The GOODLY Design Language for MOOD Metrics Collection
Fernando Brito e Abreu
Luis Ochoa, Miguel Goulao
ISEG / INESC
Abstract

The GOODLY languagecanbe usedto specify the designof applicationsor libraries built accordingto the Object
Orientedparadigm.It was conceivedwith the main purposeof facilitating the extractionof MOOD designmetrics
[Abreu94]. It allows expressing the mastevantdesigninformationfor thatpurpose suchasthe classstructurewith

correspondingnheritancerelations,usesrelationships messagexchangesnd information hiding. This language,
whose syntax and semanticsare fully described,is being usedin the production of a new generationof the
MOODKIT tools that allow the MOOD metrics extraction.

1 Introduction

Thefirst generationof MOODKIT (G1) hada single-tierarchitecture Metrics extractionwas donein a single step
andit wascompletelyindependenfrom formalismto formalism.The lexical-syntacticanalyzerfor formalismX (for

instanceC++ sourcecode) had to embedthe knowledge about the metrics calculation, instantiatedfor X case
[Abreu95]. For a distinct formalism Y (e.g. Eiffel sourcecode),the lexical-syntacticanalyzerhad to embedthe
instantiatecknowledgeon the metricscalculationfor Y [Abreu96b]andso forth. This direct extractionprocesswas
then based on a single-tier tool architecture:

Formalism X f

L X Parser MOOD

Metrics

. MOOD
Formalism Y (. .
1 Y Parser Metrics | Repository
MOOD
Metrics
Formalism ... (
;k ... Parser
| warnings / errors
4 >
trigger control Interface

y,

This architectureembodiesseveraldrawbacks.The first one arisesfrom the need,and correspondindlifficulty, to
establishbindings betweenthe conceptsusedby the specificationformalismsand those usedin MOOD metrics
definition. For eachnew formalismto be supportedwe hadto producea mappingof conceptsand embedit in its
own lexical-syntacticanalyzer.This in turn induceda not lessproblematicsituation:any modificationin the MOOD
metricsset,suchasaddinga new metric or simply refining the definition of an existingone,hadto be propagatedn
the code of all analyzers already available.

Figure1: MOODKIT G1 - single-tiered architecture

The growing experienceof MOOD usageand correspondinganalysisof collecteddata[Abreu96a]leadedto a step-
wise refinement of the set definition. This showed how inflexible the MOODKI &rchitecturenvas,to supportnew
metric definitions. The result was a short term unavailability of updated releases for public distribution.

AnotherMOODKIT G1 shortcomingwasthe lack of opennessWe wantto cooperatewith otherresearchheamsto
enlarge the number of formalisms supported by MOODKIT. However, we know how the proliferation of metrics tools
leadsto distinctvalues,evenwhencountingsuchsimplethingsaslines of code.This kind of phenomenomappened

within our developmenteamas we producedseveralversionsof MOODKIT G1 (versionl and2). Sometimesa

slightly differentinterpretationof a given concepthinding madeby two distinct programmersvasenoughto produce
substantiallydifferent metricsvalues.We could easilydetectthe discrepanciegnot so easilyits root causespecause

we used the same data sets (a collection of libraries) to test new releases.

2 MOODKIT and GOODLY

To eliminate the previous problemswe conceiveda two-tiered architecturefor the second-generatiofG2) of
MOODKIT. A fundamentalrole is playedin this architectureby a designspecificationlanguagewe baptizedas
GOODLY (aGenericObjectOrientedDesignL anguage?¥ es!).

The first tieris madeof formalismconvertersvhosefunctionis to produceGOODLY codefrom specificationsorigi-
nally written in formalisms such as OMT, Fusion, C++, Java, Eiffel or Smalltalk.

The second tier is made of an analyzer of GOODLY code, a repository and a tool interfaaealyherexecuteghe
following operations on the submitted specifications expressed in GOODLY:

» lexical-syntactic verification;
» completeness and referential integrity (traceability) verification through a linking mechanism;

» generationof HT-GOODLY, an hypertext(HTML) versionof GOODLY codeto allow easyreading (through
navigation and context swapping) and understanding;

« MOOD metrics extraction.

The two tiers are then highly decoupled whidtowsthatthefirst andsecondiers may eventuallyresidein different
machinesSincethe syntaxof GOODLY is formally definedandits semanticds not ambiguousaswe will seein
further sectionsdifferentteamsmay cooperaten MOODKIT coverageexpansionpy building formalism converters
quite independently. The new tool architecture (MOODKIT G2) is then the following:

Formalism X
— "% X Parser GOODLY
. >
. MOOD Metrics
Formalism Y GOODLY GOODLY Repository
R —
e Parser / Linker JjHT-GooDLY
_ e
4
Formalism ... GOODLY
warnings / errors
triaaer control
Interface [*

warnings / errors

' y,

Figure 2. MOODKIT G2 - two-tiered architecture based on the GOODLY language

trigger control

The secondier will be maintainedoy our teamat INESC andmadefreely availablein the Internet.Any evolutionin
the MOOD set, due tour improvedperceptiorenrichedby the contributionsof all thosethatwill hopefully continue
to sharewith ustheir commentswill producechangesn the secondier. The formalismconverterdfirst tier), how-
ever, areimmuneto the expectedevolution. With availableresourceswe plan to support(in the secondtier) the
calculation of other metrics sets such as the one proposed in [Chidamber94].

Page2/17

This new architecturetherefore allows proceedingindependentlyin two directions. On one hand, enlarging
MOODKIT applicability by adding new formalism converters. tbaotherhand,facilitating the stepwiserefinement
and expansion of the MOOD set in an unrestricted way.

3 GOODLY generation

It is possibleto generateGOODLY specificationseither by direct engineeringor by reverseengineering.In the
former caselies the situationwhere GOODLY codeis producedirom OOA&D specificationscontainedin a CASE
tool repository (such as the one of ParadigmPlus, our current casestudy). The extractionof designinformation
contained in source code written in some OO languages such as C++, Eiffel, Smalltalk, OOPasoalptherss an
example of the latter case.

Until now all the research work based on MOOD has only used the rereggeeeringapproachThereasonis clear:
while it is relatively easy (using Internet search engines) tobig&dolumesof OO sourcecode,suchaslibraries,the
samedoesnot applyto OO analysisanddesignspecificationsBesidesthey are usuallyexpressedn somegraphical
notations,which are usually storedin a non-standardizethternal representationoften “hooked to a certain CASE
tool repository.The proliferation of new OO analysisand designformalisms,andthe quick evolution of the “older

ones,doesnot favor the availability of specificationsof significantsize.Methodologistsfor instance are often more
concernedn showingthe semanticallyrich modelingcapabilitiesof their formalisms,ratherthanin building “real
world” examplesusing them. Hopefully, attemptsto standardizesome of those formalisms,such as the recently
proposedmeta-modelinglanguagesUML (Unified Modeling Language)[Booch95] [Booch96]e OML (OPEN
Modeling Language) [Firesmith96] are under way.

4 The GOODLY Language

4.1 General Considerations

The GOODLY designlanguagewas conceivedto be a commonintermediateformalism allowing the extractionof
guantitative data - structural software metrics - from the underlying design of systems originally desingether
formalisms,either upstream(OO analysisand designmodelssupportedin CASE tools), or downstream(programs
written in OO programming languages).

In the current stage,this languageallows the representatiorof the structural information consideredrelevant.
GOODLY is not computationallycomplete:neitheralgorithmic capabilities,nor control flow structuresare present.
Clarity andgeneralitywerefavoredagainstimplementatiordetails.However,for somemechanismsuchasthe case
of visibility and coupling through inheritance,inclusion and messageexchangewe wantedit to have sufficient
expressivepowerto allow the representatiomf mostof the correspondingnechanismsn commonformalismssuch
asC++, Java,SmalltalkandEiffel. To allow the understandin@f the designof OO systemsthe GOODLY language
wasenriched(whencomparedo the previousformalisms)with traceinformationof suchcomponentasclassesand
modules.

4.2 About Types

Thereare no pre-definedtypesin GOODLY. All types“imported from the formalismsin which were written the
specificationsconvertedinto GOODLY arevalid. As in other pure OO languagessuchas Smalltalk or Eiffel, the
only typing mechanismis the class.All importedtypesare consideredo be classesn GOODLY evenif, in hybrid
languagesuchasC++, its internalmemory(state)and allowed operationon its instancesare not formally encapsu-
lated.

For simplicity sake there is no distinction in GOODLY betweenaccessby value and by reference.Pointers
(referencesjor any type are substitutedn GOODLY by that sametype. As an examplea pointerto an instanceof
class Person is considered in GOODLY as being the instance itself, that is, an object of class Person.

4.3 About Style

GOODLY reservedwords (terminal symbols) are case-insensitivaalthough, for style standardizationsake, we
generatehemalwaysin uppercaseNon-terminals(identifiers of specificationsmodules,classesattributes,opera-
tions, etc.) arease-sensitivandshould retain the letter case they had in its original formalism.

Onwhatconcernsndentationtabsshouldbe usedto denotethe nestinglevel embeddedn the syntacticstructureof
this languageTherefore the setsof instructionsbetweenthe keywords“XPTO" andEND_"XPTQO", where“XPTO’
stands for terminal symbols such as SPECIFICATION, USES, MODULES, CLASS, STATE, BEHAVIOR,

Page3/17

LOCALS, EMPLOYS,MESSAGESor CALLS, shouldbe skippedonetab to theright of thosesymbols.The exam-
ples included ahead follow this convention.

4.4 About the Environment

The validationoperatedoy the GOODLY linker is intendedto identify if all componentghatare part of the system
understudyare presentwith their dependenceelationshipsclearly identified. If thereare missingpiecesthe useris
warned with appropriate context-dependent messages.

During compilation and linking, the following global variables are used:

» CURRENT_SPEC - identifier of the specification being currently processed;
* CURRENT_MODULE - identifier of the module being currently processed;
» CURRENT_CLASS - identifier of the class being currently processed.

The following axioms can be applied to these variables:
(1 <class_spec>, <class _id>: <class_id>T] <class_spec> A <class_id>= CURRENT_CLASS
O <class spectT] CURRENT_MODULE
[(J <module_spec>, <module_id>: <module_id>T] <module_spec> A <module_id>= CURRENT_MODULE
O <module_specT] CURRENT_SPEC

5 Language Syntax and Semantics

This sectionincludesthe completesyntaxof the GOODLY languagegxpressedn BNF notation,alongwith textual
descriptions and examples to allow capturing its semantics.

5.1 Specifications and Systems
The structural unit at the highest abstraction level ispleeification. Its declaration has the following syntax:

<specification> ::= <spec_header> <module_list>

<spec_header> ::= SPECIFICATION <spec_id>
TYPE <spec_type>
VERSION <version_id>
DESCRIPTION <string>
OWNER <owner_id>
<uses_spec>
<modules_spec>
<main_spec>

END_SPECIFICATION

<spec_id> ::= <identifier >

<spec_type> ::= APPLICATION | LIBRARY | ENVIRONMENT | BUILTIN
<version_id> :i= <string>

<owner_id> :i= <string>

<string> o= <text>"

<text> ::= <char> | <char> <text>

A software system usually includes the specifications of:
* 1 or more applications (<spec_type*APPLICATION");
» 0 ormore libraries - sets of reusable components used by the applications (<spec “tyl8RARY");

» 1 development environment being used - described by the set of components that are emlte@dgec_type>
=“ENVIRONMENT");

Paged/17

« 1 or moregraphicalor textualspecificationlanguage®eingused,describedby the setof embeddedomponents,
generally known as pre-defined-typésspec_type> £BUILTIN").

The specificationversioncanbe usedfor configurationmanagementThe specificationheaderalsostateswho is the

owner of the specification(probably who supportedits developmentcosts),usually a company,university, some
research group or institution, or even some individual. Each specification mentions which others it must usg directly
so that the origin of all used symbols is known. The corresponding syntax is the following:

<uses_spec> == USES <used_spec_list> END_USES | <empty>
<used_spec_list> ;== <used_spec_id> | <used_spec_id>, <used_spec_list>
<used_spec_id> = <spec_id>

If onespecificationdoesnot useany other,then<uses_spec= <empty>.0Ontheotherhand,it doesnot makesense
to indicate that a specification uses itself:

[<specification>, <spec_header>, <spec_id>, <uses spec>, <used_spec list> : <spec_header>[1] <specification> A
<spec_id>T] <spec_header> A <uses_specT] <spec_header> A <spec_list>{T] <uses_spec>

0O <spec_id>1] <used_spec list>

One example of a system comprised of several interrelated specifications follows. The meaning of the
<modules_spec> and <main_spec> clauses will be detailed in next sections.

SPECIFICATION hotel SPECIFICATION delphi2
TYPE APPLICATION TYPE ENVIRONMENT
VERSION*“3.0° VERSION*“2.0°
DESCRIPTION “Hotel management systeém DESCRIPTION
OWNER*"Ecosoft Ldd “Delphi Development Systém
USES OWNER*“Borland Inc.”

winmanager, delphi2, oopascal USES
END_USES oopascal
MODULES END_USES
front_office, back_office, pos MODULES
END_MODULES delphi_features
MAIN END_MODULES
END_SPECIFICATION

END_MAIN
END_SPECIFICATION

SPECIFICATION winmanager SPECIFICATION oopascal
TYPE LIBRARY TYPE BUILTIN
VERSION“4.1 VERSION“2.03
DESCRIPTION “Window manager library DESCRIPTION
OWNER*“Borland Inc.” “Built-in OOPascal predefined typés
USES OWNER*Borland Inc.”
delphi2, oopascal MODULES
END_USES oopascal_types
MODULES END_MODULES
win_main, win_aux END_SPECIFICATION

END_MODULES
END_SPECIFICATION

! - This set was or is being standardized for several OO programming languages.

? - By otherwords, if the specificationA usessymbolsof specificationsB1 andB2, andB1 usessymbolsdefinedin
specification C11 and C12, then thiadirect’ use in A of symbols defined in C11 and C12 is not enlisted in A.

Page5/17

5.2 Main section

A specificationcanhavea start-upsection.This section, representedby the <main_spec>clause correspondso the

specificationfragmentthat would be’ automaticallyexecutedvheneverthe specificationis activated.Most specifi-

cationsof type APPLICATION will havea non-emptyclauseof this type, while the oppositehappendor all other

specificationtypes.An exceptionto this rule is the casewherea library with a random numbegeneratomeedsto be

initialized. The initialization proceduredfor this library (seedgeneration)should be placedin the corresponding
<main_spec>clause.The syntaxof the <main_spec>clausefollows. The syntaxof the <operation_body>clause
will be introduced later.

<main_spec> ::= MAIN <operation_body> <trace_info> END_MAIN | <empty>

5.3 Modules

The separated¢ompilationunit in GOODLY is the module.Eachmodulewithin a specificationhasa uniqueidenti-
fier. The mechanism for generating identifiers is distinct in direct and reverse engineering.

In directengineeringthatis, whenthe GOODLY codegenerations donefrom specificationscontainedn a CASE
tool, eachmoduleis originatedfrom eachdefinedsubsystemThe modulenameswill be thoseof the corresponding
subsystems. If the system to be converted is not partitioned, then only one modoégerieratecdndits namewill
be the same of the specification.

In reverseengineeringthatis, whenthe GOODLY codegeneratioris donefrom sourcecode,eachmodulewill have
the samenameasthe correspondingourcefile thatis converted For instancewhenthe C++ sourcecodefile origi-
nally designated byxpto.cpg is converted, it will originate the modul&pto’.

A specificationheadergenerallyincludesthe declarationof which modulesit comprisesHowever,in specifications
extractedfrom analysisand designformalismssupportedby CASE tools, the environmentmay not include a set of
components to be reused in the construction of new systems. If that is the casmdteles_spec> = <empty>

<modules_spec> ::= MODULES <modules_id_list> END_MODULES | <empty>
<modules_id_list> = <module_id> | <module_id>, <modules_id_list>
<module_id> .:= <identifier>

If <modules_spec>is not empty then, besidesthe declarationof the specificatonheader,we have those of the
corresponding modules:

<module_list> = <module_spec> | <modwd_spec> <module_list> | <empty>

The followin assertion then applies:

[0 <specification>, <spec_header>, <modules spec> : <spec_header> [11 <specification> A <modules spec> [T]
<spec_header> A <modules_spec> # <empty> A <module_listT] <specification> 0 <module_list> # <empty>

Each module in the list is declared with the following syntax:

<module_spec> ::= MODULE <module_id>
DESCRIPTION <string>
AUTHORS <authors_id>
PRODUCED <timestamp>
CONVERTED <timestamp>
<original_formalism>
<class_list>

END_MODULE

° - Supposing that GOODLY specifications were executable.

The moduleidentifier generationwas previouslydescribed A moduledescriptionandits author(s)are part of each
moduleheader For configurationmanagemenpurposesthe momentsin time whenthe original fragmentwas last
updated and when it was converted to GOODLY (@8/1/1997 17:53:472, are also added. The syntax is:

<authors_id> ::= <string>

<timestamp> = “<date>_ <time>*

<date> = <day> / <month> / <year>
<day> = <number>

<month> := <number>

<year> = <number>

<time> := <hour>: <minute> : <second>
<hour> := <number>

<minute> ::= <number>

<second> ::= <number>

The formalismin which the modulewas originally written (C++, SmallTalk, Eiffel, Java,00PascalOMT, Booch,
Fusion, etc) is made explicit by indicating the corresponding specificatidBl it TIN” type:
<original_formalism> ::= FORMALISM <builtin_spec_id> | <empty>
<builtin_spec_id> = <spec_id>

The following assertion is applicable here:

[<specification>,, , <spec_header>,,, <spec_id>, ,, <spec_type>, <builtin_spec_id>:

<spec_header>[T] <specification>, A <spec_id>[T] <spec_header>, A <spec_id> = CURRENT_SPEC A

<specification>, # <specification> A <spec header>, [I1 <specification>, A <spec id>, [I1 <spec_header>, A
<builtin_spec_id> = <spec_id>, A <spec_type>[T1 <spec_header>, [1 <spec_type>, = BUILTIN

In a BUILTIN specification it is not relevant to indicate in which formalism were the modules originally written:

[<specification>, <spec_header>, <spec_type> : <spec_header >T] <specification>

N <spec_typexT] <spec_header> A <spec_type>=BUILTIN O <original_formalism> = <empty>

As an example we include a BUILTIN specification with a single module:

SPECIFICATION xpto MODULE xpto_types
TYPE BUILTIN DESCRIPTION
VERSION“1” “Basic types in the xpto formalisin
DESCRIPTION AUTHORS" Fernando Brito e Abreu et al.
“Hypothetical formalism supporting PRODUCED" 18/7/96_10:30:15
a given set of basic typés CONVERTED"20/8/96_2312:57"
OWNER*“MOOD Project
MODULES CLASS Char END_CLASS
Xpto_types CLASS String END_CLASS
END_MODULES CLASS Integer END_CLASS
END_ SPECIFICATION CLASS Real END_CLASS
CLASS Boolean END_CLASS
CLASS Date END_CLASS
CLASS Time END_CLASS
END_MODULE { xpto_types }

Page7/17

5.4 Specification and Module Persistance

Eachspecification(headerand correspondingnodules)will be keptin a separatesubdirectorywhosenamewill be
the sameasthat of the specificationit will contain,with no extension.This subdirectorywill be locatedunderthe
“gpecs’ directory which, in turn, is located under the directory identified by the environmentvariable named
GOODLYDIR.

A specificationheaderresideson a separatedile and identifies which modulesbelongto the specification.This
header isusedby the GOODLY link editorto find symbolsreferencedn the modulesA file thatcontainsthe header
of one specificationwill havea descriptorequalto the specificationname,plus the spc extension.For instancea
specification nametisalaries would be kept in the filésalaries.spt.

Each module is also stored in a distinct file whose name is that of the module it contains glijgxkension.

Supposinghatthe environmentvariableGOODLYDIR hasthe value*/usr/etc/goodly, thenthe persistenstorageof
the hotel and other related specifications introduced beforehand, wduld be

/usr/etc/goodly/specs/hotel/hotel.spc /usr/etc/goodly/specs/winmanager/win_main.gly
/usr/etc/goodly/specs/hotel/front_office.gly /usr/etc/goodly/specs/winmanager/win_aux.gly
/usr/etc/goodly/specs/hotel/back_office.gly

/usr/etc/goodly/specs/hotel/pos.gly /usr/etc/goodly/specs/delphi2/delphi2.spc

/usr/etc/goodly/specs/delphi2/delphi_features.gly
/usr/etc/goodly/specsl/lists/lists.spc
/usr/etc/goodly/specs/lists/listpack.gly /usr/etc/goodly/specs/oopascal/oopascal.spc
/usr/etc/goodly/specs/oopascal/oopascal_types.gly
/usr/etc/goodly/specs/winmanager/winmanager.spc

5.5 Classes and their Parameters
The basiccomponentbf a moduleis the class. A moduleis no more than a setof classeswhich were physically
aggregated on the basis of a given modularization criterion. That crisdraaridbe madeexplicit, for instancen the
module description clause. Each class must have a unique identifier within each specification.
<class_list> ::= <class_spec> | <class_spec> <class_list>
<class_spec> :: = CLASS <identifier> <class_parameters> <inheritance_spec>
<state_spec>
<behavior_spec>
<trace_info>

END_CLASS
<class_parameters> :=[<parameter_id_list>]| <empty>
<parameter_id_list> ::= <parameter_id> | <parameter_id> <parameter_id_list>
<parameter_id> = <class_id>
<class_id> ::= <identifier> <class_parameters> | UNKNOWN

The UNKNOWN keywordis usedwhenit is not possibleto determinethe appropriateclassidentificationat linking
time. This situationdoesnot arisein the classdeclaratiorbut ratherin the referenceshat canbe madeto classesn
other clauses.

A classwith no parametersiasan empty<class_parametersxlause.The classparameterizatiosupportechereis a
mechanismsimilar to those existing in languagessuch as C++ and Eiffel that allows building generic classes
(“templates). An example follows:

CLASS Queue [Something]

END_CLASS

- On an operating system supporting long names; otherwise file identifiers can be truncated.

Based in this class we could get parameterized situations such as the following:

waiting_list: Queue [People];
doctor_booking: Queue [Patient];
loan_list: Queue [Request];

5.6 Inheritance

The GOODLY language supports thgecificationof both singleandmultiple inheritancelt is not madeany distinc-
tion betweeninterfaceinheritancethat implies an implicit type conversion(sub-typing and implementationinheri-
tance (ex: private inheritance in C++). As an example:

CLASS Airplane {base class; no inheritance}
END_CLASS

CLASS Fighter ISA Airplane {single inheritance}
END_CLASS

CLASS Seaplane ISA Airplane, Ship {multiple inheritance}
END_CLASS

Formally we have:
<inheritance_spec> :=I1SA <class_id_list> | <empty>
<class_id_list> = <class_id> | <class_id>, <class_id_list>

Thereis no inheritanceclausefor a root class (classwith any ancestors).Then we have <inheritance_spec=
<empty>

5.7 Traceability

Whenthe link editing takesplacein GOODLY, traceinformationis automaticallyinsertedin the sourcecodewith
the syntaxexpressedn clause<trace_info>.Thatinformation consistson the identification of the placeswherethe
classedocally referenced aredefined.If the codeto be linked alreadyhastraceabilityclausespecausét hasbeen
previouslysubmittedto the link editor, thesewill be discardedandrewrittento guarantee true conformity with the
version whose modules were effectively linked.

<trace_info> ::= TRACE <traced_class_list> END_TRACE | <empty>
<traced_class_list> ::=<traced_class_id> | <traced_class_id> <traced_class_list>

The traceability clausewill only be insertedif it containsat least one entry; otherwisewe get <trace_info>=
<empty>.

<traced_class_id> ::= <class_id> <origin_module>
<origin_module> ::= UNDEFINED | DEFINED_IN <module_id> <origin_spec>
<origin_spec> == OF <spec_id> | <empty>

The profusion of traceability information depends solely on the context, as follows:

» if theclassreferenceds definedin a module belonging to a BUILTIN specification, thenno traceabilityinfor-
mationis addedthatis, <traced_class_id>= <empty>. This avoidsthe proliferation of “unnecessaftyinforma-
tion (pre-defined types are usually well knoywn)

° - the locality here corresponds to the clause to which the non-terminal sytrdm®_info> is associated;

Page9/17

» if the classreferenceds definedin the same module then, given the proximity, no traceabilityinformation is
added, that isstraced_class_id> = <empty>;

 if the classreferenceds definedin the same specification but not in the same module, thenit is only added
information about the corresponding module. Thus we kavigin_spec> = <empty>;

 if the classreferenceds definedin a module of other specification, thenit is addedinformation aboutboth of
them. Thus we haveorigin_spec>% <empty>;

» if the classreferencedwvas not found in any module of involved specifications, thenit is addedinformation
stating that situation (<origin_module> = UNDEFINED).

5.8 Object State

The specificationof a classhastwo parts: the state and the behavior. The state of eachobject (classinstance)
dependon the value of the attributesit containsandwhich are definedin the correspondinglass.Eachattribute®

hasanidentifier, a type (class)and a scope.Whereapplicable,its type definition will be enrichedwith traceability
information generated in the previously described fashion.

SomeOO programminglanguagessuchas Smalltalk make a distinction betweenclassstate (classvariables)and
object state(instancevariables).Since GOODLY is not an executablgormalism, this distinction is not madeand
both cases are included in the <state_spec> clause:

<state_spec> ;.= STATE <attribute_list> END_STATE | <empty>

If a class has no attributes then the state clause is omitted. Then we get <state _spec> = <empty>

<attribute_list> ::= <attribute> | <attribute> ; <attribute_list>
<attribute> ::= <unscoped_attribute> <scope_spec>
<unscoped_attribute> ::= <attribute_id> : <class_id_list>"
<attribute id> .:= <identifier>

5.9 Scope of Attributes and Operations

The scopeor rangeof anattributeor operation(clause<scope_speckcanbedefinedin a very detailedfashion.The
scopeis characterizedoy the visibility that componentgclasses)have on the attribute or operation.Invisibility
implies inability to use. The following scope options can be used:

* PRIVATE scope - only the class where the attribute or operaidafinedcan”seé it; this scopeis notcumula-
tive with any other;

» PROTECTED scope - the class where the attribute or operation is defined, and its descenddses ¢an

» Discriminatedclassscope- the classreferencedy <class_id>can“seé the attributeor operation;the referenced
class must be defined in the same specification, although it can be declared in another module;

» Discriminatedclass hierarchy scope- the classreferencedby <class_id>and its descendantgan “seé the
attributeor operation;the referenceclassis supposedo be definedin the samespecification althoughit canbe
declaredin anothermodule.The * suffix representghe inheritancehierarchystartingin the classwhereit is
appended; thereforeclass_id>.* stands for the class referenced<njass_id>and all its descendants;

» MODULE scope- all classesn the modulethat containsthe classwherethe attributeor operationis definedcan
“seé it;

» Specification BPEC) scope- all classes the specificationthat containsthe classwherethe attributeor operation
is defined cariseé it;

® - in other formalisms these are designated by instance variables or data members;

- In mostcases<class_id_list>will only haveoneelementln somecasegex: Smalltalk) however,the sameobject
identifier can be associated with instances of distinct classes.

Pageld/17

* PUBLIC scope- all classexan“seé the attributeor operation regardles®f beingdefinedin the sameor other
specification.

<scope_spec> ::= SCOPE <scope_list>
<scope_list> ;= <scope_id> | <scope_id>, <scope_list>
<scope_id> ::= PRIVATE | PROTECTED | MODULE | SPEC | PUBLIC | <class_id> | <class_id>.*

The scopeof anattributeor operationalwaysincludesthe own classwhereit is defined.Thereforeit doesnot make
sense to include it explicitiin the scope clause. Formally we have the following assertion:

[<class_id>, <scope_id> : <class_id>T] <scope_list> [0 <class id># CURRENT_CLASS

Theresultingscopewhenal list of scopeoptionsis used,is the union of the classsetscorrespondingo eachlist ele-
mentwhenconsideredndividually. Becausesomeof the scopesare more amplethan others,their simultaneousise
can becomeredundant.That will happenwhen a scopeembracessome other. The PUBLIC scope,for instance,
embracesny otherandsoit canbe consideredasthe absorbing’ elementin a scopeclause The PRIVATE scopeis

morerestrictivethanany otheris andsoit canbe consideredasthe neutral™ elementin a scopeclause.The SPEC
scopeembracesthe MODULE scope and the discriminatedclass scope. The MODULE scopecan embracea

discriminatedclassif thatis definedwithin the currentmodule.It canfurther embracethe PRIVATE anddiscrimi-

nated class hierarchy scopes if the corresponding descendants are also contained in the current module.

The following table showsthe resulting scopeof the union, two by two, of namedscopeoptions.It canbe used
recursivelyto determinethe resultingscopeof any list of scopeoptions.The OWN acronymrepresentshe current
class,thatis, the onewhereis definedthe attributeor operationwe are concernedwith. For simplification purposes
classes C1 and C2 and all their descendants were considered to belong to the current module.

PRIVATE PROTECTED CLASSC2 CLASSC2* MODULE SPEC PUBLIC
PRIVATE OWN OWN.* {C2, OWN} {C2.*, OWN} MODULE SPEC PUBLIC
PROTECTED | OWN.* OWN.* {C2, OWN.*} {C2.*, OWN.*} MODULE SPEC PUBLIC
CLASSC1 {C1,OWN} {C1,OWN.*} {C1,C2, OWN} {C1,C2* OWN} MODULE SPEC PUBLIC

CLASSCL* {C1*, OWN} {C1.*, OWN} {C1.*,C2,OWN} {C1.* C2.*, OWN} MODULE SPEC PUBLIC

MODULE MODULE MODULE MODULE MODULE MODULE SPEC PUBLIC
SPEC SPEC SPEC SPEC SPEC SPEC SPEC PUBLIC
PUBLIC PUBLIC PUBLIC PUBLIC PUBLIC PUBLIC PUBLIC PUBLIC

Table 1: Resulting scope combinations

5.10 Object Behavior

5.10.1 Operation Interface

The behaviorof all instancef the sameclass(objects)is commonandis definedin the classto which they belong
asa setof operations *'. Eachoperationhasan interfaceand a body or implementation The operation interface

® - Although its reference is implicit in the PRIVATE and PROTECTED scope options.

° - In the sensethat the other scopesthat could be includedin the samescopespecificationwould be rendered
irrelevant.

'°~ In the sensehatany otherscopethat could be includedin the samescopespecificationwould includethe private
scope thusrenderingits declarationirrelevant.In otherwords,it only makessenseto declarea private scopewhen
that is the only one applicable.

- In other formalisms these are often designated by methods or function members.

Pagell/17

includesits identifier, the formal parametetist and correspondingype(s),the returningtype, its scopeand trace-
ability information. The corresponding syntax is the following:

<behavior_spec> ::= BEHAVIOR <operations_list> END_BEHAVIOR | <empty>
<operations_list> ;.= <operation> | <operation> <operation_list>
<operation> ::= OPERATION <operation_interface>

<operation_body>
END_OPERATION

<operation_interface>::= <operation_id> (<parameters>) <return_spec> <scope_spec>

<operation_id> ::= <identifier> | <operator>
<0perat0r> ::: (+7 | 1_7 | l++1 | l__! | l:(| l<>l | l!=l | (>(| l>:l | l<l I (<:(| l&&! | l| |7
<parameters> = <parameter_list> | <empty>

<parameter_list>
<parameter>
<return_spec>

<parameter> | <parameter>; <parameter_|list>
<unscoped_attribute>"”
. <class_id> | <empty>

If a classhasno definedoperationsthenthe behaviorclauseis omitted, that is <behavior_spec= <empty>.The
body of an operation is also optional. That is often the case in third party libraries where only the behavior interface is
available.

5.10.2 Operation Body

The implementationor operation body includesthe definition of its local variables,the attributesit employs,the
messageshat this operationsendsto instance9f this or of other classesandthe calls that it makesto servicesof
entities other than class instances. The corresponding syntax is:

<operation_body> ::= <locals_spec> <employs_spec> <messages_spec> <calls_spec> | <empty>

When comparedwith a computationallycompletelanguage the GOODLY languagedoesnot include the entire
algorithmiccomponen{instructionsequencehat producea given result) but only the information on collaborations
andresponsibilitiesof classesamongthemselvesin the body of one operation the referencesnadeto attributesand
operationsdeclaredin otherclassesare prefixed with their respectiveclassname.Referencedttributesand opera-
tions declared in the same class do not carry the prefix.

A given operation can manipulate several variable types:

» temporary variables locally defined (usable only within its scope);

» attributes belonging to the current class;

» attributes belonging to other classes;

» other variables who are not associated with any class such as environment variables, global variables, etc.

The variables of the first type are described in the next section.

5.10.2.1 Local Variables

Thelocal variablesaresimilar to the attributesthat definethe state,but with no scopeinformation. Their declaration
syntax is the following:

<locals_spec> == LOCALS <local_attribute_list> END_LOCALS | <empty>

2 - In most programminglanguagesvhen a parameteiis passedoy value, the actual parametetist caninclude a
variable,constantyvaluereturnedby a function or any kind of compatibletype expressionln GOODLY the actual
parametetists (aswill be seenin the messagandcall specificationsahead)will, at most,containthe identifier and
type of the corresponding formal parameter variables. By other words, there is no distinction here foetas@amd
actual parameter lists.

Pagel2/17

<local_attribute_list> ::= <local_attribute> | <local_attribute> ; <local_attribute_list>
<local_attribute> ::= <unscoped_attribute>

If an operation has no local variables then the <locals_spec> clause can be omitted, that is <locals_spec> = <empty>.

5.10.2.2 Direct Access to Object State

An operationcanaccesghe instanceattributesof the sameor otherclassesThis kind of couplingis describedn the

following clauses:
<employs_spec> == EMPLOYS <employed_attribute_list> END_EMPLOYS | <empty>
<employed_attribute_list>::= <employed_attribute> | <employed_attributeemployed_attribute_list>
<employed_atribute> ::= <attribute_id> | <class_id>.<attribute_id>

As previously,the prefix <class_id>is appliedto the <employed_attribute>when this doesnot correspondo an
attribute defined in the clausstate spec>of the same class.

The<employs_specxzlauseonly refersto direct® manipulationsof attributesthatdescribethe stateof objects either
in the same or other class.

5.10.2.3 Messages

To accomplisha given task an operationfrequently usesthe servicesof other operations.By other words, other
classeqor operationsdefinedin the sameclass)can cooperatein the prosecutionof a given operation.Their co-
operation isobtainedby invoking its serviceshroughmessagaending.The descriptionof which messagean opera-
tion sends is included in the following clause:

<messages_spec> = MESSAGES <message_list> END_MESSAGES | <empty>
<message_list> = <message> | <messagep<message_list>
<message> ;.= <message_id> | <message_id> (<parameters>)<return_spec>

If anoperationdoesnot sendmessagesyr if thoseareunknownbecausenly interfaceinformationis available then
<messages_spec> = <emptya messageorrespondso anoperationthatis unambiguoushdeterminednly by its

identifier, then, in the previous clause, only that identifier is used. However some formalisms, such as C++, allow that
severaloperationswith the sameidentifier (but with distinctformal parametetists) canbe definedin the sameclass.

In this casethe correspondingnessagemustindicate,extensively the formal parametetfists to withdraw the ambi-

guity, as shown in the next clause:

<message_id> ;1= <operation_id> | <class_id>.<operation_id>

As it occurs in thecemployed_attribute>elause the<class_id> prefix is added to themessage>when this doesot
correspondo an operationdefinedin the <behavior_spec>of the sameclass;by other words, when the message
recipient is an instance of other class.

5.10.2.4 Service Calls

To accomplishts objectivean operationcaninvoke servicesfrom entitiesotherthanclassinstancess, for instance,
a window manager, operating system, network manager or other. These calls are represented in the following clause:

<calls_spec> == CALLS <call_list> END_CALLS kempty>
<call_list> = <call> | <call> ; <call_list>

<call> ::= <call_id> (<parameters>) <return_spec>
<call_id> .:= <identifier>

- Not through message exchanges.

Pagel317

Suchasin the caseof messagedf an operationdoesnot usecalls or if thoseare unknownbecauseonly interface
information is available, then <calls_spec> = <empty>.

5.11 Identifiers and Comments
This section includes some definitions of symbols used in previous clauses, which were still missing.

<empty> =

<identifier> ::= <alphanumeric> | <alphanumeric> <identifier>
<alphanumeric> i=<letter> | <digit>|* ' | Y

<letter> D=CALZ | el

<char> ::= <alphanumeric> | <punctuation>

<punctuation> R I T I T e A T I I I o I

Comments can appear in any point of a specification, delimited by brackets.

<comments> = { <text>}

6 A short example

To illustrate the syntax and semantics of the GOODLY languagachele hereafteithe following specificationof a
hypothetical application in the car races domain:

SPECIFICATION An_example
TYPE APPLICATION
VERSION*“2.7
DESCRIPTION “A rally competitiori
OWNER*“MOOD Project
USES

xpto
END_USES
MODULES

Race
END_MODULES

MAIN
LOCALS
mikkola: Pilot;
chuck: Mechanic;
END_LOCALS

MESSAGES
Pilot.creates;
Mechanic.creates;
Pilot.qualification;
Pilot.talks_to {Mechanic};
Mechanic.repairs;
Pilot.qualification;
Pilot.talks_to {Mechanic};
Mechanic.repairs;
Pilot.qualification;
Pilot.destroys;
Mechanic.destroys

END_MESSAGES

CALLS ... END_CALLS
END_MAIN
END_ SPECIFICATION

Pagel4/17

MODULE Race
DESCRIPTION “Example of a module of an application in the race car wdrld
AUTHORS" Fernando Brito e Abreu et al.
PRODUCED*18/7/96_12:00:03
CONVERTED*"20/8/96_15:34:45
FORMALISM xpto

CLASS Document[Objective] END_CLASS
CLASS Sport END_CLASS
CLASS Bank END_CLASS

CLASS Person
STATE
name: String SCOPE PRIVATE;
birth_date: Date SCOPE PRIVATE;
weight: Integer SCOPE PRIVATE;
address: String SCOPE PRIVATE;
bankcard: Document[Bank] SCOPE PRIVATE
END_STATE

BEHAVIOR
OPERATION creates() SCOPE PUBLIC END_OPERATION
OPERATION destroys() SCOPE PUBLIC END_OPERATION
END_BEHAVIOR
END_CLASS { Person }

CLASS Pilot ISA Person
STATE
driving_permit: Document[Sport] SCOPE PRIVATE;
helmet: Protection SCOPE PROTECTED
END_STATE

BEHAVIOR

OPERATION qualification(start: Time; from: String; to: String) SCOPE PUBLIC

MESSAGES
Protection.creates;
Protection.put_on;
Document[Sport].shows;
RaceCar.close_window;
RaceCar.starts;
drives;
RaceCar.stops;
RaceCar.open_window;
Document[Sport].shows;
Protection.take_off;
Protection.destroys
END_MESSAGES
END_OPERATION

OPERATION drives(vehicle : RaceCar): Boolean SCOPE PUBLIC

MESSAGES
Co-pilot.read_notes;
RaceCar.accelerates;
Co-pilot.read_notes;
RaceCar.breaks;
RaceCar.turns

END_MESSAGES

END_OPERATION

Pagely17

OPERATION talks_to(whom: Person): Boolean SCOPE Co-pilot, Mechanic
END_OPERATION
END_BEHAVIOR
END_CLASS {Pilot}

CLASS Co-pilot ISA Person
BEHAVIOR
OPERATION read_notes() SCOPE PUBLIC END_OPERATION
END_BEHAVIOR
END_CLASS { Co-pilot }

CLASS Mechanic ISA Person
BEHAVIOR
OPERATION repairs (vehicle : RaceCar) SCOPE PUBLIC END_OPERATION
END_BEHAVIOR
END_CLASS { Mechanic }

CLASS Artifact
STATE
brand: String SCOPE PUBLIC;
model: String SCOPE PROTECTED;
production_date: Date SCOPE PRIVATE
END_STATE

BEHAVIOR
OPERATION creates() SOPE PUBLIC END_OPERATION;
OPERATION destroys() SCOPE PUBLIC END_OPERATION
END_BEHAVIOR
END_CLASS { Artifact }

CLASS Protection ISA Artifact
BEHAVIOR
OPERATION put_on(): Boolean SCOPE PUBLIC END_OPERATION
OPERATION take_off(): Boolean SCOPE PUBLIC END_OPERATION
END_BEHAVIOR
END_CLASS { Protection }

CLASS RaceCar ISA Artifact

STATE
zero_to_hundred: Time SCOPE PUBLIC;
horse_power: Integer SCOPE PUBLIC;
oil_level: Real SCOPE Mechanic.*, Pilot, Co-Pilot;
actual_speed: Integr SCOPE PROTECTED, Pilot, Co-Pilot

END_STATE

BEHAVIOR
OPERATION starts(): Boolean SCOPE PUBLIC END_OPERATION
OPERATION accelerates (duration: Time; acceleration: Integer) SCOPE PUBLIC
END_OPERATION
OPERATION breaks(duration: Time; desacceleration: Integer) SCOPE PUBLIC
END_OPERATION
OPERATION turns(angle: Integer) SCOPE PUBLIC END_OPERATION
OPERATION stops(distance: Integer): Boolean SCOPE PUBLIC
END_OPERATION
OPERATION open_window(): Boolean SCOPE PUBLIC END_OPERAJN
OPERATION close_window(): Boolean SCOPE PUBLIC END_OPERATION

END_BEHAVIOR

END_CLASS { RaceCar}

END_MODULE { Race }

Pagel&/17

7 Final considerations

This paperdescribedthe architecturalevolution of MOODKIT, a setof tools to collectthe MOOD metrics,along
with its rationale.The GOODLY designlanguageplays a fundamentakole in this effort. A full descriptionof the
language syntax and semantics was included. Some examples written in this language were also included.

The foundationsfor the cooperationwith otherresearchteamsin the OO metricscollectionarenaare now laid. We
hope to strengthen the joint efforts already in place and to launch new ones.

To browseHT-GOODLY examplesandto accessavailableMOODKIT G1' versionsand a databaseof collected
metrics plus the originadlodefrom wheretheywereextractedandto getpapersproducedwithin the MOOD project,
visit our web site (http://albertina.inesc.pt/ftp/pub/esw/mood) or ftp to albertina.inesc.pt (user:anonymouspass-
word: your email address; directory: pub/esw/mood).

8 References

[Abreu94] Abreu, F. Brito andCarapucaR., “ Object-OrientedSoftwareEngineeringMeasuringand Controling
the DevelopmentProcess, Proceedingof the 4th Interndional Conferenceon Software Quality,
ASQC, McLean, VA, USA, October 1994.

[Abreu95] Abreu, F. Brito; Gouldo, Miguel and Esges, Rita,' Toward theDesignQuality Evaluationof Object-
Oriented SoftwareSystems. Proceeding®f the 5th Internaional Confeenceon Software Quality,
Austin, Texas, USA, October 1995.

[Abreu96a] Abreu, F. Brito and Melo, Walcelio, “Evaluatingthe Impactof Object-OrientedDesignon Software
Quality’. Proceedings of the Third International Safte Metrics Symposium, Berlin, March 1996.

[Abreu96b] Abreu, F. Brito; Esteses, Rita and Gouldo, Miguel, “The Designof Eiffel Programs:Quantitdive
Evaluation Using the MOOD Metrics’, Proceedingsof TOOLS USA’96 (Technologyof Object
Oriented Languages and Systems), Santa Barbara, California, USA, August 96.

[Booch95] Booch, Grady; RumbaughJames,*Unified Method for Object-OrientedDevelopment- Docunen-
tation Set, Version 0.8, Rational Software Corporation, October 1995.

[Booch96] Booch, Grady; Rumbaugh,James;Jacolson, lvar, “Unified Modeling Language- Documentation
Set, Version 0.9, Rational Software Corporation, July 1996.

[Chidamber94ChidamberS. and KemererC., “A metricssuite for object orienteddesigri, IEEE Transadions on
Software Engineeringrol. 20, n. 6, pp. 476-493, June 1994.

[Firesmith96] Firesmith, Donald; Henderson-SellersBrian; Graham,lan, “OPEN Modeling Language(OML) -
Core Notation Specificatidn Version 0.1, OPEN Congarm, July 1996.

. G2 versions will also be available in the near future!

Pagel7/17

