The Language grammar

BNF-converter

December 5, 2010

This document was automatically generated by the BNF-Converter. It was
generated together with the lexer, the parser, and the abstract syntax mod-
ule, which guarantees that the document matches with the implementation
of the language (provided no hand-hacking has taken place).

The lexical structure of grammar

Identifiers

Identifiers (Ident) are unquoted strings beginning with a letter, followed by
any combination of letters, digits, and the characters _ ’, reserved words
excluded.

Literals

String literals (String) have the form "z", where z is any sequence of any
characters except " unless preceded by \.

Integer literals (Int) are nonempty sequences of digits.

Reserved words and symbols

The set of reserved words is the set of terminals appearing in the grammar.
Those reserved words that consist of non-letter characters are called sym-
bols, and they are treated in a different way from those that are similar to
identifiers. The lexer follows rules familiar from languages like Haskell, C,
and Java, including longest match and spacing conventions.

The reserved words used in grammar are the following:

Bool Id
List String
action and
assume br
count def
div do

entity false
foreach from

if image
insert invariant
iterator 1label
link max
module not

or read
select str2int
then to

type update
with write

Int
WebPage
assert
button
delete
else

fill
getHead
in
isNotEmpty
let

min
option
screen
textfield
true
where

The symbols used in grammar are the following:

{

, = —>
() .

? | <
> 5 =>
<= + —
* / =
L]

Comments

Single-line comments begin with //.
Multiple-line comments are enclosed with /* and */.

The syntactic structure of grammar

Non-terminals are enclosed between (and). The symbols ::= (production),
| (union) and e (empty rule) belong to the BNF notation. All other symbols

are terminals.

(Def)y == def (DefRules)

(DefRules) := (ModuleNoDef)
| (Definitions)
(ListModule) == ¢
] (Module) (ListModule)
(ModuleNoDef) := module (Ident) { (ListDefinitions) } (ListModule)
(Module) ::= def module (Ident) { (ListDefinitions) }
(ListDefinitions) == €
] def (Definitions) (ListDefinitions)
(Definitions) := (Entity)
| (Action)
| (Screen)
| (TypeDef)
(Entity) == entity (Ident) { (Ident) : Id (ListEntityField) } (ListPermission) (ListInvariani
(ListEntityField) := (EntityField)
] (EntityField) (ListEntityField)
(EntityField) := , (Ident) : (BasicType)
(Action) == action (Ident) (Args) : (Type) { (ListExp) }
(Screen) = screen (Ident) (Args) { (ListBlock) }
(TypeDef) = type (Ident) = (Type)
(ListInvariants) == ¢
| (Invariants) (ListInvariants)
(Invariants) = invariant (Predicate)
(ListPermission) = €
| (Permission) (ListPermission)
(Permission) := read (Listldents) where (Predicate)
] write (Listldents) where (Predicate)
(Listldents) := (Idents)

| (Idents) , (Listldents)

(Idents) == (Ident)

(Predicate) := (Predicate) or (Predicate2)
] (Predicatel)
(Predicate2) := (Predicate2) and (Predicate3)
| (Predicate3)
(Predicate3) := (Ident) —> (Predicate4)
| (Predicate4)
(Predicate4) = true

| (Ident) ((ListVals))
| (Val) = (Val)
| ((Predicate))

(Predicatel) := (Predicate2)
(Val) == (Ident) . (Ident)
] (String)
| (Integer)
] true
] false
] ? (Ident)
] (Ident)
(ListVals) == (Vals)
| (Vals) , (ListVals)
(Vals) == (Val)
(BasicType) = String
| Int
] Bool
| WebPage
] (Ident) . Id
| { (Ident) : (Type) | (Predicate) }
(Type) == (BasicType)
| { (ListStructureField) }
| (Ident)
| List < (Type) >
(ListStructureField) := (StructureField)
| (StructureField) , (ListStructureField)
(StructureField) := (Ident) : (Type)

(ListBlock) = (Block)
\ (Block) ; (ListBlock)

(Block) == br
] label (Exp)
| div (Ident) { (ListBlock) }
| image (Exp)
| link { (ListBlock) } to (Exp)
| iterator ((Ident) in (Exp)) { (ListBlock) }
] textfield (Ident) with (Exp)
] textfield (Ident)
| button (Exp) to (Exp)
| option (Ident) £ill (Ident) => (Ident) with (Exp)

(ListExp) == (Exp)
| (Exp) ; (ListExp)
(Exp) == 1let (Ident) = (Exp) in (Expl)

| assert (Predicate)
| assume (Predicate)
| (Expl)

(Expl) := update (Ident) in (Ident) with (Exp2) where (Exp2)
] insert (Exp2) in (Ident)
| from ((ListEntities)) where (Exp2) select (Exp2)
| from ((ListEntities)) select (Exp2)
| delete (Ident) from (Ident) where (Exp2)
| delete (Ident) from (Ident)

| foreach (Ident) in (Expl) do (Exp2)

| if (Expl) then (Expl) else (Expl)

|

(Exp2)

(Exp2) == (Exp2) or (Exp3)
| (Exp3)

(Exp3) == (Exp3) and (Exp4)
| (Exp4)

(Exp4) == (Exp4) == (Exp5)
| (Exp4) !'= (Exp5)
| (Exp4) > (Exp5)
| (Exp4) < (Exp))
| (Exp4) >= (Exp5)
| (Exp4) <= (Exp5)
| (Exp5)

(Exp5) ==
— (Exp6)

(Exp6) ==

(Exp7) == — (Exp7)
] not (Exp7)
| (Exp8)

(Exp8) == (Ident) := (Exp8)
| (Exp9)

(Exp9) == (Exp9) . (Ident)
| [(ListExp8Comma)]
| { (ListBxp) }
| { (ListStructureValue) }
| count ((Exp9))
| max ((Exp9))
| min ((Exp9))
| isNotEmpty ((CallArgValues))
| getHead ((CallArgValues))
| (Ident) ((CallArgValues))
| str2int ((Exp9))
] (Expl10)
(Expl0) == (String)
(Integer)
true
false
(Ident)

| ((Exp))
(ListExp8Comma) := (Exp8Comma)

\ (Exp8Comma) , (ListExp8Comma)

(Exp8Comma) == (Exp)

(ListArg) == (Arg)
| (Arg) , (ListArg)

(Arg) == (Ident) : (Type)

(Args) == ((ListArg))

| €

(ListArgValue) == (ArgValue)
\ (ArgValue) , (ListArgValue)

(ArgValue) == (Exp)
(CallArgValues) == ¢

| (ListArgValue)
(Entities) = (Ident) in (Ident)
(ListEntities) ::= (Entities)

| (Entities) , (ListEntities)

(ListStructureValue) ::= (StructureValue)
| (StructureValue) , (ListStructureValue)

(StructureValue) == (Ident) = (Exp)

