
DIFT - Dependent Information Flow Types
Typechecker Prototype

Draft Release Notes (v1.10)

Luisa Lourenço Luis Caires
CITI and NOVA Laboratory for Computer Science and Informatics

Faculdade de Ciências e Tecnologia
Universidade Nova de Lisboa

January 2015

Contents
1 Introduction 1

2 Installation and Usage 1

3 Programming Language (Concrete Syntax) 2
3.1 Security Types . 3
3.2 Expressions . 4
3.3 A Conference Manager System: Example 5

1 Introduction
This short note documents the type checker prototype implementation associated
to our POPL’15 paper “Dependent Information Flow Types”. Our current type
checker implementation (version 1.10), based on the algorithm described in the
paper above, is still under development (check for updates), but already covers
all features of the language and type system, and can be used e.g. to check all
examples in the paper and experiment with the type system.

2 Installation and Usage
To install the DIFT typechecker prototype, simply unzip the .zip file. The .zip
contains the following files:

• conf_examples file : some of the examples of a conference manager system
• conf_examples_abrv : same as conf_examples but using global type and

identifiers definitions
• simple_examples : illustrates some basic type system features
• dropbox_examples : illustrates a toy dropbox service example

1

• LambdaDIFT.jar : jar file with the typechecker prototype code
• z3_linux , z3_mac, and z3_win : binaries of Z3 SMT Solver, version 4.3.2
• dift script file and dift.bat (Windows) script file: template script file to

run the typechecker, you may change it if needed
• default_lattice : file containing the description of a sample security

lattice

Synopsis:
sh dift [-help] [-input <file>] [-output <file>] [-debug <file>] [-lattice <file>]

Running the DIFT Typechecker prototype in interactive mode:

1. Run sh dift to execute the typechecker with the default options, using
security lattice defined in default_lattice.

2. Execute command #exit to exit the typechecker

Running the DIFT Typechecker prototype from a source file:

1. To check (an) example(s) from a source file, run sh dift -input <file>

to execute the typechecker with the default lattice, using the examples
from file <file>. E.g., sh dift -input simples_examples will check code
in file simple_examples.

2. Programs always terminate with ;;, so a file can contain multiple programs
separated by ;;.

3 Programming Language (Concrete Syntax)
The concrete syntax of our core programming language is given by Figures 1 and
2 (at the end of this document). For now, we do not include primitives to define
a security lattice, the lattice specification is written in a separate file, at given as
a parameter input to the type checker. By default, we give a predefined security
lattice, automatically imported by the typechecker via file default_lattice.

Once we execute the typechecker in interactive mode (sh dift), a session is
started with the default security lattice and we can input programs, one at a
time separated by ;;, and obtain the resulting type. We also have definitions
of programs and types to be added to a global environment, stored during a
session. In order to do so, we use the following syntax:

global declarations

let identifier = expression ;;

and global type definitions

typedef type_name = type ;;

Defined types and terms can then be used subsequently anywhere, e.g., one may
define types that depend on other type definitions

typedef typeA = type ;;
typedef typeB = typeA;;

2

3.1 Security Types
Security types are base types annotated with a security label.

security_type ::= base_type ^ security_label

Security Labels

Security labels can be standard or indexed

security_label_noindex ::= identifier, "BOT", "TOP"
security_label::= security_label_noindex ^ (label_index1, . . ., label_indexn)

Label indexes are of the form

label_index ::= "BOT", "TOP", numericLit, "true", "false", identifier

For instance, we can declare security label users as the security compartment
for all users in a system. Or, instead, we can index the security label with the
identifier of user 42 and declare security label users(42), stating the security
compartment of user 42’s data.

Type declarations

A type declaration can be a security type or a type declaration identifier

type_decl ::= security_type, identifier, { type_decl }

A particular case of a type declaration, however, is the collection type which
is declared as { type_decl } to describe the security type of its elements and
whose security label, as expected, matches that of its elements.

A base type (base_type) can be a basic type (int, bool, cmd), a reference type

ref(type_decl)

a dependent sum type

Sigma[id1: type_decl1, . . ., idn: type_decln]

a dependent product type

(Pi(id1: type_decl1, . . ., idn: type_decln).type_decl)

or a function type

(type_decl1, . . ., type_decln => type_decl)

So, for instance, to declare the type a table containing all users in a system, we
write the following type

{ ref (Sigma[uid: int^BOT, name: int^U(uid), univ: int^U(uid),
email: int^U(uid)]^BOT)^BOT }

which corresponds to a collection type whose elements are references. The
reference type has security label BOT and its elements are of dependent sum type.
The dependent sum type, in turn, has four fields: uid, name, univ, and email.
Each field is typed with base type int and, with the exception of field uid, have
security label U(uid). So the security label is indexed and depends on a previous
field, uid.

3

3.2 Expressions
Expressions have the following forms:

local declarations

let identifier = expression in expr

local type definitions

typedef type_name = type in expr

sequence

expr ; expr

conditional

if expr then expr [else expr]

where the else branch may be ommitted if the conditional is a command (does
not return a value).

conditions

expr and expr, expr or expr, not expr, expr == expr

corresponding to boolean operations.

operations

expr + expr, expr - expr, expr * expr, expr / expr

corresponding to numeric operations.

list operations

foreach(identifier in expr) with identifier = expr do expr
first(expr)
expr cons expr

where the foreach computes the accumulated value of a list’s elements, first
retrieves the first element of a list, and cons adds an element to a list.

application

expr(expr1, . . ., exprn)

is the application of a function.

field access

expr.identifier

projects the field of a record.

assign

expr := expr

is the assigment operation

4

dereference

! expr

retrieves the contents of a reference.

a upcast operator

[type_decl] expr

that up-classifies (raising their security level) expressions.

and a downcast operator

]security_label[expr

that down-classifies (lowering their security level) the security level of expres-
sions’s context (pc).

As values we have integer, strings, booleans, empty lists {} and

references

ref expr

lambdas

fun identifier1 : type_decl1, . . .,identifiern : type_decln => expr

records

[identifier1 : type_decl1, . . .,identifiern : type_decln]

lists

{identifier1, . . .,identifiern }

We illustrate some primitives of our language in the following section using a
conference manager system as example.

3.3 A Conference Manager System: Example
In this scenario, a user of the system can be either a registered user, an author user,
or a programme committee (PC) member user. The system stores data concerning
its users’ information, their submissions, and the reviews of submissions in
“database tables” which we will represent as lists of (references to) records (e.g.,
mutable lists). So we start by defining the types for each “database table”:

typedef usr_type = { ref (Sigma[uid: int^BOT, name: int^U(uid),
univ: int^U(uid), email: int^U(uid)]^BOT)^BOT } ;;

typedef sub_type = { ref (Sigma[uid: int^BOT, sid: int^BOT,
title: int^A(uid, sid), abst: int^A(uid, sid),
paper: int^A(uid, sid)]^BOT)^BOT } ;;

typedef rev_type = { ref (Sigma[uid: int^BOT, sid: int^BOT,
PC_only: int^PC(uid, sid), review: int^A(TOP, sid),
grade: int^A(TOP, sid)]^BOT)^BOT };;

5

And then we declare the “database tables” as empty collections of the previously
defined types.

let Users = {}: usr_type ;;
let Submissions = {}: sub_type ;;
let Reviews= {}: rev_type ;;

Notice that the declared types are defining the following security policy: a
registered user’s information is only observable by himself ; the content of a
paper can be seen by its author as well as its reviewers; and regarding a
submission’s review, we have that comments to the PC can only be observable to
the other members that are also reviewers of the submission, and that comments
and grade of the submission can be seen by its author only.

So security level U(uid) represents registered users with id uid; A(uid,sid),
stands for author of submission with id sid and whose user id is uid; and
PC(uid,sid), stands for PC members assigned to review submission with id sid

and whose user id is uid. Also A(TOP,sid) represents the security compartment
of (all) authors of submission with id sid.

The (default) security lattice is defined by the following axioms (quantifiers
ranging over natural numbers):
∀uid,sid. U(uid) ≤ A(uid,sid)

∀uid1,uid2,sid. A(uid1,sid) ≤ PC(uid2,sid)

As well as by the general axioms for any security lattice in our system
`(v, u, w) ≤ `(v,>, w) and `(v,⊥, w) ≤ `(v, u, w).

So, e.g, for all uid we have U(⊥) ≤ U(uid) ≤ U(>); we can see U(>) as the
approximation (by above) of any U(uid), e.g, standing for the standard label U.

Going back to our example, suppose we want to retrieve all the assigned
papers of a given reviewer

typedef sub_elem = Sigma[uid: int^BOT, sid: int^BOT, title: int^A(uid,sid),
abst:int^A(uid,sid), paper:int^A(uid,sid)]^BOT ;;

typedef sub = { sub_elem } ;;

let viewAssignedPapers = fun uidr: int^BOT =>
(foreach(x in Reviews) with res_x = {}: sub do

let tuple_rev = !x
in if(tuple_rev.uid == uidr) then

(foreach(y in Submissions) with res_y = {}: sub do
let tuple_sub = !y
in if(tuple_sub.sid == tuple_rev.sid) then

tuple_sub::res_y else res_y)
else res_x) ;;

Now assume we want to offer an operation, say addCommentSubmission, that
allows PC members to add comments to other PC members during the evaluation
of a given submission. Such operation can be written as

let comment = fun u: int^BOT, s: int^BOT, r: sub_elem =>
[int^A(u,s)] (if(r.uid == u and r.sid == s) then r.paper else 1)

in let addCommentSubmission = fun uid_r: int^BOT, sidr: int^BOT =>

6

(foreach(p in viewAssignedPapers(uid_r)) with dummy = skip do
if(p.sid == sidr) then
(foreach(y in Reviews) with dummy2 = skip do
let trev = !y in
if(trev.sid == p.sid) then
(let up_rec = [uid: int^BOT = trev.uid,

sid: int^BOT = trev.sid,
PC_only: int^PC(uid,sid) = comment(p.uid, p.sid, p),
review: int^A(TOP, sid) = trev.review,
grade: int^A(TOP, sid) = trev.grade]

in y := up_rec)))
in addCommentSubmission;;

Notice that viewAssignedPapers was previously declared in another program us-
ing a global declaration, which allows us to use it in the code of addCommentSubmission
operation, and has type

(Pi(uidr: int^BOT).{ Sigma[uid: int^BOT, sid: int^BOT,
title: int^A(uid, sid), abst: int^A(uid, sid),
paper: int^A(uid, sid)]^BOT })^BOT

Also, we use an upcast operator on the definition of comment function to raise
the function result’s security level to A(u,s), in order to obtain the dependent
product type

(Pi(u: int^BOT, s: int^BOT,
r: Sigma[uid: int^BOT, sid: int^BOT, title: int^A(uid, sid),

abst: int^A(uid, sid), paper: int^A(uid, sid)]^BOT).int^A(u, s))^BOT

when typechecking comment. Notice that its return type in the call
comment(p.uid,p.sid,p) has security label A(p.uid,p.sid). Additionally, we
know t_rev has the type of the collection’s references, rev_type’s elements type:

Sigma[uid: int^BOT, sid: int^BOT, PC_only: int^PC(uid, sid),
review: int^A(TOP, sid), grade: int^A(TOP, sid)]^BOT

So, in order to type check the assignment expression, y := up_rec, we need
to check that up_rec has the same type as t_rev’s. Namely, we have to check if
comment(p.uid, p.sid,p) has type PC(t_rev.uid,p.sid).

As we have seen, the type for comment(p.uid, p.sid,p) has security label
A(p.uid, p.sid) but since it has field dependencies, we need to infer values for
them. In this case, we cannot infer a value for field uid so we approximate to
TOP obtaining A(TOP,p.sid). However, because we know by the conditional that
t_rev.sid = p.sid, we can index the security level by field sid instead, which
allows us to type the assignment operation since field sid is bounded by the
dependent sum type of the record being used for the assignment.

Then we can type comment(p.uid, p.sid,p) with type A(TOP,p.sid) and
thus, due to A(TOP,p.sid) ≤ PC(BOT, p.sid), we can up-classify
comment(p.uid, p.sid,p) with PC(t_rev.uid, p.sid). Meaning we can type
the record up_rec with the dependent sum type

Sigma[uid: int^BOT, sid: int^BOT, PC_only: int^PC(uid, sid),
review: int^A(TOP, sid), grade: int^A(TOP, sid)]^BOT

So when typechecking the program above, the typechecker outputs

Type: (Pi(uid_r: int^BOT, sidr: int^BOT).(cmd^BOT))^BOT

7

However, if we remove the line ’if(trev.sid == p.sid) then’ from the defini-
tion of addCommentSubmission:

let comment = fun u: int^BOT, s: int^BOT, r: sub_elem =>
[int^A(u,s)] (if(r.uid == u and r.sid == s) then r.paper else 1)

in let addCommentSubmission = fun uid_r: int^BOT, sidr: int^BOT =>
(foreach(p in viewAssignedPapers(uid_r)) with dummy = skip do
if(p.sid == sidr) then
(foreach(y in Reviews) with dummy2 = skip do
let trev = !y in
(let up_rec = [uid: int^BOT = trev.uid,

sid: int^BOT = trev.sid,
PC_only: int^PC(uid,sid) = comment(p.uid, p.sid, p),
review: int^A(TOP, sid) = trev.review,
grade: int^A(TOP, sid) = trev.grade]

in y := up_rec)))
in addCommentSubmission;;

Then our typechecker outputs

Wrong type: Expected declared type Sigma[uid: int^BOT, sid: int^BOT,
PC_only: int^PC(uid, sid), review: int^A(TOP, sid),
grade: int^A(TOP, sid)]^BOT
but found type Sigma[uid: int^BOT, sid: int^BOT,
PC_only: int^A(TOP, sidr), review: int^A(TOP, TOP),
grade: int^A(TOP, TOP)]^BOT

detecting an insecure flow in the assignment since field PC_only requires security
level PC(uid,sid) but the result of comment(p.uid, p.sid, p) cannot be raised
to PC(uid,sid). This expresses that because we are not filtering properly the
results of the iteration of collection Reviews (we removed the conditional), we
cannot guarantee confidentiality of the PC_only field. Indeed, we could be adding
a comment of a submission to the register of a PC member who is not a reviewer
of that submission.

We refer to our technical report http://ctp.di.fct.unl.pt/~luisal/
resources/TR-DIFT.pdf for more technical details on dependent information
flow types.

8

http://ctp.di.fct.unl.pt/~luisal/resources/TR-DIFT.pdf
http://ctp.di.fct.unl.pt/~luisal/resources/TR-DIFT.pdf

<program> ::= (<expr> | <gtypedef> | <glet> | "clear") ";;"

<expr> ::= <seq> | <ifthenelse> | <let> | <operations>
| <foreach> | <typedef>

<gtypedef> ::= "typedef" ident "=" type_decl
<glet> ::= "let" ident "=" <expr>

<seq> ::= <expr> ";" <expr>
<ifthenelse> ::= "if" <operations> "then" <expr> ["else" <expr>]
<let> ::= "let" ident "=" <operations> "in" <expr>
<foreach ::= "foreach" "(" ident "in" <application> ")"

"with" ident "=" <operations> "do" <expr>
<typedef> ::= "typedef" ident "=" <type_decl> "in" <expr>
<operations> ::= <assign> | <cons> | <conditions>

<assign> ::= <values> ":=" <operations>
<cons> ::= <operations> "::" <operations>
<conditions> ::= <and> | <or> | <compare>

<and> ::= <compare> "and" <conditions>
<or> ::= <compare> "or" <conditions>
<compare> ::= <sum> "==" <compare> | <sum>

<sum> ::= <add> | <sub> | <product>
<add> ::= <product> "+" <sum>
<sub> ::= <product> "-" <sum>
<product> ::= <mul> | <div> | <application>

<mul> ::= <application> "*" <product>
<div> ::= <application> "/" <product>
<application> ::= <fieldAcc> "(" (expr ",")* ")" | <fieldAcc>

<fieldAcc> ::= <values> "." <ident> | <unary>
<unary> ::= <not> | <deref> | <first> | <values>

<not> ::= "not" <values>
<deref> ::= "!" <values>
<first> ::= "first" "(" <application> ")"

<values> ::= "true" | "false" | "skip" | ident | <parens> | <lambda> | <downcast>
| <record> | <collection> | numericLit | <ref> | <empty> | <upcast>

<parens> ::= "(" <expr> ")"
<lambda> ::= "fun" (ident ":" <type_decl> ",")+ "=>" <expr>
<record> ::= "[" (ident ":" <type_decl> "=" <expr> ",")+ "]"
<collection> ::= "{" (<expr> ",")+ "}"
<ref> ::= "ref" <expr>
<empty> ::= "{" "}" ":" <type_decl>
<upcast> ::= "[" <type_decl> "]" <values>
<downcast> ::= "]" (<security_label> | <security_label_noindex>) "[" <values>

Figure 1: Concrete Syntax (expressions)

9

<type_decl> ::= ident | <security_type> | "{" <type_decl> "}"

<security_type> ::= <base_type> "^" (<security_label> | <security_label_noindex>)

<base_type> ::= "int" | "Int" | "bool" | "Bool" | "cmd" | "Cmd"
| <refType> | <sumType> | <prodType> | <functionType>

<refType> ::= "ref" "(" <type_decl> ")"
<sumType> ::= "Sigma" "[" (ident ":" <type_decl> ",")+ "]"
<prodType> ::= "(" "Pi" "(" (ident ":" <type_decl> ",") ")" "." <type_decl> ")"

<functionType> ::= "(" (<type_decl> ",")+ "=>" <type_decl> ")"

<security_label_noindex> ::= ident | "BOT" | "bot" | "TOP" | "top"
<security_label> ::= (ident | "BOT" | "bot" | "TOP" | "top")

"(" (label_indexes ",")+ ")"

<label_indexes> ::= "BOT" | "bot" | "TOP" | "top" | numericLit | "true" | "false" | ident

Figure 2: Concrete Syntax (types declarations)

10

	Introduction
	Installation and Usage
	Programming Language (Concrete Syntax)
	Security Types
	Expressions
	A Conference Manager System: Example

