], the stored object a, implemented280

by Q1, is required to be affine, as specified in the premise a : ∧A.281

Hence a cell flips from full to empty and back; [Ttake] uses the cell c at U•A282

type, and its continuation (in the premise) at U◦A type, symmetrically [Tput]283

uses the cell c at U◦A type, and its continuation (in the premise) at U•A type.284

The release c operation allows a thread to manifestly drop its cell usage c.285

Release is typed by [Trelease] (cf. coweakening [34]); a usage may only be released286

in the unlocked state U•A. When, for some cell c, all the owning threads release287

10 Pedro Rocha and Lúıs Caires

P ⊢η ∆′, c : U•A;Γ Q ⊢η ∆, c : U•A;Γ
[Tsh]

share c {P || Q} ⊢η ∆′, ∆, c : U•A;Γ

P ⊢η ∆′, c : U◦A;Γ Q ⊢η ∆, c : U•A;Γ
[TshL]

share c {P || Q} ⊢η ∆′, ∆, c : U◦A;Γ

P ⊢η ∆′, c : U•A;Γ Q ⊢η ∆, c : U◦A;Γ
[TshR]

share c {P || Q} ⊢η ∆′, ∆, c : U◦A;Γ

Fig. 5: Typing Rules V: State Sharing.

their usages, which eventually happens in well-typed programs, the cell c gets288

disposed, and its (affine) contents safely discarded.289

Our memory cells cells are linear objects, with a linear mutable payload,290

which are never duplicated by reduction or conversion rules. However, in CLASS,291

multiple cell usages may be shared between concurrent threads, which compete292

to take and use it in interleaved critical sections. Such aliased usages be passed293

around and duplicated dynamically, changing the sharing topology at runtime.294

Sharing of cell usages is logically expressed in our system by the typing rules295

in Fig. 5. Co-contraction, introduced in Differential Linear Logic DiLL [34], al-296

lows finite multisets of linear resources to safely interact in cut-reduction, resolv-297

ing concurrent sharing into nondeterminism, as required here to soundly model298

memory cells and their linear concurrent usages. Rule [Tsh] interprets cocon-299

traction with the construct share c {P || Q}, and types sharing of the cell usage300

c : U•A between the concurrent threads P and Q.301

Contrary to cut, share c {P || Q} is not a binding operator for c. The shared302

usage c : U•A is free in the conclusion of the typing rule, permitting c to be303

shared among an arbitrary number of threads, by nested iterated use of [Tsh].304

In [Tsh], P and Q only share the single mutex cell c, since the linear context is305

split multiplicatively, just like [Tcut] wrt. binary sessions. This condition comes306

from the DiLL typing discipline, and is important to ensure deadlock freedom.307

While [Tsh] types sharing of a full (unlocked) cell usage of type U•A, the308

symmetric rules [TshR] and [TshR] type sharing of an empty (locked) cell usage309

of type U◦A. We may verify that for every cell c in a well-typed process, at310

most one unguarded operation to c may be using type U◦A, all the remaining311

unguarded operations to cmust be using type U•A. This implies that, at runtime,312

only one thread may own the lock for a given (necessarily empty) cell, and313

execute a put to it, which will bring the cell back to full and release its lock,314

other threads must be either attempting to take, or release the reference.315

Working together, the sharing typing rules ensure that in any well-typed cell316

sharing tree, at most one single thread at any time may be actively using a cell317

(in the locked empty state) and put to it, thus guaranteeing mutual exclusion,318

while satisfying Progress (Theorem 3.2) which in turn ensures deadlock absence,319

even in the presence of the crucially blocking behaviour of the take operation.320

Safe Session-Based Concurrency with Shared Linear State 11

fwd x y ≡ fwd y x P |x| Q ≡ Q |x| P
share x {P || Q} ≡ share x {Q || P} [comm]

P || 0 ≡ P P || Q ≡ Q || P P || (Q || R) ≡ (P || Q) || R [par]

P |x| (Q || R) ≡ (P |x| Q) || R [CM]

P |x| (Q |y| R) ≡ (P |x| Q) |y| R [CC]

P |x| share y {Q || R} ≡ share y {P |x| Q || R} [CSh]

P |z| (y.Q |!x| R) ≡ y.Q |!x| (P |z| R) [CC!]

y.Q |!x| (P || R) ≡ P || (y.Q |!x| R) [C!M]

y.P |!x : A| (w.Q |!z : B| R) ≡ w.Q |!z : B| (y.P |!x : A| R) [C!C!]

share x {P || (Q || R)} ≡ share x {P || Q} || R [ShM]

share x {P || share y {Q || R}} ≡ share y {share x {P || Q} || R} [ShSh]

share z {P || y.Q |!x| R} ≡ y.Q |!x| share z {P || R} [ShC!]

y.P |!x : A| (Q ∗R) ≡ (y.P |!x : A| Q) ∗ (y.P |!x : A| R) [D-C!X]

share x {release x || P} ≤ P [ShRel]

share x {put x(y.P);Q || R} ≤ put x(y.P); share x {Q || R} [ShPut]

share x {take x(y1);P1 || take x(y2);P2}
≤ take x(y1); share x {P1 || take x(y2);P2} [ShTake]

Provisos: in [CM] and [ShM], x ∈ fn(Q); in [CC], [CSh] and [ShSh], x, y ∈ fn(Q); in

[CC!], [C!M] and [ShC!], x /∈ fn(P); in [C!C!], x /∈ fn(Q) and z /∈ fn(P).

Fig. 6: Structural congruence P ≡ Q and precongruence P ≤ Q.

2.1 Operational Semantics321

We now define CLASS operational semantics, which is given by a structural322

precongruence relation ≤ that captures static relations on processes, essentially323

rearranging them, and a reduction relation → that captures process interaction.324

325

Definition 2.3 (P ≡ Q and P ≤ Q). Structural congruence ≡ is the least326

congruence on processes closed under α-conversion and the ≡-rules in Fig. 6.327

Structural precongruence ≤ is the least precongruence on processes including ≡328

and closed under α-conversion and the ≤-rules in Fig. 6.329

The basic rules of ≡ essentially reflect the expected static laws, along the lines330

of the structural congruences / conversions in [21, 74]. The binary operators for-331

warder, cut and share are commutative ([comm]). The set of processes modulo332

≡ is a commutative monoid with binary operation given by parallel composition333

and identity given by inaction 0 ([par]). Any two static constructs commute,334

as expressed by the laws [CM]-[ShC!]. Furthermore, we can distribute the unre-335

stricted cut over all the static constructs as expressed by law [D-C!X], where ∗336

stands for either a mix, linear or unrestricted cut or a share.337

12 Pedro Rocha and Lúıs Caires

The commuting conversions [ShTake] and [ShPut] allows take and put op-338

erations on cell usages to commute with a share construct. Rule [ShTake] picks339

the take that occurs on the left argument, however since share is commuta-340

tive, a right-biased version of [ShTake] is admissible. Using [ShTake], any of the341

two possible interleavings for two concurrent takes may be nondeterministically342

picked via ≤. Indeed, we express ≤ as a precongruence because it introduces non-343

determinism, and does not express a behavioural equivalence as ≡ does. N.B.:344

Although one could easily formulate a confluent version of CLASS semantics,345

using explicit sums as in [13, 61, 34], we prefer in this paper to focus on the346

expressiveness of CLASS as a programming language and on its deadlock and347

livelock absence properties, adopting a nondeterministic reduction relation.348

In [ShPut] only a put, in the U◦A-typed premise of [TshL], may be propagated349

up and eventually update the cell, causing it to transit back to the full state.350

Hence, take operations originating the U•A typed premise of [TshR] will be351

blocked, waiting until such (unique) put propagation occurs. Algebraically, rule352

[ShRel] expresses that the release operation is the identity for share composition,353

we orient it as a precongruence, to ensure type preservation.354

Definition 2.4 (Reduction →). Reduction → is defined by the rules of Fig. 7.355

We let
∗−→ stand for the reflexive-transitive closure of →. Reduction includes356

the set of principal cut conversions, i.e. the redexes for each pair of interacting357

constructs. It is closed by structural precongruence ([≤]) and in rule [cong] we358

consider that C is a static context, i.e. a process context in which the hole is359

covered only by the static constructs mix, cut and share.360

Operationally, the forwarding behaviour is implemented by name substitu-361

tion [22] ([fwd]). All the other conversions apply to a principal cut between two362

dual actions. Reduction rules for the basic session constructs that interpret Sec-363

ond Order Linear Logic and recursion are the expected ones [21, 26, 75], along364

predictable lines. For readability, we omit the type declarations in the cuts, as365

they do not actually play any role in reduction.366

We comment the rules concerning affinity. The interaction between an affine367

session and an use operation is defined by reduction rule [∧∨u], where a cut on368

a : ∧A between affine⃗b,⃗c a;P and use a;Q reduces to a cut on a : A between the369

continuations P and Q. The reduction between an affine session and a discard370

operation is defined by [∧∨d]. A cut between affine⃗b,⃗c a;P and discard a reduces371

to a mix-composition of discards (for the coaffine sessions b⃗) and releases (for372

the cell usages c⃗) cf. [6, 19]). In the corner case where c⃗ and a⃗ are empty, the373

left-hand side of [∧∨d] simply degenerates to inaction 0 (the identity of mix).374

The reductions for the mutable state operations are fairly self-explanatory. In375

rule [S•U•r], a cut between a full mutex cell cell and a release operation reduces376

to a process that discards the affine cell contents, cf. rule [∧∨d]. In rule [S•U•t], a377

cut on c : S•A between a full cell and a take operation reduces to a process with378

two cuts, both composed with the continuation {a/a′}Q of the take. The outer379

cut on a : ∧A composes with the stored affine session, which was successfully380

acquired by the take operation. The inner cut on c : S◦A composes with the381

Safe Session-Based Concurrency with Shared Linear State 13

fwd x y |y| P → {x/y}P [fwd]

close x |x| wait x;P → P [1⊥]

send x(y.P);Q |x| recv x(z);R→ Q |x| (P |y| {y/z}R) [⊗O]

case x {|inl : P, |inr : Q} |x| x.inl;R→ P |x| R [N⊕l]
case x {|inl : P, |inr : Q} |x| x.inr;R→ Q |x| R [N⊕r]
!x(y);P |x| ?x;Q→ y.P |!x| Q [!?]

y.P |!x| call x(z);Q→ {z/y}P |z| (y.P |!x| Q) [call]

sendty x(A);P |x| recvty x(X);Q→ P |x| {A/X}Q [∃∀]
unfoldµ x;P |x| unfoldν x;Q→ P |x| Q [µν]

unfoldµ x;P |x| corec Y (z, w⃗);Q [x, y⃗]
→ P |x| {x/z}{y⃗/w⃗}{corec Y (z, w⃗);Q/Y }Q [corec]

affine⃗b,⃗c a;P |a| use a;Q→ P |a| Q [∧∨u]

affine⃗b,⃗c a;P |a| discard a→ discard b⃗ || release c⃗ [∧∨d]
cell c(a.P) |c| release c→ P |a| discard a [S•U•r]

cell c(a.P) |c| take c(a′);Q→ P |a| (empty c |c| {a/a′}Q) [S•U•t]

empty c |c| put c(a.P);Q→ cell c(a.P) |c| Q [S◦U◦]

P ≤ P ′ and P ′ → Q′ and Q′ ≤ Q ⊃ P → Q [≤]

P → Q ⊃ C[P] → C[Q] [cong]

Fig. 7: Reduction P → Q.

reference cell c, which has became empty in the reductum. Finally, in rule [S◦U◦],382

a cut on session c : S◦A between an empty cell and a put operation reduces to383

a cut on session c : S•A between a full cell, that now stores the session that was384

put, and the continuation of the put process. Notice that the locking/unlocking385

behaviour of cells is simply modelled by rewriting of the process terms, from cell386

to empty and back, as typical in process calculi.387

3 Type Safety and Strong Normalisation388

In this section we state and give proof sketches for our main results of type safety389

and strong normalistion. Full proofs may be found in the Appendix.390

Type Preservation The semantics of CLASS is defined by a set of precongru-391

ence ≤ and reduction → rules on process terms. Theorem 3.1 shows that these392

relations preserve typing, and gives substance to our PaT approach, showing that393

every ≤ and → rule corresponds to a conversion on type derivations/proofs.394

Theorem 3.1 (Type Preservation). Suppose P ⊢η ∆;Γ . (1) If P ≤ Q, then395

Q ⊢η ∆;Γ . (2) If P → Q, then Q ⊢η ∆;Γ .396

Proof. By induction on derivations for P ≤ Q (resp. P → Q), we verify that all397

the rules of ≤ (Def. 2.3) (resp. → (Def. 2.4)) are type preserving.398

14 Pedro Rocha and Lúıs Caires

Progress We prove the progress property for well-typed CLASS processes. The399

following notion of live process becomes useful. A process P is live if and only400

if P = C[Q], for some static context C (the hole lies within the scope of static401

constructs mix, cut and share) and Q is an active process (a process with a402

topmost action prefix, such as a receive or a take, or a forwarder). We first403

show that a live well-typed process either reduces or offers an interaction with404

its environment on a free name. The following observability predicate (cf. [64])405

characterises the interactions of a process with its environment406

Definition 3.1 (P ↓x). The predicate P ↓x is defined by rules of Fig. 8.407

The predicate P ↓x holds if P offers an immediate interaction (unguarded action)408

on free name x. We can observe the subject of an action (rule [act]) and x, y409

of a forwarder fwd x y. The definition of P ↓x is closed by ≤ and propagates410

observations over the various static operators. Cut bound names are not free,411

hence cannot be observed. Share share y {P || Q} propagates all the observations412

x for which x ̸= y and by applying ≤ rules [ShTake], [ShRel] or [ShPut] via [≤],413

an interaction on x may be observed. We have414

Lemma 3.1 (Liveness). Let P ⊢∅ ∆;Γ be live. Either P ↓x or P reduces.415

Proof. (Sketch) By induction on a derivation for P ⊢∅ ∆;Γ , along the lines416

of [26]. To handle case [Tcut] P = P1 |y| P2: both P1 and P2 are live, since both417

type with a nonempty linear typing context, hence we can apply the induction418

hypothesis (i.h.) to both premises of [Tcut]: either (i) one of P1 and P2 reduces419

or (ii) both P1 ↓x1 and P2 ↓x2 . If (i), then P reduces. Case (ii) follows because,420

crucially, P1 and P2 synchronise through a single private session y, then either421

x1 ̸= y or x2 ̸= y, in which case we can observe either x1 or x2; or x1 = x2 = y,422

in which case we can trigger a reduction, by applying ≤ rules to P in order to423

exhibit a principal cut. For case [Tsh] P = share y {P1 || P2}: since P1 and P2424

are live, we apply i.h. to both premises. The interesting case occurs when P1 ↓x1
425

and P2 ↓x2 . Co-contraction implies that P1 and P2 share the single usage y, so426

if x1 ̸= y or x2 ̸= y, we have either P1 ↓x1 or P1 ↓x2 . If both x1 = x2 = y,427

then we derive P ↓y: the observation corresponds to either a take or a release428

operation on y, which we commute up with [ShTake] or [ShRel]. For [TshL]429

P = share y {P1 || P2}, we apply the i.h. to the premise P1, whcih types with430

an empty usage on y. If P1 ↓y, then P ↓y, the observation corresponding a put431

operation on y, which we commute up with [ShPut]. Symmetrically for [TshR].432

Theorem 3.2 (Progress). Let P ⊢∅ ∅; ∅ be a live process. Then, P reduces.433

Proof. Follows from Lemma 3.1 since fn(P) = ∅.434

Remarkably, our proof of Theorem 3.2 leverages deep properties of Linear Logic,435

in particular the structure of the linear cut and co-contraction, allowing us to436

prove deadlock absence, even in a language with primitives exhibiting blocking437

behaviour, avoiding the use of extra mechanisms [44, 32, 45, 10, 24, 70, 30].438

Safe Session-Based Concurrency with Shared Linear State 15

[fwd]
fwd x y ↓x

s(A) = x
[A]

A ↓x

P ≤ Q Q ↓x
[≤]

P ↓x

P ↓x
[mix]

(P || Q) ↓x
P ↓x x ̸= y

[cut]
(P |y| Q) ↓x

Q ↓x x ̸= y
[cut!]

(z.P |!y| Q) ↓x

P ↓x x ̸= y
[share]

(share y {P || Q}) ↓x

Fig. 8: Observability Predicate P ↓x.

Strong Normalisation Establishing strong normalisation (SN) for concurrent439

process calculi is usually fairly challenging, particularly in the presence of name440

passing, recursion and higher-order shared state [31, 16, 77, 46, 63]. For example,441

with reference cells one may express general recursion with Landin’s knot, and,442

in general, circular chains of references that may lead to divergence. However,443

our linear type system uses primitive recursion and corecursion, and excludes444

cyclic dependencies through state or session based interaction, allowing strong445

normalisation, and therefore livelock absence, to hold.446

Our proof relies on defining suitable linear logical relations, cf. [58, 20, 66],447

adapted to Classical Linear Logic [37, 1, 8], and crucially relying on a notion448

of reducibility up to interference that imposes stronger properties on the inter-449

pretation of the state modalities, and which allows the inductive proof of the450

Fundamental Lemma 3.2 to go through in the usual way. To this end, we extend451

our basic language with auxiliary constructs cell c(a.S) and empty c(a.S), which452

denote memory cells subject to interference from concurrent writers, allowed to453

take terms from the set S ⊆ {P | P ⊢η a : ∧A}. The intuition is that a take on454

the cell may always read any object from S, due to interference. We also con-455

sider the following additional reduction (nondeterministic) rules (1)-(3), where456

in 1 and 2 we assume P ∈ S.457

cell c(a.S) |c| release c → P |a| discard a, (1)
cell c(a.S) |c| take c(a′);Q → empty c(a.S) |c| (P |a| {a/a′}Q) (2)
empty c(a.S) |c| put c(a.P);Q→ cell c(a.S) |c| Q (3)

In this section, we thus consider reduction of P → Q to be the relation defined458

in Fig 7, extended with these rules. When a take or a release interacts with459

cell c(a.S), an arbitrary element P from the set S may be picked (rules (1) and460

(2)). In (3), a put put c(a.P);Q interacts with empty c(a.S) causing empty c(a.S)461

to evolve to cell c(a.S) (3). The following notion is also useful. A process P is462

S-preserving on x if P ⊢η x : U•A or P ⊢η x : U◦A, and463

– if P
∗−→≈ take x(y);P ′ and Q ∈ S, then Q |y| P ′ is S-preserving on x.464

– if P
∗−→≈ put x(y.P1);P2, then P1 ∈ S and P2 is S-preserving on x.465

A set of processes T is S-preserving on x if and only for all P ∈ T , P is S-466

preserving on x. Intuitively a process P that uses a cell x is S-preserving on x467

if it only puts values from S on cell x. The notion of S-preservation, parametric468

16 Pedro Rocha and Lúıs Caires

on any S, brings explicit the conditions needed for safe interaction with a mem-469

ory cell, subject to interference, while ensuring a state invariant S on the cell470

contents. We now introduce the logical predicate.471

Definition 3.2 (Logical Predicate Jx : AKσ). By induction on the type A, we472

define the sets Jx : AKσ an shown in Fig. 9, such that Jx : U•AKσ and Jx : U◦AKσ473

are J− : ∧AK-preserving on x.The definition is direct for the positive types A,474

for negative types B is given by orthogonality.475

The definition relies on Girard’s notion of orthogonality S⊥ ≜ {P | ∀Q ∈476

S. P |x| Q is SN} [36]. Duality promotes succinctness in our definition: for neg-477

ative types A, Jx : AKσ is defined as the orthogonal of the predicate for its dual478

A (positive) type. To handle polymorphic and inductive types, the logical pred-479

icate is indexed by a map σ that assigns reducibility candidates R[x : A] to type480

variables. A reducibility candidate R[x : A] is any set S of processes P ⊢∅ x : A481

such that P is SN and S = S⊥⊥. We let R[− : A] be the set of all reducibil-482

ity candidates R[x : A] for some name x. The definition relies on a congruence483

relation ≈ extending ≤ with a complete set of commuting conversions, along484

standard lines [21, 26, 74]. It essentially plays the role of the labelled transition485

system in the proof of strong normalisation given in [58].486

We now extend the logical predicate to typing judgements P ⊢η ∆;Γ by487

universal closure over the typing context and σ.488

Definition 3.3 (Extended Logical Predicate LJ⊢η ∆;Γ Kσ). We define
LJ⊢η ∆;Γ Kσ inductively on ∆,Γ and η as the set of processes P ⊢η ∆;Γ s.t.

P ∈ LJ⊢∅ ∅; ∅Kσ iff P is SN.
P ∈ LJ⊢∅ ∆,x : A;Γ Kσ iff ∀Q ∈ Jx : AKσ. Q |x : A| P ∈ LJ⊢∅ ∆;Γ Kσ.
P ∈ LJ⊢∅ ∆;Γ, x : AKσ iff ∀Q ∈ Jy : AKσ. y.Q |!x : A| P ∈ LJ⊢∅ ∆;Γ Kσ.
P ∈ LJ⊢η,X(x,y⃗)7→∆′,x:Y ;Γ ∆;Γ Kσ iff ∀Q ∈ σ(Y). {Q/X}P ∈ LJ⊢η ∆;Γ Kσ.

We now state the Fundamental Lemma (3.2) from which Theorem 3.3 follows.489

Lemma 3.2 (Fundamental Lemma). If P ⊢η ∆;Γ , then P ∈ LJ⊢η ∆;Γ Kσ.490

Proof. (Sketch) By induction on P ⊢η ∆;Γ . To handle cases [Tcell] and [Tempty],491

we show that cell c(a.S) and empty c(a.S) respectively simulate cell c(a.P) (where492

P ∈ S) and empty c, when composed with any S-preserving on c usages. To493

handle one of the most challenging cases, [Tsh] we prove, for all S, and all S-494

preserving on x processes P1 and P2, that cell c(a.S) |c| share c {P1 || P2} (1)495

is simulated by (cell c(a.S) |c| P1) || (cell c(a.S) |c| P2) (2). This allows us to496

infer that if (2) is SN, then so it is (1). When S = Ja : ∧AKσ, the i.h. yields497

(cell c(a.S) |c| Pi) SN, hence we conclude (2) SN. Similarly for [TshL], [TshR].498

Theorem 3.3 (Strong Normalisation). If P ⊢∅ ∅; ∅, then P is SN.499

4 Typeful Concurrent Programming in CLASS500

In this section, we discuss the expressiveness of CLASS language and type system,501

by going through a sequence of illustrative and realistic concurrent programming502

idioms, all of which are validated by our implementation.503

Safe Session-Based Concurrency with Shared Linear State 17

Jx : XKσ ≜ σ(X)[x]

Jx : 1Kσ ≜ {P | P ≈ close x and P is SN}⊥⊥

Jx : A⊗BKσ ≜ {P | ∃P1, P2. P ≈ send x(y.P1);P2 and
P1 ∈ Jy : AKσ and P2 ∈ Jx : BKσ}⊥⊥

Jx : A⊕BKσ ≜ {P | ∃Q. P ≈ x.inl;Q and Q ∈ Jx : AKσ or
P ≈ x.inr;Q and Q ∈ Jx : BKσ}⊥⊥

Jx :!AKσ ≜ {P | ∃Q. P ≈ !x(y);Q and Q ∈ Jy : AKσ}⊥⊥

Jx : ∃X.AKσ ≜ {P | ∃Q,S ∈ R[− : B]. P ≈ sendty x(B);Q and
Q ∈ Jx : AKσ[X 7→S]}⊥⊥

Jx : µX. AKσ ≜ (
⋂
{S ∈ R[− : µX.A] | unfoldµ x; Jx : AKσ[X 7→S] ⊆ S})⊥⊥

Jx : ∧AKσ ≜ {P | ∃Q. P ≈ affine x;Q and Q ∈ Jx : AKσ}⊥⊥

Jx : S•AKσ ≜ {P | P ≈ cell x(y.Jy : ∧AKσ) and P is SN}⊥⊥

Jx : S◦AKσ ≜ {P | P ≈ empty x(y.Jy : ∧AKσ) and P is SN}⊥⊥

Jx : BKσ ≜ Jx : BK⊥σ (B negative type)

Fig. 9: Logical Predicate Jx : AKσ.

4.1 Sharing a Linear Session504

Our first example illustrates how objects subject to a linear usage protocol and505

satisfying an invariant may be shared among multiple concurrent clients by se-506

rialising linear usages using a mutex cell, alternating ownership from the cell to507

clients and back at the invariant state, a commonly used discipline to implement508

and reason about resource sharing (see, e.g., [38, 17, 9]).509

We illustrate with a basic toggle switch with two states - On and Off - the510

resource invariant is the state Off, and two operations #turnOn and #turnOff511

that must be executed in strict linear sequence (Fig. 10). The toggle protocol,512

defined by type Off, offers the single option #turnOn, after which it evolves to513

On. Conversely, type On offers the single option #turnOff, after which it evolves514

to an affine Off. The toggle process at t is defined by two mutually corecursive515

processes on(t) and off(t), which define the expected behaviour, and comply with516

the types On and Off.517

Process main() introduces a mutex cell c storing an affine toggle object at the518

invariant type ∧Off. It then shares it with two concurrent clients, each acquires519

the toggle in the invariant type and uses the linear protocol independently. After520

their linear interaction, they put back the toggle, the type system ensures that521

this can only happen when the invariant (given by the cell type) holds. When522

they are done, both clients release their respective usages of c, which ultimately523

leads to the cell being deallocated and the (affine) toggle to be discarded.524

We have also developed CLASS code for a generic (polymorphic) wrapper525

factory that, for any affine corecursive protocol, generates a wrapper to a general526

invariant-based sharing interface.527

18 Pedro Rocha and Lúıs Caires

type corec Off = N{|#turnOn : On}
type corec On = N{|#turnOff : ∧Off}
off(t) ⊢ t : Off
off(t) = case t {|#turnOn : on(t)}
on(t) ⊢ t : ∧On
on(t) = case t {|#turnOff :

affine t; off(t)}
client1(c) ⊢ c : S•Off
client1(c) = take c(t);

#turnOn t; #turnOff t;
put c(t); release c

client2(c) ⊢ c : S•Off
client2(c) = take c(t);

#turnOn t; #turnOff t;
#turnOn t; #turnOff t;
put c(t); release c

main() ⊢ ∅
main() = cut {cell c(t.affine t; off(t))

|c|
share c {

client1(c)
||
client2(c)}}

Fig. 10: Sharing a Linear Toggle Switch

4.2 Linked Lists, Update In-Place528

In this example, we show how inductive/coinductive types combine harmoniously529

with CLASS state modalities to type linked data structures with memory-efficient530

updates in-place. More specifically, we show how to code a linked list, parametric531

on the type A of its affine values, with an append in-place operation (Fig. 11). An532

object of type SList(A) is a (full) cell storing a List(A) object. An object of type533

List(A) is a session that either selects #Null (the list is empty), in which case it534

closes; or selects #Next, in which case it sends an affine session ∧A representing535

the head element and continues as the tail SList(A). Process nil(l) - defines an536

empty list at l - and process cnext(a, c, l) - constructs a nonempty list l with head537

a and tail c. For example, a list with elements a1, a2 stored at c1 : S•List(A) is538

represented539

cut{ cell c1(l1.cnext(a1, c2, l1)) |c2|
cell c2(l2.cnext(a2, cs, l2)) |cs| cell cs(l0.nil(l0))}

Process append(c, l′, c′) ⊢ c : SList(A), l′ : List(A), c′ : SList(A) produces on c′540

the result of appending l (in place) to c. It takes the list l stored in c, and then541

performs case analysis on l. If l selects #Null, it simply replaces the previous null542

node of c by l′ and forwards the updated cell c to the output c′. This corresponds543

to the recursion base case in which the list l is empty.544

If l selects #Next, in which case l has at least one element, one receives at l545

the node element a : ∨A, and corecursively call append l′ to the tail l : SList(A)546

and puts back in c element a and tail x “returned” by the call. Notice that547

x is exactly x (by forwarding), which was passed along linearly. Remarkably,548

the append(c, l′, c′) operation just defined may be safely applied concurrently549

to the same shared linked list, with the final result being the correct one (some550

serialisation of the appends), without deadlocks or livelocks. It is also interesting551

to see how the type system forbids a list to be appended to itself.552

Safe Session-Based Concurrency with Shared Linear State 19

type rec SList(A) = S•List(A)
type rec List(A) = ⊕{

|#Null : 1,
|#Next : ∧A⊗ SList(A)}

nil(l) ⊢ l : ∧List(A)
nil(l) = affine l;

#Null l;
close l

cnext(a, c, l) ⊢ a: ∨A, c:SList(A), l: ∧ List(A)
cnext(a, c, l) = affine l;

#Next l;
send l(a);
fwd l c

append(c, l′, c′) =
take c(l);
case l {
|#Null :
wait l;
put c(l′);
fwd c c′

|#Next :
recv l(a);
cut {
append(l, l′, x)
|x|
put c(y.cnext(a, x, y));
fwd c c′

}}

Fig. 11: A Linked List with an Append In-Place Operation.

We have also developed many other in-place operations on linked data struc-553

tures, such as insertion sort, and other kinds of linked structures such as queues554

and binary search trees. In the next examples we discuss a shared queue ADT555

with a fine-grained locking discipline and O(1) enqueue and dequeue operations.556

4.3 A Concurrent Shareable Buffered Channel557

In this section, we illustrate increased degrees of sharing in a mutable data struc-558

ture with various references pointing to different parts of it, how the CLASS type559

system may express interfaces that talk about different client views for using a560

stateful object, and the use of polymorphism to implement information hiding561

ensuring that client code will never break the representation invariants of stateful562

ADTs, particularly challenging when aliasing and sharing are involved.563

More concretely, we consider a shareable buffered channel (Fig. 12), and564

provide a realistic and efficient implementation [52] based on a message queue565

represented by a linked list with update-in-place (cf. Section 4.2 above) and two566

independent pointers: one to the head of the list, used for receiving, and another567

to the tail, used for sending. The operations are executed in O(1) time. Moreover568

we provide a typing with two separate send and receive views, which may be569

used by an arbitrary number of concurrent clients. In particular, when the list570

is nonempty, both send and receive run in true concurrency (asynchronously),571

without blocking each other, thanks to fine-grained locking.572

The buffered channel type BChan(M), whereM is the type of messages, offers573

two views: SendT(M) and RecvT(M), interfaces for sender and receiver endpoint574

clients. These views are exposed with a par (O), since they share an underlying575

resourceful structure. In fact, they could not be exported using a tensor (⊗); it is576

interesting to notice how the type system imposes these constraints, important577

20 Pedro Rocha and Lúıs Caires

type BChan(M) = SendT(M) O RecvT(M)
type SendT(M) = ∃SV.!MenuS(M,SV)⊗ SV
type RecvT(M) = ∃RV.!MenuR(M,RV)⊗RV

type MenuS(M,SV) = N {
|#Send : SV ⊸ ∧M ⊸ SV,
|#Share : SV ⊸ (SV O SV),
|#Free : SV ⊸ 1 },

type MenuR(M,RV) = N {
|#Recv : RV ⊸ (Maybe(∧M)⊗RV),
|#Share : RV ⊸ (RV ORV),
|#Free : RV ⊸ 1 }

Rep = SV = RV = S•SList(M)

msend(me) =
recv me(tailptr);
recv me(a);
take tailptr(c);
take c(l);
cut {
cell c′(l)
|c′|
share c′ {

put c(l′.cnext(a, c′, l′));
release c′

||
put tailptr(c′);
send me(tailptr);
close me}}

Fig. 12: A Concurrent Shareable Buffered Channel.

to ensure deadlock freedom. The representation type of both views is Rep =578

S•SList(M) (see Section 4.2), hidden behind the SV andRV existential types [28,579

54]; sending clients use a cell storing a reference to the tail node of the queue;580

receiving clients use a cell storing a reference to the head node of the queue.581

Clients use the buffer through references of abstract type SV and RV and582

replicated menus !MenuS(M,SV) and !MenuR(M,RV). Both menus export the583

options #Share and #Free to allow sharing and release of the views. To send, a584

client selects #Send, sends his handle (of opaque type SV), the message to send585

and receives the (linear) handle back. In this implementation, receive is non-586

blocking, so operation #Recv returns a Maybe(∧M) value: the client receives587

either #Nothing (if the buffer is empty) or #Just followed by a message a, oth-588

erwise. In 4.6 we discuss the implementation, in CLASS, of (Hoare style) monitors589

with conditions, which would allow a blocking receive to be implemented.590

Process msend(me) implements the #Send “method”. It first receives the591

sending view handle (of concrete type Rep), which is a cell with the tailptr , and592

the message a to be sent. Then, a new cell c′ with nil (l) is created, the current593

tail of the list c is updated with a new node storing a and pointing to c′. Finally,594

the tailptr cell is updated to point to the new tail node c′ of the linked list.595

4.4 Dining Philosophers596

A resource hierarchy solution for Dijkstra’s dining philosophers problem [33]597

requires forks to be acquired in some defined order. To model such order in598

CLASS we “encode” it with an explicit (necessarily) acyclic structure, which599

informs the type system about the safety of a particular acquisition order. This600

allows us to define a correct concurrent implementation of the philosophers,601

that satisfies deadlock freedom by pure linear logic typing. More concretely, we602

Safe Session-Based Concurrency with Shared Linear State 21

putNull(f, f ′) ⊢ f : U◦Node, f
′ : Fork

putNull(f, f ′) ≜ put f(n.null(n)); fwd f f ′

eat(f, f ′) ⊢ f : Fork, f ′ : Fork

eat(f, f ′) ≜
take f(n);
case n {
|#Null :
wait n; putNull(f, f ′)
|#Next :
take n(m);
put n(m); put f(n′.next(n, n′));
fwd f f ′}

eat2(f, f ′) ⊢ f : Fork, f ′ : Fork

eat2(f, f ′) ≜
take f(n);
case n {
|#Null :
wait n; putNull(f, f ′)
|#Next :
cut {
takeLast(n, x)
|x|
recv x(m);wait x;
put f(n′.next(m,n′));
fwd f f ′}

Fig. 13: The Dining Philosophers.

organize the forks in a linked chain defined by the inductive types rec Fork =603

S•Node and rec Node = ⊕{#Null : 1,#Next : Fork}.604

Any fork in the chain may be shared by an arbitrary number of philosophers,605

cocontraction ensures that philosophers cannot communicate between them-606

selves via any other channel, all synchronisation must happen via the chained607

forks. If a philosopher successfully takes a fork fi, he can then take any fork fj ,608

with i < j; crucially, he must follow the path dictated by the chain, hence cannot609

acquire forks fj with j < i. In Fig. 13 we define the eat operation, which allows610

each philosopher Pi, with 0 ≤ i < k− 1 to eat: it acquires two consecutive forks611

in the chain. And eat2, which is the specific eating operation for the symmetry612

breaker Pk−1: it acquires the first fork, and traverses the chain to acquire the613

last with takeLast(n, x) ⊢ n : Fork, x : Fork⊗ 1.614

4.5 A Barrier for N threads615

We describe in Fig. 14 a CLASS implementation of a simple barrier, parametric616

on the number N of threads to synchronise. We find it interesting to model the617

“real” code shown in the Rust reference page for std::sync::Mutex [43]. The code618

uses if-then-else and primitive integers, supported by our implementation, but619

that could be defined as idioms of pure CLASS processes.620

We represent a barrier by a mutex cell storing a pair consisting of an integer621

n, holding the number of threads that have not yet reached the barrier, and a622

stack s of waiting threads, each represented by a session of affine type ∧⊥ (so623

they will be safely aborted if at least one thread fails to reach the barrier).624

The type Barrier of the barrier is S•BState, where BState ≜ Int⊗∧List(∧⊥).625

Initially the barrier is initialised with n = N threads and an empty stack, so that626

the invariant n+depth(s) = N holds during execution. Each thread(c; i) acquires627

the barrier c and checks if it is the last thread to reach the barrier (if n == 1): in628

this case, it awakes all the waiting threads (awakeAll(ws)) and resets the barrier.629

22 Pedro Rocha and Lúıs Caires

init(ws) ⊢ ws : ∧BState
init(ws) ≜
affine ws; send ws(N); affine ws; nil(ws)

awakeAll(ws : List(∧⊥))

awakeAll(ws) ≜
case ws {
#Nil : wait ws; 0
#Cons :
recv ws(w);
par {close w || awakeAll(ws)}

spawnAll(c; i, n) ⊢ c : Barrier; i : Int, n : Int

spawnAll(c; i, n) ≜
if (n == 0) { release c}
{ share c {

thread(c; i)
||
spawnall(c; i+ 1, n− 1)}}

thread(c; i) ⊢ c : Barrier; i : Int
thread(c; i) =
println i+ “: waiting.”;
take c(ws); recv ws(n);
if (n == 1) {
par {
println i+ “: finished.”;
awakeAll(ws)
||
put c(w′

s.init(w
′
s));

release c}}
{ cut {

affine w;wait w;
println i+ “: finished.”; 0
|w| put c(w′

s.affine w′
s;

send w′
s(n− 1);

affine w′
s;

cons(w,ws, w
′
s));

release c}}

Fig. 14: A Barrier for N Threads

Otherwise, it updates the barrier by decrementing n and pushing its continuation630

into the stack (the continuation for thread i just prints “finished”). The following631

process main() ⊢ ∅ creates a new barrier c and spawns N threads, each labelled632

by a unique id i: main() ≜ cut { cell c(ws.init(ws)) |c| spawnAll(c; 0, N) }. Again,633

our type system statically ensures that the code does not deadlock or livelock.634

4.6 A Hoare Style Monitor635

A Hoare style monitor is a well-know powerful programming abstraction [38],636

allowing concurrent operations on shared data to be coordinated in a sound way,637

so that it always satisfy a correctness invariant. The key essential idea is that638

concurrent client threads use the monitor lock to access the protected state in639

mutual exclusion, but may also wait (via a await primitive) inside the monitor640

until the state satisfies specific (pre-)conditions, while transferring state owner-641

ship to other threads potentially responsible for establishing such conditions and642

announcing it (via a notify primitive).643

We discuss a CLASS implementation of a monitor, sketching the main com-644

ponents and how they are typed (Fig. 15). We consider a counter with value n,645

with increment #Inc and decrement #Dec operations, and subject to the invari-646

ant n ≥ 0. The type of the counter CounterI exposes two separate, coinductively647

defined, client interfaces DecI and IncI for decrementing and incrementing.648

While the #Inc operation is synchronous, the #Dec operation is always called649

asynchronously by passing a continuation (of type ContDec). This allows decre-650

Safe Session-Based Concurrency with Shared Linear State 23

type corec IncI ≜ N{|#Inc : IncI, |#End : ⊥}
type corec DecI ≜

∨ N {|#Dec : ∨(ContDec ⊸ ⊥),#End : ⊥}
type corec ContDec ≜ ∨(DecI⊗ 1)

type CounterI ≜ DecI O IncI

type rec Rep ≜ (!Int)⊗WaitQ

type rec WaitQ ≜ ∧ ⊕ {|#Null : 1, |#Next : NodeQ}
type rec NodeQ ≜ S•(ContDecW ⊗WaitQ)

type rec ContDecW ≜ ∧(∧Rep ⊸ ∧Rep⊗ DecI ⊸ ⊥)

awaitNZ ⊢ m : U◦Rep,
n : !Int, w : WaitQ, cc : ContDecW

notifyNZ ⊢ m : U◦Rep, s : Rep,m
′ : S•Rep

incloop ⊢ iv : IncI,m : U•Rep

awaitNZ(m,n,w, cc) ≜
put m(w′.affine v;

send w′(n);
consWQ(cc, w,w′));
release m

incloop(iv,m) ≜
case iv {
#Inc : take m(r);

recv r(n);
cut {
send s(n+ 1); fwd s r
|s| notifyNZ(m, s,m′)
|m′| incloop(iv,m′) }

#End : wait iv; release m
} }

Fig. 15: Implementing a Counter Monitor with Await / Notify.

menters to wait inside the monitor for condition NZ (n > 0) when n = 0. The651

condition NZ is represented by a wait queue of type WaitQ. The representation652

type of the monitor (Rep) holds the counter value and the wait queue. Each node653

in the wait queue stores information, of type ContDecW, for the waiting thread.654

Every such ContDecW objects stores (1) the pending action on the internal mon-655

itor state (of type ∧Rep ⊸ ∧Rep), to be executed after await returns, and (2) a656

callback to the continuation provided by the external client in the asynchronous657

call (of type DecI ⊸ ⊥).658

The awaitNZ(m,n,w, cc) process implements the monitor wait operation,659

used in the #Dec operation. It receives the (empty) cell usage m to the mon-660

itor state, the integer value n (where n = 0), a reference w to the wait queue,661

and the continuation cc, it pushes a new node in the queue and puts the moni-662

tor state back, unlocking the cell m, and releases m. The incloop(iv,m) process663

implements the counter IncI interface. The call to notifyNZ(m, s,m′) after incre-664

menting n will cause a waiting DecI thread to be awaken (if any), and continue665

by applying the pending action to the Rep state s in which n > 0 holds, before666

passing the updated state m′ to the incloop recursive call. Affinity plays a key667

role, allowing all data structures, including waiting continuations to be safely668

discarded, at the end of any computation.669

We have only shown here some code snippets, the complete code is available670

in our distribution. We have also implemented generic code to simplify the con-671

struction of monitors, eventually using several condition. It is interesting to see672

how our system types this non-trivial concurrent code, involving higher-order673

mutable state, rich sharing and ownership transfer patterns, ensuring deadlock,674

livelock freedom and memory safety of code akin to real system-level code.675

24 Pedro Rocha and Lúıs Caires

5 Related Work676

Many resource-aware logics and type systems to tame shared state and interfer-677

ence have been proposed [3, 53, 71, 41, 17, 56, 57, 23]. These systems adopt some678

form of linearity and/or affinity to resourceful programming [69, 29] and to model679

failures/exceptions [27, 55, 19, 35, 49]. In CLASS, linearity allows us to con-680

trol state sharing, whereas affinity is useful for memory safety and to represent681

abortable computations. The hereditary session-discarding behaviour of affine682

sessions, modelled by rule [∧∨d], is also present in other works, e.g. [6, 55, 19].683

CLASS builds on top of the PaT correspondence with Linear Logic [21, 26, 74],684

the logical principles for the state modalities being inspired by DiLL [34]. Recent685

works [9, 10, 7, 47, 60, 62] also address the problem of sharing and nondetermin-686

ism in the setting of session-based PaT. In [62], reference cells may only store687

replicated sessions (of type !A), thus cannot refer to linear entities such as other688

cells or linear sessions, hence cannot represent many realistic programming id-689

ioms that CLASS does (see Section 4). Accommodating linear state in a pure690

PaT approach is thus addressed in this work with a novel, more fundamental691

approach. Furthermore, in [62], recursion is obtained from polymorphism [73], in692

the style of system-F encodings, and cannot represent inductive stateful struc-693

tures with memory-efficient updates in-place, as we do in CLASS, using native694

inductive/coinductive types and recursion operators.695

The take/put operations of CLASS relate with the acquire/release operations696

of the manifest sharing session-typed language SILLS [9, 10]. Sharing in SILLS697

is based on shift modalities to move from shared to linear mode and back, and698

contraction principles to alias shared sessions. In CLASS we explore DiLL modal-699

ities and cocontraction principles [34] to express sharing of linear state and put700

/ take protocols of mutex memory cells of invariant type. As a consequence [10]701

ensures deadlock-freedom by relying on programmer provided partial orders on702

events [51, 32, 25], whereas in CLASS deadlock-freedom follows naturally as a703

deep consequence of linear logic cut and cocontraction, already expressed by704

the basic “lightweight” type system. The work [60] introduces the CSLL lan-705

guage, by extending linear logic with coexponentials that support a notion of706

shared state, with a quite different approach than ours. CSLL does not claim the707

ability to naturally express shared linked data structures with update in-place708

and fine-grained locking, as CLASS does. Nevertheless, it is natural to define in709

CLASS sessions exporting weakening, sharing and dereliction capabilities for lin-710

ear behaviours, as in our shared buffer example. None of the models in [9, 10, 60]711

addresses livelock absence or memory safety, as CLASS does.712

As far as we are aware, CLASS is a first proposal integrating shared state713

and recursion in a language based on PaT and Linear Logic, while guaranteeing714

strong normalisation. Least/greatest fixed points in Linear Logic were studied715

in [8], which inspired the development of recursion in [50, 67], our treatment of716

recursion draws inspiration on [67]. Several works exploit the technique of logical717

relations to establish strong normalisation for concurrent process calculi [1, 77,718

63, 16, 58]. The work [16] proves strong normalisation for a language with higher-719

order store with a type and effect system that stratifies memory into regions so as720

Safe Session-Based Concurrency with Shared Linear State 25

to preclude circularities. Interestingly, in CLASS such stratification is implicitly721

guaranteed by the acyclicity inherent to Linear Logic. Linear logical relations722

were studied in [58, 20, 66, 68]. In this work we recast and extend the technique to723

Classical Linear Logic, exploring orthogonality [37, 8, 1], and demonstrate, using724

a specially devised technique of interference-sensitive reducibility, how logical725

relations scale to accommodate shared state.726

6 Concluding Remarks727

We have introduced CLASS, a session-based language founded on a propositions-728

as-types interpretation of Second-Order Classical Linear Logic, extended with729

recursion, affine types, first-class mutex cells and shared linear state. As a con-730

sequence of its logical foundations, we believe that CLASS is the first proposal of731

a language of its kind to provide the following three strong properties by static732

typing: well-typed CLASS programs enjoy progress, hence never deadlock, do733

not leak memory and always terminate. Besides the foundational relevance of734

our work, we also argued how CLASS can cleanly express realistic concurrent735

higher-order programming idioms, with many compelling examples: sharing of736

corecursive linear protocols, memory-efficient dynamic linked data structures737

with update in-place, shareable concurrent ADTs and resource synchronisation738

methods, such as barriers and monitors.739

Any type system introduces conservative restrictions on its language, but we740

believe that CLASS offers an interesting balance between the strong properties741

it ensures by typing and its expressiveness. In fact, we find CLASS type system742

helpful to guide the development of safe concurrent idioms, with a fairly light743

type annotation burden. The linear logic discipline demands that no more than744

one bundle of linear resources may be shared by any two independent threads.745

Nevertheless, as our examples show, it is most often the case that concurrent746

programs may be conveniently structured in this way, so that the shared bundles747

of linear resources may be safely encapsulate and coordinated, in monitor-like748

structures, through clean informative interfaces.749

The restriction to primitive recursion on inductive types may seem a limi-750

tation in some situations and perhaps one may even want sometimes to write751

non-terminating code, so it is reasonable to expect that any pragmatic language752

based on CLASS may provide some “unsafe recursion” mechanism. Nevertheless,753

being able to check that substantial parts of a codebase are not only deadlock754

but also terminating / livelock free by typing seems to be a desirable feature.755

The feasibility of CLASS is corroborated by our implementation of a fully-756

fledged type checker and interpreter. The type checker provides substantial type757

inference and reconstruction abilities, and the interpreter includes efficient prag-758

matic basic datatypes. The system, together with an extensive CLASS library759

of code, including the examples in this paper, which were all validated by the760

implementation, will be submitted as a companion artifact for this paper.761

As future work, we would like to investigate several possible refinements of762

the CLASS type discipline, namely, allowing finer-grained resource-access poli-763

cies to be expressed, and exploring the integration of dependent and refinement764

types [65, 48], enhancing the logical expressiveness of the basic type system.765

26 Pedro Rocha and Lúıs Caires

References766

1. Abramsky, S.: Computational Interpretations of Linear Logic. Theoret. Comput.767

Sci. 111(1–2), 3–57 (1993)768

2. Abramsky, S., Gay, S.J., Nagarajan, R.: Interaction categories and the foundations769

of typed concurrent programming. In: NATO ASI DPD. pp. 35–113 (1996)770

3. Ahmed, A., Fluet, M., Morrisett, G.: L3: A linear language with locations. Fundam.771

Inf. 77(4), 397–449 (Dec 2007)772

4. Andreoli, J.M.: Logic programming with focusing proofs in linear logic. J. Logic773

Comput. 2(3), 197–347 (1992)774

5. Andreoli, J.M.: Logic Programming with Focusing Proofs in Linear Logic. J. Log.775

Comput. 2(3), 297–347 (1992)776

6. Asperti, A., Roversi, L.: Intuitionistic light affine logic. ACM Transactions on Com-777

putational Logic (TOCL) 3(1), 137–175 (2002)778

7. Atkey, R., Lindley, S., Morris, J.G.: Conflation Confers Concurrency, pp. 32–55.779

Springer International Publishing, Cham (2016)780

8. Baelde, D.: Least and greatest fixed points in linear logic. TOCL 13(1) (Jan 2012)781

9. Balzer, S., Pfenning, F.: Manifest sharing with session types. Proc. ACM Program.782

Lang. 1(ICFP) (Aug 2017)783

10. Balzer, S., Toninho, B., Pfenning, F.: Manifest deadlock-freedom for shared session784

types. In: Caires, L. (ed.) Programming Languages and Systems. pp. 611–639.785

Springer International Publishing, Cham (2019)786

11. Barber, A.: Dual Intuitionistic Linear Logic. Tech. Rep. LFCS-96-347, Univ. of787

Edinburgh (1996)788

12. Beffara, E.: A Concurrent Model for Linear Logic. ENTCS 155, 147–168 (2006)789

13. Beffara, E.: An algebraic process calculus. In: Proceedings of the 2008 23rd Annual790

IEEE Symposium on Logic in Computer Science. p. 130–141. LICS ’08, IEEE791

Computer Society, USA (2008)792

14. Bellin, G., Scott, P.: On the π-calculus and linear logic. Theoret. Comput. Sci.793

135(1), 11–65 (1994)794

15. Benton, P.N.: A mixed linear and non-linear logic: Proofs, terms and models. In:795

International Workshop on Computer Science Logic. pp. 121–135. Springer (1994)796

16. Boudol, G.: Typing termination in a higher-order concurrent imperative language.797

Information and Computation 208(6), 716–736 (2010)798

17. Brookes, S., O’Hearn, P.W.: Concurrent Separation Logic. ACM SIGLOG News799

3(3), 47–65 (2016)800

18. Caires, L., Pérez, J.A., Pfenning, F., Toninho, B.: Relational parametricity for801

polymorphic session types. Tech. Rep. CMU-CS-12-108, Carnegie Mellon Univ.802

(2012)803

19. Caires, L., Pérez, J.A.: Linearity, control effects, and behavioral types. In: Proceed-804

ings of the 26th European Symposium on Programming Languages and Systems -805

Volume 10201. p. 229–259. Springer-Verlag, Berlin, Heidelberg (2017)806

20. Caires, L., Pérez, J.A., Pfenning, F., Toninho, B.: Behavioral polymorphism and807

parametricity in session-based communication. In: Proceedings of the 22nd Euro-808

pean Conference on Programming Languages and Systems. p. 330–349. ESOP’13,809

Springer-Verlag, Berlin, Heidelberg (2013)810

21. Caires, L., Pfenning, F.: Session types as intuitionistic linear propositions. In:811

Gastin, P., Laroussinie, F. (eds.) CONCUR 2010 - Concurrency Theory. pp. 222–812

236. Springer Berlin Heidelberg, Berlin, Heidelberg (2010)813

Safe Session-Based Concurrency with Shared Linear State 27

22. Caires, L., Pfenning, F., Toninho, B.: Towards concurrent type theory. In: Pro-814

ceedings of the 8th ACM SIGPLAN Workshop on Types in Language Design and815

Implementation. p. 1–12. TLDI ’12, Association for Computing Machinery, New816

York, NY, USA (2012)817

23. Caires, L., Seco, J.a.C.: The type discipline of behavioral separation. In: Proceed-818

ings of the 40th Annual ACM SIGPLAN-SIGACT Symposium on Principles of819

Programming Languages. p. 275–286. POPL ’13, Association for Computing Ma-820

chinery, New York, NY, USA (2013)821

24. Caires, L., Vieira, H.T.: Conversation types. In: Castagna, G. (ed.) Programming822

Languages and Systems. pp. 285–300. Springer Berlin Heidelberg, Berlin, Heidel-823

berg (2009)824

25. Caires, L., Vieira, H.T.: Conversation types. Theor. Comput. Sci. 411(51-52),825

4399–4440 (2010)826

26. Caires, L., Pfenning, F., Toninho, B.: Linear logic propositions as session types.827

Mathematical Structures in Computer Science 26(3), 367–423 (2016)828

27. Carbone, M., Honda, K., Yoshida, N.: Structured Interactional Exceptions in Ses-829

sion Types. In: CONCUR 2008. LNCS, vol. 5201, pp. 402–417. Springer (2008)830

28. Cardelli, L., Wegner, P.: On understanding types, data abstraction, and polymor-831

phism. ACM Computing Surveys (CSUR) 17(4), 471–523 (1985)832

29. Clarke, D.G., Potter, J.M., Noble, J.: Ownership types for flexible alias protec-833

tion. In: Proceedings of the 13th ACM SIGPLAN Conference on Object-Oriented834

Programming, Systems, Languages, and Applications. p. 48–64. OOPSLA ’98, As-835

sociation for Computing Machinery, New York, NY, USA (1998)836

30. Dardha, O., Gay, S.J.: A new linear logic for deadlock-free session-typed processes.837

In: Baier, C., Dal Lago, U. (eds.) Foundations of Software Science and Computation838

Structures. pp. 91–109. Springer International Publishing, Cham (2018)839

31. Demangeon, R., Hirschkoff, D., Sangiorgi, D.: Mobile processes and termination.840

In: Semantics and Algebraic Specification, pp. 250–273. Springer (2009)841

32. Dezani-Ciancaglini, M., de’Liguoro, U., Yoshida, N.: On progress for structured842

communications. In: Barthe, G., Fournet, C. (eds.) Trustworthy Global Computing.843

pp. 257–275. Springer Berlin Heidelberg, Berlin, Heidelberg (2008)844

33. Dijkstra, E.W.: Hierarchical ordering of sequential processes. In: The origin of845

concurrent programming, pp. 198–227. Springer (1971)846

34. Ehrhard, T.: An introduction to differential linear logic: proof-nets, models and847

antiderivatives. Mathematical Structures in Computer Science 28(7), 995–1060848

(2018)849

35. Fowler, S., Lindley, S., Morris, J.G., Decova, S.: Exceptional asynchronous ses-850

sion types: session types without tiers. Proceedings of the ACM on Programming851

Languages 3(POPL), 1–29 (2019)852

36. Girard, J.Y.: Linear logic. Theoret. Comput. Sci. 50(1), 1–102 (1987)853

37. Girard, J.Y.: Linear logic. Theoretical computer science 50(1), 1–101 (1987)854

38. Hoare, C.A.R.: Monitors: An operating system structuring concept. Commun.855

ACM 17(10), 549–557 (1974)856

39. Hoare, C.A.R.: Towards a theory of parallel programming. In: The origin of con-857

current programming, pp. 231–244. Springer (1972)858

40. Howard, W.A.: The formulae-as-types notion of construction. In: Seldin, J.P., Hind-859

ley, J.R. (eds.) To H. B. Curry: Essays on Combinatory Logic, Lambda Calculus860

and Formalism, pp. 479–490. Academic Press (1980)861

41. Jacobs, J., Balzer, S., Krebbers, R.: Connectivity graphs: a method for proving862

deadlock freedom based on separation logic. Proc. ACM Program. Lang. 6(POPL),863

1–33 (2022)864

28 Pedro Rocha and Lúıs Caires

42. Jones, S.P., Gordon, A., Finne, S.: Concurrent Haskell. In: POPL. vol. 96, pp.865

295–308. Citeseer (1996)866

43. Klabnik, S., Nichols, C.: The Rust Programming Language (2021)867

44. Kobayashi, N.: A type system for lock-free processes. Information and Computation868

177(2), 122–159 (2002)869

45. Kobayashi, N.: A new type system for deadlock-free processes. In: International870

Conference on Concurrency Theory. pp. 233–247. Springer (2006)871

46. Kobayashi, N., Sangiorgi, D.: A hybrid type system for lock-freedom of mobile872

processes. ACM Transactions on Programming Languages and Systems (TOPLAS)873

32(5), 1–49 (2008)874

47. Kokke, W., Morris, J.G., Wadler, P.: Towards races in linear logic. In: Riis Nielson,875

H., Tuosto, E. (eds.) Coordination Models and Languages. pp. 37–53. Springer876

International Publishing, Cham (2019)877

48. Krishnaswami, N.R., Pradic, P., Benton, N.: Integrating linear and dependent878

types. ACM SIGPLAN Notices 50(1), 17–30 (2015)879

49. Lagaillardie, N., Neykova, R., Yoshida, N.: Stay safe under panic: Affine rust pro-880

gramming with multiparty session types. arXiv preprint arXiv:2204.13464 (2022)881

50. Lindley, S., Morris, J.G.: Talking bananas: structural recursion for session types. In:882

Garrigue, J., Keller, G., Sumii, E. (eds.) Proceedings of the 21st ACM SIGPLAN883

International Conference on Functional Programming, ICFP 2016, Nara, Japan,884

September 18-22, 2016. pp. 434–447. ACM (2016)885

51. Lynch, N.A.: Fast allocation of nearby resources in a distributed system. In: Pro-886

ceedings of the Twelfth Annual ACM Symposium on Theory of Computing. p.887

70–81. STOC ’80, Association for Computing Machinery, New York, NY, USA888

(1980)889

52. Marlow, S.: Parallel and concurrent programming in Haskell: Techniques for mul-890

ticore and multithreaded programming. ” O’Reilly Media, Inc.” (2013)891

53. Militão, F., Aldrich, J., Caires, L.: Aliasing control with view-based typestate. In:892

Proceedings of the 12th Workshop on Formal Techniques for Java-Like Programs.893

pp. 1–7 (2010)894

54. Mitchell, J.C., Plotkin, G.D.: Abstract types have existential type. ACM Transac-895

tions on Programming Languages and Systems (TOPLAS) 10(3), 470–502 (1988)896

55. Mostrous, D., Vasconcelos, V.T.: Affine Sessions. In: Proc. of COORDINATION897

2014. LNCS, vol. 8459, pp. 115–130. Springer (2014)898

56. Nanevski, A., Morrisett, J.G., Birkedal, L.: Hoare type theory, polymorphism and899

separation. J. Funct. Program. 18(5-6), 865–911 (2008)900

57. O’Hearn, P.W., Reynolds, J.C.: From Algol to polymorphic linear lambda-calculus.901

J. ACM 47(1), 167–223 (2000)902

58. Pérez, J.A., Caires, L., Pfenning, F., Toninho, B.: Linear logical relations and obser-903

vational equivalences for session-based concurrency. Information and Computation904

239, 254–302 (2014)905

59. Pfenning, F.: Structural cut elimination. In: Proceedings of the 10th Annual IEEE906

Symposium on Logic in Computer Science. p. 156. LICS ’95, IEEE Computer907

Society, USA (1995)908

60. Qian, Z., Kavvos, G.A., Birkedal, L.: Client-server sessions in linear logic 5(ICFP)909

(Aug 2021)910

61. Rocha, P., Caires, L.: A Propositions-as-Types System for Shared State. Tech. rep.,911

NOVA Laboratory for Computer Science and Informatics (06 2021)912

62. Rocha, P., Caires, L.: Propositions-as-types and shared state. Proceedings of the913

ACM on Programming Languages 5(ICFP), 1–30 (2021)914

Safe Session-Based Concurrency with Shared Linear State 29

63. Sangiorgi, D.: Termination of processes. Math. Struct. in Comp. Sci. 16(1), 1–39915

(2006)916

64. Sangiorgi, D., Walker, D.: PI-Calculus: A Theory of Mobile Processes. Cambridge917

University Press, USA (2001)918

65. Toninho, B., Caires, L., Pfenning, F.: Dependent session types via intuitionis-919

tic linear type theory. In: Proceedings of the 13th International ACM SIGPLAN920

Symposium on Principles and Practices of Declarative Programming. p. 161–172.921

PPDP ’11, Association for Computing Machinery, New York, NY, USA (2011)922

66. Toninho, B., Caires, L., Pfenning, F.: Corecursion and non-divergence in session-923

typed processes. In: Maffei, M., Tuosto, E. (eds.) TGC 2014. Lecture Notes in924

Computer Science, vol. 8902, pp. 159–175. Springer (2014)925

67. Toninho, B., Caires, L., Pfenning, F.: Corecursion and non-divergence in session-926

typed processes. In: International Symposium on Trustworthy Global Computing.927

pp. 159–175. Springer (2014)928

68. Toninho, B., Yoshida, N.: On polymorphic sessions and functions: A tale of two929

(fully abstract) encodings. ACM Trans. Program. Lang. Syst. 43(2) (Jun 2021)930

69. Tov, J.A., Pucella, R.: Practical Affine Types. In: POPL 2011. pp. 447–458 (2011)931

70. Vieira, H.T., Vasconcelos, V.T.: Typing progress in communication-centred sys-932

tems. In: International Conference on Coordination Languages and Models. pp.933

236–250. Springer (2013)934

71. Voinea, A.L., Dardha, O., Gay, S.J.: Resource sharing via capability-based multi-935

party session types. In: International Conference on Integrated Formal Methods.936

pp. 437–455. Springer (2019)937

72. Wadler, P.: Linear types can change the world! In: Broy, M. (ed.) Proceedings of938

the IFIP Working Group 2.2, 2.3 Working Conference on Programming Concepts939

and Methods, 1990. p. 561. North-Holland (1990)940

73. Wadler, P.: Recursive types for free (1990)941

74. Wadler, P.: Propositions as sessions. In: Proceedings of the 17th ACM SIGPLAN942

International Conference on Functional Programming. p. 273–286. ICFP ’12, As-943

sociation for Computing Machinery, New York, NY, USA (2012)944

75. Wadler, P.: Propositions as Sessions. Journal of Functional Programming 24(2-3),945

384–418 (2014)946

76. Wadler, P.: Propositions as types. Communications of the ACM 58(12), 75–84947

(2015)948

77. Yoshida, N., Berger, M., Honda, K.: Strong normalisation in the π-calculus. Infor-949

mation and Computation 191(2), 145–202 (2004)950

30 Pedro Rocha and Lúıs Caires

Appendix (Supplementary Material)951

In Section A we present the type and process syntax, the type system and the952

operational semantics of CLASS. Then, we prove language safety by establishing953

type preservation in Section B and progress in Section C. We present the proof954

of strong normalisation in Section D.955

A The Core Language CLASS956

Definition A.1 (Types A). Given a collection of type variables X,Y, Z, . . .
we define types by

A,B ::= X (type variable) |
1 (one) | ⊥ (bottom) |
A⊗B (tensor) | AOB (par) |
A⊕B (plus) | ANB (with)

!A (bang) | ?A (why not) |
∃X.A (exists) | ∀X.A (for all)

µX. A (mu) | νX. A (nu)

∧A (affine) | ∨A (coaffine) |
S•A (full state) | U•A (full usage) |
S◦A (empty state) | U◦A (empty usage)

Types are composed from type variables (X,Y, Z, . . .), units (1, ⊥), multiplica-957

tives (⊗, O), additives (⊕, N), exponentials (!, ?), second-order type quantifies958

(∃X., ∀X.), recursive types (µX. , νX.), affine/co-affine modalities (∧,∨) and959

shared state modalities (S•,U•,S◦,U◦).960

The expressions ∃X.A, ∀X.A, µX. A, νX. A all bind the type variable X in961

A. All the other type variable occurrences are free. The set of free type variables962

of a type expression A is denoted by fv(A). We denote by {A/X}B the type963

expression obtained by replacing the type variable X by A in B. We consider964

that the binary type connectives associate to the right, e.g. the type A⊗B OC965

should be parsed as A⊗ (BOC). Furthermore, we consider that the unary type966

constructors have higher precedence that the binary connectives, e.g. the type967

!A⊗B should be parsed as (!A)⊗B.968

Definition A.2 (Duality on Types A). Duality A is the involution on types
defined by

1 = ⊥ A⊗B = AOB A⊕B = A NB

!A = ?B ∃X.A = ∀X.A µX. A = νX. {X/X}(A)
∧A = ∨A S•A = U•A S◦A = U◦A

Safe Session-Based Concurrency with Shared Linear State 31

P,Q ::= 0 (inaction) |
fwd x y (forwarder) |
X(x, y⃗) (variable) |
A (action) |
P || Q (mix) |
P |x : A| Q (cut) |
y.P |!x : A| Q (cut!) |
share x {P || Q} (share) |

A,B ::= close x (close) | wait x;P (wait) |
x.inl;P (choose left) | x.inr;P (choose right)

case x {|inl : P, |inr : Q} (offer) |
send x(y.P);Q (send) | recv x(y);P (receive) |
!x(y);P (server) | ?x;P (activation) | call x(y);P (call) |
sendty x(A);P (type send) | recvty x(X);P (type receive) |
corec X(z, w⃗);P [x, y⃗] (corec)

unfoldµ x;P (unfold µ) | unfoldν x;P (unfold ν)

affine⃗b,⃗c a;P (affine) | discard a (discard) | use a;P (use) |

cell c(a.P) (full cell) | release c (free) | take c(a);P (take)

empty c (empty) | put c(a.P);Q (put)

Fig. 16: Processes P of CLASS.

The lollipop type constructor is defined by A ⊸ B ≜ A O B. We write x⃗ to969

denote a finite (possibly empty) array of names.970

Definition A.3 (Processes P). The syntax of process terms for CLASS is971

defined in Fig. 16.972

The static part of the syntax comprises inaction, mix, cut, cut! and share;973

the dynamic part includes actions A,B, and forwarder. An action is typically a974

process α;P , where α is an action-prefix and P is the continuation. An action is975

typically a process α;P , where α is an action-prefix and P is the continuation.976

In these cases, the subject s(A) of an action A is the leftmost name occurrence977

of A. For example, the subject of the action send x(y.P);Q is x. The subject of978

corec X(z, w⃗);P [x, y⃗] is x.979

The expression P |x : A| Q binds the name x on processes P and Q. y.P |!x :980

A| Q binds y in P and x in Q. Actions send x(y.P);Q, recv x(y);P , !x(y);P ,981

call x(y);P bind y on P . Actions cell c(a.P), take c(a);P, put c(a.P);Q bind name982

32 Pedro Rocha and Lúıs Caires

a on process P . All other name occurrences are free. The set of free names of P is983

denoted by fn(P); if fn(P) = ∅, we say P is closed. The expressions recvty x(X);P984

binds the type variable X on process P . All the other type variable occurrences985

are free. The set of free type variables of a process P is denoted by fv(P).986

Capture-avoiding substitution and α-conversion are defined as usual. We denote987

by {x/y}P the process obtained by replacing the name y by x on P . Similarly,988

we denote by {A/X}P the process term obtained by replacing type variable X989

by type expression A in process term P .990

We write A⃗ to denote a finite (possibly empty) array of types. We write991

x⃗ : A⃗, only if length(x⃗) = length(A⃗), to denote the typing assignment x⃗[0] :992

A⃗[0], . . . , x⃗[n − 1] : A⃗[n − 1], or ∅ in case n = 0. If A⃗ is an array of types with993

length n and M a type modality, then MA⃗ is an array with length n and such994

that, for all 0 ≤ i ≤ n− 1, (M A⃗)[i] = M(A⃗[i]). If x⃗ and y⃗ are arrays of names995

with the same length we let {x⃗/y⃗}P denote the simultaneous substitution of996

each component x⃗[i] by y⃗[i] in process P .997

A typing context is a finite partial assignment from names to types, which
we denote by

x1 : A1, . . . , xn : An︸ ︷︷ ︸
∆

; y1 : B1, . . . , ym : Bm︸ ︷︷ ︸
Γ

Typing contexts are separated (with a semi-colon) into two parts: a linear part
denoted by ∆ and an unrestricted (or exponential) part, which absorbs weaken-
ing and contraction, and is denoted by Γ . The empty context is written ∅. We
write ∆,∆′ (two comma-separated contexts) for the disjoint union of ∆ and ∆′.
The set of free type variables of a typing context is the union of the free type
variables of the types in the image of the typing context. Typing judgments are
of the form P ⊢η ∆;Γ where P is a process, ∆;Γ is a typing context and η is a
finite partial map

η = X1(x⃗1) 7→ ∆1;Γ, . . . ,Xn(x⃗n) 7→ ∆n;Γn

where recursion variables are assigned to typing contexts.998

If Γ is empty we write just P ⊢η ∆ instead of P ⊢η ∆; ∅. Similarly, if η999

is empty, we write P ⊢ ∆;Γ instead of P ⊢∅ ∆;Γ . We define {y/x}(∆;Γ) by1000

cases: if x /∈ dom(∆)∪dom(Γ), then {y/x}(∆;Γ) = ∆;Γ . If ∆ = ∆′, x : A, then1001

{y/x}(∆;Γ) = ∆′, y : A;Γ . If Γ = Γ ′, x : A, then {y/x}(∆;Γ) = ∆;Γ ′, y : A.1002

We denote by {A/X}(∆;Γ) the typing context obtained by replacing the free1003

type variable X by A. Similarly, we extend simultaneous substitutions to typing1004

contexts accordingly, written {x⃗/y⃗}(∆;Γ).1005

Definition A.4. The typing rules of CLASS are listed in Figs. 17, 18, 19, 20, 21.1006

N.B.: In rule [T∀], X does not occur free in ∆;Γ .1007

A process P is well-typed if P ⊢η ∆;Γ for some typing contexts ∆ and Γ and1008

map η.1009

A process context C is a process expression containing a hole and it is defined1010

in the usual way (see [64]). We write − for the empty context and C[P] for the1011

Safe Session-Based Concurrency with Shared Linear State 33

[T0]
0 ⊢η ∅;Γ

P ⊢η ∆′;Γ Q ⊢η ∆;Γ
[Tmix]

P || Q ⊢η ∆′, ∆;Γ

[Tfwd]
fwd x y ⊢η x : A, y : A;Γ

P ⊢η ∆′, x : A;Γ Q ⊢η ∆,x : A;Γ

P |x : A| Q ⊢η ∆′, ∆;Γ
[Tcut]

[T1]
close x ⊢η x : 1;Γ

Q ⊢η ∆;Γ
[T⊥]

wait x;Q ⊢η ∆,x : ⊥;Γ

P1 ⊢η ∆,x : A;Γ P2 ⊢η ∆,x : B;Γ
[TN]

case x {|inl : P1, |inr : P2} ⊢η ∆,x : ANB;Γ

Q1 ⊢η ∆′, x : A;Γ
[T⊕l]

x.inl;Q1 ⊢η ∆′, x : A⊕B;Γ

Q2 ⊢η ∆′, x : B;Γ
[T⊕r]

x.inr;Q2 ⊢η ∆′, x : A⊕B;Γ

P1 ⊢η ∆1, y : A;Γ P2 ⊢η ∆2, x : B;Γ
[T⊗]

send x(y.P1);P2 ⊢η ∆1, ∆2, x : A⊗B;Γ

Q ⊢η ∆, z : A, x : B;Γ
[TO]

recv x(z);Q ⊢η ∆,x : AOB;Γ

P ⊢η y : A;Γ
[T!]

!x(y);P ⊢η x :!A;Γ

Q ⊢η ∆;Γ, x : A
[T?]

?x;Q ⊢η ∆,x :?A;Γ

P ⊢η y : A;Γ Q ⊢η ∆;Γ, x : A
[Tcut!]

y.P |!x : A| Q ⊢η ∆;Γ

Q ⊢η ∆, z : A;Γ, x : A
[Tcall]

call x(z);Q ⊢η ∆;Γ, x : A

P ⊢η ∆,x : {B/X}A;Γ
[T∃]

sendty x(B);P ⊢η ∆,x : ∃X.A;Γ
Q ⊢η ∆,x : A;Γ

[T∀]
recvty x(X);Q ⊢η ∆,x : ∀X.A;Γ

Fig. 17: Typing Rules I: Second-Order CLL.

P ⊢η′ ∆, z : A;Γ η′ = η,X(z, w⃗) 7→ ∆, z : Y ;Γ
[Tcorec]

corec X(z, w⃗);P [x, y⃗] ⊢η {y⃗/w⃗}∆,x : νY. A; {y⃗/w⃗}Γ
η = η′, X(x, y⃗) 7→ ∆,x : Y ;Γ

[Tvar]
X(z, w⃗) ⊢η {w⃗/y⃗}(∆, z : Y ;Γ)

P ⊢η ∆,x : {νX. A/X}A;Γ
[Tν]

unfoldν x;P ⊢η ∆,x : νX. A;Γ

P ⊢η ∆,x : {µX. A/X}A;Γ
[Tµ]

unfoldµ x;P ⊢η ∆,x : µX. A;Γ

Fig. 18: Typing Rules II: Induction and Coinduction.

34 Pedro Rocha and Lúıs Caires

P ⊢η b⃗ : ∨B⃗, c⃗ : U•C⃗, a : A;Γ
[Taffine]

affine⃗b,⃗c a;P ⊢η b⃗ : ∨B⃗, c⃗ : U•C⃗, a : ∧A;Γ

[Tdiscard]
discard a ⊢η a : ∨A;Γ

Q ⊢η ∆, a : A;Γ
[Tuse]

use a;Q ⊢η ∆, a : ∨A;Γ

Fig. 19: Typing Rules III: Affinity.

P ⊢η ∆, a : ∧A;Γ
[Tcell]

cell c(a.P) ⊢η ∆, c : S•A;Γ
[Trelease]

release c ⊢η c : U•A;Γ

[Tempty]
empty c ⊢η c : S◦A;Γ

Q ⊢η ∆, a : ∨A, c : U◦A;Γ
[Ttake]

take c(a);Q ⊢η ∆, c : U•A;Γ

Q1 ⊢η ∆1, a : ∧A;Γ Q2 ⊢η ∆2, c : U•A;Γ
[Tput]

put c(a.Q1);Q2 ⊢η ∆1, ∆2, c : U◦A;Γ

Fig. 20: Typing Rules IV: Reference Cells.

P ⊢η ∆′, c : U•A;Γ Q ⊢η ∆, c : U•A;Γ
[Tsh]

share c {P || Q} ⊢η ∆′, ∆, c : U•A;Γ

P ⊢η ∆′, c : U◦A;Γ Q ⊢η ∆, c : U•A;Γ
[TshL]

share c {P || Q} ⊢η ∆′, ∆, c : U◦A;Γ

P ⊢η ∆′, c : U•A;Γ Q ⊢η ∆, c : U◦A;Γ
[TshR]

share c {P || Q} ⊢η ∆′, ∆, c : U◦A;Γ

Fig. 21: Typing Rules V: State Sharing.

Safe Session-Based Concurrency with Shared Linear State 35

P ≡ P [refl]

P ≡ Q ⊃ Q ≡ P [symm]

P ≡ Q and Q ≡ R ⊃ P ≡ R [trans]

P ≤ Q and Q ≤ R ⊃ P ≤ R [trans2]

P ≡ Q ⊃ C[P] ≡ C[Q] [cong]

P ≤ Q ⊃ C[P] ≤ C[Q] [cong2]

fwd x y ≡ fwd y x [fwd]

P |x : A| Q ≡ Q |x : A| P [C]

P || 0 ≡ P [0M]

P || Q ≡ Q || P [M]

P || (Q || R) ≡ (P || Q) || R [MM]

P |x : A| (Q || R) ≡ (P |x : A| Q) || R [CM]

P |x : A| (Q |y : B| R) ≡ (P |x : A| Q) |y : B| R [CC]

P |x : A| share y {Q || R} ≡ share y {P |x : A| Q || R} [CSh]

P |z : A| (y.Q |!x : B| R) ≡ y.Q |!x : B| (P |z : A| R) [CC!]

y.Q |!x : A| (P || R) ≡ P (y.Q |!x : A| R) || [C!M]

y.P |!x : A| (w.Q |!z : B| R) ≡ w.Q |!z : B| (y.P |!x : A| R) [C!C!]

share x {P || (Q || R)} ≡ share x {P || Q} || R [ShM]

share x {P || share y {Q || R}} ≡ share y {share x {P || Q} || R} [ShSh]

share z {P || y.Q |!x : A| R} ≡ y.Q |!x : A| share z {P || R} [ShC!]

y.P |!x : A| (Q || R) ≡ (y.P |!x : A| Q) || (y.P |!x : A| R) [D-C!M]

y.P |!x : A| (Q |z : B| R) ≡ (y.P |!x : A| Q) |z : B| (y.P |!x : A| R) [D-C!C]

y.P |!x : A| (w.Q |!z : B| R)
≡ w.(y.P |!x : A| Q) |!z : B| (y.P |!x : A| R) [D-C!C!]

y.P |!x : A| share z {Q || R}
≡ share z {(y.P |!x : A| Q) || (y.P |!x : A| R)} [D-C!Sh]

share x {release x || P} ≤ P [ShRel]

share x {put x(y.P);Q || R} ≤ put x(y.P); share x {Q || R} [ShPut]

share x {take x(y1);P || take x(y2);P2}
≤ take x(y1); share x {P1 || take x(y2);P2} [ShTake]

Provisos: in [CM] and [ShM], x ∈ fn(Q); in [CC], [CSh] and [ShSh], x, y ∈ fn(Q); in

[CC!], [C!M] and [ShC!], x /∈ fn(P); in [C!C!], x /∈ fn(Q) and z /∈ fn(P).

Fig. 22: Structural congruence P ≡ Q and precongruence P ≤ Q.

36 Pedro Rocha and Lúıs Caires

fwd x y |y : A| P → {x/y}P [fwd]

close x |x : 1| wait x;P → P [1⊥]

send x(y.P);Q |x : A⊗B| recv x(z);R
→ Q |x : B| (P |y : A| {y/z}R) [⊗O]

case x {|inl : P, |inr : Q} |x : ANB| x.inl;R→ P |x : A| R [N⊕l]
case x {|inl : P, |inr : Q} |x : ANB| x.inr;R→ Q |x : B| R [N⊕r]
!x(y);P |x :!A| ?x;Q→ y.P |!x : A| Q [!?]

y.P |!x : A| call x(z);Q→ {z/y}P |z : A| (y.P |!x : A| Q) [call]

sendty x(A);P |x : ∃X. B| recvty x(X);Q
→ P |x : {A/X}B| {A/X}Q [∃∀]
unfoldµ x;P |x : µX. A| unfoldν x;Q→ P |x : {µX. A/X}A| Q [µν]

unfoldµ x;P |x : µX. A| corec Y (z, w⃗);Q [x, y⃗]
→ P |x : {µX. A/X}A| {x/z}{y⃗/w⃗}{corec Y (z, w⃗);Q/Y }Q [corec]

affine⃗b,⃗c a;P |a : ∧A| discard a→ discard b⃗ || release c⃗ [∧∨d]

affine⃗b,⃗c a;P |a : ∧A| use a;Q→ P |a : A| Q [∧∨u]

cell c(a.P) |c : S•A| release c→ P |a : ∧A| discard a [S•U•r]

cell c(a.P) |c : S•A| take c(a′);Q
→ P |a : ∧A| (empty c |c : S◦A| {a/a′}Q) [S•U•t]

empty c |c : S◦A| put c(a.P);Q→ cell c(a.P) |c : S•A| Q [S◦U◦]

P ≤ P ′ and P ′ → Q′ and Q′ ≤ Q ⊃ P → Q [≤]

P → Q ⊃ C[P] → C[Q] [cong]

Fig. 23: Reduction P → Q.

Safe Session-Based Concurrency with Shared Linear State 37

process obtained by replacing the hole in C by P (notice that in C[P] the context1012

C may bind free names of process P). Similarly, given two process contexts C1, C2,1013

we writeC1[C2] for the context obtained by replacing the hole in C1 by C2. We1014

define context composition by C1 ◦C2 ≜ C1[C2]. A process P ′ is a subprocess of P1015

if P = C[P ′], for some process context C. We say that a relation R is a process1016

congruence iff whenever PRQ, then C[P]RC[Q].1017

Definition A.5 (Structural Congruence P ≡ Q). Structural congruence ≡1018

is the least congruence on processes closed under α-conversion and the ≡-rules1019

in Fig. 6. Structural precongruence ≤ is the least pre-congruence on processes1020

including ≡ and closed under α-conversion and the ≤-rules in Fig. 6.1021

Before defining reduction, we introduce static contexts, which are defined by

C ::= − | C || P | P || C | C |x| P | P |x| C | y.P |!x| C |
share x {C || P} |share x {P || C} |

A static context is therefore a context where the hole is neither guarded by any1022

action nor lies in the server body P of a cut! y.P |!x| Q.1023

We define release x⃗ and discard x⃗ by induction on x⃗:

release [] ≜ 0 release (x⃗ : y) ≜ release x⃗ || release y
discard [] ≜ 0 discard (x⃗ : y) ≜ discard x⃗ || discard y

We need also to define substitution of a process variable by a corecursive
process, which will be used when modelling the one-step unfold of a corecursive
process definition. The base cases are defined by

{corec X(z, w⃗);P/X}X(x, y⃗) ≜ corec X(z, w⃗);P [x, y⃗]

{corec X(z, w⃗);P/X}Y (x, y⃗) ≜ Y (x, y⃗), Y ̸= X

and the substitution is propagated without surprises to the remaining cases.1024

Definition A.6 (Reduction P → Q). Reduction → is the least relation on1025

processes that includes the rules in Fig. ??. N.B.: In [cong], C is an arbitrary1026

static context.1027

We define ⇒ as the transitive closure of → ∪ ≡.1028

B Type Preservation1029

We prove type preservation for structural congruence ≡ (Theorem B.1) and1030

reduction → (Theorem B.2). But first we introduce some notation and prove1031

some auxiliary lemmas.1032

B.1 Notation1033

Before presenting the complete proofs of type preservation for precongruence ≤1034

and reduction → we introduce some handy notations that make the presentation1035

of the proofs more succinct.1036

38 Pedro Rocha and Lúıs Caires

State Flavours. We introduce two state flavours, namely e (empty) and f (full).
If X is a flavour, then the metavariable type SX A denotes either the full cell
modality S•A, if X = f , or either the empty cell modality S◦A, if X = e.
Similarly, UX A denotes either U•A, if X = f , or U◦A, if X = e. Two flavours
can be combined through a partial binary operation ⊕, defined by

f ⊕ f ≜ f f ⊕ e ≜ e e⊕ f ≜ e

The operation ⊕ is commutative and associative, furthermore the value of an1037

expression X1 ⊕ . . .⊕Xn is either f , whenever all the Xi are f ; or e, in case one1038

and only one of the Xi is e.1039

With this notation at hand, we can succinctly group all the typing rules for
sharing ([Tsh], [TshL], [TshR]) in a single typing rule schema

P ⊢η ∆′, c : UX1
A;Γ Q ⊢η ∆, c : UX2

A;Γ X1 ⊕X2 = X
[TshX]

share c {P || Q} ⊢η ∆′, ∆, c : UX A;Γ

Type Inversion. Often, in the following proofs of type preservation and progress,1040

we appeal to inversion principles for the typing relation. By inspecting the prin-1041

cipal form, i.e. the outermost constructor, of a process P for which a typing1042

judgement P ⊢η ∆;Γ holds we can infer some particularities of the typing con-1043

texts ∆ and Γ . This works because, by inspecting the principal form of the1044

process P , we can infer which was the typing rule that was applied to the root of1045

a derivation tree for P ⊢η ∆;Γ . For example, in a derivation for P1 || P2 ⊢η ∆;Γ1046

the last rule has to be [Tmix], from which we conclude that there there are∆1, ∆21047

s.t. ∆ = ∆1, ∆2, P1 ⊢η ∆1;Γ and P2 ⊢η ∆2;Γ . To make the presentation suc-1048

cinct, in the following proofs, we refer to the corresponding inversion principle1049

associated with a typing rule adding the superscript −1 to the typing rule name.1050

So, for [Tmix], it would be [Tmix−1].1051

B.2 Auxiliary Lemmas1052

We state some auxiliary lemmas which are used during the proofs of type preser-1053

vation. The first lemma states that every subprocess of a well-typed process is1054

well-typed. Furthermore, if we replace a subprocess Q of a process a well-typed1055

process P by a subprocess Q′ that types with the same typing context as Q,1056

then the resulting substitution types with same typing context as P .1057

Lemma B.1. Suppose C[P] ⊢η ∆;Γ , for some process context C. Then, there1058

exists ∆′, Γ ′ s.t.1059

– P ⊢η ∆′;Γ .1060

– For all Q ⊢η ∆′;Γ ′, C[Q] ⊢η ∆′;Γ ′.1061

Proof. If C = −, then simply pick ∆′ = ∆ and Γ ′ = Γ . The hypothesis for the1062

cases in which C ≠ − is established by induction on the typing derivation tree1063

that establishes C[P] ⊢η ∆;Γ .1064

We illustrate with some cases.1065

Safe Session-Based Concurrency with Shared Linear State 39

Case: [T1].1066

From C[P] = close x we conclude that C = − and P = close x. Holds1067

vacuously.1068

Case: [Tmix].1069

We have C[P] ⊢η ∆1, ∆2;Γ , C[P] = P1 || P2, P1 ⊢η ∆1;Γ and P2 ⊢η ∆2;Γ .1070

Since C[P] = P1 || P2, either (i) C = C′ || R or (ii) C = R || C′.1071

We consider (i) holds. The analysis is similar for (ii).1072

By applying the i.h. C′[P] ⊢η ∆1;Γ we infer the existence of ∆′
1, Γ

′ s.t.1073

(a) P ⊢η ∆′
1;Γ

′.1074

(b) C′[Q] ⊢η ∆1;Γ for all Q′ ⊢η ∆′
1;Γ

′.1075

Let Q′ ⊢η ∆′
1;Γ

′. From (b), C′[Q] ⊢η ∆1;Γ .1076

Applying [Tmix] to C′[Q] ⊢η ∆1;Γ and P2 ⊢η ∆2;Γ yields

C[Q] = C′[Q] || P2 ⊢η ∆1, ∆2;Γ

Some formulations of the session-based interpretations of Linear Logic (cf.1077

Wadler’s CP) have explicit typing rules for weakening and contraction of the1078

exponential modalities !, ?. In CLASS weakening and contraction are absorbed1079

by the unrestricted typing context: we can adjoin an arbitrary formula in Γ1080

(Lemma B.2([Tweaken]) or substitute the use of one formula for another (Lemma1081

B.2([Tcontract]). Furthermore, we have a kind of reverse weakening principle:1082

if a formula is not being used in a derivation, we can remove it from the unre-1083

stricted context (Lemma B.2([Tstrength])), this property is often referred to as1084

strengthening.1085

Lemma B.2. The following principles hold:1086

[Tweaken] If P ⊢η ∆;Γ and x /∈ dom(∆) ∪ dom(Γ), then P ⊢η ∆;Γ, x : A.1087

[Tcontract] If P ⊢η ∆;Γ, x : A, y : A, then {x/y}P ⊢{x/y}η ∆;Γ, x : A.1088

[Tstrength] If P ⊢η ∆;Γ, x : A and x /∈ fn(P), then P ⊢η ∆;Γ .1089

Proof. [Tweaken] By induction on derivation tree for P ⊢η ∆;Γ . We illustrate1090

with some cases.1091

Case: [T0].1092

We have the conclusion 0 ⊢η ∅;Γ . By applying [T0] we obtain 0 ⊢η1093

∅;Γ, x : A.1094

Case: [Tmix].1095

We have the conclusion P1 || P2 ⊢η ∆1, ∆2;Γ from the premisses P1 ⊢η1096

∆1;Γ and P2 ⊢η ∆2;Γ .1097

Applying i.h. to P1 ⊢η ∆1;Γ and P2 ⊢η ∆2;Γ yields P1 ⊢η ∆1;Γ, x : A1098

and P2 ⊢η ∆2;Γ, x : A, respectively.1099

Applying [Tmix] to P1 ⊢η ∆1;Γ, x : A and P2 ⊢η ∆2;Γ, x : A yields1100

P1 || P2 ⊢η ∆1, ∆2;Γ, x : A.1101

[Tcontract] By induction on derivation tree for P ⊢η ∆;Γ . We illustrate with1102

some cases.1103

40 Pedro Rocha and Lúıs Caires

Case: [Tmix].1104

We have the conclusion P1 || P2 ⊢η ∆1, ∆2;Γ, x : A, y : A from the1105

premisses P1 ⊢η ∆1;Γ, x : A, y : A and P2 ⊢η ∆2;Γ, x : A, y : A.1106

Applying i.h. to P1 ⊢η ∆1;Γ, x : A, y : A and P2 ⊢η ∆2;Γ, x : A, y : A1107

yields {x/y}P1 ⊢η ∆1;Γ, x : A and {x/y}P2 ⊢η ∆2;Γ, x : A, respectively.1108

Applying [Tmix] to {x/y}P1 ⊢η ∆1;Γ, x : A and {x/y}P2 ⊢η ∆2;Γ, x : A1109

yields {x/y}P1 || {x/y}P2 ⊢η ∆1, ∆2;Γ, x : A.1110

Finally, note that {x/y}(P1 || P2) = {x/y}P1 || {x/y}P2.1111

Case: [Tcall].1112

There are three cases to consider, depending on wether the subject z of1113

the call action is x, y or neither x nor y.1114

Case: z ̸= x, y.1115

We have the conclusion call z(w);Q ⊢η ∆;Γ, from the premiss Q ⊢η1116

∆,w : B;Γ, x : A, y : A, z : B.1117

Applying i.h. toQ ⊢η ∆,w : B;Γ, x : A, y : A, z : B yields {x/y}Q ⊢η1118

∆,w : B;Γ, x : A, z : B.1119

Applying [Tcall] to {x/y}Q ⊢η ∆;Γ, x : A, , z : B yields

call z(w); {x/y}Q ⊢η ∆;Γ, x : A, z : B

Finally, note that {x/y}(call z(w);Q) = call z(w); {x/y}Q.1120

Case: z = x.1121

We have the conclusion call x(w);Q ⊢η ∆;Γ, from the premiss Q ⊢η1122

∆,w : A;Γ, x : A, y : A.1123

Applying i.h. to Q ⊢η ∆,w : A;Γ, x : A, y : A yields {x/y}Q ⊢η1124

∆,w : A;Γ, x : A.1125

Applying [Tcall] to {x/y}Q ⊢η ∆,w : A;Γ, x : A yields

call x(w); {x/y}Q ⊢η ∆;Γ, x : A

Finally, note that {x/y}(call x(w);Q) = call x(w); {x/y}Q.1126

Case: z = y.1127

We have the conclusion call y(w);Q ⊢η ∆;Γ, from the premiss Q ⊢η1128

∆,w : A;Γ, x : A, y : A.1129

Applying i.h. to Q ⊢η ∆,w : A;Γ, x : A, y : A yields {x/y}Q ⊢η1130

∆,w : A;Γ, x : A.1131

Applying [Tcall] to {x/y}Q ⊢η ∆,w : A;Γ, x : A (this time on x)1132

yields call x(w); {x/y}Q ⊢η ∆;Γ, x : A.1133

Finally, note that {x/y}(call y(w);Q) = call x(w); {x/y}Q.1134

[Tstrength] Similar to [Tweaken].1135

The proof of type preservation also depends on a couple of auxiliary prop-1136

erties, which we will introduce now. The first (Lemma B.3(1)) states that the1137

domain of the linear typing context with which a process P types is always the1138

same.1139

To introduce the second property (Lemma B.3(2)) we need the following1140

definition. Let ∆,∆′ be two partial maps from names to types. We say that ∆1141

is contained in ∆′ up to usage flavours iff the following hold1142

Safe Session-Based Concurrency with Shared Linear State 41

(1) if x : A ∈ ∆ and A ̸= UX B, then x : A ∈ ∆′.1143

(2) if x : UX B, then x : UY B ∈ ∆′ for some usage flavour Y.1144

We say that ∆ and ∆′ are the same up to usage flavours iff ∆ is contained in ∆′
1145

up to to usage flavours and vice-versa: ∆′ is contained in ∆ up to usage flavours.1146

Lemma B.3. The following properties hold1147

(1) If P ⊢η ∆;Γ and P ⊢η ∆′;Γ ′ then dom(∆) = dom(∆′).1148

(2) Suppose P ⊢η ∆;Γ , P ⊢η ∆′;Γ and let ∆,∆′ be the same up to usage1149

flavours. Then, ∆ = ∆′.1150

Proof. (1) By induction on P . We illustrate with some cases.1151

Case: P = 0.1152

Applying [T0−1] to 0 ⊢η ∆;Γ yields ∆ = ∅.1153

Applying [T0−1] to 0 ⊢η ∆;′ Γ ′ yields ∆′ = ∅.1154

Then, dom(∆) = ∅ = dom(∆′).1155

Case P = fwd x y.1156

By applying [Tfwd−1] to fwd x y ⊢η ∆;Γ we infer the existence of A1157

s.t. ∆ = x : A, y : A.1158

By applying [Tfwd−1] to fwd x y ⊢η ∆′;Γ we infer the existence of B1159

s.t. ∆′ = x : B, y : B.1160

Then, dom(∆) = {x, y} = dom(∆′).1161

Case: P = P1 || P2.1162

By applying [Tmix−1] to P1 || P2 ⊢η ∆;Γ we infer the existence of1163

∆1, ∆2 s.t. ∆ = ∆1, ∆2, P1 ⊢η ∆1;Γ and P2 ⊢η ∆2;Γ .1164

By applying [Tmix−1] to P1 || P2 ⊢η ∆′;Γ ′ we infer the existence of1165

∆′
1, ∆

′
2 s.t. ∆′ = ∆′

1, ∆
′
2, P1 ⊢η ∆′

1;Γ
′ and P2 ⊢η ∆′

2;Γ
′.1166

Applying i.h. to P1 ⊢η ∆1;Γ and P1 ⊢η ∆′
1;Γ

′ yields dom(∆1) =1167

dom(∆′
1).1168

Applying i.h. to P2 ⊢η ∆2;Γ
′ and P2 ⊢η ∆′

2;Γ
′ yields dom(∆2) =1169

dom(∆′
2).1170

Then, dom(∆) = dom(∆1)∪dom(∆2) = dom(∆′
1)∪dom(∆′

2) = dom(∆′).1171

Case: P = ?x;P ′.1172

By applying [T?−1] to ?x;P ⊢η ∆;Γ we infer the existence of ∆0, A s.t1173

∆ = ∆0, x :?A and P ⊢η ∆0;Γ, x : A.1174

By applying [T?−1] to ?x;P ⊢η ∆′;Γ ′ we infer the existence of ∆′
0, B1175

s.t ∆ = ∆′
0, x :?B and P ⊢η ∆′

0;Γ
′, x : B.1176

Applying i.h. to P ⊢η ∆0;Γ, x : A and P ⊢η ∆′
0;Γ

′, x : B yields1177

dom(∆0) = dom(∆′
0).1178

Then, dom(∆) = dom(∆0) ∪ {x} = dom(∆′
0) ∪ {x} = dom(∆′).1179

(2) By induction on P and case analysis on its principal form. We illustrate1180

with some cases.1181

Case P = fwd x y.1182

By [Tfwd−1] and fwd x y ⊢ ∆;Γ we conclude that ∆ = x : A, y : A1183

for some type A. By [Tfwd−1] and fwd x y ⊢ ∆′;Γ we conclude that1184

∆′ = x : B, y : B for some type B.1185

Either A or A is not an usage modality. Suppose w.l.o.g. that A ̸= UX B.1186

Then A = B and, as consequence, A = B.1187

42 Pedro Rocha and Lúıs Caires

Case P = share x {P1 || P2}.1188

By [Tsh−1] and share x {P1 || P2} ⊢η ∆;Γ we conclude that exists1189

∆1, ∆2, A,X1,X2,X s.t. (1) P1 ⊢η ∆1, x : UX1 A;Γ , (2) P2 ⊢η ∆2, x :1190

UX2 A;Γ , (3) ∆ = ∆1, ∆2, x : UX A and (4) X1 ⊕X2 = X .1191

By [Tsh−1] and share x {P1 || P2} ⊢η ∆′;Γ we conclude that exists1192

∆′
1, ∆

′
2, A

′,X ′
1,X ′

2,X ′ s.t. (1′) P1 ⊢η ∆′
1, x : UX ′

1
A′;Γ , (2′) P2 ⊢η ∆′

2, x :1193

UX ′
2
A′;Γ , (3′) ∆′ = ∆′

1, ∆
′
2, x : U′

X A′ and (4′) X ′
1 ⊕X ′

2 = X ′.1194

From (3), (3′) and since ∆,∆′ are the same up to usage flavours we1195

obtain A = A′. Furthermore, since ∆1 = ∆ ↾ (fn(P1) \ {x}) and ∆′
1 =1196

∆′ ↾ (fn(P1) \ {x}), we conclude that ∆1, ∆
′
1 are the same up to usage1197

flavours. Similarly, we conclude that ∆2, ∆
′
2 are the same up to usage1198

flavours.1199

Applying the i.h. to P1, (1) and (1′) yields ∆1 = ∆′
1 and X1 = X ′

1.1200

Applying the i.h. to P2, (2) and (2′) yields ∆2 = ∆′
2 and X2 = X ′

2.1201

Therefore, X = Y and ∆ = ∆′.1202

We conclude this section with a couple of auxiliary results that state how sub-1203

stitution (name by name, type variable by type, process variable by corecursive1204

process definition) affect the typing relation.1205

Lemma B.4. The following properties hold1206

(1) If P ⊢η ∆;Γ and x /∈ dom(∆) ∪ dom(Γ), then {x/y}P ⊢η {x/y}(∆;Γ).1207

(2) If P ⊢η ∆;Γ , then {A/X}P ⊢{A/X}η {A/X}(∆;Γ).1208

(3) Suppose corec Y (z, w⃗);P [z, w⃗] ⊢η ∆, z : νX. A;Γ , η′ = η′′, Y (z, w⃗) 7→1209

∆, z : X;Γ for some η′′ which extends η, and suppose Q ⊢η′ ∆′;Γ ′. Then,1210

{corec Y (z, w⃗);P/Y }Q ⊢η′′ {νX. A/X}(∆′;Γ ′).1211

Proof. Properties (1) and (2) are by induction on a derivation for P ⊢η ∆;Γ .1212

Property (3) is by induction on a derivation for Q ⊢η′ ∆′, z : B;Γ ′. The1213

only way of introducing the type variable X in the context ∆′;Γ ′, with which1214

Q types, is by appealing to rule [Tvar] on process variable Y . Consequently, if1215

process variable Y does not occur free inQ, then the property holds trivially since1216

{corec Y (z, w⃗);P/Y }Q = Q and {νX. A/X}(∆′;Γ ′) = ∆′;Γ ′. We illustrate the1217

proof with some cases:1218

Case: [Tvar].
Then

η′ = η′′, Y (z, w⃗) 7→ ∆, z : X;Γ
[Tvar]

Y (x, y⃗) ⊢η′ {y⃗/w⃗}(∆,x : X;Γ)

where Q = Y (x, y⃗).1219

By def.

{corec Y (z, w⃗);P/Y }Y (x, y⃗) = corec Y (z, w⃗);P [x, y⃗]

Since, by hypothesis corec Y (z, w⃗);P [z, w⃗] ⊢η ∆, z : νX. A;Γ and η′′ extends1220

η, then corec Y (z, w⃗);P [z, w⃗] ⊢η′′ ∆, z : νX. A;Γ .1221

By name renaming, corec Y (z, w⃗);P [x, y⃗] ⊢η′′ {y⃗/w⃗}(∆,x : νX. A;Γ).1222

Safe Session-Based Concurrency with Shared Linear State 43

Case: [Tmix].
Then

Q1 ⊢η′ ∆′
1;Γ

′ Q2 ⊢η′ ∆′
2;Γ

′
[Tmix]

Q1 || Q2 ⊢η′ ∆′
1, ∆

′
2, ;Γ

′

where Q = Q1 || Q2 and ∆′ = ∆′
1, ∆

′
2.1223

By def.

{corec Y (z, w⃗);P/Y }(Q1 || Q2)
= ({corec Y (z, w⃗);P/Y }Q1) || ({corec Y (z, w⃗);P/Y }Q2)

Applying i.h. toQ1 ⊢η′ ∆′
1;Γ

′ yields (a) {corec Y (z, w⃗);P/Y }Q1 ⊢η′′ {νX. A/X}(∆′
1;Γ

′).1224

Applying i.h. toQ2 ⊢η′ ∆′
2;Γ

′ yields (b) {corec Y (z, w⃗);P/Y }Q2 ⊢η′′ {νX. A/X}(∆′
2;Γ

′).1225

Applying [Tmix] to (a) and (b) yields

{corec Y (z, w⃗);P/Y }(Q1 || Q2) ⊢η′′ {νX. A/X}(∆′
1, ∆

′
2;Γ

′)

B.3 Type Preservation1226

We start with the proof of type preservation for precongruence (Theorem B.1)and1227

then we move to the proof of type preservation for reduction (Theorem B.2).1228

Theorem B.1 (Type Preservation ≤). If P ⊢η ∆;Γ and P ≤ Q, then Q ⊢η1229

∆;Γ .1230

Proof. By induction on a derivation tree for P ≡ Q and case analysis on the root1231

rule. We consider an axiomatisation of ≡ equivalent to Def. A.5 but in which we1232

drop rule [symm] P ≡ Q ⊃ Q ≡ P and assume that each commuting conversion1233

holds from left-to-right and right-to-left.1234

Case: [refl], P ≡ P .1235

Follows immediately.1236

Case: [trans], P ≡ Q and Q ≡ R ⊃ P ≡ R.1237

(1) Q ⊢η ∆;Γ (i.h., P ⊢η ∆;Γ and P ≡ Q)1238

(2) R ⊢η ∆;Γ (i.h., (1) and Q ≡ R)1239

1240

Similarly for [trans2].1241

Case: [cong], P ≡ Q ⊃ C[P] ≡ C[Q].1242

(1) P ⊢η ∆′;Γ ′, for some ∆′, Γ ′ (Lemma B.1 and C[P] ⊢η ∆;Γ)1243

(2) Q ⊢η ∆′;Γ ′ (i.h., (1) and P ≡ Q)1244

(3) C[Q] ⊢η ∆;Γ (Lemma B.1, (1), (2) and C[P] ⊢η ∆;Γ)1245

1246

Similarly for [cong2].1247

Case: [fwd], fwd x y ≡ fwd y x.1248

(1) ∆ = x : A, y : A ([Tfwd−1] and fwd x y ⊢η ∆;Γ)1249

(2) fwd y x ⊢η y : A, x : A;Γ ([Tfwd])1250

(3) fwd y x ⊢η ∆;Γ ((1) and (2))1251

1252

44 Pedro Rocha and Lúıs Caires

Case: [M], P || Q ≡ Q || P .1253

(1) ∆ = ∆1, ∆2 (2) P ⊢η ∆1;Γ (3) Q ⊢η ∆2;Γ , for some ∆1, ∆21254

([Tmix−1] and P || Q ⊢η ∆;Γ)1255

(4) Q || P ⊢η ∆2, ∆1;Γ ([Tmix], (3) and (2))1256

(5) Q || P ⊢η ∆;Γ ((1) and (4))1257

1258

Case: [C], P |x : A| Q ≡ Q |x : A| P .1259

(1)∆ = ∆1, ∆2 (2) P ⊢η ∆1, x : A;Γ (3)Q ⊢η ∆2, x : A;Γ , for some ∆1, ∆21260

([Tcut−1] and P |x : A| Q ⊢η ∆;Γ)1261

(4) Q |x : A| P ⊢η ∆2, ∆1;Γ ([Tcut], (3) and (2))1262

(5) Q |x : A| P ⊢η ∆;Γ ((1) and (4))1263

1264

Case: [Sh], share x {P || Q} ≡ share x {Q || P}.1265

(1) ∆ = ∆1, ∆2, x : UX A (2) P ⊢η ∆1, x : UX1
A;Γ1266

(3) Q ⊢η ∆2, x : UX2 A;Γ (4) X1 ⊕X2 = X , for some ∆1, ∆21267

([Tsh−1] and share x {P || Q} ⊢η ∆;Γ)1268

(5) X2 ⊕X1 = X (⊕ is commutative and (4))1269

(6) share x {Q || P} ⊢η ∆2, ∆1, x : UX A;Γ ([Tsh], (3),(2) and (5))1270

(7) share x {Q || P} ⊢η ∆;Γ ((1) and (6))1271

1272

Case: [MM] left-to-right, P || (Q || R) ≡ (P || Q) || R.1273

(1) ∆ = ∆1, ∆2 (2) P ⊢η ∆1;Γ (3) Q || R ⊢η ∆2;Γ , for some ∆1, ∆21274

([Tmix−1] and P || (Q || R) ⊢η ∆;Γ)1275

(4) ∆2 = ∆21, ∆22 (5) Q ⊢η ∆21;Γ (6) R ⊢η ∆22;Γ , for some ∆21, ∆221276

([Tmix−1] and (3))1277

(7) P || Q ⊢η ∆1, ∆21;Γ ([Tmix], (2) and (5))1278

(8) (P || Q) || R ⊢η ∆1, ∆21, ∆22;Γ ([Tmix], (7) and (6))1279

(9) ∆1, ∆21, ∆22 = ∆ ((1) and (4))1280

(10) (P || Q) || R ⊢η ∆;Γ ((8) and (9))1281

1282

Case: [MM] right-to-left, (P || Q) || R ≡ P || (Q || R). Similar to case [MM]1283

left-to-right.1284

Case: [CM] left-to-right, P |x : A| (Q || R) ≡ (P |x : A| Q) || R, x ∈ fn(Q).1285

(1)∆ = ∆1, ∆2 (2) P ⊢η ∆1, x : A;Γ (3)Q ||R ⊢η ∆2, x : A;Γ , for some ∆1, ∆21286

([Tcut−1] and P |x : A| (Q || R) ⊢η ∆;Γ)1287

(4)∆2, x : A = ∆21, ∆22 (5)Q ⊢η ∆21;Γ (6)R ⊢η ∆22;Γ , for some ∆21, ∆221288

([Tmix−1] and (3))1289

(7) ∆21 = ∆′
21, x : A, for some ∆′

21 ((4), (5) and x ∈ fn(Q))1290

(8) Q ⊢η ∆′
21, x : A ((5) and (7))1291

(9) P |x : A| Q ⊢η ∆1, ∆
′
21;Γ ([Tcut], (2), (8))1292

(10) (P |x : A| Q) || R ⊢η ∆1, ∆
′
21, ∆22;Γ ([Tmix], (9) and (6))1293

(11) ∆1, ∆
′
21, ∆22 = ∆ ((1), (4) and (7))1294

(12) (P |x : A| Q) || R ⊢η ∆;Γ ((10) and (11))1295

1296

Case: [CM] right-to-left, (P |x : A| Q) || R ≡ P |x : A| (Q || R), x ∈ fn(Q).1297

Safe Session-Based Concurrency with Shared Linear State 45

(1)∆ = ∆1, ∆2 (2) P |x : A|Q ⊢η ∆1;Γ (3)R ⊢η ∆2;Γ , for some ∆1, ∆21298

([Tmix−1] and (P |x : A| Q) || R ⊢η ∆;Γ)1299

(4)∆1 = ∆11, ∆12 (5) P ⊢η ∆11, x : A;Γ (6)Q ⊢η ∆12, x : A;Γ , for some ∆11, ∆121300

([Tcut−1] and (2))1301

(7) Q || R ⊢η ∆12, x : A,∆2;Γ ([Tmix], (6) and (3))1302

(8) P |x : A| (Q || R) ⊢η ∆11, ∆12, ∆2;Γ ([Tcut], (5) and (7))1303

(9) ∆11, ∆12, ∆2 = ∆ ((4) and (1))1304

(10) P |x : A| (Q || R) ⊢η ∆;Γ ((8) and (9))1305

1306

Case: [CC] left-to-right,

P |x : A| (Q |y : B| R) ≡ (P |x : A| Q) |y : B| R, x, y ∈ fn(Q)

(1) ∆ = ∆1, ∆2 (2) P ⊢η ∆1, x : A;Γ (3) Q |y : B| R ⊢η ∆2, x :1307

A;Γ , for some ∆1, ∆2 ([Tcut−1] and P |x : A| (Q |y : B| R) ⊢η ∆;Γ)1308

(4) ∆2, x : A = ∆21, ∆22 (5) Q ⊢η ∆21, y : B;Γ (6) R ⊢η ∆22, y :1309

B;Γ , for some ∆21, ∆22 ([Tcut−1] and (3))1310

(7) ∆21 = ∆′
21, x : A, for some ∆′

21 ((4), (5) and x ∈ fn(Q))1311

(8) Q ⊢η ∆′
21, x : A, y : B;Γ ((5) and (7))1312

(9) P |x : A| Q ⊢η ∆1, ∆
′
21, y : B;Γ ([Tcut], (2), (8))1313

(10) (P |x : A| Q) |y : B| R ⊢η ∆1, ∆
′
21, ∆22;Γ ([Tcut], (9) and (6))1314

(11) ∆1, ∆
′
21, ∆22 = ∆ ((1), (4) and (7))1315

(12) (P |x : A| Q) |y : B| R ⊢η ∆;Γ ((10) and (11))1316

1317

Case: [CC] right-to-left,

(P |x : A| Q) |y : B| R ≡ P |x : A| (Q |y : B| R), x, y ∈ fn(Q)

(1) ∆ = ∆1, ∆2 (2) P |x : A| Q ⊢η ∆1, y : B;Γ (3) R ⊢η ∆2, y :1318

B;Γ , for some ∆1, ∆2 ([Tcut−1] and (P |x : A| Q) |y : B| R ⊢η ∆;Γ)1319

(4) ∆1, y : B = ∆11, ∆12 (5) P ⊢η ∆11, x : AΓ (6) Q ⊢η ∆12, x :1320

A;Γ , for some ∆11, ∆12 ([Tcut−1] and (2))1321

(7) ∆12 = ∆′
12, y : B, for some ∆′

12 ((4), (6) and y ∈ fn(Q))1322

(8) Q ⊢η ∆′
12, y : B, x : A;Γ ((6) and (7))1323

(9) Q |y : B| R ⊢η ∆′
12, x : A,∆2;Γ ([Tcut], (8) and (3))1324

(10) P |x : A| (Q |y : B| R) ⊢η ∆11, ∆
′
12, ∆2;Γ ([Tcut], (5) and (9))1325

(11) ∆11, ∆
′
12, ∆2 = ∆ ((1), (4) and (7))1326

(12) P |x : A| (Q |y : B| R) ⊢η ∆;Γ ((10) and (11))1327

1328

Case: [CC!] left-to-right,

P |x : A| (y.Q |!z : B| R) ≡ y.Q |!z : B| (P |x : A| R), z /∈ fn(P)

(1) ∆ = ∆1, ∆2 (2) P ⊢η ∆1, x : A;Γ (3) y.Q |!z : B| R ⊢η ∆2, x :1329

A;Γ , for some ∆1, ∆2 ([Tcut−1] and P |x : A| (y.Q |!z : B| R) ⊢η ∆;Γ)1330

(4) Q ⊢η y : B;Γ (5) R ⊢η ∆2, x : A;Γ, z : B ([Tcut!−1] and (3))1331

(6) P ⊢η ∆1, x : A;Γ, z : B (Lemma B.2([Tweaken]), (2) and z /∈ fn(P))1332

46 Pedro Rocha and Lúıs Caires

(7) P |x : A| R ⊢η ∆1, ∆2;Γ, z : B ([Tcut], (6) and (5))1333

(8) y.Q |!z : B| (P |x : A| R) ⊢η ∆1, ∆2;Γ ([Tcut!], (4) and (7))1334

(9) y.Q |!z : B| (P |x : A| R) ⊢η ∆;Γ ((1) and (8))1335

1336

Case: [CC!] right-to-left,

y.Q |!z : B| (P |x : A| R) ≡ P |x : A| (y.Q |!z : B| R), z /∈ fn(P)

(1) Q ⊢η y : B;Γ (2) P |x : A| R ⊢η ∆;Γ, z : B1337

([Tcut!−1] and y.Q |!z : B| (P |x : A| R) ⊢η ∆;Γ)1338

(3) ∆ = ∆1, ∆2 (4) P ⊢η ∆1, x : A;Γ, z : B (5) R ⊢η ∆2, x : A;Γ, z :1339

B, for some ∆1, ∆2 ([Tcut!−1] and (2))1340

(6) y.Q |!z : B| R ⊢η ∆2, x : A;Γ ([Tcut!], (1) and (5))1341

(7) P ⊢η ∆1, x : A;Γ (Lemma B.2([Tstrength], (4) and z /∈ fn(P))1342

(8) P |x : A| (y.Q |!z : B| R) ⊢η ∆1, ∆2;Γ ([Tcut], (7) and (5))1343

(9) P |x : A| (y.Q |!z : B| R) ⊢η ∆;Γ ((3) and (8))1344

1345

Case: [C!M] left-to-right, y.P |!x : A| (Q || R) ≡ (y.P |!x : A|Q) || R, x /∈ fn(R).1346

(1) P ⊢η y : A;Γ (2) Q || R ⊢η ∆;Γ, x : A1347

([Tcut!−1] and y.P |!x : A| (Q || R) ⊢η ∆;Γ)1348

(3)∆ = ∆1, ∆2 (4)Q ⊢η ∆1;Γ, x : A (5)R ⊢η ∆2;Γ, x : A, for some ∆1, ∆21349

([Tmix−1] and (2))1350

(5) y.P |!x : A| Q ⊢η ∆1;Γ ([Tcut!], (1) and (4))1351

(6) R ⊢η ∆2;Γ (Lemma B.2([Tstrength]), (5) and x /∈ fn(R))1352

(7) (y.P |!x : A| Q) || R ⊢η ∆1, ∆2;Γ ([Tmix], (5) and (6))1353

(8) (y.P |!x : A| Q) || R ⊢η ∆;Γ ((3) and (7))1354

1355

Case: [C!M] right-to-left, (y.P |!x : A|Q) || R ≡ y.P |!x : A| (Q || R), x /∈ fn(R).1356

(1) ∆ = ∆1, ∆2 (2) y.P |!x : A| Q ⊢η ∆1;Γ (3) R ⊢η ∆2;Γ1357

([Tmix−1] and (y.P |!x : A| Q) || R ⊢η ∆;Γ)1358

(4) P ⊢η y : A;Γ (5) Q ⊢η ∆1;Γ, x : A ([Tcut!−1] and (2))1359

(6) R ⊢η ∆2;Γ, x : A (Lemma B.2([Tweaken]) and (3))1360

(7) Q || R ⊢η ∆1, ∆2;Γ, x : A ([Tmix], (5) and (6))1361

(8) y.P |!x : A| (Q || R) ⊢η ∆1, ∆2;Γ ([Tcut!], (4) and (7))1362

(9) y.P |!x : A| (Q || R) ⊢η ∆;Γ ((1) and (8))1363

1364

Case: [C!C!] left-to-right,

y.P |!x : A| (w.Q |!z : B|R) ≡ w.Q |!z : B| (y.P |!x : A|R), x /∈ fn(Q), z /∈ fn(P)

(1) P ⊢η y : A;Γ (2) w.Q |!z : B| R ⊢η ∆;Γ, x : A1365

([Tcut!−1] and y.P |!x : A| (w.Q |!z : B| R) ⊢η ∆;Γ)1366

(3) Q ⊢η w : B;Γ, x : A (4) R ⊢η ∆;Γ, x : A, z : B ([Tcut!−1] and (2))1367

(5) P ⊢η y : A;Γ, z : B (Lemma B.2([Tweaken]), (1) and z /∈ fn(P))1368

(6) y.P |!x : A| R ⊢η ∆;Γ, z : B ([Tcut!], (5) and (4))1369

(7) Q ⊢η w : B;Γ (Lemma B.2([Tstrength]), (3) and x /∈ fn(Q)1370

(8) w.Q |!z : B| (y.P |!x : A| R) ⊢η ∆;Γ ([Tcut!], (7) and (6))1371

1372

Safe Session-Based Concurrency with Shared Linear State 47

Case: [C!C!] right-to-left,

w.Q |!z : B| (y.P |!x : A|R) ≡ y.P |!x : A| (w.Q |!z : B|R), x /∈ fn(Q), z /∈ fn(P)

(1) Q ⊢η w : B;Γ (2) y.P |!x : A| R ⊢η ∆;Γ, z : B1373

([Tcut!−1] and w.Q |!z : B| (y.P |!x : A| R) ⊢η ∆;Γ)1374

(3) P ⊢η y : A;Γ, z : B (4) R ⊢η ∆;Γ, z : B, x : A ([Tcut!−1] and (2))1375

(5) Q ⊢η w : B;Γ, x : A (Lemma B.2([Tweaken]), (1) and x /∈ fn(Q))1376

(6) w.Q |!z : B| R ⊢η ∆;Γ, x : A ([Tcut!], (5) and (4))1377

(7) P ⊢η y : A;Γ (Lemma B.2([Tstrength]), (3) and z /∈ fn(P))1378

(8) y.P |!x : A| (w.Q |!z : B| R) ⊢η ∆;Γ ([Tcut!], (7) and (6))1379

1380

Case: [CSh] left-to-right,

P |x : A| share y {Q || R} ≡ share y {P |x : A| Q || R}, x, y ∈ fn(Q)

(1) ∆ = ∆1, ∆2 (2) P ⊢η ∆1, x : A;Γ (3) share y {Q || R} ⊢η ∆2, x :1381

A;Γ , for some ∆1, ∆2 ([Tcut−1] and P |x : A| (share y {Q || R}) ⊢η ∆;Γ)1382

(4) ∆2, x : A = ∆21, ∆22, y : UX B (5) Q ⊢η ∆21, y : UX1 B;Γ1383

(6) R ⊢η ∆22, y : UX2
B;Γ (7) X1 ⊕X2 = X1384

, for some ∆21, ∆22, B,X1,X2,X ([Tsh−1] and (3))1385

(8) ∆21 = ∆′
21, x : A, for some ∆′

21 ((4), (5) and x ∈ fn(Q))1386

(9) Q ⊢η ∆′
21, x : A, y : UX1

B;Γ ((5) and (8))1387

(10) P |x : A| Q ⊢η ∆1, ∆
′
21, y : UX1 B;Γ ([Tcut], (2), (9))1388

(11) share y {(P |x : A| Q) || R} ⊢η ∆1, ∆
′
21, ∆22, y : UX B;Γ1389

([Tsh], (10), (6) and (7))1390

(12) ∆1, ∆
′
21, ∆22, y : UX B = ∆ ((1), (4) and (8))1391

(13) share y {(P |x : A| Q) || R} ⊢η ∆;Γ ((11) and (12))1392

1393

Case: [CSh] right-to-left,

share y {P |x : A| Q || R} ≡ P |x : A| share y {Q || R}, x, y ∈ fn(Q)

(1) ∆ = ∆1, ∆2, y : UX B (2) P |x : A| Q ⊢η ∆1, y : UX1
B;Γ1394

(3) R ⊢η ∆2, y : UX2
B;Γ (4) X1⊕X2 = X , for some ∆1, ∆2, B,X1,X2,X1395

([Tsh−1] and share y {P |x : A| Q || R} ⊢η ∆;Γ)1396

(5) ∆1, y : UX1 B = ∆11, ∆12 (6) P ⊢η ∆11, x : A;Γ (7) Q ⊢η ∆12, x :1397

A;Γ , for some ∆11, ∆12 ([Tcut−1] and (2))1398

(8) ∆12 = ∆′
12, y : UX1

B, for some ∆′
12 ((5), (7) and y ∈ fn(Q))1399

(9) Q ⊢η ∆′
12, y : UX1

B, x : A;Γ ((7) and (8))1400

(10) share y {Q ||R} ⊢η ∆′
12, x : A,∆2, y : UX B;Γ ([Tsh], (9), (3) and (4))1401

(11) P |x : A| (Q |y : B|R) ⊢η ∆11, ∆
′
12, ∆2, y : UX B;Γ ([Tcut], (6) and (10))1402

(12) ∆11, ∆
′
12, ∆2, y : UX B = ∆ ((1), (5) and (8))1403

(13) P |x : A| (share y {Q || R}) ⊢η ∆;Γ ((11) and (12))1404

1405

Case: [ShM] left-to-right,

share x {P || (Q || R)} ≡ share x {P || Q} || R, x ∈ fn(Q)

48 Pedro Rocha and Lúıs Caires

(1) ∆ = ∆1, ∆2, x : UX A (2) P ⊢η ∆1, x : UX1
A;Γ1406

(3)Q ||R ⊢η ∆2, x : UX2
A;Γ (4) X1⊕X2 = X , for some ∆1, ∆2, A,X1,X2,X1407

([Tsh−1] and share x {P || (Q || R)} ⊢η ∆;Γ)1408

(5) ∆2, x : UX2 A = ∆21, ∆22 (6) Q ⊢η ∆21;Γ1409

(7) R ⊢η ∆22;Γ , for some ∆21, ∆22 ([Tmix−1] and (3))1410

(8) ∆21 = ∆′
21, x : UX2

A, for some ∆′
21 ((5), (6) and x ∈ fn(Q))1411

(9) Q ⊢η ∆′
21, x : UX2

A ((6) and (8))1412

(10) share x {P || Q} ⊢η ∆1, ∆
′
21, x : UX A;Γ ([Tsh], (2), (9) and (4))1413

(11) (share x {P ||Q}) ||R ⊢η ∆1, ∆
′
21, ∆22, x : UX A;Γ ([Tmix], (10) and (7))1414

(12) ∆1, ∆
′
21, ∆22, x : UX A = ∆ ((1), (5) and (8))1415

(13) (share x {P || Q}) || R ⊢η ∆;Γ ((11) and (12))1416

1417

Case: [ShM] right-to-left,

share x {P || Q} || R ≡ share x {P || (Q || R)}, x ∈ fn(Q)

(1)∆ = ∆1, ∆2 (2) share x {P ||Q} ⊢η ∆1;Γ (3)R ⊢η ∆2;Γ , for some ∆1, ∆21418

([Tmix−1] and (share x {P || Q}) || R ⊢η ∆;Γ)1419

(4) ∆1 = ∆11, ∆12, x : UX A (5) P ⊢η ∆11, x : UX1
A;Γ1420

(6)Q ⊢η ∆12, x : UX2
A;Γ (7) X1⊕X2 = X , for some ∆11, ∆12, A,X1,X2,X1421

([Tsh−1] and (2))1422

(8) Q || R ⊢η ∆12, x : UX2 A,∆2;Γ ([Tmix], (6) and (3))1423

(9) share x {P || (Q ||R)} ⊢η ∆11, ∆12, ∆2, x : UX A;Γ ([Tsh], (5) and (8))1424

(10) ∆11, ∆12, ∆2, x : UX A = ∆ ((4) and (1))1425

(11) share x {P || (Q || R)} ⊢η ∆;Γ ((9) and (10))1426

1427

Case: [ShC!] left-to-right,

share x {P || (y.Q |!z : B| R)} ≡ y.Q |!z : B| (share x {P || R}), z /∈ fn(P)

(1) ∆ = ∆1, ∆2, x : UX A (2) P ⊢η ∆1, x : UX1
A;Γ1428

(3) y.Q |!z : B| R ⊢η ∆2, x : UX2
A;Γ1429

(4) X1 ⊕X2 = X , for some ∆1, ∆2, A,X1,X2,X1430

([Tsh−1] and share x {P || (y.Q |!z : B| R)} ⊢η ∆;Γ)1431

(5) Q ⊢η y : B;Γ (6) R ⊢η ∆2, x : UX2 A;Γ, z : B ([Tcut!−1] and (3))1432

(7) P ⊢η ∆1, x : UX1 A;Γ, z : B (Lemma B.2([Tweaken]), (2) and z /∈ fn(P))1433

(8) share x {P || R} ⊢η ∆1, ∆2, x : UX A;Γ, z : B ([Tsh], (7), (6) and (4))1434

(9) y.Q |!z : B| (share x {P ||R}) ⊢η ∆1, ∆2, x : UX A;Γ ([Tcut!], (5) and (8))1435

(10) y.Q |!z : B| (share x {P || R}) ⊢η ∆;Γ ((1) and (9))1436

1437

Case: [ShC!] right-to-left,

y.Q |!z : B| (share x {P || R}) ≡ share x {P || (y.Q |!z : B| R)}, z /∈ fn(P)

(1) Q ⊢η y : B;Γ (2) share x {P || R} ⊢η ∆;Γ, z : B1438

([Tcut!−1] and y.Q |!z : B| (share x {P || R}) ⊢η ∆;Γ)1439

(3) ∆ = ∆1, ∆2, x : UX A (4) P ⊢η ∆1, x : UX1
A;Γ, z : B1440

Safe Session-Based Concurrency with Shared Linear State 49

(5)R ⊢η ∆2, x : UX2
A;Γ, z : B (6) X1⊕X2 = X , for some ∆1, ∆2, A,X1,X2,X1441

([Tsh−1] and (2))1442

(7) y.Q |!z : B| R ⊢η ∆2, x : UX2 A;Γ ([Tcut!], (1) and (5))1443

(8) P ⊢η ∆1, x : UX1 A;Γ (Lemma B.2([Tstrength]), (4) and z /∈ fn(P))1444

(9) share x {P || (y.Q |!z : B| R)} ⊢η ∆1, ∆2, x : UX A;Γ1445

([Tsh], (8), (7) and (6))1446

(10) share x {P || (y.Q |!z : B| R)} ⊢η ∆;Γ ((3) and (9))1447

1448

Case: [ShSh] left-to-right,

share x {P || (share y {Q ||R})} ≡ share y {(share x {P ||Q}) ||R}, x, y ∈ fn(Q)

(1) ∆ = ∆1, ∆2, x : UX A (2) P ⊢η ∆1, x : UX1 A;Γ1449

(3) share y {Q || R} ⊢η ∆2, x : UX2
A;Γ1450

(4) X1 ⊕X2 = X , for some ∆1, ∆2, A,X1,X2,X1451

([Tsh−1] and share x {P || (share y {Q || R})} ⊢η ∆;Γ)1452

(5) ∆2, x : UX2
A = ∆21, ∆22, y : UY B (6) Q ⊢η ∆21, y : UY1

B;Γ1453

(7) R ⊢η ∆22, y : UY2 B;Γ (8) Y1 ⊕ Y2 = Y, for some ∆21, ∆22,Y1,Y2,Y1454

([Tsh−1] and (3))1455

(9) ∆21 = ∆′
21, x : UX2

A, for some ∆′
21 ((5), (6) and x ∈ fn(Q))1456

(10) Q ⊢η ∆′
21, x : UX2

A, y : UY1
B;Γ ((6) and (9))1457

(11) share x {P ||Q} ⊢η ∆1, ∆
′
21, x : UX A, y : UY1

B;Γ ([Tsh], (2), (10) an (4))1458

(12) share y {(share x {P || Q}) || R} ⊢η ∆1, ∆
′
21, ∆22, x : UX A, y : UY B;Γ1459

([Tsh], (11), (7) and (8))1460

(13) ∆1, ∆
′
21, ∆22, x : UX A, y : UY B = ∆ ((1), (5) and (9))1461

(14) share y {(share x {P || Q}) || R} ⊢η ∆;Γ ((11) and (12))1462

1463

Case: [ShSh] right-to-left,

share y {(share x {P ||Q}) ||R} ≡ share x {P || (share y {Q ||R})}, x, y ∈ fn(Q)

(1) ∆ = ∆1, ∆2, y : UY B (2) share x {P || Q} ⊢η ∆1, y : UY1 B;Γ1464

(3) R ⊢η ∆2, y : UY2 B;Γ (4) Y1 ⊕ Y2 = Y, for some ∆1, ∆2, B,Y1,Y2,Y1465

([Tsh−1] and share y {(share x {P || Q}) || R} ⊢η ∆;Γ)1466

(5) ∆1, y : UY1
B = ∆11, ∆12, x : UX A (6) P ⊢η ∆11, x : UX1

AΓ1467

(7)Q ⊢η ∆12, x : UX2
A;Γ (8) X1⊕X2 = X , for some ∆11, ∆12, A,X1,X2,X1468

([Tsh−1] and (2))1469

(9) ∆12 = ∆′
12, y : UY1 B, for some ∆′

12 ((5), (7) and y ∈ fn(Q))1470

(10) Q ⊢η ∆′
12, y : UY1

B, x : UX2
A;Γ ((7) and (9))1471

(11) share y {Q ||R} ⊢η ∆′
12, x : UX2

A, y : UY B,∆2;Γ ([Tsh], (10), (3) and (4))1472

(12) share x {P || (share y {Q || R})} ⊢η ∆11, ∆
′
12, ∆2, x : UX A, y : UY B;Γ1473

([Tsh], (6) and (11))1474

(13) ∆11, ∆
′
12, ∆2, x : UX A, y : UY B = ∆ ((1), (5) and (9))1475

(14) share x {P || (share y {Q || R})} ⊢η ∆;Γ ((12) and (13))1476

1477

Case: [D-C!M] left-to-right,

y.P |!x : A| (Q || R) ≡ (y.P |!x : A| Q) || (y.P |!x : A| R)

50 Pedro Rocha and Lúıs Caires

(1) P ⊢η y : A;Γ (2) Q || R ⊢η ∆;Γ, x : A1478

([Tcut!−1] and y.P |!x : A| (Q || R) ⊢η ∆;Γ)1479

(3)∆ = ∆1, ∆2 (4)Q ⊢η ∆1;Γ, x : A (5)R ⊢η ∆2;Γ, x : A, for some∆1, ∆21480

([Tmix−1] and (2))1481

(6) y.P |!x : A| Q ⊢η ∆1;Γ ([Tcut!], (1) and (4))1482

(7) y.P |!x : A| R ⊢η ∆2;Γ ([Tcut!], (1) and (5))1483

(8) (y.P |!x : A| Q) || (y.P |!x : A| R) ⊢η ∆1, ∆2;Γ ([Tmix], (6) and (7))1484

(9) (y.P |!x : A| Q) || (y.P |!x : A| R) ⊢η ∆;Γ ((3) and (8))1485

1486

Case: [D-C!M] right-to-left,

(y.P |!x : A| Q) || (y.P |!x : A| R) ≡ y.P |!x : A| (Q || R)

(1) ∆ = ∆1, ∆2 (2) y.P |!x : A| Q ⊢η ∆1;Γ1487

(3) y.P |!x : A| R ⊢η ∆2;Γ , for some ∆1, ∆21488

([Tmix−1] and (y.P |!x : A| Q) || (y.P |!x : A| R) ⊢η ∆;Γ)1489

(4) P ⊢η y : A;Γ (5) Q ⊢η ∆1;Γ, x : A ([Tcut!−1] and (2))1490

(6) R ⊢η ∆2;Γ, x : A ([Tcut!−1] and (3))1491

(7) Q || R ⊢η ∆1, ∆2;Γ, x : A ([Tmix], (5) and (6))1492

(8) y.P |!x : A| (Q || R) ⊢η ∆1, ∆2;Γ ([Tcut!], (4) and (7))1493

(9) y.P |!x : A| (Q || R) ⊢η ∆;Γ ((1) and (8))1494

1495

Case: [D-C!C] left-to-right,

y.P |!x : A| (Q |z : B| R) ≡ (y.P |!x : A| Q) |z : B| (y.P |!x : A| R)

(1) P ⊢η y : A;Γ (2) Q |z : B| R ⊢η ∆;Γ, x : A1496

([Tcut!−1 and y.P |!x : A| (Q |z : B| R) ⊢η ∆;Γ)1497

(3) ∆ = ∆1, ∆2 (4) Q ⊢η ∆1, z : B;Γ, x : A (5)1498

R ⊢η ∆2, z : B;Γ, x : A, for some ∆1, ∆21499

([Tcut!−1] and (2))1500

(6) y.P |!x : A| Q ⊢η ∆1, z : B;Γ ([Tcut!], (1) and (4))1501

(7) y.P |!x : A| R ⊢η ∆2, z : B;Γ ([Tcut!], (1) and (5))1502

(8) (y.P |!x : A|Q) |z : B| (y.P |!x : A|R) ⊢η ∆1, ∆2;Γ ([Tcut], (6) and (7))1503

(9) (y.P |!x : A| Q) |z : B| (y.P |!x : A| R) ⊢η ∆;Γ ((3) and (8))1504

1505

Case: [D-C!C] right-to-left,

(y.P |!x : A| Q) |z : B| (y.P |!x : A| R) ≡ y.P |!x : A| (Q |z : B| R)

(1) ∆ = ∆1, ∆2 (2) y.P |!x : A| Q ⊢η ∆1, z : B;Γ1506

(3) y.P |!x : A| R ⊢η ∆2, z : B;Γ , for some ∆1, ∆21507

([Tcut−1] and (y.P |!x : A| Q) |z : B| (y.P |!x : A| R) ⊢η ∆;Γ)1508

(4) P ⊢η y : A;Γ (5) Q ⊢η ∆1, z : B;Γ, x : A ([Tcut−1] and (2))1509

(6) R ⊢η ∆2, z : B;Γ, x : A ([Tcut!−1] and (3))1510

(7) Q |z : B| R ⊢η ∆1, ∆2;Γ, x : A ([Tcut], (5) and (6))1511

(8) y.P |!x : A| (Q |z| R) ⊢η ∆1, ∆2;Γ ([Tcut!], (4) and (7))1512

(9) y.P |!x : A| (Q |z| R) ⊢η ∆;Γ ((1) and (8))1513

1514

Safe Session-Based Concurrency with Shared Linear State 51

Case: [D-C!C!] left-to-right,

y.P |!x : A| (w.Q |!z : B| R) ≡ w.(y.P |!x : A| Q) |!z : B| (y.P |!x : A| R)

(1) P ⊢η y : A;Γ (2) w.Q |!z : B| R ⊢η ∆;Γ, x : A1515

([Tcut!−1] and y.P |!x : A| (w.Q |!z : B| R) ⊢η ∆;Γ)1516

(3) Q ⊢η w : B;Γ, x : A (4) R ⊢η ∆;Γ, x : A, z : B ([Tcut!−1] and (2))1517

(5) y.P |!x : A| Q ⊢η w : B;Γ ([Tcut!] (1) and (3))1518

(6) y.P |!x : A| R ⊢η ∆;Γ, z : B ([Tcut!], (1) and (4))1519

(7) w.(y.P |!x : A|Q) |!z : B| (y.P |!x : A|R) ⊢η ∆;Γ ([Tcut!], (5) and (6))1520

1521

Case: [D-C!C!] right-to-left,

w.(y.P |!x : A| Q) |!z : B| (y.P |!x : A| R) ≡ y.P |!x : A| (w.Q |!z : B| R)

(1) y.P |!x : A| Q ⊢η w : B;Γ (2) y.P |!x : A| R ⊢η ∆;Γ, z : B1522

([Tcut!−1] and w.(y.P |!x : A| Q) |!z : B| (y.P |!x : A| R) ⊢η ∆;Γ)1523

(3) P ⊢η y : A;Γ (4) Q ⊢η w : B;Γ, x : A ([Tcut!−1] and (1))1524

(5) R ⊢η ∆;Γ, z : B, x : A ([Tcut!−1] and (2))1525

(6) w.Q |!z : B| R ⊢η ∆;Γ, x : A ([Tcut!], (4) and (5))1526

(7) y.P |!x : A| (w.Q |!z| R) ⊢η ∆;Γ ([Tcut!], (3) and (6))1527

1528

Case: [D-C!Sh] left-to-right,

y.P |!x : A| share z {Q || R} ≡ share z {(y.P |!x : A| Q) || (y.P |!x : A| R)}

(1) P ⊢η y : A;Γ (2) share z {Q || R} ⊢η ∆;Γ, x : A1529

([Tcut!−1] and y.P |!x : A| (share z {Q || R}) ⊢η ∆;Γ)1530

(3) ∆ = ∆1, ∆2, z : UY B (4) Q ⊢η ∆1, z : UY1 B;Γ, x : A1531

(5)R ⊢η ∆2, z : UY2
B;Γ, x : A (6) Y1⊕Y2 = Y, for some∆1, ∆2, B,Y1,Y2,Y1532

([Tsh−1] and (2))1533

(7) y.P |!x : A| Q ⊢η ∆1, z : UY1
B;Γ ([Tcut!], (1) and (4))1534

(8) y.P |!x : A| R ⊢η ∆2, z : UY2
B;Γ ([Tcut!], (1) and (5))1535

(9) share z {(y.P |!x : A| Q) || (y.P |!x : A| R)} ⊢η ∆1, ∆2, z : UY B;Γ1536

([Tsh], (7), (8) and (6))1537

(10) share z {(y.P |!x : A| Q) || (y.P |!x : A| R)} ⊢η ∆;Γ ((3) and (9))1538

1539

Case: [D-C!Sh] right-to-left,

share z {(y.P |!x : A| Q) || (y.P |!x : A| R)} ≡ y.P |!x : A| share z {Q || R}

(1) ∆ = ∆1, ∆2, z : UY B (2) y.P |!x : A| Q ⊢η ∆1, z : UY1 B;Γ1540

(3) y.P |!x : A| R ⊢η ∆2, z : UY2 B;Γ1541

(4) Y1 ⊕ Y2 = Y, for some ∆1, ∆2, B,Y1,Y2,Y1542

([Tsh−1] and share z {(y.P |!x : A| Q) || (y.P |!x : A| R)} ⊢η ∆;Γ)1543

(5) P ⊢η y : A;Γ (6) Q ⊢η ∆1, z : UY1
B;Γ, x : A ([Tcut!−1] and (2))1544

(7) R ⊢η ∆2, z : UY2
B;Γ, x : A ([Tcut!−1] and (3))1545

52 Pedro Rocha and Lúıs Caires

(8) share z {Q || R} ⊢η ∆1, ∆2, z : UY B;Γ, x : A ([Tsh], (6), (7) and (4))1546

(9) y.P |!x : A| (share z {Q ||R}) ⊢η ∆1, ∆2, z : UY B;Γ ([Tcut!], (5) and (8))1547

(10) y.P |!x : A| (share z {Q || R}) ⊢η ∆;Γ ((1) and (9)1548

1549

Case: [ShRel] share x {release x || P} ≤ P .1550

(1) ∆ = ∆1, ∆2, x : UX A (2) release x ⊢η ∆1, x : UX1
A;Γ1551

(3) P ⊢η ∆2, x : UX2 A;Γ (4) X1⊕X2 = X , for some ∆1, ∆2, A,X1,X2,X1552

([Tsh−1] and share x {release x || P} ⊢η ∆;Γ)1553

(5) ∆1 = ∅ (6) X1 = f ([Tfree−1] and (2))1554

(7) P ⊢η ∆1, ∆2, x : UX2
A;Γ ((3) and (5))1555

(8) X = X2 ((4) and (6))1556

(9) P ⊢η ∆;Γ ((1), (7) and (8))1557

1558

Case: [ShTake],

share x {take x(y1);P1 || take x(y2);P2)}
≤ take x(y1); share x {P1 || take x(y2);P2}

(1) ∆ = ∆1, ∆2, x : UX A (2) take x(y1);P1 ⊢η ∆1, x : UX1
A;Γ1559

(3) take x(y2);P2 ⊢η ∆2, x : UX2 A;Γ (4) X1⊕X2 = X , for some ∆1, ∆2, A,X1,X2,X1560

([Tsh−1] and share x {take x(y1);P1 || take x(y2);P2} ⊢η ∆;Γ)1561

(5) P1 ⊢η ∆1, x : U◦A, y1 : ∨A;Γ (6) X1 = f, X2 = e ([Ttake−1] and (2) and (3))1562

(6) share x {P1 || take x(y2);P2} ⊢η ∆1, ∆2, x : U◦A, y1 : ∨A;Γ ([Tsh],(5), (4) and (6))1563

(7) take x(y1); share x {P1 || take x(y2);P2} ⊢η ∆1, ∆2, x : U•A;Γ ([Ttake] and (6))1564

(8) take x(y1); share x {P1 || take x(y2);P2} ⊢η ∆;Γ ((7), (1) and (6))1565

Case: [ShPut], share x {put x(y.P);Q || R} ≤ put x(y.P); share x {Q || R}.1566

(1) ∆ = ∆1, ∆2, x : UX A (2) put x(y.P);Q ⊢η ∆1, x : UX1
A;Γ1567

(3) R ⊢η ∆2, x : UX2
A;Γ (4) X1 ⊕X2 = X , for some A,∆1, ∆2,X1,X2,X1568

([Tsh−1] and share x {put x(y.P);Q || R} ⊢η ∆;Γ)1569

(5) X1 = e (6) ∆1 = ∆11, ∆12 (7) P ⊢η ∆11, y : ∧A;Γ (8) Q ⊢η ∆12, x :1570

U•A;Γ ([Tput−1] and (2))1571

(9) X2 = f (10) X = e ((4) and (5))1572

(10) share x {Q ||R} ⊢η ∆12, ∆2, x : U•A;Γ ([Tsh], (8), (3), (9) and f ⊕ f = f)1573

(11) put x(y.P); share x {Q ||R} ⊢η ∆11, ∆12, ∆2, x : U◦A;Γ ([Tput], (7) and (10))1574

(12) ∆11, ∆12, ∆2, x : U◦A = ∆ ((1), (6) and (10))1575

(13) put x(y.P); share x {Q || R} ⊢η ∆;Γ ((11) and (12))1576

1577

Case: [0M] left-to-right, P || 0 ≡ P .1578

(1) ∆ = ∆1, ∆2 (2) P ⊢η ∆1;Γ (3) 0 ⊢η ∆3;Γ , for some ∆1, ∆21579

([Tmix−1] and P || 0 ⊢η ∆;Γ)1580

(4)∆3 = ∅ ([T0−1] and (3))1581

(5)∆ = ∆1 ((1) and (4))1582

(6)P ⊢η ∆;Γ ((2) and (5))1583

1584

Case: [0M] right-to-left, P ≡ P || 0.1585

Safe Session-Based Concurrency with Shared Linear State 53

(1) 0 ⊢η ∅;Γ ([T0])1586

(2) P || 0 ⊢η ∆;Γ ([Tmix], P ⊢η ∆;Γ and (1))1587

1588

Theorem B.2 (Type Preservation →). If P ⊢η ∆;Γ and P → Q, then1589

Q ⊢η ∆;Γ .1590

Proof. By induction on a derivation tree for P → Q and case analysis on the1591

root rule.1592

Case: [fwd], fwd x y |y : A| P → {x/y}P .1593

(1)∆ = ∆1, ∆2 (2) fwd x y ⊢η ∆1, y : A;Γ (3) P ⊢η ∆2, y : A;Γ , for some ∆1, ∆21594

([Tcut−1] and fwd x y |y : A| P ⊢η ∆;Γ)1595

(4) ∆1, y : A = x : B, y : B, for some B ([Tfwd−1] and (2))1596

(5) ∆1 = x : A and A = B ((4))1597

(6) {x/y}P ⊢η ∆2, x : A;Γ (Lemma B.4(1) and (3))1598

(7) {x/y}P ⊢η ∆2, ∆1;Γ ((5) and (6))1599

(8) {x/y}P ⊢η ∆;Γ ((1) and (7))1600

1601

Case: [1⊥], close x |x : 1| wait x;P → P .1602

(1) ∆ = ∆1, ∆2 (2) close x ⊢η ∆1, x : 1;Γ (3) wait x;P ⊢η ∆2, x :1603

⊥;Γ , for some ∆1, ∆2 ([Tcut−1] and close x |x : 1| wait x;P ⊢η ∆;Γ)1604

(3) ∆1 = ∅ ([T1−1] and (2))1605

(4) P ⊢η ∆2;Γ ([T⊥−1] and (3))1606

(5) P ⊢η ∆;Γ ((1), (3) and (4))1607

1608

Case: [⊗O], send x(y.P);Q |x : A ⊗ B| recv x(z);R → Q |x : B| (P |y :1609

A| {y/z}R).1610

(1) ∆ = ∆1, ∆2 (2) send x(y.P);Q ⊢η ∆1, x : A⊗B;Γ (3) recv x(z);R ⊢η1611

∆2, x : AOB;Γ1612

for some ∆1, ∆2 ([Tcut−1] and send x(y.P);Q |x : A⊗B| recv x(z);R ⊢η ∆;Γ)1613

(4)∆1 = ∆11, ∆12 (5) P ⊢η ∆11, y : A;Γ (6)Q ⊢η ∆12, x : B;Γ , for some ∆11, ∆121614

([T⊗−1] and (2))1615

(7) R ⊢η ∆2, z : A, x : B;Γ ([TO−1] and (3))1616

(8) {y/z}R ⊢η ∆2, y : A, x : B;Γ (Lemma B.4(1) and (7))1617

(9) P |y : A| {y/z}R ⊢η ∆11, ∆2, x : B;Γ ([Tcut], (5) and (8))1618

(10) Q |x : B| (P |y : A| {y/z}R) ⊢η ∆12, ∆11, ∆2;Γ ([Tcut], (6) and (9))1619

(11) Q |x : B| (P |y : A| {y/z}R) ⊢η ∆;Γ ((1), (4) and (10))1620

1621

Case: [N⊕l], case x {|inl : P, |inr : Q} |x : ANB| x.inl;R→ P |x : A| R.1622

(1) ∆ = ∆1, ∆2 (2) case x {|inl : P, |inr : Q} ⊢η ∆1, x : ANB;Γ1623

(3) x.inl;R ⊢η ∆2, x : A⊕B;Γ , for some ∆1, ∆21624

([Tcut−1] and case x {|inl : P, |inr : Q} |x : ANB| x.inl;R ⊢η ∆;Γ1625

(4) P ⊢η ∆1, x : A (5) Q ⊢η ∆1, x : B;Γ ([TN−1] and (2))1626

(6) R ⊢η ∆2, x : A;Γ (T⊕−1
l] and (3))1627

(7) P |x : A| R ⊢η ∆1, ∆2;Γ ([Tcut], (4) and (6))1628

(8) P |x : A| R ⊢η ∆;Γ ((1) and (7))1629

1630

54 Pedro Rocha and Lúıs Caires

Case: [N⊕r], case x {|inl : P, |inr : Q} |x : ANB| x.inr;R→ Q |x : B| R.1631

(1) ∆ = ∆1, ∆2 (2) case x {|inl : P, |inr : Q} ⊢η ∆1, x : ANB;Γ1632

(3) x.inr;R ⊢η ∆2, x : A⊕B;Γ , for some ∆1, ∆21633

(Tcut−1] and case x {|inl : P, |inr : Q} |x : ANB| x.inl;R ⊢η ∆;Γ1634

(4) P ⊢η ∆1, x : A (5) Q ⊢η ∆1, x : B;Γ ([TN−1] and (2))1635

(6) R ⊢η ∆2, x : B;Γ ([T⊕−1
r] and (3))1636

(7) Q |x : B| R ⊢η ∆1, ∆2;Γ ([Tcut], (5) and (6))1637

(8) P |x : A| R ⊢η ∆;Γ ((1) and (7))1638

1639

Case: [!?], !x(y);P |x :!A| ?x;Q→ y.P |!x : A| Q.1640

(1) ∆ = ∆1, ∆2 (2) !x(y);P ⊢η ∆1, x :!A;Γ1641

(3) ?x;Q ⊢η ∆2, x :?A;Γ , for some ∆1, ∆21642

([Tcut−1] and !x(y);P |x :!A| ?x;Q ⊢η ∆;Γ1643

(4) ∆1 = ∅ (5) P ⊢η y : A;Γ ([T!−1] and (2))1644

(6) Q ⊢η ∆2;Γ, x : A ([T?−1] and (3))1645

(7) y.P |!x : A| Q ⊢η ∆2;Γ ([Tcut!], (5) and (6))1646

(8) y.P |!x : A| Q ⊢η ∆;Γ ((1), (4) and (7))1647

1648

Case: [call], y.P |!x : A| call x(z);Q→ {z/y}P |z : A| (y.P |!x : A| Q).1649

(1) P ⊢η y : A;Γ (2) call x(z);Q ⊢η ∆;Γ, x : A1650

([Tcut!−1] and y.P |!x : A| call x(z);Q ⊢η ∆;Γ1651

(3) Q ⊢η ∆, z : A;Γ, x : A ([Tcall−1] and (2))1652

(4) y.P |!x : A| Q ⊢η ∆, z : A;Γ ([Tcut!], (1) and (3))1653

(5) {z/y}P ⊢η z : A;Γ (Lemma B.4(1) and (1))1654

(6) {z/y}P |z : A| (y.P |!x : A| Q) ⊢η ∆;Γ ([Tcut], (5) and (4))1655

1656

Case: [∃∀], sendty x(A);P |x : ∃X.B| recvty x(X);Q→ P |x : {A/X}B| {A/X}Q.1657

(1) ∆ = ∆1, ∆2 (2) sendty x(A);P ⊢η ∆1, x : ∃X.B;Γ1658

(3) recvty x(X);Q ⊢η ∆2, x : ∀X.B;Γ , for some ∆1, ∆21659

([Tcut−1] and sendty x(A);P |x : ∃X.B| recvty x(X);Q ⊢η ∆;Γ1660

(4) P ⊢η ∆1, x : {A/X}B;Γ ([T∃−1] and (2))1661

(5) Q ⊢η ∆2, x : B;Γ ([T∀−1] and (3))1662

(6) {A/X}Q ⊢η ∆2, x : {A/X}B;Γ (Lemma B.4(2) and (5))1663

(7) {A/X}Q ⊢η ∆2, x : {A/X}B;Γ ({A/X}B = {A/X}B and (6))1664

(8) P |x : {A/X}B| {A/X}Q ⊢η ∆1, ∆2;Γ ([Tcut], (4) and (7))1665

(9) P |x : {A/X}B| {A/X}Q ⊢η ∆;Γ ((1) and (8))1666

1667

Case: [µν] , unfoldµ x;P |x : µX. A| unfoldν x;Q→ P |x : {µX. A/X}A| Q.1668

(1) ∆ = ∆1, ∆2 (2) unfoldµ x;P ⊢η ∆1, x : µX. A;Γ1669

(3)unfoldν x;Q ⊢η ∆2, x : νX. {X/X}A;Γ , for some ∆1, ∆21670

([Tcut−1] and unfoldµ x;P |x : µX. A| unfoldν x;Q ⊢ ∆;Γ)1671

(4) P ⊢η ∆1, x : {µX. A/X}A;Γ ([Tµ−1] and (2))1672

(5) Q ⊢η ∆2, x : {νX. {X/X}A/X}({X/X}A);Γ ([Tν−1] and (3))1673

(6) Q ⊢η ∆2, x : {µX. A/X}A;Γ ((5) and (*)1674

(7) P |x : {µX. A/X}A| Q ⊢η ∆1, ∆2;Γ ([Tcut], (5) and (6))1675

Safe Session-Based Concurrency with Shared Linear State 55

(8) P |x : {µX. A/X}A| Q ⊢η ∆;Γ ((7) and (1))1676

1677

To obtain (*):

{νX. {X/X}A/X}({X/X}A) = {νX. {X/X}A/X}A)
= {(µX. {X/X}{X/X}A)/X}A
= {(µX. {X/X}{X/X}A)/X}A)
= {(µX. {X/X}{X/X}A)/X}A)
= {µX. A/X}A

Case: [corec],

unfoldµ x;P |x : µX. A| corec Y (z, w⃗);Q [x, y⃗]
→ P |x : {µX. A/X}A| σ({corec Y (z, w⃗);Q/Y }Q)

where σ is the substitution map given by σ = {x/z}{y⃗/w⃗}.1678

(1) ∆ = ∆1, ∆2 (2) unfoldµ x;P ⊢η ∆1, x : µX. A;Γ1679

(3) corec Y (z, w⃗);Q [x, y⃗] ⊢η ∆2, x : νX. {X/X}A;Γ , for some ∆1, ∆21680

([Tcut−1] and unfoldµ x;P |x : µX. A| corec Y (x, y⃗);Q ⊢ ∆;Γ)1681

(4) P ⊢η ∆1, x : {µX. A/X}A;Γ ([Tµ−1] and (2))1682

(5) η′ = η, Y (z, w⃗) 7→ σ−1(∆2, z : X;Γ) (6)Q ⊢η′ σ−1(∆2, z : {X/X}A;Γ)1683

([Tloop−1] and (3))1684

(7) {corec Y (z, w⃗);Q/Y }Q ⊢η σ−1(∆2, x : {νX. {X/X}A/X}({X/X}A);Γ)1685

(Lemma B.4(3), (3), (5) and (6))1686

(8) σ({corec Y (z, w⃗);Q/Y }Q) ⊢η ∆2, x : {νX. {X/X}A/X}({X/X}A);Γ1687

((7) and since σ−1 is the inverse of σ1688

(9) σ({corec Y (x, y⃗);Q/Y }Q) ⊢η ∆2, x : {µX. A/X}A;Γ ((8) and (*) from case [µν] above)1689

(10) P |x : {µX. A/X}A| {corec Y (x, y⃗);Q/Y }Q ⊢η ∆1, ∆2;Γ ([Tcut], (4) and (9))1690

(11) P |x : {µX. A/X}A| {corec Y (x, y⃗);Q/Y }Q ⊢η ∆;Γ ((1) and (10))1691

1692

Case: [∧∨d], affine⃗b,⃗c a;P |a : ∧A| discard a→ discard b⃗ || release c⃗.1693

(1) ∆ = ∆1, ∆2 (2) affine⃗b,⃗c a;P ⊢η ∆1, v : ∧A;Γ1694

(3) discard a ⊢η ∆2, v : ∨A;Γ , for some ∆1, ∆21695

([Tcut−1] and affine⃗b,⃗c a;P |a : ∧A| discard a ⊢η ∆;Γ)1696

(4) ∆1 = b⃗ : ∨B⃗, c⃗ : U•C⃗ (5) P ⊢η ∆1, a : A;Γ , for some b⃗, B⃗, c⃗, C⃗1697

([Taffine−1] and (2))1698

(6) ∆2 = ∅ ([Tdiscard−1] and (3))1699

(7) discard b⃗ || release c⃗ ⊢η b⃗ : ∨B⃗, c⃗ : U•C⃗;Γ ([Tmix], [Tdiscard] and [Trelease])1700

(8) b⃗ : ∨B⃗, c⃗ : U•C⃗ = ∆ ((1), (4) and (6))1701

(9) discard b⃗ || release c⃗ ⊢η ∆;Γ ((7) and (8))1702

1703

Case: [∧∨u], affine⃗b,⃗c a;P |a : ∧A| use a;Q→ P |a : A| Q.1704

(1) ∆ = ∆1, ∆2 (2) affine⃗b,⃗c a;P ⊢η ∆1, v : ∧A;Γ1705

(3) use a;Q ⊢η ∆2, v : ∨A;Γ , for some ∆1, ∆21706

([Tcut−1] and affine⃗b,⃗c a;P |a : ∧A| use a;Q ⊢η ∆;Γ1707

56 Pedro Rocha and Lúıs Caires

(4) ∆1 = b⃗ : ∨B⃗, c⃗ : U•C⃗ (5) P ⊢η ∆1, a : A;Γ , for some b⃗, B⃗, c⃗, C⃗1708

([Taffine−1] and (2))1709

(6) Q ⊢η ∆2, a : A;Γ ([Tuse−1] and (3))1710

(7) P |a : A| Q ⊢η ∆1, ∆2;Γ ([Tcut], (5) and (6))1711

(8) P |a : A| Q ⊢η ∆;Γ ((1) and (7))1712

1713

Case: [S•U•f], cell c(a.P) |c : S•A| release c→ P |a : ∧A| discard a.1714

(1) ∆ = ∆1, ∆2 (2) cell c(a.P) ⊢η ∆1, c : S•A;Γ (3) release c ⊢η ∆2, c :1715

U•A;Γ , for some∆1, ∆2 ([Tcut−1] and cell c(a.P) |c : S•A| release c ⊢η ∆;Γ)1716

(4) P ⊢η ∆1, a : ∧A;Γ ([Tcell−1] and (2))1717

(5) ∆2 = ∅ ([Tfree−1] and (3))1718

(6) discard a ⊢η a : ∨A;Γ ([Tdiscard])1719

(7) P |a : ∧A| discard a ⊢η ∆1;Γ ([Tcut], (4) and (6))1720

(8) ∆ = ∆1 ((1) and (5))1721

(9) P |a : ∧A| discard a ⊢η ∆;Γ ((7) and (8))1722

1723

Case: [S•U•t],

cell c(a.P) |c : S•A| take c(a′);Q→ {a′/a}P |a′ : ∧A| (empty c |c : S◦A| Q)

(1) ∆ = ∆1, ∆2 (2) cell c(a.P) ⊢η ∆1, c : S•A;Γ1724

(3) take c(a′);Q ⊢η ∆2, c : U•A;Γ , for some∆1, ∆21725

([Tcut−1] and cell c(a.P) |c : S•A| take c(a′);Q ⊢η ∆;Γ)1726

(4) P ⊢η ∆1, a : ∧A;Γ ([Tcell−1] and (2))1727

(5) Q ⊢η ∆2, a : ∨A, c : U◦A;Γ ([Ttake−1] and (3))1728

(6) empty c ⊢η c : S◦A;Γ ([Tempty])1729

(7) empty c |c : S◦A| Q ⊢η ∆2, a : ∨A;Γ ([Tcut], (6) and (5))1730

(8) {a′/a}P ⊢η ∆1, a :′ ∧A;Γ (Lemma B.2(Tsubs) and (4))1731

(9) {a′/a}P |a′ : ∧A| (empty c |c : S◦A|Q) ⊢η ∆1, ∆2;Γ ([Tcut], (8) and (7))1732

(10) {a′/a}P |a′ : ∧A| (empty c |c : S◦A| Q) ⊢η ∆;Γ ((1) and (9))1733

1734

Case: [S◦U◦], empty c |c : S◦A| put c(a.P);Q→ cell c(a.P) |c : S•A| Q.1735

(1) ∆ = ∆1, ∆2 (2) empty c ⊢η ∆1, c : S◦A;Γ (3)1736

put c(a.P);Q ⊢η ∆2, c : U◦A;Γ , for some ∆1, ∆21737

([Tcut−1] and empty c |c : S◦A| put c(a.P);Q ⊢η ∆;Γ)1738

(4) ∆1 = ∅ ([Tempty−1] and (2))1739

(5) ∆2 = ∆21, ∆22 (6) P ⊢η ∆21, a : ∧A;Γ (7) Q ⊢η ∆22, c : U•A;Γ1740

([Tput−1] and (3))1741

(8) cell c(a.P) ⊢η ∆21, c : S•A;Γ ([Tcell] and (6))1742

(9) cell c(a.P) |c : S•A| Q ⊢η ∆21, ∆22;Γ ([Tcut], (8) and (7))1743

(10) ∆ = ∆21, ∆22 ((1), (4) and (5))1744

(11) cell c(a.P) |c : S•A| Q ⊢η ∆;Γ ((9) and (10))1745

1746

Case: [≤], P ≤ P ′ and P ′ → Q′ and Q′ ≤ Q ⊃ P → Q.1747

(1) P ′ ⊢η ∆;Γ (Theorem B.1, P ⊢η ∆;Γ and P ≤ P ′)1748

(2) Q′ ⊢η ∆;Γ (i.h., (1) and P ′ → Q′)1749

Safe Session-Based Concurrency with Shared Linear State 57

(3) Q ⊢η ∆;Γ (Theorem B.1, (2) and Q′ ≤ P)1750

1751

Case: [cong], P → Q ⊃ C[P] → C[Q].1752

(1) P ⊢η ∆′;Γ ′, for some ∆′, Γ ′ (Lemma B.1 and C[P] ⊢η ∆;Γ)1753

(2) Q ⊢η ∆′;Γ ′ (i.h., (1) and P → Q)1754

(3) C[Q] ⊢η ∆;Γ (Lemma B.1 , (1), (2) and C[P] ⊢η ∆;Γ)1755

1756

1757

C Progress1758

We prove that CLASS enjoys the progress property (Theorem C.1), namely that1759

all closed live processes reduce. Progress is a liveness property: it guarantees that1760

closed live processes will never get stuck.1761

C.1 Live Processes.1762

We start by defining what means for a process to be live (Definition C.1).1763

Definition C.1 (Live Process). A process P is live if P = C[A] or P =1764

C[fwd x y] for some static context C and action A.1765

Intuitively, a process is live if it presents an unguarded action or forwarder1766

waiting to interact, that action lies only under the scope of a static construct1767

(mix, linear or unrestricted cut or share). As a consequence of our linear typing1768

discipline, all the typed processes P ⊢η ∆;Γ that (i) type with a nonempty linear1769

context∆ and (ii) with an empty map η are necessarily live, as established by the1770

following lemma. The latter condition (ii) is necessary so as to exclude processes1771

variables X(y⃗) since they offer no structure for interaction, they are not live.1772

Lemma C.1. If P ⊢∅ ∆;Γ and ∆ ̸= ∅, then P is live.1773

Proof. By induction on a derivation of P ⊢∅ ∆;Γ . Case [T0] holds vacuously1774

because it types inaction 0 with an empty linear context. Case [Tvar] holds1775

vacuously because it types a variable with a nonempty recursion map η.1776

Cases which introduce the forwarder construct or an action hold trivially1777

since P can be written as −[fwd x y] or −[A], where − is the empty static1778

process context and A is an action.1779

The remaining cases are [Tmix], [Tcut], [Tcut!], [Tsh], [TshL] and [TshR].1780

In these cases, from the fact that the conclusion types with a nonempty linear1781

context we can infer that at least one of the premisses types with a nonempty1782

linear context as well, so that we can apply the inductive hypotheses to infer1783

liveness of one of the arguments of P , which then implies liveness of P . We1784

illustrate with cases [Tmix] and [Tsh].1785

58 Pedro Rocha and Lúıs Caires

Case [Tmix]
We have

...

P1 ⊢ ∆1;Γ

...

P2 ⊢ ∆2;Γ
[Tmix]

P1 || P2 ⊢ ∆1, ∆2;Γ

where P = P1 || P2 and ∆ = ∆1, ∆2.1786

Since ∆ ̸= ∅, then either ∆1 ̸= ∅ or ∆2 ̸= ∅.1787

Assume w.l.o.g. that ∆1 ̸= ∅.1788

By applying the i.h. to P1 ⊢ ∆1;Γ we conclude that P1 = C1[X], where C is1789

a static context and X is either an action or a forwarder.1790

Let C = C1 || P2. Then, C is static and P = C[X].1791

Case [Tsh].
We have

...

P1 ⊢ ∆1, x : U•A;Γ

...

P2 ⊢ ∆2, x : U•A;Γ
[Tsh]

share x {P1 || P2} ⊢ ∆1, ∆2, x : U•A;Γ

where P = share x {P1 || P2} and ∆ = ∆1, ∆2, x : U•A.1792

By applying the i.h. to P1 ⊢ ∆1, x : U•A;Γ we conclude that P1 = C1[Y],1793

where C is a static context and Y is either an action or a forwarder.1794

Let C = share x {C1 || P2}. Then, C is static and P = C[Y].1795

Notice that in this case both premisses type with a nonempty linear context,1796

independently of the conclusion, and so the hypothesis that ∆ is nonempty is1797

superfluous. We could have opted to establish liveness of share x {P1 || P2}1798

by applying the i.h. to P2 ⊢ ∆2, x : U•A;Γ instead. A similar situation1799

happens for [Tcut].1800

C.2 Observability Predicate and Properties1801

The progress Theorem C.1 states that a closed, i.e. typed with an empty1802

typing context P ⊢∅ ∅; ∅ and empty map η, and live process P reduces. If one1803

tries to prove this statement by induction on a typing derivation for P ⊢∅ ∅; ∅1804

one soon realises, when analysing the case [Tcut], that we need to say something1805

about open processes. That is, to compositionally prove progress we need to1806

characterise the potential interactions of (possibly open) typed processes, for1807

which we define the following observability predicate, which is akin to π-calculus1808

observability (cf. [64]). Our proof is along the lines of [21], but here we rely in1809

an observability predicated, whereas in [21] progress is established by relying on1810

a labelled transition system instead.1811

Definition C.2 (Observability Predicate). The relation P ↓x:σ, where σ =1812

fwd or σ = act, is defined by the rules of Figure 24. We say that x is an observable1813

Safe Session-Based Concurrency with Shared Linear State 59

[fwd]
fwd x y ↓x:fwd

s(A) = x
[act]

A ↓x:act
P ↓x:σ

[mix]
(P || Q) ↓x:σ

P ↓y:σ y ̸= x
[cut]

(P |x| Q) ↓y:σ

Q ↓z:σ z ̸= x
[cut!]

(y.P |!x| Q) ↓z:σ
P ↓y:σ y ̸= x

[share]
(share x {P || Q}) ↓y:σ

P ≤ Q Q ↓x:σ
[≤]

P ↓x:σ

Fig. 24: Observability Predicate P ↓x:σ, σ ∈ {fwd, act}

of P or that we can observe x in P , written P ↓x, if either P ↓x:fwd or P ↓x:act.1814

If P ↓x:act, we say that x is an observable action of P . If P ↓x:fwd, we say that1815

x is an observable forwarder of P .1816

The definition of P ↓x is explicitly closed under ≤ (rule [≤]) and propagates1817

observations on the various static operators. For example, x is an observable of1818

a mix P || Q, provided x is an observable of one of its arguments P or Q. The1819

same principle applies to the cut construct with the proviso that we can never1820

observe the name x in a cut P |x| Q since it is kept private to the interacting1821

processes P and Q.1822

We can always observe the subject of an action (rule [act]) and we can observe
the constituent names x, y of a forwarder fwd x y: observation of x is direct from
rule [fwd], whereas observation of y follows because of the ≡ commuting rule
[fwd] fwd x y ≡ fwd y x

fwd x y ≡ fwd y x
[fwd]

fwd y x ↓y
[≡]

fwd x y ↓x

In a share share x {P || Q}, processes P and Q run concurrently freely1823

communicating with the external context and sharing memory cell x. As a con-1824

sequence, and similar to the cut construct, the share construct share x {P || Q}1825

propagates all the observations y for which y ̸= x (rule [share]).1826

Intuitively, x is an observable of a process P iff we can rewrite P in an ≤-1827

equivalent form Q so as to expose an action with subject x or forwarder fwd x y1828

and, furthermore, that action or forwarder in Q is not under the scope of a1829

sharing construct on x.1830

We will now present some properties (Lemma C.2) concerning the observ-1831

ability predicate, which will play a key role to derive progress.1832

Lemma C.2 (Properties of P ↓x). The following properties hold1833

(1) Let P ⊢η ∆,x : U•A;Γ and Q ⊢η ∆′, x : U•A;Γ be processes for which1834

P ↓x:act and Q ↓x:act. Then, share x {P || Q} ↓x:act.1835

(2) Let P ⊢η ∆,x : U◦A;Γ , Q ⊢η ∆,x : U•A;Γ . If P ↓x:act, then share x {P || Q} ↓x:act.1836

60 Pedro Rocha and Lúıs Caires

(3) Let P ⊢η ∆,x : U•A;Γ , Q ⊢η ∆,x : U◦A;Γ . If Q ↓x:act, then share x {P || Q} ↓x:act.1837

(4) Let P ⊢η ∆,x : A;Γ and Q ⊢η ∆′, x : A;Γ be processes for which P ↓x:act1838

and Q ↓x:act. Then, P |x| Q reduces.1839

(5) Let P ⊢η ∆,x : A;Γ , Q ⊢η ∆′, x : A;Γ be processes for which P ↓x:fwd.1840

Then, P |x| Q reduces.1841

(6) Let P ⊢η y : A;Γ and Q ⊢η ∆;Γ, x : A be processes for which Q ↓x. Then,1842

y.P |!x| Q reduces.1843

(7) Let P ⊢η ∆,x : A;Γ and suppose that A ̸= S•B and A ̸= S◦B. If P ↓x:fwd,1844

then either (i) P ↓y:fwd for some y : A ∈ ∆ or (ii) P reduces.1845

Properties Lemma C.2(1)-(3) describe sufficient conditions to propagate ob-1846

servations x on a share share x {P || Q}.1847

Lemma C.2(1) states that we can observe a full usage on x in a share x {P ||Q}
provided we can observe a full usage x on both P and Q. This full usage on x
is propagated by applying either ≤ rule [RSh] or ≤ rule [TSh]. For example, by
rule ≤ [RSh] we have share x {release x || take x(y);P} ≤ take x(y);P . Then

share x {release x || take x(y);P} ≤ take x(y);P

s(take x(y);P) = x
[act]

take x(y);P ↓x
[≤]

share x {release x || take x(y);P} ↓x

Additionally, we can observe an empty usage x on share x {P || Q} provided we1848

can observe an empty usage x on either P or Q, as stated by Lemma C.2(2)-(3).1849

The empty usage corresponds to a put action which can always be propagated1850

to the top by applying ≤ rule [PSh].1851

Properties Lemma C.2(4)-(6) describe sufficient conditions for obtaining a1852

reduction: either by observing two dual actions with subject x in a linear cut1853

P |x| Q (Lemma C.2(4)), by observing a forwarder x on a linear cut P |x| Q1854

(Lemma C.2(5)) or by observing a single action x in the right argument Q of an1855

unrestricted cut y.P |!x| Q (Lemma C.2(6)).1856

Lemma C.2(7) characterises the potential observation or reduction of a pro-1857

cess that P for which P ↓x:fwd. Either name y occurs free, and P also offers a1858

forwarder interaction at y, or lies in the scope of a cut − |y| −, in which case1859

a reduction can be triggered (Lemma C.2(5)). The typing constraints A ̸= S•B1860

and A ̸= S◦B exclude processes like share y {fwd x y || Q}, that neither reduce1861

nor offer an interaction at y. Intuitively, in this case, the share is suspended on1862

the availability of cell usages at name y.1863

We prove properties Lemma C.2(1)-(7) of the observability predicate.1864

Lemma C.2(1) Let P ⊢ ∆,x : U•A;Γ and Q ⊢ ∆′, x : U•A;Γ be processes for1865

which P ↓x:act and Q ↓x:act. Then, share x {P || Q} ↓x:act.1866

Proof. By double induction on derivation trees for P ↓x:act and Q ↓x:act. For1867

the base cases we apply either one of ≤ rules [RSh] or [TSh] in order to expose1868

an observable action. For the inductive cases we consider that we are given a1869

derivation tree for P ↓x. This is w.l.o.g. since share x {P || Q} ≡ share x {Q || P}.1870

Safe Session-Based Concurrency with Shared Linear State 61

For cases [mix], [cut], [cut!], [share] we commute the share on x with the principal1871

form of P by applying either ≡ rule [ShM], [CSh], [ShC!] or [ShSh].The inductive1872

case [≤] follows immediately because the relation ≤ is a congruence.1873

Case: The root rule of both P ↓x:act and Q ↓x:act is [act]. We have

s(A) = x
[act]

A ↓x:act

s(B) = x
[act]

B ↓x:act

where P = A and Q = B.1874

Since the subject of both actions A,B - x - has the type U•A (in the linear1875

typing context), we conclude that A, B are either release or take actions.1876

Case: A = release x.1877

By applying ≤ rule [RSh] we obtain

share x {P || Q} = share x {release x || Q} ≤ Q

Hence

share x {P || Q} ≤ Q

...

Q ↓x:act
[≤]

share x {P || Q} ↓x:act

Case: B = release x. Similar to case A = release x.1878

Case: A = take x(y);P ′ and B = take x(z);Q′.1879

By applying ≤ rule [TSh] we obtain

share x {take x(y);P ′ || take x(z);Q′} ≤ take x(y);R1, where

R1 = share x {P ′ || take x(z);Q′}

Hence

share x {P || Q} ≤ take x(y);R1

s(take x(y);R1) = x
[act]

take x(y);R1 ↓x:act
[≤]

share x {P || Q} ↓x:act
1880

Case: Either the root rule of P ↓x:act or the root rule of Q ↓x:act is [mix].
Suppose w.l.o.g. that the root rule of P ↓x:act is [mix]. We have

P1 ↓x:act
[mix]

(P1 || P2) ↓x:act

where P = P1 || P2.1881

Since P1 || P2 ⊢ ∆,x : U•A;Γ we conclude that exists a partition ∆1, ∆2 of1882

∆ for which P1 ⊢ ∆1, x : U•A;Γ and P2 ⊢ ∆2;Γ . Observe that x lies in the1883

linear typing context of P1 and not of P2, because P1 ↓x:act.1884

62 Pedro Rocha and Lúıs Caires

We have

share x {P || Q} = share x {(P1 || P2) || Q}
≡ share x {P1 || Q}︸ ︷︷ ︸

R

|| P2 (≡ [ShM], x ∈ fn(P1))

By induction on P1 ↓x and Q ↓x we conclude that R ↓x:act.1885

Hence

share x {P || Q} ≡ R || P2

R ↓x:act
[mix]

(R || P2) ↓x:act
[≡]

(share x {P || Q}) ↓x:act

Case: Either the root rule of P ↓x:act or the root rule of Q ↓x:act is [cut].
Suppose w.l.o.g. that the root rule of P ↓x:act is [cut]. We have

P1 ↓x:act y ̸= x
[cut]

P1 |y| P2 ↓x:act

where P = P1 |y| P2.1886

Since P1 |y| P2 ⊢ ∆,x : U•A;Γ we conclude that exists a partition ∆1, ∆2 of1887

∆ and a type B for which P1 ⊢ ∆1, y : B, x : U•A;Γ and P2 ⊢ ∆2, y : B;Γ .1888

Observe that x lies in the linear typing context of P1 and not of P2, because1889

P1 ↓x:act.1890

We have

share x {P || Q} = share x {(P1 |y| P2) || Q}
≡ share x {P1 || Q}︸ ︷︷ ︸

R

|y| P2 (≡ [CSh], x, y ∈ fn(P1))

By induction on P1 ↓x:act andQ ↓x:act we conclude that (share x {P1 ||Q}) ↓x:act.1891

Hence

share x {P || Q} ≡ R |y| P2

R ↓x y ̸= x
[cut]

(R |y| P2) ↓x:act
[≡]

(share x {P || Q}) ↓x:act

Case: Either the root rule of P ↓x:act or the root rule of Q ↓x:act is [cut!].
Suppose w.l.o.g. that the root rule of P ↓x:act is [cut!]. We have

P2 ↓x:act z ̸= x
[cut!]

y.P1 |!z : B| P2 ↓x:act

where P = y.P1 |!z : B| P2.1892

Since y.P1 |!z : B| P2 ⊢ ∆,x : U•A;Γ we conclude that P1 ⊢ y : B;Γ and1893

P2 ⊢ ∆,x : U•A;Γ, z : B .1894

Safe Session-Based Concurrency with Shared Linear State 63

We have

share x {P || Q} = share x {(y.P1 |!z : B| P2) || Q}
≡ y.P1 |!z : B| (share x {P2 || Q})︸ ︷︷ ︸

R

(≡ [ShC!] z /∈ fn(Q))

By induction on P2 ↓x:act and Q ↓x:act we conclude that R ↓x:act.1895

Hence

share x {P || Q} ≡ y.P1 |!z| R
R ↓x:act z ̸= x

[cut!]
(y.P1 |!z| R) ↓x:act

[≡]
(share x {P || Q}) ↓x:act

Case: Either the root rule of P ↓x:act or the root rule of Q ↓x:act is [share].
Suppose w.l.o.g. that the root rule of P ↓x:act is [share]. We have

P1 ↓x:act y ̸= x
[share]

share y {P1 || P2} ↓x:act

where P = share y {P1 || P2}.1896

The root rule of a derivation for share y {P1 || P2} ⊢ ∆,x : U•A;Γ can1897

be either [Tsh], [TshL] or [TshR]. We assume w.l.o.g. it is [Tsh]. The proof1898

works in the same way for the other cases [TshL] and [TshR].1899

By inverting [Tsh] on share y {P1 || P2} ⊢ ∆,x : U•A;Γ we conclude that1900

exists a partition ∆1, ∆2 of ∆, a type B for which P1 ⊢ ∆1, y : U•B, x :1901

U•A;Γ and P2 ⊢ ∆2, y : U•B;Γ . Observe that x lies in the linear typing1902

context of P1 and not of P2, because P1 ↓x:act.1903

We have

share x {P || Q} = share x {share y {P1 || P2} || Q}
≡ share y {share x {P1 || Q}︸ ︷︷ ︸

R

|| P2}

(≡ [ShSh], x, y ∈ fn(P1))

By induction on P1 ↓x:act andQ ↓x:act we conclude that (share x {P1 ||Q}) ↓x:act.
Hence

share x {P || Q} ≡ share y {R || P2}
R ↓x:act y ̸= x

[share]
(share y {R || P2}) ↓x:act

[≡]
(share x {P || Q}) ↓x:act

Case: Either the root rule of P ↓x:act or the root rule of Q ↓x:act is [≤].
Suppose w.l.o.g. that the root rule of P ↓x:act is [≤]. We have

P ≤ P ′ P ′ ↓x:act
[≤]

P ↓x:act

64 Pedro Rocha and Lúıs Caires

Since P ⊢ ∆,x : U•A;Γ , P ≤ P ′ and structural pre-congruence preserves1904

typing, then P ′ ⊢ ∆,x : U•A;Γ .1905

By induction on P ′ ↓x:act, Q ↓x:act, we conclude that share x {P ′ || Q} ↓x:act.1906

Observe that

share x {P || Q} ≤ share x {P ′ || Q} (≡ [cong2])

Hence

share x {P || Q} ≤ share x {P ′ || Q} share x {P ′ || Q} ↓x:act
[≤]

share x {P || Q} ↓x:act
Lemma C.2(2) Let P ⊢ ∆,x : U◦A;Γ , Q ⊢ ∆,x : U•A;Γ . If P ↓x:act, then1907

share x {P || Q} ↓x:act.1908

Proof. By induction on the structure of a derivation for P ↓x:act and case analysis1909

on the root rule. The base case [act] follows by applying ≤ rule [PSh] in order1910

to expose the put action. For the inductive cases [mix], [cut], [cut!], [share] and]1911

and [≤] see the proof of Lemma C.2(1).1912

Case: The root rule of both P ↓x:act is [act]. We have

s(A) = x
[act]

A ↓x:act
where P = A.1913

Since the subject of action A- x - has the type U◦A (in the linear typing1914

context), we conclude that A is a put action, i.e. A = put x(y.P1);P2 for1915

some y, P1, P2.1916

By applying ≤ rule [PSh] we obtain

share x {put x(y.P1);P2 || Q} ≤ put x(y.P1); share x {P2 || Q}︸ ︷︷ ︸
R

(≤ [PSh])

Hence

share x {P || Q} ≤ put x(y.R);

s(put x(y.P1);R) = x
[act]

put x(y.P1);R ↓x:act
[≤]

share x {P || Q} ↓x:act
Lemma C.2(3) Let P ⊢ ∆,x : U•A;Γ , Q ⊢ ∆,x : U◦A;Γ . If Q ↓x:act, then1917

share x {P || Q} ↓x:act.1918

Proof. Applying Lemma C.2(2) to Q ⊢ ∆,x : U◦A;Γ and P ⊢ ∆,x : U•A;Γ1919

yields share x {Q || P} ↓x:act.1920

By ≡ rule [Sh] we have share x {P || Q} ≡ share x {Q || P}.1921

Hence,1922

share x {P || Q} ≡ share x {Q || P} share x {Q || P}x : act
[≤]

(share x {P || Q}) ↓x:act

Safe Session-Based Concurrency with Shared Linear State 65

Lemma C.2(4) Let P ⊢ ∆,x : A;Γ and Q ⊢ ∆′, x : A;Γ be processes for which1923

P ↓x:act and Q ↓x:act. Then, P |x| Q reduces.1924

Proof. By double induction on derivation trees for P ↓x:act and Q ↓x:act. For the1925

base cases we apply one of the principal cut reductions. For the inductive cases1926

we consider that we are given a derivation tree for P ↓x. This is w.l.o.g. since1927

P |x| Q ≡ Q |x| P . For cases [mix], [cut], [cut!], [share] we commute the cut on1928

x with the principal form of P by applying either ≡ rule [CM], [CC], [CC!] or1929

[CSh].The inductive case P ↓x rule [≡] follows immediately because the relation1930

→ is closed by structural congruence, i.e. satisfies → rule [≡].1931

Case: The root rule of both P ↓x and Q ↓x is [act]. We have

s(A) = x
[act]

A ↓x

s(B) = x
[act]

B ↓x

where P = A and Q = B.1932

Since A ⊢ ∆,x : A;Γ and B ⊢ ∆,x : A;Γ we conclude that A,B is a pair of1933

dual actions with the same subject. Hence, P |x| Q reduces by applying one1934

of the principal cut reductions.1935

For example, if A = ⊥, we have

A = close x and B = wait x;Q′

Consequently

close x |x| wait x;Q′ → Q′ (→ [1⊥])

Case: Either the root rule of P ↓x:act or the root rule of Q ↓x:act is [mix].
Suppose w.l.o.g. that the root rule of P ↓x:act is [mix]. We have

P1 ↓x
[mix]

(P1 || P2) ↓x

where P = P1 || P2.1936

Since P1 || P2 ⊢ ∆,x : A;Γ we conclude that there exists a partition ∆1, ∆21937

of ∆ s.t. P1 ⊢ ∆1, x : A;Γ and P2 ⊢ ∆2;Γ . Observe that x lies in the linear1938

typing context of P1 and not of P2, because P1 ↓x.1939

Then

P |x| Q = (P1 || P2) |x| Q
≡ (P1 |x| Q) || P2 (≡ [CM], x ∈ fn(P1))

By induction on P1 ↓x and Q ↓x we conclude that P1 |x| Q, and hence1940

(P1 |x| Q) || P2, reduces.1941

66 Pedro Rocha and Lúıs Caires

Case: Either the root rule of P ↓x:act or the root rule of Q ↓x:act is [cut].
Suppose w.l.o.g. that the root rule of P ↓x:act is [cut]. We have

P1 ↓x y ̸= x
[cut]

(P1 |y| P2) ↓x

where P = P1 |y| P2.1942

Since P1 |y| P2 ⊢ ∆,x : A;Γ we conclude that there exists a partition1943

∆1, ∆2 of ∆ and a type B s.t. P1 ⊢ ∆1, x : A, y : B;Γ and P2 ⊢ ∆2, y : B;Γ .1944

Observe that x lies in the linear typing context of P1 and not of P2, because1945

P1 ↓x.1946

Then

P |x| Q = (P1 |y| P2) |x| Q
≡ (P1 |x| Q) |y| P2 (≡ [CC], x, y ∈ fn(P1))

By induction on P1 ↓x and Q ↓x we conclude that P1 |x| Q, and hence1947

(P1 |x| Q) |y| P2, reduces.1948

Case: Either the root rule of P ↓x:act or the root rule of Q ↓x:act is [cut!].
Suppose w.l.o.g. that the root rule of P ↓x:act is [cut!]. We have

P2 ↓x z ̸= x
[cut!]

(y.P1 |!z| P2) ↓x

where P = y.P1 |!z| P2.1949

Since y.P1 |!z| P2 ⊢ ∆,x : A;Γ we conclude that there exists a type B s.t.1950

P1 ⊢ y : B;Γ and P2 ⊢ ∆,x : A;Γ, z : B.1951

Then

P |x| Q = (y.P1 |!z| P2) |x| Q
≡ y.P1 |!z| (P2 |x| Q) (≡ [CC!], z /∈ fn(Q))

By induction on P2 ↓x and Q ↓x we conclude that P2 |x| Q, and hence1952

y.P1 |!z| (P2 |x| Q), reduces.1953

Case: Either the root rule of P ↓x:act or the root rule of Q ↓x:act is [share].
Suppose w.l.o.g. that the root rule of P ↓x:act is [share]. We have

P1 ↓x y ̸= x
[share]

(share y {P1 || P2}) ↓x

where P = share y {P1 || P2}.1954

The root rule of a derivation for share y {P1 || P2} ⊢ ∆,x : A;Γ can be either1955

[Tsh], [TshL] or [TshR]. We assume w.l.o.g. it is [Tsh]. The proof works in1956

the same way for the other cases [TshL] and [TshR].1957

By inverting [Tsh] on share y {P1 || P2} ⊢ ∆,x : A;Γ we conclude that exists1958

a partition ∆1, ∆2 of ∆, a type B for which P1 ⊢ ∆1, y : U•B, x : A;Γ and1959

Safe Session-Based Concurrency with Shared Linear State 67

P2 ⊢ ∆2, y : U•B;Γ . Observe that x lies in the linear typing context of P11960

and not of P2, because P1 ↓x:act.1961

Then

P |x| Q = (share y {P1 || P2}) |x| Q
≡ share y {(P1 |x| Q) || P2} (≡ [CSh], x, y ∈ fn(P1))

By induction on P1 ↓x and Q ↓x we conclude that P1 |x| Q, and hence1962

share y {(P1 |x| Q) || P2}, reduces.1963

Case: Either the root rule of P ↓x:act or the root rule of Q ↓x:act is [≤].
Suppose w.l.o.g. that the root rule of P ↓x:act is [≤]. We have

P ≤ P ′ P ′ ↓x
P ↓x

Observe that since P ⊢ ∆,x : A;Γ , P ≤ P ′ and structural pre-congruence1964

preserves typing, then P ′ ⊢ ∆,x : A;Γ .1965

By induction on P ′ ↓x, Q ↓x we conclude that P ′ |x| Q reduces. Since1966

P |x| Q ≤ P ′ |x| Q, P |x| Q reduces as well (rule → [≤]).1967

Lemma C.2(5)) Let P ⊢ ∆,x : A;Γ , Q ⊢ ∆′, x : A;Γ be processes for which1968

P ↓x:fwd. Then, P |x| Q reduces.1969

Proof. By induction on a derivation trees for P ↓x:fwd. We handle the base case,1970

which follows by applying the principal cut conversion → [fwd]. For the inductive1971

cases see the proof of Lemma C.2(4).1972

Case [fwd]
We have

[fwd]
fwd x y ↓x

where P = fwd x y.1973

Then

fwd x y |x| Q ≡ fwd y x |x| Q (≡ [fwd])

→ {y/x}Q (→ [fwd])

Lemma C.2(6) Let P ⊢ y : A;Γ and Q ⊢ ∆;Γ, x : A be processes for which1974

Q ↓x. Then, y.P |!x| Q reduces.1975

Proof. By induction on a derivation tree for Q ↓x and case analysis on the root1976

rule. The base case [act] follows by applying the principal cut conversion →1977

[call]. The inductive cases [mix], [cut], [cut!] and [share] follow by distributing1978

the unrestricted cut over the arguments of Q (with ≡ rules [D-C!M], [D-C!C], [D-1979

C!C!] or[D-C!Sh]) and then apply the inductive hypothesis. The inductive case1980

[≡] follows because reduction → is closed by structural congruence, i.e. satisfies1981

rule → [≡].1982

68 Pedro Rocha and Lúıs Caires

Case: The root rule of Q ↓x is [act]. We have

s(A) = x

A ↓x

where Q = A.1983

Since A ⊢ ∆;Γ, x : A, we have A = call x(z);Q′, for some Q′. Hence

y.P |!x| call x(z);Q′ → {z/y}P |z| (y.P |!x| Q′) (→ [call])

1984

Case: The root rule of Q ↓x is [mix]. We have

Q1 ↓x
(Q1 || Q2) ↓x

where Q = Q1 || Q2.1985

Since Q1 || Q2 ⊢ ∆;Γ, x : A, there exists a partition ∆1, ∆2 of ∆ for which1986

Q1 ⊢ ∆1;Γ, x : A and Q2 ⊢ ∆2;Γ, x : A .1987

We have

y.P |!x| Q = y.P |!x| (Q1 || Q2)

≡ (y.P |!x| Q1) || (y.P |!x| Q2) (≡ [D-C!M])

By induction on Q1 ↓x we conclude that y.P |!x| Q1, and hence y.P |!x| Q,1988

reduces.1989

Case: The root rule of Q ↓x is [cut]. We have

Q1 ↓x z ̸= x

(Q1 |z| Q2) ↓x

where Q = Q1 |z| Q2.1990

Since Q1 |z| Q2 ⊢ ∆;Γ, x : A, there exists a partition ∆1, ∆2 of ∆ and a1991

type B for which Q1 ⊢ ∆1, z : B;Γ, x : A and Q2 ⊢ ∆2, z : B;Γ, x : A.1992

We have

y.P |!x| Q = y.P |!x| (Q1 |z| Q2)

≡ (y.P |!x| Q1) |z| (y.P |!x| Q2) (≡ [D-C!C])

By induction on Q1 ↓x we conclude that y.P |!x| Q1, and hence y.P |!x| Q,1993

reduces.1994

Case: The root rule of Q ↓x is [cut!]. We have

Q2 ↓x z ̸= x

(w.Q1 |!z| Q2) ↓x

where Q = w.Q1 |!z| Q2.1995

Safe Session-Based Concurrency with Shared Linear State 69

Since w.Q1 |!z| Q2 ⊢ ∆;Γ, x : A, we conclude that exists a type B for which1996

Q1 ⊢ w : B;Γ, x : A and Q2 ⊢ ∆;Γ, z : B, x : A.1997

We have

y.P |!x| Q = y.P |!x| (w.Q1 |!z| Q2)

≡ w.(y.P |!x| Q1) |!z| (y.P |!x| Q2) (≡ [D-C!C!])

By induction on Q2 ↓x we conclude that y.P |!x| Q2, and hence y.P |!x| Q,1998

reduces.1999

Case: The root rule of Q ↓x is [share]. We have

Q1 ↓x z ̸= x

(share z {Q1 || Q2}) ↓x

where Q = share z {Q1 || Q2}.2000

Since share z {Q1 || Q2} ⊢ ∆;Γ, x : A, there are state flavours X1,X2,X2001

and a partition ∆1, ∆2, z : UX B of ∆ for which Q1 ⊢ ∆1, zUX1
B;Γ, x :2002

A,Q2 ⊢ ∆2, z : UX2 B;Γ, x : A and X1 ⊕X2 = X .2003

The root rule of a derivation for share y {P1 || P2} ⊢ ∆;Γ, x : A can be either2004

[Tsh], [TshL] or [TshR]. We assume w.l.o.g. it is [Tsh]. The proof works in2005

the same way for the other cases [TshL] and [TshR].2006

By inverting [Tsh] on share y {P1 || P2} ⊢⊢ ∆;Γ, x : A we conclude that2007

exists a partition ∆1, ∆2 of ∆, a type B for which P1 ⊢ ∆1, y : U•B;Γ, x : A2008

and P2 ⊢ ∆2, y : U•B;Γ, x : A.2009

We have

y.P |!x| Q = y.P |!x| (share z {Q1 || Q2})
≡ share z {(y.P |!x| Q1) || (y.P |!x| Q2)} (≡ [D-C!Sh])

By induction on Q1 ↓x we conclude that y.P |!x| Q1, and hence y.P |!x| Q2010

reduces.2011

Case: The root rule of Q ↓x is [≤]. We have

Q ≤ Q′ Q′ ↓x
Q ↓x

Observe that since Q ⊢ ∆;Γ, x : A, Q ≤ Q′ and structural pre-congruence2012

preserves typing, we have Q′ ⊢ ∆;Γ, x : A.2013

By induction onQ′ ↓x we conclude that y.P |!x|Q′ reduces. Since y.P |!x|Q ≤2014

y.P |!x| Q′, y.P |!x| Q reduces as well (→ rule [≤]).2015

2016

Lemma C.2(7) Let P ⊢ ∆,x : A;Γ and suppose that A ̸= SX B. If P ↓x:fwd,2017

then either (i) P ↓y:fwd for some y : A ∈ ∆ or (ii) P reduces.2018

Proof. The proof is by structural induction on the derivation tree P ↓x:fwd and2019

case analysis on the root rule.2020

70 Pedro Rocha and Lúıs Caires

Case: The root rule of P ↓x:fwd is [fwd].
We have

[fwd]
fwd x y ↓x:fwd

where P = fwd x y.2021

By inversion on fwd x y ⊢ ∆,x : A;Γ we conclude that ∆ = y : A .2022

Observe that

fwd x y ≡ fwd y x (≡ [fwd])

Then

fwd x y ≡ fwd y x
[fwd]

fwd y x ↓y:fwd
[≤]

fwd x y ↓y:fwd

Case: The root rule of P ↓x:fwd is [mix].
We have

P1 ↓x:fwd
[mix]

(P1 || P2) ↓x:fwd

where P = P1 || P2.2023

By inversion on the typing judgment P1 || P2 ⊢ ∆,x : A;Γ we conclude that2024

exists a partition ∆1, ∆2 of ∆ s.t. P1 ⊢ ∆1, x : A;Γ and P2 ⊢ ∆2;Γ . Observe2025

that x lies in the linear typing context of P1 and not of P2 because P1 ↓x.2026

By induction on P1 ↓x:fwd, we conclude that either (i) P1 ↓y:fwd for some2027

y : A ∈ ∆1 or (ii) P1 reduces.2028

Case (i) P1 ↓y:fwd for some y : A ∈ ∆1.
Then

P1 ↓y:fwd
[mix]

(P1 || P2) ↓y:fwd

Furthermore, since y : A ∈ ∆1 and ∆ = ∆1, ∆2, then y : A ∈ ∆.2029

Case (ii) P1 reduces.2030

Since reduction is a congruence, then P1 || P2 reduces as well.2031

Case: The root rule of P ↓x:fwd is [cut].
We have

P1 ↓x:fwd z ̸= x
[cut]

(P1 |z| P2) ↓x:fwd

where P = P1 |z| P2.2032

By inversion on the typing judgment P1 |z| P2 ⊢ ∆,x : A;Γ we conclude2033

that exists a partition ∆1, ∆2 of ∆ and a type B s.t. P1 ⊢ ∆1, x : A, z : B;Γ2034

and P2 ⊢ ∆2, z : B;Γ . Observe that x lies in the linear typing context of P12035

and not of P2 because P1 ↓x.2036

By induction on P1 ↓x:fwd, we conclude that either (i) P1 ↓y:fwd for some2037

y : A ∈ ∆1, z : B or (ii) P1 reduces. There are three cases to consider,2038

depending on wether (i-i) y ̸= z or (i-ii) y = z.2039

Safe Session-Based Concurrency with Shared Linear State 71

Case (i-i) P1 ↓y:fwd for some y : A ∈ ∆1.
Then

P1 ↓y:fwd y ̸= z
[cut]

(P1 |z| P2) ↓y:fwd

Furthermore, since y : A ∈ ∆1 and ∆ = ∆1, ∆2, then y : A ∈ ∆.2040

Case (i-ii) P1 ↓z:fwd and y = z.2041

By Lemma C.2(5), we conclude that P1 |z| P2 reduces.2042

Case (ii) P1 reduces.2043

Since reduction is a congruence, then P1 |z| P2 reduces as well.2044

Case: The root rule of P ↓x:fwd is [cut!].
We have

P1 ↓x:fwd z ̸= x
[cut!]

(w.P1 |!z| P2) ↓x:fwd

where P = w.P1 |!z| P2.2045

By inversion on the typing judgment w.P1 |!z| P2 ⊢ ∆,x : A;Γ we conclude2046

that exists a type B s.t. P1 ⊢ w : B;Γ and P2 ⊢ ∆,x : A;Γ, z : B .2047

By induction on P2 ↓x:fwd, we conclude that either (i) P2 ↓y:fwd for some2048

y : A ∈ ∆ or (ii) P2 reduces.2049

Case (i) P2 ↓y:fwd for some y : A ∈ ∆. Then

P2 ↓y:fwd y ̸= z
[cut!]

(w.P1 |!z| P2) ↓y:fwd

Case (ii) P2 reduces.2050

Since reduction is a congruence, then w.P1 |!z| P2 reduces as well.2051

Case: The root rule of P ↓x:fwd is [share].
We have

P1 ↓x:fwd z ̸= x
[share]

(share z {P1 || P2}) ↓x:fwd

where P = share z {P1 || P2}.2052

The root rule of a derivation for share y {P1 || P2} ⊢ ∆,x : A;Γ can be either2053

[Tsh], [TshL] or [TshR]. We assume w.l.o.g. it is [Tsh]. The proof works in2054

the same way for the other cases [TshL] and [TshR].2055

By inverting [Tsh] on share y {P1 || P2} ⊢ ∆,x : A;Γ we conclude that exists2056

a partition ∆1, ∆2 of ∆, a type B for which P1 ⊢ ∆1, z : U•B, x : A;Γ and2057

P2 ⊢ ∆2, z : U•B;Γ . Observe that x lies in the linear typing context of P12058

and not of P2, because P1 ↓x:act.2059

By induction on P1 ↓x:fwd, we conclude that either (i) P1 ↓y:fwd for some2060

y : A ∈ ∆1, z : U•B or (ii) P1 reduces.2061

Notice that, by hypothesis, A ̸= U•B. Hence, y : A ∈ ∆1.2062

There are then two cases to consider.2063

72 Pedro Rocha and Lúıs Caires

Case (i) P1 ↓y:fwd for some y : A ∈ ∆1.
Then

P1 ↓y:fwd y ̸= z
[share]

(share z {P1 || P2}) ↓y:fwd

Case (ii) P1 reduces2064

Since reduction is a congruence, then share z {P1 || P2} reduces as well.2065

Case: The root rule of P ↓x:fwd is [≤].
We have

P ≤ Q Q ↓x:fwd
[≤]

P ↓x:fwd

Since P ⊢ ∆,x : A;Γ and P ≤ Q, then Q ⊢ ∆,x : A;Γ .2066

By induction on Q ↓x:fwd we conclude that either (i) Q ↓y:fwd for some2067

y : A ∈ ∆ or (ii) Q reduces.2068

Case (i) Q ↓y:fwd for some y : A ∈ ∆.
Then

P ≤ Q Q ↓y:fwd
[≤]

P ↓y:fwd

Case (ii) Q reduces.2069

Since reduction is closed by structural pre-congruence, then P reduces2070

as well.2071

C.3 Liveness Lemma and Progress2072

We now state our liveness Lemma C.3 which says that a live open process2073

either reduces or offers an interaction at some session x. This lemma implies our2074

main progress result (Theorem C.1), with which we conclude this section.2075

Lemma C.3 (Liveness). Let P ⊢∅ ∆;Γ be a live process. Either P ↓x, for2076

some x, or P reduces.2077

Proof. The proof is by structural induction on derivation tree for P ⊢∅ ∆;Γ and2078

case analysis on the root rule.2079

Case: The root rule of P ⊢∅ ∆;Γ is [T0].
We have

[T0]
0 ⊢∅ ∅;Γ

where P = 0. Holds vacuously because 0 is not live.2080

Safe Session-Based Concurrency with Shared Linear State 73

Case: The root rule of P ⊢∅ ∆;Γ is [Tfwd].
We have

[Tfwd]
fwd x y ⊢∅ x : A, y : A;Γ

Then

[fwd]
(fwd x y) ↓x

Case: The root rule of P ⊢∅ ∆;Γ is [T1].
We have

[T1]
close x ⊢∅ x : 1;Γ

where P = close x. Observe that close x is an action. Then

s(close x) = x
[act]

close x ↓x

Similarly for the the other rules which introduce an action: [T⊥], [T⊗],2081

[TO], [T⊕l], [T⊕r], [TN], [T?], [T!], [Tcall], [T∃], [T∀], [Tcorec], [Tµ], [Tν],2082

[Taffine], [Tuse], [Tdiscard], [Tcell], [Tempty], [Trelease], [Ttake], [Tput].2083

Case: The root rule of P ⊢∅ ∆;Γ is [Tvar].
We have

η = η′, X(y⃗) 7→ ∆′;Γ ′
[Tvar]

X(x⃗) ⊢∅ {x⃗/y⃗}(∆′;Γ ′)

where P = X(x⃗). Holds vacuously because assumes a nonempty η context.2084

Case: The root rule of P ⊢∅ ∆;Γ is [Tmix].
We have

P1 ⊢∅ ∆1;Γ P2 ⊢∅ ∆2;Γ
[Tmix]

P1 || P2 ⊢∅ ∆1, ∆2;Γ

where P = P1 || P2 and ∆ = ∆1, ∆2.2085

Since P1 || P2 is live, then either P1 is live or P2 is live.2086

Suppose w.l.o.g. that P1 is live. By induction on P1 ⊢∅ ∆1;Γ we conclude2087

that either P1 ↓x or P1 reduces.2088

Case P1 ↓x
Then

P1 ↓x
[mix]

(P1 || P2) ↓x

Case P1 reduces2089

Then, P1 || P2 reduces because of → rule [cong].2090

74 Pedro Rocha and Lúıs Caires

Case: The root rule of P ⊢∅ ∆;Γ is [Tcut].
We have

P1 ⊢∅ ∆1, x : A;Γ P2 ⊢∅ ∆2, x : A;Γ
[cut]

P1 |x| P2 ⊢∅ ∆1, ∆2;Γ

where P = P1 |x| P2 and ∆ = ∆1, ∆2.2091

Since both P1 and P2 have a nonempty linear typing context, we conclude2092

that both P1 and P2 are live (lemma C.1).2093

By applying the i.h. to P1 ⊢∅ ∆1, x : A;Γ and P2 ⊢∅ ∆2, x : A;Γ we conclude2094

that2095

– P1 ↓y or P1 reduces, and2096

– P2 ↓z or P2 reduces2097

We have the following cases to consider2098

Case (P1 ↓y and y ̸= x) or (P2 ↓z and z ̸= x)2099

Suppose w.l.o.g. that P1 ↓y and y ̸= x.2100

Then

P1 ↓y y ̸= x
[cut]

(P1 |x| P2) ↓y

Case P1 ↓x and P2 ↓x2101

We have the following two cases2102

Case P1 ↓x:fwd or P2 ↓x:fwd2103

Suppose w.l.o.g. that P1 ↓x:fwd.2104

Then, by lemma C.2(3), we conclude that P1 |x| P2 reduces.2105

Case P1 ↓x:act and P2 ↓x:act2106

Then, by lemma C.2(2), we conclude that P1 |x| P2 reduces.2107

Case P1 reduces or P2 reduces2108

Because of → rule [cong], P1 |x| P2 reduces.2109

Case: The root rule of P ⊢∅ ∆;Γ is [Tcut!].
We have

P1 ⊢∅ y : B;Γ P2 ⊢∅ ∆;Γ, x : A
[cut!]

y.P1 |!x| P2 ⊢∅ ∆;Γ

where P = y.P1 |!x| P2.2110

Since y.P1 |!x| P2 is live, then P2 is live.2111

By induction on P2 ⊢∅ ∆;Γ, x : A we conclude that either P2 ↓z or P22112

reduces.2113

Case P2 ↓z and z ̸= x
Then

P2 ↓z z ̸= x
[cut!]

(y.P1 |!x| P2) ↓z
Case P2 ↓x2114

Then, y.P1 |!x| P2 reduces (lemma C.2(4)).2115

Safe Session-Based Concurrency with Shared Linear State 75

Case P2 reduces2116

Because of → rule [cong], y.P1 |!x| P2 reduces.2117

Case: The root rule of P ⊢∅ ∆;Γ is [Tsh].
We have

P1 ⊢∅ ∆1, x : U•A;Γ P2 ⊢∅ ∆2, x : U•A;Γ
[Tsh]

share x {P1 || P2} ⊢∅ ∆1, ∆2, x : U•A;Γ

where P = share x {P1 || P2} and ∆ = ∆1, ∆2, x : U•A.2118

Since both P1 and P2 type with a nonempty linear context and an empty η,2119

then both P1 and P2 are live (Lemma C.1).2120

By applying the i.h. to P1 ⊢∅ ∆1, x : U•A;Γ and P2 ⊢∅ ∆2, x : U•A;Γ we2121

conclude both2122

– P1 ↓y or P1 reduces, and2123

– P2 ↓z or P2 reduces2124

We have the following cases to consider.2125

Case A (P1 ↓y and y ̸= x) or (P2 ↓z and z ̸= x)2126

Suppose w.l.o.g. that P1 ↓y and y ̸= x.2127

Then

P1 ↓y y ̸= x
[share]

(share x {P1 || P2}) ↓y

Case B P1 ↓x and P2 ↓x2128

We have the following two cases.2129

Case B1 P1 ↓x:fwd or P2 ↓x:fwd2130

Suppose w.l.o.g. that P1 ↓x:fwd.2131

Observe that x occurs typed by U•A in the linear typing context of2132

P1. Hence, we can apply Lemma C.2(7) in order to conclude that2133

either (i) P1 ↓y for y ̸= x or (ii) P1 reduces. If (i) go to case A. If2134

(ii), go to case C.2135

Case B2 P1 ↓x:act and P2 ↓x:act.2136

Then (share x {P1 || P2}) ↓x (Lemma C.2(1)).2137

Case C P1 reduces or P2 reduces2138

Because of → rule [cong], share x {P1 || P2} reduces.2139

Case: The root rule of P ⊢∅ ∆;Γ is [TshL].
We have

P1 ⊢∅ ∆1, x : U◦A;Γ P2 ⊢∅ ∆2, x : U•A;Γ
[TshL]

share x {P1 || P2} ⊢∅ ∆1, ∆2, x : U◦A;Γ

where P = share x {P1 || P2} and ∆ = ∆1, ∆2, x : U◦A.2140

By applying the i.h. to P1 ⊢∅ ∆1, x : U◦A;Γ we conclude that either P1 ↓y2141

or P1 reduces.2142

We have the following cases to consider.2143

76 Pedro Rocha and Lúıs Caires

Case A P1 ↓y and y ̸= x
Then

P1 ↓y y ̸= x
[share]

(share x {P1 || P2}) ↓y

Case B P1 ↓x2144

We have the following two cases.2145

Case B1 P1 ↓x:fwd2146

Suppose w.l.o.g. that P1 ↓x:fwd.2147

Observe that x occurs typed by U◦A in the linear typing context of2148

P1. Hence, we can apply Lemma C.2(7) in order to conclude that2149

either (i) P1 ↓y for y ̸= x or (ii) P1 reduces. If (i) go to case A. If2150

(ii), go to case C.2151

Case B2 P1 ↓x:act.2152

Then (share x {P1 || P2}) ↓x (Lemma C.2(2)).2153

Case C P1 reduces or P2 reduces2154

Because of → rule [cong], share x {P1 || P2} reduces.2155

Case: The root rule of P ⊢∅ ∆;Γ is [TshR].2156

Similar to case [TshL].2157

Theorem C.1 (Progress). Let P ⊢∅ ∅; ∅ be a live process. Then, P reduces.2158

Proof. Follows from Lemma C.3 since fn(P) = ∅.2159

D Strong Normalisation2160

We prove that reduction → satisfies strong normalisation (Theorem 3.3). First,
we equip the operational model → with interference-sensitive cells, they allow
us to reason about state interference compositionally (Subsection D.1). Next,
we introduce the logical predicates Jx : AKσ for strong normalisation (Subsec-
tion D.4). Finally, we prove the Fundamental Lemma D.11, from which SN
follows. In this section, we work with binary relation ≈ , that includes structural
pre-congruence ≤, but adds a complete set of commuting conversions, along
standard lines [21, 26, 74, 61], which allows to commute actions with the static
constructs mix, cut and share, for example:

(wait x;P) |y| Q ≈ wait x; (P |y| Q), y ̸= x
share y {wait x;P || Q} ≈ wait x; share y {P || Q}

Relation ≈ essentially plays the role of the labelled transition system in the proof2161

of strong normalisation given in [58].2162

Safe Session-Based Concurrency with Shared Linear State 77

D.1 Interference-Sensitive Reference Cells2163

2164

We equip the operational model → with interference-sensitive cells, reference2165

cells which internalise state interference, resultant from shared usage manipula-2166

tion, in their operational model. These auxiliary process constructs play a crucial2167

technical role in the proof of the strong normalisation result, essentially because2168

they allow us to reason about state interference compositionally, as expressed by2169

Lemma D.4. We start with the definition of interference-sensitive cells.2170

Definition D.1 (Interference-Sensitive Reference Cells). Let S ⊆ {R | R ⊢η
a : ∧A}. We extend the process calculus CLASS with the interference-sensitive
full cell c(a.S) and empty empty c(a.S) cells, which have following associated
principal reduction rules

cell c(a.S) |c| release c → P |a| discard a, P ∈ S (1)
cell c(a.S) |c| take c(a′);Q → empty c(a.S) |c| (P |a| {a/a′}Q), P ∈ S (2)
empty c(a.S) |c| put c(a.Q1);Q2 → cell c(a.S) |c| Q2 (3)

Rules (1) and (2) apply to usage processes P ⊢ c : U•A, whereas rule (3) applies2171

to a usage process P ⊢ c : U◦A. When a take or a release action interacts2172

with an interference-sensitive full cell cell c(a.S) we pick an arbitrary element2173

P from the set S (rules (1) and (2)). On the other hand, when a put action2174

put c(a.Q1);Q2 interacts with an interference-sensitive empty cell empty c(a.S)2175

it evolves to cell c(a.S) (3).2176

The process constructs cell c(a.S) and empty c(a.S) can be though of as ref-2177

erence cells subject to interference over the set S. They contrast with the the2178

basic empty and full reference cells cell c(a.P) and empty c of CLASS which2179

are, so to speak, blind to the interference that results from concurrency, since2180

from a local point of view they obey a sequential protocol: if a cell is not being2181

shared by any other thread then every take acquires the session that was put2182

before or that was present in the cell initially. On the other hand, a take on an2183

interference-sensitive cell might obtain a session distinct from the session previ-2184

ously put, even if the interference-sensitive cell is not being explicitly shared. So,2185

interference resulting from cell sharing is baked in the operational semantics of2186

the interference-sensitive cells as expressed by rules (1)-(3) of Def. D.1. Provided2187

the usages are well-behaved according to to the set over which the interference-2188

sensitive cells are defined, as formalised by coinductive Def. D.2, it is possible2189

to simulate the basic full and empty cells of CLASS with interference-sensitive2190

cells, as described by Lemma D.2.2191

Definition D.2. Let S ⊆ {R | R ⊢ y : ∧A}. A process P , where either P ⊢ x :2192

U•A or P ⊢ x : U◦A, is S-preserving on x iff the following hold2193

(a) If P
∗−→ Q, Q ≈ take x(y′);Q′ and R ∈ S, then {y′/y}R |y′| Q′ is S-2194

preserving on x.2195

(b) If P
∗−→ Q and Q ≈ put x(y′.Q1);Q2, then {y/y′}Q1 ∈ S and Q2 is S-2196

preserving on x.2197

78 Pedro Rocha and Lúıs Caires

If a process P is S-preserving on x and after some internal reductions it2198

offers a take action, then the continuation of the take action composed with2199

an element from S is also S-preserving on x (Def. D.2(a)). Dually, if P offers2200

a put action then the element put is on the set S and the continuation is still2201

S-preserving (Def. D.2(b)). The notion of S-preserving is preserved by reduction2202

∗−→, as expressed by the following lemma.2203

Lemma D.1. If P is S-preserving on x and P
∗−→ Q, then Q is S-preserving on2204

x.2205

Proof. Immediate from Def. D.2.2206

The following result sufficient conditions for simulating be basic reference2207

cells using the interference-sensitive cells. But before we need to introduce the2208

notion of simulation. A simulation S is a binary relation on processes s.t. when-2209

ever (P,Q) ∈ S and P → P ′ then there exists Q′ s.t. Q
+−→c Q

′ and (P ′, Q′) ∈ S.2210

We say that P simulates Q iff there exists a simulation S s.t. (Q,P) ∈ S.2211

Lemma D.2. The following properties hold2212

(1) Let S ⊆ {R | R ⊢η y : ∧A}, P ∈ S, Q ⊢η x : U•A and suppose Q is2213

S-preserving on x. Then, cell x(y.P) |x| Q is simulated by cell x(y.S) |x| Q.2214

(2) Let S ⊆ {R | R ⊢η y : ∧A}, Q ⊢η x : U◦A and Q suppose Q is S-preserving2215

on x. Then, empty x |x| Q is simulated by empty x(y.S) |x| Q.2216

Proof. Define

S ≜ S1 ∪ S2 ∪ S3

where

S1 ≜ {(M,N) | ∃P ∈ S,∃Q ⊢η x : U•A. Q is S-preserving on x and
M ≈ cell x(y.P) |x| Q and N ≈ cell x(y.S) |x| Q}

S2 ≜ {(M,N) | ∃Q ⊢η x : U•A. Q is S-preserving on x and
M ≈ empty x |x| Q and N ≈ empty x(y.S) |x| Q}

S3 ≜ {(M,N) |M ≈ N}

We prove that S is a simulation. Suppose (M,N) ∈ S andM →M ′. We perform2217

first case analysis on (M,N) ∈ S.2218

Case: (M,N) ∈ S1. Then

M ≈ cell x(y.P) |x| Q

and

N ≈ cell x(y.S) |x| Q

where P ∈ S and Q ⊢η x : U•A.2219

We perform case analysis on the reduction M →M ′.2220

Safe Session-Based Concurrency with Shared Linear State 79

Case: Internal reduction of Q.2221

2222

Then
M ′ ≈ cell x(y.P) |x| Q′

Let
N ′ ≜ cell x(y.S) |x| Q′

Then, N → N ′ and (M ′, N ′) ∈ S1.2223

Case: Cell-take interaction on session x.2224

2225

Then, Q ≈ take x(y);Q′ and

M ′ ≈ empty x |x| (R |y| Q′)

where R ∈ S.2226

Since, by hypothesis, Q ⊢η x : U•A and Q ≈ take x(y);P ′, then Q′ ⊢η x :2227

U◦A, y : ∨A. Since R ∈ S, then R ⊢η y : ∧A, hence R |y| P ′ ⊢η x : U◦A2228

is S-preserving (Def. D.2(a)).2229

Let
N ′ ≜ empty x(y.S) |x| (R |y| Q′)

Then, N → N ′ and (M ′, N ′) ∈ S2.2230

Case: Cell-release interaction on session x.
Then, Q ≈ C[release x] and

M ≈ cell x(y.P) |x| C[release x]
→ C[P |y| discard y]

Let
N ′ ≜ C[P |y| discard y]

Then, since P ∈ S:

N ≈ cell x(y.S) |x| C[release x]
→ C[P |y| discard y] = N ′

and (M ′, N ′) ∈ S3.2231

Case: (M,N) ∈ S2. Then
M ≈ empty x |x| Q

and
N ≈ empty x(y.S) |x| Q

where Q ⊢η x : U•A.2232

We perform case analysis on the reduction M →M ′.2233

Case: Internal reduction of Q.2234

2235

Then
M ′ ≈ empty x |x| Q′

Let
N ′ ≜ empty x(y.S) |x| Q′

Then, N → N ′ and (M ′, N ′) ∈ S2.2236

80 Pedro Rocha and Lúıs Caires

Case: Cell-put interaction on session x.2237

Then, Q ≈ put x(y.Q1);Q2.2238

By hypothesis, Q ⊢η x : U◦A, hence Q2 ⊢η x : U•A.2239

Furthermore, since Q is S-preserving on x, then Q1 ∈ S and Q2 is S-2240

preserving on x (Def. D.2(b)).2241

Then
M ′ ≈ cell x(y.Q1) |x| Q2

Let
N ′ ≜ cell x(y.S) |x| Q2

Then, N → N ′ and (M ′, N ′) ∈ S1.2242

Case: (M,N) ∈ S3.2243

Trivial since M ≈ N .2244

Crucially, the notion of S-preserving is preserved by concurrent share com-2245

position as described by the following lemma2246

Lemma D.3. If P and Q are S-preserving on x, then share x {P || Q} is S-2247

preserving on x.2248

Proof. By coinduction. We need to prove that share x {P || Q} satisfies (a)-(b)2249

of Def. D.2.2250

(a) Let R ∈ S and suppose share x {P || Q} ∗−→ take x(y);M .2251

The take on x comes either from P or Q. Suppose w.l.o.g. that it comes from
P . Then

P
∗−→ take x(y);P ′ and M ≈ share x {P ′ || Q′}

where Q
∗−→ Q′.2252

We need to prove that R |y| M is S-preserving on x.2253

But

R |y| M ≈ R |y| share x {P ′ || Q′} ≈ share x {R |y| P ′ || Q′}

Since P is S-preserving on x and R ∈ S, then Def. D.2(a) implies that2254

R |y| P ′ is S-preserving on x.2255

Since Q is S-preserving on x and Q
∗−→ Q′, then Q′ is S-preserving on x (by2256

Lemma D.1).2257

By coinductive hypothesis we conclude that share x {R |y| P ′ || Q′} is S-2258

preserving on x.2259

(b) If P
∗−→ Q and Q ≈ put x(y.Q1);Q2, then Q1 ∈ S and Q2 is S-preserving2260

on x.2261

Suppose share x {P || Q} ∗−→ put x(y.M1);M2.2262

Suppose w.l.o.g. that P ⊢ x : U◦A, then the put comes from P .2263

Hence
P

∗−→≈ put x(y.M1);P
′ and M ≈ share x {P ′ || Q′}

where Q
∗−→ Q′.2264

Safe Session-Based Concurrency with Shared Linear State 81

We need to prove that (i) M1 ∈ S and that (ii) share x {P ′ || Q′} is S-2265

preserving on x.2266

(i) follows since P is S-preserving on x (Def. D.2(b)).2267

Since P is S-preserving on x (Def. D.2(b)), then P ′ is S-preserving.2268

Since Q is S-preserving on x and Q
∗−→ Q′, then Q′ is S-preserving on x (by2269

Lemma D.1).2270

By coinductive hypothesis, share x {P ′ || Q′} is S-preserving on x, hence2271

(ii).2272

Since the potential interference resulting from cell sharing is absorbed by the2273

operational semantics that characterises the interference-sensitive cells (Def. D.1),2274

we have the following simulation property which allows us to reason modularly2275

about state sharing, and with which we conclude this section.2276

Lemma D.4. The following pair of simulations hold2277

(1) Let P ⊢η x : U•A, Q ⊢η x : U•A and S ⊆ {R | R ⊢η y : ∧A}. Then,

(cell x(y.S) |x| P) || (cell x(y.S) |x| Q)
simulates

cell x(y.S) |x| share x {P || Q}

(2) Let P ⊢η x : U◦A, Q ⊢η x : U•A and S ⊆ {R | R ⊢η y : ∧A}. Then,

(empty x(y.S) |x| P) || (cell x(y.S) |x| Q)
simulates

empty x(y.S) |x| share x {P || Q}

Proof. Define
S ≜ S1 ∪ S2 ∪ S3

where

S1 ≜ {(M,N) | ∃P ⊢η x : U•A,∃Q ⊢η x : U•A. M ≈ cell x(y.S) |x| share x {P || Q}
and N ≈ (cell x(y.S) |x| P) || (cell x(y.S) |x| Q)}

S2 ≜ {(M,N) | ∃P ⊢η x : U◦A,∃Q ⊢η x : U•A. M ≈ empty x(y.S) |x| share x {P || Q}
and N ≈ (empty x(y.S) |x| P) || (cell x(y.S) |x| Q)}

S3 ≜ {(M,N) | ∃P ⊢η ∅; ∅,∃C∃D. M ≈ C ◦ D[P] and N ≈ C[P] || D[P]}

We prove that S is a simulation. Suppose (M,N) ∈ S andM →M ′. We perform2278

first case analysis on (M,N) ∈ S.2279

Case: (M,N) ∈ S1. Then

M ≈ cell x(y.S) |x| share x {P || Q}

and
N ≈ (cell x(y.S) |x| P) || (S |x| Q)

where P ⊢η x : U•A and Q ⊢η x : U•A.2280

We perform case analysis on the reduction M →M ′.2281

82 Pedro Rocha and Lúıs Caires

Case: Internal reduction of either P or Q.2282

Suppose w.l.o.g. that M → M ′ is obtained by an internal reduction2283

P → P ′.2284

Then

M ′ ≈ cell x(y.S) |x| share x {P ′ || Q}

Let

N ′ ≜ (cell x(y.S) |x| P ′) || (cell x(y.S) |x| Q)

Then, N → N ′ and (M ′, N ′) ∈ S1.2285

Case: Cell-take interaction on session x.2286

Suppose w.l.o.g. that the interaction occurs between the cell and P .2287

Then, P ≈ take x(y);P ′ and

M ′ ≈ empty x(y.S) |x| share x {R |y| P ′ || Q}

where R ∈ S.2288

Since, by hypothesis, P ⊢η x : U•A and P ≈ take x(y);P ′, then P ′ ⊢η x :2289

U◦A, y : ∨A. Since R ∈ S, then R ⊢η y : ∧A, hence R |y| P ′ ⊢η x : U◦A.2290

Let

N ′ ≜ (empty x(y.S) |x| (R |y| P ′)) || (cell x(y.S) |x| Q)

Then, N → N ′ and (M ′, N ′) ∈ S2.2291

Case: Cell-release interaction on session x.2292

Both P ≈ C[release x] and Q ≈ D[release x], for some static contexts2293

C,D.2294

Then

M ≈ cell x(y.S) |x| share x {C[release x] || D[release x]}
≈ C ◦ D[cell x(y.S) |x| release x]
→ C ◦ D[R |y| discard y]

where R ∈ S.2295

Let

N ′ ≜ C[R |y| discard y] || D[R |y| discard y]

Then N
2−→c N

′ and (M ′, N ′) ∈ S3.2296

Case: (M,N) ∈ S2. Then

M ≈ empty x(y.S) |x| share x {P || Q}

and

N ≈ (empty x(y.S) |x| P) || (cell x(y.S) |x| Q)

where P ⊢η x : U◦A and Q ⊢η x : U•A.2297

We perform case analysis on the reduction M →M ′.2298

Safe Session-Based Concurrency with Shared Linear State 83

Case: Internal reduction of either P or Q.2299

Suppose w.l.o.g. that M → M ′ is obtained by an internal reduction2300

P → P ′.2301

Then

M ′ ≈ empty x(y.S) |x| share x {P ′ || Q}

Let

N ′ ≜ (empty x(y.S) |x| P ′) || (cell x(y.S) |x| Q)

Then, N → N ′ and (M ′, N ′) ∈ S2.2302

Case: Cell-put interaction on session x.2303

Then, P ≈ put x(y.P1);P2.2304

By hypothesis, P ⊢η x : U◦A, hence P2 ⊢η x : U•A.2305

Then

M ′ ≈ cell x(y.S) |x| share x {P2 || Q}

Let

N ′ ≜ (cell x(y.S) |x| P2) || (cell x(y.S) |x| Q)

Then, N → N ′ and (M ′, N ′) ∈ S1.2306

Case: (M,N) ∈ S3.
Then

M ≈ C ◦ D[P]

and

N ≈ C[P] || D[P]

where P ⊢η ∅; ∅.2307

We perform case analysis on the reduction M →M ′.2308

Case: Internal reduction of either C or D.2309

2310

Suppose w.l.o.g. that C → C′. Then

M ′ ≈ C′ ◦ D[P]

Let

N ′ ≜ C′[P] || D[P]

Then, N → N ′ and (M ′, N ′) ∈ S3.2311

Case: Internal reduction of P .2312

Suppose P → P ′.2313

Then

M ≈ C ◦ D[P ′]

Let N ′ ≜ C[P ′] || D[P ′].2314

Then, N
2−→c N

′ and (M ′, N ′) ∈ S3.2315

84 Pedro Rocha and Lúıs Caires

D.2 Logical Predicates Jx : AKσ.2316

The goal of this section is to introduce the linear logical predicates, used to es-2317

tablish our strong normalisation result. In D.3, we start by presenting some basic2318

properties about SN processes and then we introduce the orthogonal operation.2319

This operation is then used to define, later in D.4, our basic logical predicates2320

Jx : AKσ, we then prove some properties. We conclude in D.5 with the proof2321

of the Fundamental Lemma D.11, from which our strong normalisation result2322

follows immediately (Theorem 3.3).2323

D.3 Orthogonal and Basic Properties2324

We start by stating some basic properties (Lemma D.5) but first let us introduce2325

a measure on SN processes, which will be often used to prove properties about2326

strong normalisation by induction. For every process P there is a finite (up to2327

≈) number of processes Q for which P → Q. Hence, By König’s Lemma, for2328

each SN process P there is a longest →-reduction sequence starting with P , we2329

denote the length of this sequence by N(P).2330

Lemma D.5 (SN: Basic Properties). The following properties hold2331

(1) If P is SN and P ≈ Q, then Q is SN.2332

(2) If P is SN and P → Q, then Q is SN.2333

(3) Suppose Q is SN whenever P → Q. Then, P is SN.2334

(4) If P and Q are SN, then P || Q is SN.2335

(5) If Q is SN and Q simulates P , then P is SN.2336

Proof. All properties are easy to establish, in particular we have the following:2337

in (1) N(P) = N(Q), in (2) N(Q) = N(P)− 1, in (3) N(P) = (max {Q | P →2338

Q}) + 1 and in (4) N(P || Q) = N(P) +N(Q).2339

2340

We will now introduce the orthogonal, which will play a key role when defin-2341

ing logical predicates for strong normalisation. As we will see, each logical pred-2342

icate is defined by taking the orthogonal of some set. In the following, we write2343

Px to emphasise that x is the only free name of P .2344

Definition D.3 (Orthogonal (−)⊥). Let S be a subset of processes Qx with
a single free name x. We define the orthogonal of S, written S⊥, by

S⊥ ≜ {Px | ∀Qx ∈ S. Px |x| Qx is SN}

The orthogonal satisfies some well-known properties, as stated by the follow-2345

ing lemma.2346

Lemma D.6 (Orthogonal: Basic Properties). The following properties2347

hold2348

(1) If P ∈ S⊥ and P ≈ Q, then Q ∈ S⊥.2349

Safe Session-Based Concurrency with Shared Linear State 85

(2) If P ∈ S⊥ and P → Q ,then Q ∈ S⊥.2350

(3) If S1 ⊆ S2, then S
⊥
2 ⊆ S⊥

12351

(4) S ⊆ S⊥⊥.2352

(5) S⊥⊥⊥ = S⊥
2353

(6) Let S be a collection of sets. Then, (
⋃
S)⊥ =

⋂
S∈S S

⊥.2354

(7) Let S be a collection of sets S s.t. S = S⊥⊥, whenever S ∈ S. Then,2355

(
⋂
S)⊥⊥ =

⋂
S.2356

Proof. (1) Follows by Lemma D.5(1).2357

(2) Follows by Lemma D.5(2).2358

(3) Suppose P ∈ S⊥
2 .2359

So let Q ∈ S1. Since S1 ⊆ S2, then Q ∈ S2. Since P ∈ S⊥
2 , then P |x| Q is2360

SN.2361

Thus, P ∈ S⊥
1 .2362

(4) Let P ∈ S. We want P ∈ S⊥⊥. Take Q ∈ S⊥. It suffices to show that2363

P |x| Q is SN. It follows from Q ∈ S⊥ and P ∈ S.2364

(5) From (2) and (3) follows S⊥⊥⊥ ⊆ S⊥. From (3) follows S⊥ ⊆ (S⊥)⊥⊥ =2365

S⊥⊥⊥.2366

(6) We prove that (i) (
⋃
S)⊥ ⊆

⋂
S∈S S

⊥ and (ii)
⋂
S∈S S

⊥ ⊆ (
⋃
S)⊥.2367

(ii) follows immediately by Def. D.3.2368

So let us consider (i).2369

Let S ∈ S. Applying (3) to S ⊆
⋃
S yields (

⋃
S)⊥ ⊆ S⊥.2370

Then, (
⋃
S)⊥ ⊆

⋂
S∈S S

⊥.2371

(7) We have

(
⋂
S)⊥⊥ = (

⋂
S∈S S)

⊥⊥

= (
⋂
S∈S S

⊥⊥)⊥⊥ (S = S⊥⊥, whenever S ∈ S)
= (

⋃
S∈S S

⊥)⊥⊥⊥ (from (6))
= (

⋃
S∈S S

⊥)⊥ (from (5))
=

⋂
S∈S S

⊥⊥ (from (6))
=

⋂
S∈S S (S = S⊥⊥, whenever S ∈ S)

2372

D.4 Logical Predicates Jx : AKσ2373

We will now introduce the logical predicates Jx : AKσ for strong normalisation.2374

Since we are working with polymorphic and inductive types, the definition is2375

parametric on a map σ from type variables to reducibility candidates. So let us2376

define reducibility candidates first.2377

Definition D.4 (Reducibility Candidates R[x : A]). Given a type A and2378

a name x we define a reducibility candidate at x : A, denoted by R[x : A]2379

as a set of SN processes P ⊢ x : A which is equal to its biorthogonal, i.e.2380

R[x : A] = R[x : A]⊥⊥.2381

We let R[− : A] be the set of all reducibility candidates R[x : A] for some name2382

x. Reducibility candidates are ordered by set-inclusion ⊆, the least candidate2383

being ∅⊥⊥.2384

86 Pedro Rocha and Lúıs Caires

Jx : XKσ ≜ σ(X)[x]

Jx : 1Kσ ≜ {P | P ≈ close x and P is SN}⊥⊥

Jx : A⊗BKσ ≜ {P | ∃P1, P2. P ≈ send x(y.P1);P2 and
P1 ∈ Jy : AKσ and P2 ∈ Jx : BKσ}⊥⊥

Jx : A⊕BKσ ≜ {P | ∃Q. P ≈ x.inl;Q and Q ∈ Jx : AKσ or
P ≈ x.inr;Q and Q ∈ Jx : BKσ}⊥⊥

Jx :!AKσ ≜ {P | ∃Q. P ≈ !x(y);Q and Q ∈ Jy : AKσ}⊥⊥

Jx : ∃X.AK ≜ {P | ∃Q,S ∈ R[− : B]. P ≈ sendty x(B);Q and
Q ∈ Jx : AKσ[X 7→S]}⊥⊥

Jx : µX. AKσ ≜ (
⋂
{S ∈ R[− : µX.A] | unfoldµ x; Jx : AKσ[X 7→S] ⊆ S})⊥⊥

Jx : ∧AKσ ≜ {P | ∃Q. P ≈ affine x;Q and Q ∈ Jx : AKσ}⊥⊥

Jx : S•AKσ ≜ {P | P ≈ cell x(y.Jy : ∧AKσ) and P is SN}⊥⊥

Jx : S◦AKσ ≜ {P | P ≈ empty x(y.Jy : ∧AKσ) and P is SN}⊥⊥

Jx : BKσ ≜ Jx : BK⊥σ (B negative type)

Fig. 25: Logical Predicate Jx : AKσ.

Definition D.5 (Logical Predicate Jx : AKσ). By induction on the type A,2385

we define the set Jx : AKσ an shown in Fig. 25. The definition is direct for the2386

positive types A, for negative types B is simply given by orthogonality. Further-2387

more, we constrain the elements of Jx : U•AKσ and Jx : U◦AKσ to be Jy : ∧AK-2388

preserving, for all y.2389

For the positive types A, the predicate Jx : AKσ takes the biorthogonal of2390

some base set S of processes P that offer an action, further conditions then2391

characterise the process constituents of the actions. In the base cases close x,2392

cell x(y.Jy : ∧AKσ) and empty x(y.Jy : ∧AKσ), where the action does not have2393

any further process constituents, we simply require the action offering process2394

to be SN.2395

The presence of duality give us some succinctness in the presentation of the2396

logical predicates, since, for the negative types A, the predicate Jx : AKσ is simply2397

defined as the biorthogonal of the logical predicate for its dual A type. In fact, we2398

can also establish this property for the positive types (Lemma D.7(4)), thereby2399

lifting duality to the logical level using the orthogonal operation. As a pleasant2400

consequence we conclude immediately that if P Jx : AKσ and Q ∈ Jx : AKσ, then2401

the resulting cut composition P |x| Q is SN.2402

By exploiting the properties satisfied by the orthogonal (Lemma D.6) we2403

obtain a strategy to establish the membership P ∈ Jx : AKσ. For the positive2404

types we have Jx : AKσ = S⊥⊥, for some set S. Since S ⊆ S⊥⊥ (Lemma D.6(4)),2405

we can conclude that P ∈ Jx : AKσ, provided we prove P ∈ S. On the other2406

hand, for the negative types we have Jx : AKσ = S⊥⊥⊥. But since S⊥⊥⊥ = S⊥
2407

(Lemma D.6(5)), it is equivalent to prove that for all Q ∈ S, P |x| Q is SN. These2408

strategies will be applied throughout the proof of the Fundamental Lemma D.11.2409

Safe Session-Based Concurrency with Shared Linear State 87

In all cases, with some exceptions, when defining Jx : AKσ we simply propa-2410

gate map σ without modifications. The exceptions are the defining clauses cor-2411

responding to the existential ∃X.A and the inductive types µX. A, in which we2412

extend the map σ with an assignment for the type variable X. Furthermore, the2413

definition of the predicate for a type variable Jx : XKσ picks the corresponding2414

reducibility candidate σ(X) = R[y : B], instantiated at name x: {x/y}R[y : B].2415

The definition of Jx : µX. AKσ relies on the construction unfoldµ x;S, that
for any set S, is defined according to

unfoldµ x;S ≜ {P | ∃Q. P ≈ unfoldµ x;Q and Q ∈ S}

Similarly, given a set S, we define unfoldν x;A by

unfoldν x;S ≜ {P | ∃Q. P ≈ unfoldν x;Q and Q ∈ S}

The following lemma states some basic properties about the logical predi-2416

cates.2417

Lemma D.7 (Logical Predicates: Basic Properties). The following prop-2418

erties hold2419

(1) If P ∈ Jx : AKσ, then {y/x}P ∈ Jy : AKσ.2420

(2) If P ∈ Jx : AKσ and P ≈ Q, then Q ∈ Jx : AKσ.2421

(3) If P ∈ Jx : AKσ and P → Q, then Q ∈ Jx : AKσ.2422

(4) Jx : AKσ = Jx : AK⊥σ .2423

(5) Jx : {B/X}AKσ = Jx : AKσ[X 7→Jx:BKσ].2424

(6) Jx : AKσ[X 7→S⊥] = Jx : {X/X}AKσ[X 7→S].2425

Proof. Property (1) is trivial. Properties (2) and (3) follows by Lemma D.6(1)2426

and Lemma D.6(2), respectively. Property (4) follows directly by Def. D.5 for2427

half of the types. The remaining half follows by Lemma D.6(5). Properties (5)2428

and (6) are straightforward by induction on A.2429

The logical predicates are preserved by name substitution, the congruence re-2430

lation≈ and the reduction relation→ (Lemma D.7(1)-(3)). Property Lemma D.7(4)2431

relates the logical predicates of duality related types, using the orthogonal.2432

Lemma D.7(5)-(6) relate type variable substitution with the parametric map2433

σ.2434

We use the interference-sensitive reference cells (Def. D.1) to define the log-2435

ical predicates Jx : S•AKσ and Jc : S◦AKσ, for the state full and the state empty2436

modalities, respectively. This allows us to internalise state interference in the2437

definition of the logical predicate itself and, as consequence, we can reason mod-2438

ularly about state sharing as witnessed by the following lemma2439

Lemma D.8. The following properties hold2440

(1) If P1 ∈ Jc : U•AKσ and P2 ∈ Jc : U•AKσ, then share c {P1 || P2} ∈ Jc :2441

U•AKσ.2442

88 Pedro Rocha and Lúıs Caires

(2) If P1 ∈ Jc : U◦AKσ and P2 ∈ Jc : U◦AKσ, then share c {P1 || P2} ∈ Jc :2443

U◦AKσ.2444

Proof. (1) By Def. D.3 and Lemma D.6(5) we have Jc : U•AK = S⊥, where

S = {Q | Q ≈ cell c(a.Ja : ∧AK)σ}.

Let Q ≈ cell c(a.Ja : ∧AK)σ.2445

We need to prove that Q |c| share c {P1 || P2} is SN.2446

By Lemma D.4(1) we conclude that Q |c| share c {P1 || P2} is simulated by

(Q |c| P1) || (Q |c| P2)

By hypothesis, P1 ∈ Jc : U•AKσ, hence Q |c| P1 is SN.2447

By hypothesis, P2 ∈ Jc : U•AKσ, hence Q |c| P2 is SN.2448

Then, (Q |c| P1) || (Q |c| P2) is SN (Lemma D.5(4)).2449

Therefore, Q |c| share c {P1 || P2} is SN (Lemma D.5(5)).2450

By hypothesis, for any y, both P1 and P2 are Jy : ∧AK-preserving on c.2451

Applying Lemma D.3, we conclude that share c {P1 || P2} is also Jy : ∧AK-2452

preserving on c.2453

(2) Similarly to (1), by applying the simulation Lemma D.4(2).2454

We will now state some properties concerning the logical predicate for induc-2455

tive types. But first, let us introduce the following definition.2456

Definition D.6 (ϕA(S)). Suppose that X occurs positively on A. Define

ϕA(S) ≜ unfoldµ x; Jx : AKσ[X 7→S]

Jx : µX. AKσ is defined as the biorthogonal of the intersection of all ϕA-2457

closed sets S, i.e. sets S s.t. ϕA(S) ⊆ S. Since ϕA is monotonic (Lemma D.9(1)),2458

Knaster-Tarski theorem implies that Jx : µX. AKσ is the least fixed point of ϕA2459

(Lemma D.9(2)). Dually, we can obtain a greatest fixed point characterisation2460

for Jx : νX. AKσ (Lemma D.9(3)). Applying Kleene’s fixed point theorem we2461

explicitly construct the fixed point of ϕA (Lemma D.9(4)).2462

Lemma D.9. The following properties hold2463

(1) The map ϕA is monotonic, i.e. ϕA(S1) ⊆ ϕA(S2), whenever S1 ⊆ S2.2464

(2) Jx : µX. AKσ is the least fixed point of ϕA.2465

(3) Let ψA(S) ≜ ϕ{X/X}A(S
⊥)⊥. Then, Jx : νX. AKσ is the greatest fixed point2466

of ψA.2467

(4) Jx : µX. AKσ =
⋃
n∈N ϕ

n
A(∅⊥⊥).2468

(5) unfoldν x; Jx : {νX. A/X}AKσ ⊆ Jx : νX. AKσ.2469

Proof. (1) We prove hypothesis (H1) if S1 ⊆ S2, then Jx : AKσ[X 7→S1] ⊆ Jx :2470

AKσ[X 7→S2], which implies (1).2471

The proof of (H1) is by induction on A, we handle some representative cases.2472

Safe Session-Based Concurrency with Shared Linear State 89

Case: A = Y .2473

There are two cases to consider, depending on whether (i) Y ̸= X or (ii)2474

Y = X.2475

If (i), then Jx : Y Kσ[X 7→S1] = σ(Y) = Jx : Y Kσ[X 7→S2].2476

If (ii), then Jx : XKσ[X 7→S1] = S1 ⊆ S2 = Jx : XKσ[X 7→S2].2477

In either case (i)-(ii), Jx : Y Kσ[X 7→S1] ⊆ Jx : Y Kσ[X 7→S2].2478

Case: A = 1.2479

We have Jx : 1Kσ[X 7→S1] = Jx : 1Kσ[X 7→S2].2480

Case: A = A1 ⊗A2.
By Def. D.5,

Jx : A1 ⊗A2Kσ[X 7→S] = f(S)⊥⊥

where

f(S) ≜ {P | ∃P1, P2. P ≈ send x(y.P1);P2

and P1 ∈ Jy : A1Kσ[X 7→S] and P2 ∈ Jx : A2Kσ[X 7→S]}

Suppose that S1 ⊆ S2. I.h. applied to A1 and A2 yields f(S1) ⊆ f(S2).2481

Lemma D.6(3) applied twice to f(S1) ⊆ f(S2) yields

Jx : A1 ⊗A2Kσ[X 7→S1] = f(S1)
⊥⊥ ⊆ f(S2)

⊥⊥ = Jx : A1 ⊗A2Kσ[X 7→S2]

Case: A = µY. B.
By Def. D.5

Jx : µY. BKσ[X 7→S] = (
⋂
f(S))⊥⊥

where

f(S) ≜ {T ∈ R[− : µY.B] | unfoldµ x; Jx : BKσ[X 7→S,Y 7→T] ⊆ T}

Suppose S1 ⊆ S2. Let T ∈ f(S2). Then, unfoldµ x; Jx : BKσ[X 7→S2,Y 7→T] ⊆2482

T .2483

I.h. applied to B yields unfoldµ x; Jx : BKσ[X 7→S1,Y 7→T] ⊆ unfoldµ x; Jx :2484

BKσ[X 7→S2,Y 7→T].2485

By transitivity of ⊆, unfoldµ x; Jx : BKσ[X 7→S1,Y 7→T] ⊆ T .2486

Hence, T ∈ f(S1).2487

This establishes f(S2) ⊆ f(S1).2488

Then,
⋂
f(S1) ⊆

⋂
f(S2).2489

Lemma D.6(3) applied twice to
⋂
f(S1) ⊆

⋂
f(S2) yields

Jx : µY. BKσ[X 7→S1] = (
⋂
f(S1))

⊥⊥ ⊆ (
⋂
f(S2))

⊥⊥ = Jx : µY. BKσ[X 7→S2]

Case: A = S•B.
By Def. D.5

Jx : S•BKσ[X 7→S] = f(S)⊥⊥

where
f(S) ≜ {P | P ≈ cell x(y.Jy : ∧AKσ[X 7→S])}

90 Pedro Rocha and Lúıs Caires

Suppose S1 ⊆ S2. We prove that f(S2)
⊥ ⊆ f(S1)

⊥.2490

Let Q ∈ f(S2)
⊥. In order to show that Q ∈ f(S1)

⊥ we must show that2491

P |x| Q is SN, when P ∈ f(S1).2492

We prove by induction onN(P)+N(Q) that all the reductions P |x|Q→2493

R are SN.2494

We handle only the interesting reduction, which corresponds to a cell-
take interaction on session x. Then

P |x| Q ≈ cell x(y.Jy : ∧AKσ[X 7→S1]) |x| take x(y);Q′

→ empty x(y.Jy : ∧AKσ[X 7→S1]) |x| (P ′ |y| Q′) = R

where P ≈ cell x(y.Jy : ∧AKσ[X 7→S1]), Q ≈ take x(y);Q′ and P ′ is some

element in Jy : ∧AKσ[X 7→S1]. By hypothesis, Q ∈ f(S2)
⊥, hence

cell x(y.Jy : ∧AKσ[X 7→S2]) |x| take x(y);Q
′

is SN.2495

Then, all the reductions of cell x(y.Jy : ∧AKσ[X 7→S2]) |x| take x(y);Q′ are
SN, in particular the following reduction can be obtained, since P ′ ∈
S1 ⊆ S2:

cell x(y.Jy : ∧AKσ[X 7→S2]) |x| take x(y);Q′

→ empty x(y.Jy : ∧AKσ[X 7→S2]) |x| (P ′ |y| Q′)

(2) By Def. D.5

Jx : µX. AKσ = (
⋂
{S ∈ R[− : µX.A] | ϕA(S) ⊆ S})⊥⊥

Since a reducibility candidate is equal to its biorthogonal (Def. D.4), we can
write Jx : µX. AKσ in the alternative form (Lemma D.6(7))

Jx : µX. AKσ =
⋂

{S ∈ R[− : µX.A] | ϕA(S) ⊆ S}

i.e. Jx : µX. AKσ is the intersection of all ϕA-closed sets in R[− : µX.A].2496

We now prove the following propositions2497

(i) Jx : µX. AKσ is ϕA-closed, i.e. ϕA(Jx : µX. AKσ) ⊆ Jx : µX. AKσ.2498

Let S ∈ R[− : µX.A] be a ϕA-closed set.2499

By definition, we have (a) ϕA(S) ⊆ S and (b) Jx : µX. AKσ ⊆ S.2500

Monotonicity of ϕA (1) applied to (b) yields ϕA(Jx : µX. AKσ ⊆ ϕA(S).2501

Hence, transitivity and (a) implies ϕA(Jx : µX. AKσ) ⊆ S.2502

Since Jx : µX. AKσ is the intersection of all ϕA-closed sets in R[− :2503

µX.A], then ϕA(Jx : µX. AKσ) ⊆ Jx : µX. AKσ.2504

(ii) Jx : µX. AKσ ⊆ ϕA(Jx : µX. AKσ).2505

Monotonicity of ϕA (1) applied to (i) yields ϕA(ϕA(Jx : µX. AKσ) ⊆2506

ϕA(Jx : µX. AKσ), i.e. ϕA(Jx : µX. AKσ) is ϕA-closed.2507

Since Jx : µX. AKσ is the intersection of all ϕA-closed sets in R[− :2508

µX.A], then Jx : µX. AKσ ⊆ ϕA(Jx : µX. AKσ).2509

Safe Session-Based Concurrency with Shared Linear State 91

2510

Propositions (i) and (ii) imply that Jx : µX. AKσ is a fixed point of ϕA.2511

Let S ∈ R[− : µX.A] be any fixed point of ϕA. Then, in particular, S is2512

ϕA-closed, hence Jx : µX. AKσ ⊆ ϕA.2513

Therefore, Jx : µX. AKσ is the least fixed point of ϕA.2514

(3) We need to prove the following propositions2515

(i) Jx : νX. XAKσ is a fixed point of ψA.
By (b), Jx : µX. {X/X}AKσ is a fixed point of ϕ{X/X}A

ϕ{X/X}A(Jx : µX. {X/X}AKσ) = Jx : µX. {X/X}AKσ

hence, applying the orthogonal to both sides of the equation yields

ϕ{X/X}A(Jx : µX. {X/X}AKσ)⊥ = Jx : µX. {X/X}AK⊥σ

Since Jx : µX. {X/X}AK⊥σ = Jx : νX. XAKσ (Lemma D.7(4)) we can
rewrite the equation in the equivalent form

ϕ{X/X}A(Jx : νX. XAK⊥σ)
⊥ = Jx : νX. XAKσ

Then, Jx : νX. XAKσ is a fixed point of ψA.2516

(ii) If S is a fixed point of ψA, then S ⊆ Jx : νX. XAKσ.
Suppose that S is a fixed point of ψA, i.e.

ψA(S) = ϕ{X/X}A(S
⊥)⊥ = S

Applying the orthogonal to both sides of the equation yields

ϕ{X/X}A(S
⊥)⊥⊥ = S⊥

Since ϕ{X/X}A(S
⊥) ⊆ ϕ{X/X}A(S

⊥)⊥⊥ (Lemma D.6(4)), then

ϕ{X/X}A(S
⊥) ⊆ S⊥

i.e. S⊥ is a ϕ{X/X}A-closed set.2517

Then, by Def. D.5

Jx : µX. {X/X}AKσ ⊆ S⊥

Applying the orthogonal to the inequation (Lemma D.6(3)) yields

S⊥⊥ ⊆ Jx : µX. {X/X}AK⊥σ

Since S ⊆ S⊥⊥ (Lemma D.6(2)), we obtain

S ⊆ Jx : µX. {X/X}AK⊥σ

Finally, since Jx : µX. {X/X}AK⊥σ = Jx : νX. AKσ (Lemma D.7(4)) we
have

S ⊆ Jx : νX. AKσ

92 Pedro Rocha and Lúıs Caires

(4) We prove that
⋃
n∈N ϕ

n
A(∅⊥⊥) is the least fixed point of ϕA.2518

By (b) it follows that Jx : µX. AKσ =
⋃
n∈N ϕ

n
A(∅⊥⊥).2519

We need to prove the following propositions2520

(i)
⋃
n∈N ϕ

n
A(∅⊥⊥) is a fixed point of ϕA.

We have
ϕA(

⋃
n∈N

ϕnA(∅⊥⊥)) =
⋃
n>0

ϕnA(∅⊥⊥)

Since ϕ0A(∅⊥⊥) = ∅⊥⊥ is the least reducibility candidate, we have ϕ0A(∅⊥⊥) ⊆2521

ϕnA(∅⊥⊥), for any n > 0.2522

Then ⋃
n>0

ϕnA(∅⊥⊥) =
⋃
n∈N

ϕnA(∅⊥⊥)

Therefore
ϕA(

⋃
n∈N

ϕnA(∅⊥⊥)) =
⋃
n∈N

ϕnA(∅⊥⊥)

(ii) If S is fixed point of ϕA, then
⋃
n∈N ϕ

n
A(∅⊥⊥) ⊆ S.2523

We that ϕnA(∅⊥⊥) ⊆ S, for all n ∈ N. The proof is by induction on n.2524

Case: n = 0.2525

Since ϕ0A(∅⊥⊥) = ∅⊥⊥ is the least reducibility candidate, ϕ0A(∅⊥⊥) ⊆2526

S.2527

Case: n = m+ 1.
By i.h. we have

ϕmA (∅⊥⊥) ⊆ S

Monotonicity of ϕA (1) implies

ϕm+1
A (∅⊥⊥)) ⊆ ϕ(S)

Since ϕ(S) = S, then

ϕm+1
A (∅⊥⊥)) ⊆ S

(5) Let P ≈ unfoldν x;P
′, where P ′ ∈ Jx : {νX. A/X}AKσ.2528

Let B ≜ {X/X}A, hence νX. A = µX. B.2529

We prove that P |x| Q is SN, for all Q ∈ Jx : µX. BKσ, by analysing all the2530

possible reductions of P |x| Q and concluding that all of them are SN.2531

The critical reduction is the unfold-unfold interaction on session x, in which2532

case Q ≈ unfoldν x;Q
′, and P |x| Q→ P ′ |x| Q′.2533

By (2) we conclude that Q′ ∈ Jx : {µX. B/X}BKσ.2534

Since {νX. A/X}A = {µX. B/X}B, we conclude that P ′ |x| Q′ is SN.2535

D.5 Extended Logical Predicate and Fundamental Lemma2536

The logical predicates Jx : AKσ introduced previously apply to processes that2537

have a single free name x. We will now extend the definition to typed pro-2538

cesses P ⊢η ∆;Γ with an arbitrary set of free names. The idea is to compose2539

Safe Session-Based Concurrency with Shared Linear State 93

P with candidates from the basic logical predicates and require the composition2540

to be strongly normalising. We then conclude with the statement and proof of2541

the Fundamental Lemma D.11, from which strong normalisation for → follows2542

(Theorem 3.3). Let us start with the following definition.2543

Definition D.7 (Logical Contexts). The set J∆Kσ of linear logical contexts
at ∆ is inductively defined by

J∅Kσ ≜ {−} J∆,x : AKσ ≜ {P |x : A| C | P ∈ Jx : AKσ and C ∈ J∆Kσ}

Similarly, we define the set JΓ K!σ of unrestricted logical contexts at Γ inductively
by

J∅K!σ ≜ {−} JΓ, y : AK!σ ≜ {y.P |!x : A| C | P ∈ Jy : AKσ and C ∈ JΓ K!σ}

We extend N from processes to contexts C ∈ J∆Kσ by N(−) = 0 and2544

N(P |x| C′) = N(P)+N(C′). Now, we will extend the logical predicate to general2545

typed processes P ∈ J⊢η ∆;Γ K by composing it along ∆ and Γ with processes2546

from the basic logical predicates (Def. D.5) and by replacing the free process2547

variables by elements of the appropriate reducibility candidate, according to the2548

following definition.2549

Definition D.8 (Extended Logical Predicate J⊢η ∆;Γ Kσ). We define LJ⊢η
∆;Γ Kσ inductively on η as the set of processes P ⊢η ∆;Γ s.t.

P ∈ LJ⊢∅ ∆;Γ Kσ iff ∀C ∈ J∆Kσ ∀D ∈ JΓ K!σ. C ◦ D[P] is SN.
P ∈ LJ⊢η,X(x,y⃗)7→∆′,x:Y ;Γ ∆;Γ Kσ iff ∀Q ∈ LJ⊢∅ ∆

′, x : Y ;Γ K. {Q/X}P ∈ LJ⊢η ∆;Γ Kσ.

2550

The base case LJ⊢∅ ∅; ∅Kσ corresponds to the set of closed typed SN processes.
Given a map

η = X1(x⃗1) 7→ ∆1;Γ1, . . . , Xn(x⃗n) 7→ ∆n;Γn

we define JηKσ as the set of all substitution maps η′ s.t.

η′ = X1(x⃗1) 7→ Q1, . . . , Xn(x⃗n) 7→ Qn

where Q1 ∈ LJ⊢∅ ∆1;Γ1Kσ, . . . , Qn ∈ LJ⊢∅ ∆n;ΓnKσ.2551

Then, Def. D.8 is equivalent to the following

P ∈ LJ⊢η ∆;Γ Kσ iff ∀η′ ∈ JηKσ ∀C ∈ J∆Kσ ∀D ∈ JΓ K!σ. C ◦ D[η′(P)] is SN.

where we denote by η′(P) the process obtained by substituting the variables in2552

P by processes according to η′.2553

The following property establishes an equivalence between the extended log-2554

ical predicate and the basic logical predicates of Def. D.5. In one direction it2555

establishes that if P ∈ LJ⊢∅ ∆,x : A;Γ Kσ, then we can cut the process along ∆2556

and Γ and prove that the resulting cut composition is an element of Jx : AKσ.2557

94 Pedro Rocha and Lúıs Caires

Lemma D.10. The following two propositions2558

(1) P ∈ LJ⊢∅ ∆,x : A;Γ Kσ.2559

(2) For all C ∈ J∆Kσ and D ∈ JΓ K!σ, C ◦ D[P] ∈ Jx : AKσ.2560

are equivalent.2561

Proof. By Lemma D.7(4).2562

2563

Lemma D.10 gives us a degree of freedom in the sense that we can choose2564

an arbitrary typed channel x : A from a nonempty linear typing context ∆ of2565

a typed process P ⊢∅ ∆;Γ and cut the remaining linear context. We conclude2566

this section with the proof of the Fundamental Lemma D.11, from which strong2567

normalisation (Theorem 3.3) follows immediately.2568

Lemma D.11 (Fundamental Lemma). If P ⊢η ∆;Γ , then P ∈ LJ⊢η ∆;Γ Kσ2569

for all σ.2570

Proof. By induction on the structure of a typing derivation for P ⊢η ∆;Γ . Cases2571

[Tcut], [Tfwd], [Tcut!] follow immediately because Jx : AK = Jx : AK⊥. Case [T0]2572

follows because 0 is SN and case [Tmix] follows because P || Q is SN whenever P2573

and Q are SN. For the positive types A, the logical predicate Jx : AKσ is defined2574

as the biorthogonal of some set S, hence for the typing rules that introduce2575

a positive type A the strategy is to show that the introduced action P lies in2576

S ⊆ S⊥⊥. For the negative types A: Jx : AKσ = S⊥⊥⊥ = S⊥, hence the strategy2577

for the typing rules that that introduce an action Q that types with a negative2578

type x : A is to show that P |x : A| Q is SN, for all P ∈ S. Particularly, for2579

rule [Tcorec], where A = µX. B, we proceed by induction on the depth n of2580

unfolding, since S
⋃
n∈N ϕ

n
B(∅⊥⊥). Cases [Tcell] and [Tempty] follow by applying2581

the simulations Lemma D.2(1)-(2). Cases [Tsh], [TshL], [TshR] follows after2582

applying the decomposition of the share as a mix as given by Lemma D.4(1)-(2).2583

We illustrate the proof with some cases. In the cases in which the recursive map2584

η that annotates the typing judgments P ⊢η ∆;Γ plays no role and is essentially2585

propagated from the conclusion to the premises of the typing rule we omit it,2586

working as if the process P did not have any free recursion variable X. Similarly2587

for the map σ which annotates the logical predicates Jx : AKσ.2588

Case: [T0]:

0 ⊢ ·;Γ

Let C! ∈ JΓ K!.2589

Then, C![0] is SN.2590

Case [Tmix]:

P1 ⊢ ∆1;Γ P2 ⊢ ∆2;Γ

P1 || P2 ⊢ ∆1, ∆2;Γ

Safe Session-Based Concurrency with Shared Linear State 95

Let C ∈ J∆1, ∆2K and D ∈ JΓ K!.2591

We have
C ◦ D[P1 || P2] ≈ (C1 ◦ D[P1]) || (C2 ◦ D[P2])

where C1 ∈ J∆1K and C2 ∈ J∆2K.2592

I.h. applied to P1 ⊢ ∆1;Γ yields C1 ◦ D[P1] is SN.2593

I.h. applied to P2 ⊢ ∆2;Γ yields C2 ◦ D[P2] is SN.2594

By applying Lemma D.5(4) we conclude that (C1 ◦ D[P1]) || (C2 ◦ D[P2]) is2595

SN.2596

Hence, C ◦ D[P1 || P2] is SN.2597

Case [Tfwd]:

fwd x y ⊢ x : A, y : A;Γ

Let C ∈ Jx : A, y : AK and D ∈ JΓ K!.2598

We have
C ◦ D[fwd x y] ≈ D[P |x| (Q |y| fwd x y)]

where P ∈ Jx : AK and Q ∈ Jy : AK.2599

We prove that (H) D[P |x| (Q |y| fwd x y)] is SN, by induction on N(P) +2600

N(Q). Suppose that D[P |x| (Q |y| fwd x y)] → R. There are two cases to2601

consider:2602

Case: (i) R is obtained by an internal reduction of either P or Q.2603

Case: (ii) R is obtained by an interaction with with the forwarder fwd x y2604

on either session x or y.2605

Case (i) follows by inner inductive hypothesis (H).2606

So let us consider case (ii). Suppose w.l.o.g. that R is obtained by an inter-2607

action with the forwarder fwd x y on session y. Then R ≈ D[P |x| {x/y}Q].2608

By Lemma D.7(1), {x/y}Q ∈ Jx : AK.2609

By Lemma D.7(4), P |x| {x/y}Q is SN.2610

By Lemma D.5(3), P |x| (Q |y| fwd x y) is SN.2611

Hence, C ◦ D[fwd x y] is SN.2612

Case [Tcut]:

P1 ⊢ ∆1, x : A;Γ P2 ⊢ ∆2, x : A;Γ

P1 |x| P2 ⊢ ∆1, ∆2;Γ

Let C1 ∈ J∆1K, C2 ∈ J∆2K and D ∈ JΓ K!.2613

We have

C1 ◦ C2 ◦ D[P1 |x| P2] ≈ (C1 ◦ D[P1]) |x| (C2 ◦ D[P2])

I.h. and Lemma D.10 applied to P1 ⊢ ∆1, x : A;Γ yields C1 ◦D[P1] ∈ Jx : AK.2614

I.h. and Lemma D.10 applied to P2 ⊢ ∆2, x : A;Γ yields C2 ◦D[P2] ∈ Jx : AK.2615

By applying Lemma D.7(4) we conclude that (C1 ◦ D[P1]) |x| (C2 ◦ D[P2]) is2616

SN.2617

Hence, C ◦ D[P1 |x| P2] is SN.2618

96 Pedro Rocha and Lúıs Caires

Case [Tcut!]:

P1 ⊢ y : A;Γ P2 ⊢ ∆;Γ, x : A

y.P1 |!x| P2 ⊢ ∆;Γ

Let C ∈ J∆K and D ∈ JΓ K!.2619

We have
C ◦ D[y.P1 |!x| P2] ≈ C ◦ (y.D[P1] |!x| D)[P2]

I.h. and Lemma D.10 applied to P1 ⊢ y : A;Γ yields D[P1] ∈ Jy : AK.2620

By def. D.7, y.D[P1] |!x| D ∈ JΓ, x : AK!.2621

I.h. applied to P2 ⊢ ∆;Γ, x : A yields C ◦ (y.D[P1] |!x| D)[P2] is SN.2622

Hence, C ◦ C![y.P1 |!x| P2] is SN.2623

Case [Tvar]:

η = η′, X(x, y⃗) 7→ ∆,x : Y ;Γ

X(z, w⃗) ⊢η {w⃗/y⃗}(∆, z : Y ;Γ)

Let ρ ∈ JηKσ. Then, ρ = ρ′, X(x, y⃗) 7→ Q where Q ∈ LJ⊢∅ ∆,x : Y ;Γ Kσ and2624

ρ′ ∈ Jη′Kσ.2625

We have
ρ(X(z, w⃗)) = {z/x}{w⃗/y⃗}Q

Since Q ∈ LJ⊢∅ ∆,x : Y ;Γ Kσ, then {z/x}{w⃗/y⃗}Q ∈ LJ⊢∅ {w⃗/y⃗}(∆, z :2626

Y ;Γ)K.2627

Hence, X(z, w⃗) ∈ LJ⊢η {w⃗/y⃗}(∆, z : Y ;Γ)K.2628

Case [Tsh]:

P1 ⊢η ∆1, c : U•A;Γ P2 ⊢η ∆2, c : U•A;Γ

share c {P || Q} ⊢η ∆1, ∆2, c : U•A;Γ

Let C1 ∈ J∆1K, C2 ∈ J∆2K and D ∈ JΓ K!.2629

We have
C1 ◦ C2 ◦ D[share c {P1 || P2}]
≈ share c {C1 ◦ D[P1] || C2 ◦ D[P2]}

I.h. and Lemma D.10 applied to P1 ⊢η ∆1, c : U•A;Γ yields C1 ◦D[P1] ∈ Jc :2630

U•AK.2631

I.h. and Lemma D.10 applied to P2 ⊢η ∆2, c : U•A;Γ yields C2 ◦D[P2] ∈ Jc :2632

U•AK.2633

By applying Lemma D.8(1) we conclude that C1 ◦C2 ◦D[share c {P1 || P2}] ∈2634

Jc : U•AK.2635

By Lemma D.10, share c {P1 || P2} ∈ LJ⊢η ∆1, ∆2, c : U•A;Γ K.2636

Case: [TshL]

P1 ⊢η ∆1, c : U◦A;Γ P2 ⊢η ∆, c : U•A;Γ

share c {P1 || P2} ⊢η ∆1, ∆2, c : U◦A;Γ

Let C1 ∈ J∆1K, C2 ∈ J∆2K and D ∈ JΓ K!. We have

C1 ◦ C2 ◦ D[share c {P1 || P2}]
≈ share c {C1 ◦ D[P1] || C2 ◦ D[P2]}

Safe Session-Based Concurrency with Shared Linear State 97

I.h. and Lemma D.10 applied to P1 ⊢η ∆1, c : U◦A;Γ yields C1 ◦D[P1] ∈ Jc :2637

U◦AK.2638

I.h. and Lemma D.10 applied to P2 ⊢η ∆2, c : U•A;Γ yields C2 ◦D[P2] ∈ Jc :2639

U•AK.2640

By applying Lemma D.8(2) we conclude that C1 ◦C2 ◦D[share c {P1 || P2}] ∈2641

Jc : U◦AK.2642

By Lemma D.10, share c {P1 || P2} ∈ LJ⊢η ∆1, ∆2, c : U◦A;Γ K.2643

Case: [TshL]. Similarly to case [TshR].2644

Case: [T1]

close x ⊢η x : 1;Γ

By def. D.3
Jx : 1K ≜ S⊥⊥, where
S = {Q ⊢ x : 1 | Q ≈ close x}.

Let D ∈ JΓ K!. We have D[close x] ≈ close x. Hence, D[close x] ∈ S.2645

By Lemma D.6(4), S ⊆ S⊥⊥, thus D[close x] ∈ Jx : 1K.2646

Lemma D.10 implies that close x ∈ LJx : 1;Γ K.2647

Case: [T⊗]

P1 ⊢η ∆1, y : A;Γ P2 ⊢η ∆2, x : B;Γ

send x(y.P1);P2 ⊢η ∆1, ∆2, x : A⊗B;Γ

By def. D.3, Jx : A⊗BK = S⊥⊥, where

S = {Q | ∃Q1, Q2. Q ≈ send x(y.Q1);Q2 and Q1 ∈ Jy : AKσ and Q2 ∈ Jx : BKσ}.

Let C ∈ J∆1, ∆2K and D ∈ JΓ K!. We have

C ◦ D[send x(y.P1);P2] ≈ send x(y.C1 ◦ D[P1]); C2 ◦ D[P2]

where C1 ∈ J∆1K and C2 ∈ J∆2K.2648

I.h. and Lemma D.10 applied to P1 ⊢η ∆1, y : A;Γ yields C1◦D[P1] ∈ Jy : AK.2649

I.h. and Lemma D.10 applied to P2 ⊢η ∆2, x : B;Γ yields C2◦D[P2] ∈ Jx : BK.2650

Hence, C ◦ D[send x(y.P1);P2] ∈ S.2651

By Lemma D.6(4), S ⊆ S⊥⊥, thus C ◦ D[send x(y.P1);P2] ∈ Jx : A⊗BK.2652

Lemma D.10 implies that send x(y.P1);P2 ∈ LJ⊢η ∆1, ∆2, x : A⊗B;Γ K.2653

Case: [T⊕l]
P1 ⊢η ∆′, x : A;Γ

x.inl;P1 ⊢η ∆′, x : A⊕B;Γ

By def. D.3, Jx : A⊕BK = S⊥⊥, where

S = {Q | ∃Q′. (Q ≈ x.inl;Q′ and Q′ ∈ Jx : AKσ) or (Q ≈ x.inr;Q′ and Q′ ∈ Jx : BKσ)}.

Let C ∈ J∆′K and D ∈ JΓ K!. We have

C ◦ D[x.inl;P1] ≈ x.inl; C ◦ D[P1]

I.h. and Lemma D.10 applied to P1 ⊢η ∆′, x : A;Γ yields C ◦D[P1] ∈ Jx : AK.2654

Hence, C ◦ D[x.inl;P1] ∈ S.2655

By Lemma D.6(4), S ⊆ S⊥⊥, thus C ◦ D[x.inl;P1] ∈ Jx : A⊕BK.2656

Lemma D.10 implies that x.inl;P1 ∈ LJ⊢η ∆′, x : A⊕B;Γ K.2657

98 Pedro Rocha and Lúıs Caires

Case: [T⊕r]. Similarly to case [T⊕l].2658

Case: [T!]

P ′ ⊢η y : A;Γ

!x(y);P ′ ⊢η x : !A;Γ

By def. D.3, Jx :!AK = S⊥⊥, where

S = {Q | ∃Q′. Q ≈ !x(y);Q′ and Q′ ∈ Jy : AKσ}.

Let D ∈ JΓ K!. We have

D[!x(y);P ′] ≈ !x(y);D[P ′]

I.h. and Lemma D.10 applied to P ′ ⊢η y : A;Γ yields D[P ′] ∈ Jy : AKσ.2659

Hence, D[P ′] ∈ S.2660

By Lemma D.6(4), S ⊆ S⊥⊥, thus D[P ′] ∈ Jx :!AKσ.2661

Lemma D.10 implies that !x(y);P ′ ∈ LJ ⊢η x : !A;Γ K.2662

Case: [T∃]
P ′ ⊢η ∆,x : {B/X}A;Γ

[T∃]
sendty x(B);P ′ ⊢η ∆,x : ∃X.A;Γ

By def. D.3, Jx : ∃X.AK = S⊥⊥, where

S = {Q | ∃Q′, S′ ∈ R[− : B]. Q ≈ sendty x(B);Q′ and Q′ ∈ Jx : AKσ[X 7→S′]}.

Let C ∈ J∆K and D ∈ JΓ K!. We have

C ◦ D[sendty x(B);P ′] ≈ sendty x(B); C ◦ D[P ′]

I.h. and Lemma D.10 applied to P ′ ⊢η ∆,x : {B/X}A;Γ yields C ◦ D[P ′] ∈2663

Jx : {B/X}AKσ.2664

By Lemma D.7(5), C ◦ D[P ′] ∈ Jx : AKσ[X 7→Jx:BKσ].2665

Hence, C ◦ D[sendty x(B);P ′] ∈ S.2666

By Lemma D.6(4), S ⊆ S⊥⊥, thus C ◦ D[sendty x(B);P ′] ∈ Jx : ∃X.AK.2667

Lemma D.10 implies that sendty x(B);P ′ ∈ LJ ⊢η ∆,x : ∃X.A;Γ K.2668

Case: [Tµ]

P ′ ⊢η ∆′, x : {µX. A/X}A;Γ
unfoldµ x;P

′ ⊢η ∆′, x : µX. A;Γ

Let C ∈ J∆′K and D ∈ JΓ K!. We have

C ◦ D[unfoldµ x;P
′] ≈ unfoldµ x; C ◦ D[P ′]

I.h. and Lemma D.10 applied to P ′ ⊢η ∆′, x : {µX. A/X}A;Γ yields C ◦2669

D[P ′] ∈ Jx : {µX. A/X}AK.2670

By Lemma D.9(2), Jx : µX. AK = unfoldµ x; Jx : {µX. A/X}AKσ, hence2671

C ◦ D[unfoldµ x;P
′] ∈ Jx : µX. AKσ.2672

Lemma D.10 implies that unfoldµ x;P
′ ∈ LJ⊢η ∆′, x : µX. A;Γ K.2673

Safe Session-Based Concurrency with Shared Linear State 99

Case: [Tν]

P ′ ⊢η ∆′, x : {µX. A/X}A;Γ
unfoldν x;P

′ ⊢η ∆′, x : νX. A;Γ

Let C ∈ J∆′K and D ∈ JΓ K!. We have

C ◦ D[unfoldν x;P
′] ≈ unfoldν x; C ◦ D[P ′]

I.h. and Lemma D.10 applied to P ′ ⊢η ∆′, x : {µX. A/X}A;Γ yields C ◦2674

D[P ′] ∈ Jx : {νX. A/X}AK.2675

By Lemma D.9(5), unfoldν x; Jx : {νX. A/X}AKσ ⊆ Jx : νX. AKσ, hence2676

C ◦ D[unfoldν x;P
′] ∈ Jx : νX. AKσ.2677

Lemma D.10 implies that unfoldν x;P
′ ∈ LJ⊢η ∆′, x : µX. A;Γ K.2678

Case: [Taffine]

P ′ ⊢η c⃗ : U•B⃗, a⃗ : ∨C⃗, x : A;Γ

affine x;P ′ ⊢η c⃗ : U•B⃗, a⃗ : ∨C⃗, a : ∧A;Γ

By def. D.3, Jx : ∧AK = S⊥⊥, where

S = {Q | ∃Q′. Q ≈ affine x;Q′ and Q′ ∈ Jx : AKσ}.

Let C ∈ Jc⃗ : U•B⃗, a⃗ : ∨C⃗K and D ∈ JΓ K!. We have

C ◦ D[affine x;P ′] ≈ affine x; C ◦ D[P ′]

I.h. and Lemma D.10 applied to P ′ ⊢η c⃗ : U•B⃗, a⃗ : ∨C⃗, x : A;Γ yields2679

C ◦ D[P ′] ∈ Jx : AK.2680

Hence, C ◦ D[affine x;P ′] ∈ S.2681

By Lemma D.6(4), S ⊆ S⊥⊥, thus C ◦ D[affine x;P ′] ∈ Jx : ∧AK.2682

Lemma D.10 implies that affine x;P ′ ∈ LJ⊢η c⃗ : U•B⃗, a⃗ : ∨C⃗, x : A;Γ K.2683

Case: [Tcell]

P ′ ⊢η ∆′, a : ∧A;Γ
cell c(a.P ′) ⊢η ∆′, c : S•A;Γ

Let C ∈ J∆′K, D ∈ JΓ K! and Q ∈ Jc : U•AK.2684

I.h. and Lemma D.10 applied to P ′ ⊢η ∆′, a : ∧A;Γ yields C ◦ D[P ′] ∈ Ja :2685

∧AK.2686

Since Q ∈ Jc : U•AK, then Q is Ja : ∧AK-preserving.2687

Hence, by Lemma D.2(1), cell c(a.C ◦D[P ′]) |c| Q is simulated by cell c(a.Ja :2688

∧AK) |c| Q.2689

Since Q ∈ Jc : U•AK = S⊥ where S = {R | R ≈ cell c(a.Ja : ∧AK)}, then2690

cell c(a.Ja : ∧AK) |c| Q is SN.2691

Hence, C ◦ D[cell c(a.P ′)] |c| Q is SN.2692

Then, cell c(a.P ′) ∈ LJ⊢η ∆′, c : S•A;Γ K.2693

100 Pedro Rocha and Lúıs Caires

Case: [Tempty]

empty c ⊢η c : S◦A;Γ

Let D ∈ JΓ K! and Q ∈ Jc : U◦AK.2694

Since Q ∈ Jc : U◦AK, then Q is Ja : ∧AK-preserving.2695

Hence, by Lemma D.2(2), empty c |c|Q is simulated by empty c(Ja : ∧AK.)|c|Q.2696

Since Q ∈ Jc : U◦AK = S⊥ where S = {R | R ≈ empty c(Ja : ∧AK.}), then2697

empty c(Ja : ∧AK.)|c| Q is SN.2698

Hence, D[empty c] |c| Q is SN.2699

Then, empty c ∈ LJ⊢η c : S◦A;Γ K.2700

Case: [T⊥]

P ′ ⊢η ∆′;Γ

wait x;P ′ ⊢η ∆′, x : ⊥;Γ

By Def. D.3 and Lemma D.6(5) we have Jx : ⊥K = S⊥, where

S = {Q ⊢ x : 1 | Q ≈ close x}.

Let C ∈ J∆′K and D ∈ JΓ K! and Q ∈ S.2701

Then, Q ≈ close x.2702

We prove that (H) Q |x| C◦D[wait x;P ′] is SN, by induction on N(Q)+N(C).2703

Suppose that Q |x| C ◦ D[wait x;P ′] → R. There are two cases to consider:2704

Case: (i) R is obtained by an internal reduction of either Q or C.2705

Case: (ii) R is obtained by an interaction on cut session x.2706

Case (i) follows by inner inductive hypothesis (H).2707

So let us consider case (ii). Then

Q |x| C ◦ D[wait x;P ′] ≈ close x |x| C ◦ D[wait x;P ′] → C ◦ D[P ′] = R

Applying i.h. to P ′ ⊢η ∆′;Γ yields R is SN.2708

In either case (i)-(ii), R is SN.2709

By applying Lemma D.5(3) we conclude that Q |x| C ◦ D[wait x;P ′] is SN.2710

Therefore, C ◦ D[wait x;P ′] ∈ Jx : ⊥Kσ.2711

By Lemma D.10, wait x;P ′ ∈ LJ⊢η ∆′, x : ⊥;Γ K.2712

Case: [TO]

P ′ ⊢η ∆′, z : A, x : B;Γ

recv x(z);P ′ ⊢η ∆′, x : AOB;Γ

By Def. D.3 and Lemma D.6(5) we have Jx : AOBK = S⊥, where

S = {Q | ∃Q1, Q2. Q ≈ send x(y.Q1);Q2 and Q1 ∈ Jy : AKσ and Q2 ∈ Jx : BKσ}.

Let C ∈ J∆′K and D ∈ JΓ K! and Q ∈ S.2713

Then, Q ≈ send x(y.Q1);Q2 and Q1 ∈ Jy : AKσ and Q2 ∈ Jx : BKσ.2714

We prove that (H) Q |x| C ◦ D[recv x(z);P ′] is SN, by induction on N(Q) +2715

N(C).2716

Suppose that Q |x| C ◦D[recv x(z);P ′] → R. There are two cases to consider:2717

Safe Session-Based Concurrency with Shared Linear State 101

Case: (i) R is obtained by an internal reduction of either Q or C.2718

Case: (ii) R is obtained by an interaction on cut session x.2719

Case (i) follows by inner inductive hypothesis (H).2720

So let us consider case (ii). Then

Q |x| C ◦ D[recv x(z);P ′] ≈ send x(y.Q1);Q2 |x| C ◦ D[recv x(z);P ′]
→ Q2 |x| (Q1 |y| C ◦ D[{y/z}P ′]) = R

Applying i.h. to {y/z}P ′ ⊢η ∆′, y : A, x : B;Γ yields R is SN.2721

In either case (i)-(ii), R is SN.2722

By applying Lemma D.5(3) we conclude that Q |x| C ◦D[recv x(z);P ′] is SN.2723

Therefore, C ◦ D[recv x(z);P ′] ∈ Jx : AOBKσ.2724

By Lemma D.10, recv x(z);P ′ ∈ LJ⊢η ∆′, x : AOB;Γ K.2725

Case: [TN]

P1 ⊢η ∆′, x : A;Γ P2 ⊢η ∆′, x : B;Γ

case x {|inl : P1, |inr : P2} ⊢η ∆′, x : ANB;Γ

By Def. D.3 and Lemma D.6(5) we have Jx : ANBK = S⊥, where

S = {Q | ∃Q′. (Q ≈ x.inl;Q′ and Q′ ∈ Jx : AKσ) or (Q ≈ x.inr;Q′ and Q′ ∈ Jx : BKσ)}.

Let C ∈ J∆′K and D ∈ JΓ K! and Q ∈ S.2726

Suppose that Q ≈ x.inl;Q′ and Q′ ∈ Jx : AKσ. The case in which choice is2727

right is handled similarly.2728

We prove that (H) Q |x| C ◦D[case x {|inl : P1, |inr : P2}] is SN, by induction2729

on N(Q) +N(C).2730

Suppose that Q |x| C ◦ D[case x {|inl : P1, |inr : P2}] → R. There are two2731

cases to consider:2732

Case: (i) R is obtained by an internal reduction of either Q or C.2733

Case: (ii) R is obtained by an interaction on cut session x.2734

Case (i) follows by inner inductive hypothesis (H).2735

So let us consider case (ii).

Q |x| C ◦ D[case x {|inl : P1, |inr : P2}]
≈ x.inl;Q1 |x| C ◦ D[case x {|inl : P1, |inr : P2}]
→ Q1 |x| C ◦ D[P1] = R

Applying i.h. to P1 ⊢η ∆′, x : A;Γ yields R is SN.2736

In either case (i)-(ii), R is SN.2737

By applying Lemma D.5(3) we conclude thatQ |x| C◦D[case x {|inl : P1, |inr :2738

P2}] is SN.2739

Therefore, C ◦ D[case x {|inl : P1, |inr : P2}] ∈ Jx : ANBKσ.2740

By Lemma D.10, case x {|inl : P1, |inr : P2} ∈ LJ⊢η ∆′, x : ANB;Γ K.2741

Case: [T?]

P ′ ⊢η ∆′;Γ, x : A

?x;P ′ ⊢η ∆′, x : ?A;Γ

102 Pedro Rocha and Lúıs Caires

By Def. D.3 and Lemma D.6(5) we have Jx : ?AK = S⊥, where

S = {Q | ∃Q′. Q ≈ !x(y);Q′ and Q′ ∈ Jy : AKσ}.

Let C ∈ J∆′K and D ∈ JΓ K! and Q ∈ S.2742

Then, Q ≈ !x(y);Q′ and Q′ ∈ Jy : AKσ.2743

We prove that (H) Q |x| C ◦ D[?x;P ′] is SN, by induction on N(Q) +N(C).2744

Suppose that Q |x| C ◦ D[?x;P ′] → R. There are two cases to consider:2745

Case: (i) R is obtained by an internal reduction of either Q or C.2746

Case: (ii) R is obtained by an interaction on cut session x.2747

Case (i) follows by inner inductive hypothesis (H).2748

So let us consider case (ii). Then

Q |x| C ◦ D[?x;P ′]
≈ !x(y);Q′ |x| C ◦ D[?x;P ′]
→ y.Q′ |!x| C ◦ D[P ′] = R

Applying i.h. to P ′ ⊢η ∆′;Γ, x : A yields R is SN.2749

In either case (i)-(ii), R is SN.2750

By applying Lemma D.5(3) we conclude that Q |x| C ◦ D[?x;P ′] is SN.2751

Therefore, C ◦ D[?x;P ′] ∈ Jx : ?AKσ.2752

By Lemma D.10, ?x;P ′ ∈ LJ⊢η ∆′, x : ?A;Γ K.2753

Case: [Tcall]

P ′ ⊢η ∆, z : A;Γ ′, x : A

call x(z);P ′ ⊢η ∆;Γ ′, x : A

Let C ∈ J∆K and D ∈ JΓ ′, x : AK!. We prove that (H) C ◦ D[call x(z);P ′] is2754

SN, by induction on N(C).2755

Suppose that C ◦ D[call x(z);P ′] → R. There are two cases to consider:2756

Case: (i) R is obtained by an internal reduction ofC.2757

Case: (ii) R is obtained by an interaction on session x.2758

Case (i) follows by inner inductive hypothesis (H).2759

So let us consider case (ii). Then

C ◦ D[call x(z);P ′]
≈ y.Q |!x| C ◦ D′[call x(z);P ′]
→ ({z/y}Q |z| C) ◦ (y.Q |!x| D′)[P ′] = R

Since D ∈ JΓ ′, x : AK!, then D′ ∈ JΓ ′K! and Q ∈ Jy : AK (Def. D.7).2760

By Lemma D.7(1), {z/y}Q ∈ Jz : AK.2761

Then, {z/y}Q |z| C ∈ J∆, z : AK and y.Q |!x| D′ ∈ JΓ ′, x : AK! (Def. D.7).2762

Applying i.h. to P ′ ⊢η ∆, z : A;Γ ′, x : A yields R is SN.2763

In either case (i)-(ii), R is SN.2764

By applying Lemma D.5(3) we conclude that C ◦ D[call x(z);P ′] is SN.2765

Thus, call x(z);P ′ ∈ LJ⊢η ∆;Γ ′, x : AK.2766

Safe Session-Based Concurrency with Shared Linear State 103

Case: [T∀]
P ′ ⊢η ∆′, x : A;Γ

recvty x(X);P ′ ⊢η ∆′, x : ∀X.A;Γ

By Def. D.3 and Lemma D.6(5) we have Jx : ∀X.AK = S⊥, where

S = {Q | ∃Q′, S′ ∈ R[− : B]. Q ≈ sendty x(B);Q′ and Q′ ∈ Jx : AKσ[X 7→S′]}.

Let C ∈ J∆′K and D ∈ JΓ K! and Q ∈ S.2767

Then, Q ≈ sendty x(B);Q′ and Q′ ∈ Jx : AKσ[X 7→S′], for some S′ ∈ R[− : B].2768

We prove that (H) Q |x| C◦D[recvty x(X);P ′] is SN, by induction on N(Q)+2769

N(C).2770

Suppose that Q |x| C ◦ D[recvty x(X);P ′] → R. There are two cases to2771

consider:2772

Case: (i) R is obtained by an internal reduction of either Q or C.2773

Case: (ii) R is obtained by an interaction on cut session x.2774

Case (i) follows by inner inductive hypothesis (H).2775

So let us consider case (ii). Then

Q |x| C ◦ D[recvty x(X);P ′] ≈ sendty x(B);Q′ |x| C ◦ D[recvty x(X);P ′]
→ Q′ |x| C ◦ D[{B/X}P ′] = R

Applying i.h. to {B/X}P ′ ⊢η ∆′, x : {B/X}A;Γ and Lemma D.10 yields2776

C ◦ D[{B/X}P ′] ∈ Jx : {B/X}AKσ.2777

By Lemma D.7(5), C ◦ D[{B/X}P ′] ∈ Jx : AKσ[X 7→S′].2778

SinceQ′ ∈ Jx : AKσ[X 7→S′] and C◦D[{B/X}P ′] ∈ Jx : AKσ[X 7→S′], Lemma D.7(4)2779

yields that R is SN.2780

In either case (i)-(ii), R is SN.2781

By applying Lemma D.5(3) we conclude that Q |x| C ◦ D[recvty x(X);P ′] is2782

SN.2783

Therefore, C ◦ D[recvty x(X);P ′] ∈ Jx : ∀X.AKσ.2784

By Lemma D.10, recvty x(X);P ′ ∈ LJ⊢η ∆′, x : ∀X.A;Γ K.2785

Case: [Tcorec]

{x/z}{y⃗/w⃗}P ′ ⊢η′ ∆′, x : A;Γ η′ = η, Y (x, y⃗) 7→ ∆′, x : X;Γ

corec Y (z, w⃗);P ′ [x, y⃗] ⊢η ∆′, x : νX. A;Γ

Let ρ ∈ JηKσ, C ∈ J∆′Kσ and D ∈ JΓ K!σ.2786

We prove that C ◦ D[ρ(corec Y (z, w⃗);P ′ [x, y⃗])] ∈ Jx : νX. AKσ.2787

By Lemma D.10, this implies that corec Y (z, w⃗);P ′ [x, y⃗] ∈ LJ⊢η ∆′, x :2788

νX. A;Γ Kσ.2789

By Lemma D.9(5), we have

Jx : νX. AKσ =
⋂
n∈N

ϕn{X/X}A(∅
⊥⊥)⊥

where ϕ{X/X}A(S) ≜ unfoldµ x; Jx : {X/X}AKσ[X 7→S].2790

104 Pedro Rocha and Lúıs Caires

We prove (H1):

∀n ∈ N, ∀ρ ∈ JηKσ, ∀C ∈ J∆′Kσ, ∀D ∈ JΓ K!σ.
C ◦ D[ρ(corec Y (z, w⃗);P ′ [x, y⃗])] ∈ ϕn{X/X}A(∅

⊥⊥)⊥

Proof of (H1) is by induction on n ∈ N:2791

Case: n = 0.2792

Follows because C◦D[ρ(corec Y (z, w⃗);P ′ [x, y⃗])] ∈ ∅⊥ and since ϕ0{X/X}A(∅
⊥⊥)⊥ =2793

∅⊥⊥⊥ = ∅⊥ (Lemma D.6(5)).2794

Case: n = m+ 1.2795

Let Q ∈ ϕm+1

{X/X}A(∅
⊥⊥).2796

Then Q ≈ unfoldµ x;Q
′, where Q′ ∈ Jx : {X/X}AKσ[X 7→ψm

A (∅⊥⊥)].2797

We prove (H2)

C ◦ D[ρ(corec Y (z, w⃗);P ′ [x, y⃗])] |x| Q is SN

by induction on N(C) +N(ρ) +N(Q).2798

Suppose that C ◦D[ρ(corec Y (z, w⃗);P ′ [x, y⃗])] |x| Q→ R. There are two2799

cases to consider:2800

Case: (i) R is obtained by an internal reduction of either C, ρ or Q.2801

Case: (ii) R is obtained by an interaction on session x.2802

Case (i) follows by inner inductive hypothesis (H2).2803

So let us consider case (ii). Then

C ◦ D[ρ(corec Y (z, w⃗);P ′ [x, y⃗])] |x| Q
≈ C ◦ D[ρ(corec Y (z, w⃗);P ′ [x, y⃗])] |x| unfoldµ x;Q′

→ C ◦ D[ρ({x/z}{y⃗/w⃗}{corec Y (z, w⃗);P ′/Y }P ′)] |x| Q′

= C ◦ D[ρ′({x/z}{y⃗/w⃗}P ′)] |x| Q′ = R

where ρ′ = ρ, Y (x, y⃗) 7→ ρ(corec Y (z, w⃗);P ′).2804

I.h. (H1) applied to m yields

∀C ∈ J∆′K, ∀D ∈ JΓ K!.
C ◦ D[ρ(corec Y (z, w⃗);P ′ [x, y⃗])] ∈ ϕm{X/X}A(∅

⊥⊥)⊥

Hence, by Lemma D.10, we obtain

ρ(corec Y (z, w⃗);P ′ [x, y⃗]) ∈ LJ⊢∅ ∆
′, x : X;Γ Kσ[X 7→ψm

{X/X}A
(∅⊥⊥)⊥]

Therefore, ρ′ ∈ Jη′Kσ.2805

Applying i.h. (outer i.h., fundamental lemma) to {x/z}{y⃗/w⃗}P ′ ⊢η′2806

∆′, x : A;Γ and Lemma D.10 yields C ◦ D[ρ′({x/z}{y⃗/w⃗}P ′)] ∈ Jx :2807

AKσ[X 7→ψm
A (∅⊥⊥)⊥].2808

Lemma D.7(6) implies C◦D[ρ′({x/z}{y⃗/w⃗}P ′)] ∈ Jx : {X/X}AKσ[X 7→ψm
A (∅⊥⊥)].2809

By hypothesis,Q′ ∈ Jx : {X/X}AKσ[X 7→ψm
A (∅⊥⊥)], hence by Lemma D.7(3)2810

we obtain that R is SN.2811

In either case (i)-(ii), R is SN.2812

By applying Lemma D.5(3) we conclude that C◦D[ρ(corec Y (z, w⃗);P ′ [x, y⃗])] |x|Q2813

is SN.2814

Therefore, C ◦ D[ρ(corec Y (z, w⃗);P ′ [x, y⃗])] ∈ ϕm+1

{X/X}A(∅
⊥⊥)⊥.2815

Safe Session-Based Concurrency with Shared Linear State 105

Case: [Tdiscard]

discard a ⊢η a : ∨A;Γ

By Def. D.3 and Lemma D.6(5) we have Jx : ∨AK = S⊥, where

S = {Q | ∃Q′. Q ≈ affine a;Q′ and Q′ ∈ Ja : AKσ}.

Let D ∈ JΓ K! and Q ∈ S.2816

Then, Q ≈ affine a;Q′ and Q′ ∈ Ja : AKσ.2817

We have Q |a| D[discard a] ≈ Q |a| discard a.2818

We prove that (H) Q |a| discard a is SN, by induction on N(Q).2819

Suppose that Q |a| discard a→ R. There are two cases to consider:2820

Case: (i) R is obtained by an internal reduction of either Q.2821

Case: (ii) R is obtained by an interaction on cut session a.2822

Case (i) follows by inner inductive hypothesis (H).2823

So let us consider case (ii). Then

Q |a| discard a ≈ affine a;Q′ |a| discard a→ 0 = R

In either case (i)-(ii), R is SN.2824

By applying Lemma D.5(3) we conclude that Q |a| discard a is SN.2825

Therefore, discard a ∈ Jx : ∨AKσ, henceD[discard a] ∈ Jx : ∨AKσ (Lemma D.7(2)).2826

By Lemma D.10, discard a ∈ LJ⊢η a : ∨A;Γ K.2827

Case: [Tuse]

P ′ ⊢η ∆′, a : A;Γ

use a;P ′ ⊢η ∆′, a : ∨A;Γ

By Def. D.3 and Lemma D.6(5) we have Jx : ⊥K = S⊥, where

S = {Q | ∃Q′. Q ≈ affine a;Q′ and Q′ ∈ Ja : AKσ}.

Let C ∈ J∆′K and D ∈ JΓ K! and Q ∈ S.2828

Then Q ≈ affine a;Q′, where Q′ ∈ Ja : AK.2829

We prove that (H) Q |a| C ◦D[use a;P ′] is SN, by induction on N(Q)+N(C).2830

Suppose that Q |a| C ◦ D[use a;P ′] → R. There are two cases to consider:2831

Case: (i) R is obtained by an internal reduction of either Q or C.2832

Case: (ii) R is obtained by an interaction on cut session x.2833

Case (i) follows by inner inductive hypothesis (H).2834

So let us consider case (ii). Then

Q |a| C ◦ D[use a;P ′] ≈ affine a;Q′ |a| C ◦ D[use a;P ′]
→ (Q′ |a| C) ◦ D[P ′] = R

Applying i.h. to P ′ ⊢η ∆′, a : A;Γ yields R is SN.2835

In either case (i)-(ii), R is SN.2836

By applying Lemma D.5(3) we conclude that Q |a| C ◦ D[use a;P ′] is SN.2837

Therefore, C ◦ D[use a;P ′] ∈ Ja : ∨AKσ.2838

By Lemma D.10, use a;P ′ ∈ LJ⊢η ∆′, a : A;Γ K.2839

106 Pedro Rocha and Lúıs Caires

Case: [Trelease]

release c ⊢η c : U•A;Γ

By Def. D.3 and Lemma D.6(5) we have Jx : U•AK = S⊥, where

S = {Q | Q ≈ cell c(a.Ja : ∧AK)σ}.

Let D ∈ JΓ K! and Q ∈ S.2840

Then, Q ≈ cell c(a.Ja : ∧AK)σ.2841

We prove that (H) Q |c| D[release c] is SN, by induction on N(Q).2842

Suppose that Q |c| D[release c] → R. There are two cases to consider:2843

Case: (i) R is obtained by an internal reduction of either Q.2844

Case: (ii) R is obtained by an interaction on cut session c.2845

Case (i) follows by inner inductive hypothesis (H).2846

So let us consider case (ii). Then

Q |c| D[release c] ≈ D[cell c(a.Ja : ∧AK)σ |c| release c] ∗−→c D[0] = R

In either case (i)-(ii), R is SN.2847

By applying Lemma D.5(3) we conclude that Q |c| D[release c] is SN.2848

Furthermore, release c is vacuously Jy : ∧AKσ-preserving, for any y.2849

Therefore, D[release c] ∈ Jx : U•AKσ.2850

By Lemma D.10, release c ∈ LJ⊢η a : U•A;Γ K.2851

Case: [Ttake]

P ′ ⊢η ∆′, a : ∨A, c : U◦A;Γ

take c(a);P ′ ⊢η ∆′, c : U•A;Γ

By Def. D.3 and Lemma D.6(5) we have Jc : U•AK = S⊥, where

S = {Q | Q ≈ cell c(a.Ja : ∧AK)σ}.

Let C ∈ J∆′K and D ∈ JΓ K! and Q ∈ S.2852

Then, Q ≈ cell c(a.Ja : ∧AK)σ.2853

We prove that (H) Q |c| C ◦ D[take c(a);P ′] is SN, by induction on N(Q) +2854

N(C).2855

Suppose that Q |c| C ◦D[take c(a);P ′] → R. There are two cases to consider:2856

Case: (i) R is obtained by an internal reduction of either Q or C.2857

Case: (ii) R is obtained by an interaction on cut session c.2858

Case (i) follows by inner inductive hypothesis (H). So let us consider case
(ii). Then

Q |c| C ◦ D[take c(a);P ′] ≈ cell c(a.Ja : ∧AK)σ |c| C ◦ D[take c(a);P ′]
→ cell c(a.Ja : ∧AK)σ |c| (Q′ |a| C ◦ D[P ′]) = R

where Q′ ∈ Ja : ∧AKσ.2859

By Def. D.3, Jc : S•AK = S⊥⊥.2860

By Lemma D.6(4), S ⊆ S⊥⊥, hence cell c(a.Ja : ∧AK)σ ∈ Jc : S•AK.2861

Applying i.h. to P ′ ⊢η ∆′, a : ∨A, c : U◦A;Γ yields R is SN.2862

Safe Session-Based Concurrency with Shared Linear State 107

In either case (i)-(ii), R is SN.2863

By applying Lemma D.5(3) we conclude that Q |c| C ◦D[take c(a);P ′] is SN.2864

Now, we prove that C◦D[take c(a);P ′] is Ja : ∧AKσ-preserving, for any a. Let2865

R ∈ Ja : ∧AKσ. Applying i.h. to P ′ ⊢η ∆′, a : ∨A, c : U◦A;Γ we conclude that2866

R |a| C ◦D[P ′] ∈ Jc : U◦AKσ, which implies that R |a| C ◦D[P ′] ∈ Jc : U◦AKσ2867

and hence R |a| C ◦ D[P ′] is Ja : ∧AKσ-preserving.2868

Therefore, C ◦ D[take c(a);P ′] ∈ Jc : U•AKσ.2869

By Lemma D.10, take c(a);P ′ ∈ LJ⊢η ∆′, c : U•A;Γ K.2870

Case: [Tput]

P1 ⊢η ∆1, a : ∧A;Γ P2 ⊢η ∆2, c : U•A;Γ

put c(a.P1);P2 ⊢η ∆1, ∆2, c : U◦A;Γ

By Def. D.3 and Lemma D.6(5) we have Jc : U◦AK = S⊥, where

S = {Q | Q ≈ empty c(Ja : ∧AKσ.}).

Let C1 ∈ J∆1K, C2 ∈ J∆2K and D ∈ JΓ K! and Q ∈ S.2871

Then, Q ≈ empty c(Ja : ∧AK.)σ.2872

We prove that (H) Q |c| C1 ◦ C2 ◦ D[put c(a.P1);P2] is SN, by induction on2873

N(Q) +N(C1) +N(C2).2874

Suppose that Q |c| C1 ◦ C2 ◦ D[put c(a.P1);P2] → R. There are two cases to2875

consider:2876

Case: (i) R is obtained by an internal reduction of either Q, C1 or C2.2877

Case: (ii) R is obtained by an interaction on cut session c.2878

Case (i) follows by inner inductive hypothesis (H).So let us consider case (ii).
Then

Q |c| C1 ◦ C2 ◦ D[put c(a.P1);P2] ≈ empty c(Ja : ∧AKσ.)|c| C1 ◦ C2 ◦ D[put c(a.P1);P2]
≈ empty c(Ja : ∧AKσ.)|c| put c(a.C1 ◦ D[P1]); C2 ◦ D[P2]
→ cell c(a.Ja : ∧AK)σ |c| C2 ◦ D[P2] = R (*)

I.h. applied to P1 ⊢η ∆1, a : ∧A;Γ yields C1 ◦ D[P1] ∈ Ja : ∧AK, hence2879

reduction step (*).2880

By Def. D.3, Jc : S•AK = S⊥⊥.2881

By Lemma D.6(4), S ⊆ S⊥⊥, hence cell c(a.Ja : ∧AK)σ ∈ Jc : S•AK.2882

Applying i.h. to P2 ⊢η ∆2, c : U•A;Γ yields R is SN.2883

In either case (i)-(ii), R is SN.2884

By applying Lemma D.5(3) we conclude that Q |c| C1◦C2◦D[put c(a.P1);P2]2885

is SN.2886

Now, we prove that C1 ◦ C2 ◦ D[put c(a.P1);P2] is Ja : ∧AKσ-preserving, for2887

any a. Applying i.h. to P1 ⊢η ∆1, a : ∧A;Γ we conclude that C1 ◦ D[P1] ∈2888

Ja : ∧AK. Applying i.h. to P2 ⊢η ∆2, c : U•A;Γ we conclude that C2 ◦D[P2] ∈2889

Jc : U•AK, which implies that C2 ◦ D[P2] is Ja : ∧AKσ-preserving2890

Therefore, C1 ◦ C2 ◦ D[put c(a.P1);P2] ∈ Jc : U◦AKσ.2891

By Lemma D.10, put c(a.P1);P2 ∈ LJ⊢η ∆1, ∆2, c : U◦A;Γ K.2892

Theorem D.1 (Strong Normalisation). If P ⊢∅ ∅; ∅, then P is SN.2893

Proof. Immediately by Lemma D.11.2894

2895

	Safe Session-Based Concurrency with Shared Linear State

