
The GOODLY Design Language for MOOD Metrics Collection

Fernando Brito e Abreu

Luis Ochoa, Miguel Goulão

ISEG / INESC

Abstract

The GOODLY language can be used to specify the design of applications or libraries built according to the Object
Oriented paradigm. It was conceived with the main purpose of facilitating the extraction of MOOD design metrics
[Abreu94]. It allows expressing the most relevant design information for that purpose, such as the class structure with
corresponding inheritance relations, uses relationships, message exchanges and information hiding. This language,
whose syntax and semantics are fully described, is being used in the production of a new generation of the
MOODKIT tools that allow the MOOD metrics extraction.

1 1 IntroductionIntroduction
The first generation of MOODKIT (G1) had a single-tier architecture. Metrics extraction was done in a single step
and it was completely independent from formalism to formalism. The lexical-syntactic analyzer for formalism X (for
instance C++ source code) had to embed the knowledge about the metrics calculation, instantiated for X case
[Abreu95]. For a distinct formalism Y (e.g. Eiffel source code), the lexical-syntactic analyzer had to embed the
instantiated knowledge on the metrics calculation for Y [Abreu96b] and so forth. This direct extraction process was
then based on a single-tier tool architecture:

Figure 1: MOODKIT G1 - single-tiered architecture

This architecture embodies several drawbacks. The first one arises from the need, and corresponding difficulty, to
establish bindings between the concepts used by the specification formalisms and those used in MOOD metrics
definition. For each new formalism to be supported, we had to produce a mapping of concepts and embed it in its
own lexical-syntactic analyzer. This in turn induced a not less problematic situation: any modification in the MOOD
metrics set, such as adding a new metric or simply refining the definition of an existing one, had to be propagated in
the code of all analyzers already available.

The growing experience of MOOD usage and corresponding analysis of collected data [Abreu96a] leaded to a step-
wise refinement of the set definition. This showed how inflexible the MOODKIT G1 architecture was, to support new
metric definitions. The result was a short term unavailability of updated releases for public distribution.

X Parser

Y Parser

... Parser

Formalism X

Formalism Y

Formalism ...

Repository

Interface

MOOD
Metrics

MOOD
Metrics

MOOD
Metrics

trigger control

warnings / errors

Page 2/17

Another MOODKIT G1 shortcoming was the lack of openness. We want to cooperate with other research teams to
enlarge the number of formalisms supported by MOODKIT. However, we know how the proliferation of metrics tools
leads to distinct values, even when counting such simple things as lines of code. This kind of phenomenon happened
within our development team as we produced several versions of MOODKIT G1 (version 1 and 2). Sometimes, a
slightly different interpretation of a given concept binding made by two distinct programmers was enough to produce
substantially different metrics values. We could easily detect the discrepancies (not so easily its root causes) because
we used the same data sets (a collection of libraries) to test new releases.

2 2 MOODKIT and GOODLYMOODKIT and GOODLY
To eliminate the previous problems we conceived a two-tiered architecture for the second-generation (G2) of
MOODKIT. A fundamental role is played in this architecture by a design specification language we baptized as
GOODLY (a Generic Object Oriented Design Language? Yes!).

The first tier is made of formalism converters whose function is to produce GOODLY code from specifications origi-
nally written in formalisms such as OMT, Fusion, C++, Java, Eiffel or Smalltalk.

The second tier is made of an analyzer of GOODLY code, a repository and a tool interface. The analyzer executes the
following operations on the submitted specifications expressed in GOODLY:

• lexical-syntactic verification;

• completeness and referential integrity (traceability) verification through a linking mechanism;

• generation of HT-GOODLY, an hypertext (HTML) version of GOODLY code to allow easy reading (through
navigation and context swapping) and understanding;

• MOOD metrics extraction.

The two tiers are then highly decoupled which allows that the first and second tiers may eventually reside in different
machines. Since the syntax of GOODLY is formally defined and its semantics is not ambiguous, as we will see in
further sections, different teams may cooperate in MOODKIT coverage expansion, by building formalism converters
quite independently. The new tool architecture (MOODKIT G2) is then the following:

Figure 2: MOODKIT G2 - two-tiered architecture based on the GOODLY language

The second tier will be maintained by our team at INESC and made freely available in the Internet. Any evolution in
the MOOD set, due to our improved perception enriched by the contributions of all those that will hopefully continue
to share with us their comments, will produce changes in the second tier. The formalism converters (first tier), how-
ever, are immune to the expected evolution. With available resources, we plan to support (in the second tier) the
calculation of other metrics sets such as the one proposed in [Chidamber94].

Repository

Interface

GOODLY
Parser / Linker

GOODLY

GOODLY

GOODLY

MOOD Metrics

X Parser

Y Parser

... Parser

Formalism X

Formalism Y

Formalism ...

HT-GOODLY

trigger control

trigger control

warnings / errors

warnings / errors

Page 3/17

This new architecture therefore allows proceeding independently in two directions. On one hand, enlarging
MOODKIT applicability by adding new formalism converters. On the other hand, facilitating the stepwise refinement
and expansion of the MOOD set in an unrestricted way.

3 3 GOODLY generationGOODLY generation
It is possible to generate GOODLY specifications either by direct engineering or by reverse engineering. In the
former case lies the situation where GOODLY code is produced from OOA&D specifications contained in a CASE
tool repository (such as the one of Paradigm Plus, our current case study). The extraction of design information
contained in source code written in some OO languages such as C++, Eiffel, Smalltalk, OOPascal, Java, or other is an
example of the latter case.

Until now all the research work based on MOOD has only used the reverse engineering approach. The reason is clear:
while it is relatively easy (using Internet search engines) to find big volumes of OO source code, such as libraries, the
same does not apply to OO analysis and design specifications. Besides, they are usually expressed in some graphical
notations, which are usually stored in a non-standardized internal representation, often “hooked” to a certain CASE
tool repository. The proliferation of new OO analysis and design formalisms, and the quick evolution of the “older”
ones, does not favor the availability of specifications of significant size. Methodologists, for instance, are often more
concerned in showing the semantically rich modeling capabilities of their formalisms, rather than in building “ real
world” examples using them. Hopefully, attempts to standardize some of those formalisms, such as the recently
proposed meta-modeling languages UML (Unified Modeling Language) [Booch95] [Booch96] e OML (OPEN
Modeling Language) [Firesmith96] are under way.

4 4 The GOODLY LanguageThe GOODLY Language

44.1 .1 General ConsiderationsGeneral Considerations

The GOODLY design language was conceived to be a common intermediate formalism allowing the extraction of
quantitative data - structural software metrics - from the underlying design of systems originally described using other
formalisms, either upstream (OO analysis and design models supported in CASE tools), or downstream (programs
written in OO programming languages).

In the current stage, this language allows the representation of the structural information considered relevant.
GOODLY is not computationally complete: neither algorithmic capabilities, nor control flow structures, are present.
Clarity and generality were favored against implementation details. However, for some mechanisms such as the case
of visibility and coupling through inheritance, inclusion and message exchange, we wanted it to have sufficient
expressive power to allow the representation of most of the corresponding mechanisms in common formalisms such
as C++, Java, Smalltalk and Eiffel. To allow the understanding of the design of OO systems, the GOODLY language
was enriched (when compared to the previous formalisms) with trace information of such components as classes and
modules.

44.2 .2 About TypesAbout Types

There are no pre-defined types in GOODLY. All types “ imported” from the formalisms in which were written the
specifications converted into GOODLY are valid. As in other pure OO languages, such as Smalltalk or Eiffel, the
only typing mechanism is the class. All imported types are considered to be classes in GOODLY even if, in hybrid
languages such as C++, its internal memory (state) and allowed operations on its instances are not formally encapsu-
lated.

For simplicity sake there is no distinction in GOODLY between access by value and by reference. Pointers
(references) for any type are substituted in GOODLY by that same type. As an example a pointer to an instance of
class Person is considered in GOODLY as being the instance itself, that is, an object of class Person.

44.3 .3 About StyleAbout Style

GOODLY reserved words (terminal symbols) are case-insensitive although, for style standardization sake, we
generate them always in uppercase. Non-terminals (identifiers of specifications, modules, classes, attributes, opera-
tions, etc.) are case-sensitive and should retain the letter case they had in its original formalism.

On what concerns indentation, tabs should be used to denote the nesting level embedded in the syntactic structure of
this language. Therefore, the sets of instructions between the keywords “XPTO” and END_”XPTO” , where “XPTO”
stands for terminal symbols such as SPECIFICATION, USES, MODULES, CLASS, STATE, BEHAVIOR,

Page 4/17

LOCALS, EMPLOYS, MESSAGES or CALLS, should be skipped one tab to the right of those symbols. The exam-
ples included ahead follow this convention.

44.4 .4 About the EnvironmentAbout the Environment

The validation operated by the GOODLY linker is intended to identify if all components that are part of the system
under study are present, with their dependence relationships clearly identified. If there are missing pieces the user is
warned with appropriate context-dependent messages.

During compilation and linking, the following global variables are used:

• CURRENT_SPEC - identifier of the specification being currently processed;

• CURRENT_MODULE - identifier of the module being currently processed;

• CURRENT_CLASS - identifier of the class being currently processed.

The following axioms can be applied to these variables:

∀∀ <class_spec> , <class_id> : <class_id> ∈∈ <class_spec> ΛΛ <class_id> = CURRENT_CLASS

⇒⇒ <class_spec> ∈∈ CURRENT_MODULE

∀∀ <module_spec> , <module_id> : <module_id> ∈∈ <module_spec> ΛΛ <module_id> = CURRENT_MODULE

⇒⇒ <module_spec> ∈∈ CURRENT_SPEC

5 5 Language Syntax and SemanticsLanguage Syntax and Semantics
This section includes the complete syntax of the GOODLY language, expressed in BNF notation, along with textual
descriptions and examples to allow capturing its semantics.

55.1 .1 Specifications and SystemsSpecifications and Systems

The structural unit at the highest abstraction level is the specification. Its declaration has the following syntax:

<specification> ::= <spec_header> <module_list>

<spec_header> ::= SPECIFICATION <spec_id>

TYPE <spec_type>

VERSION <version_id>

DESCRIPTION <string>

OWNER <owner_id>

<uses_spec>

<modules_spec>

<main_spec>

END_SPECIFICATION

<spec_id> ::= <identifier >

<spec_type> ::= APPLICATION | LIBRARY | ENVIRONMENT | BUILTIN

<version_id> ::= <string>

<owner_id> ::= <string>

<string> ::= “ <text>“

<text> ::= <char> | <char> <text>

A software system usually includes the specifications of:

• 1 or more applications (<spec_type> = “APPLICATION”);

• 0 or more libraries - sets of reusable components used by the applications (<spec_type> = “LIBRARY”);

• 1 development environment being used - described by the set of components that are embedded in it (<spec_type>
= “ENVIRONMENT”);

Page 5/17

• 1 or more graphical or textual specification languages being used, described by the set of embedded components,
generally known as pre-defined-types1 (<spec_type> = “BUILTIN”).

The specification version can be used for configuration management. The specification header also states who is the
owner of the specification (probably who supported its development costs), usually a company, university, some
research group or institution, or even some individual. Each specification mentions which others it must use directly 2,
so that the origin of all used symbols is known. The corresponding syntax is the following:

<uses_spec> ::= USES <used_spec_list> END_USES | <empty>

<used_spec_list> ::= <used_spec_id> | <used_spec_id> , <used_spec_list>

<used_spec_id> ::= <spec_id>

If one specification does not use any other, then <uses_spec> = <empty>. On the other hand, it does not make sense
to indicate that a specification uses itself:

∀∀ <specification>, <spec_header>, <spec_id>, <uses_spec>, <used_spec_list> : <spec_header> ∈∈ <specification> ΛΛ
<spec_id> ∈∈ <spec_header> ΛΛ <uses_spec> ∈∈ <spec_header> ΛΛ <spec_list> ∈∈ <uses_spec>

⇒⇒ <spec_id> ∉∉ <used_spec_list>

One example of a system comprised of several interrelated specifications follows. The meaning of the
<modules_spec> and <main_spec> clauses will be detailed in next sections.

1 - This set was or is being standardized for several OO programming languages.
2 - By other words, if the specification A uses symbols of specifications B1 and B2, and B1 uses symbols defined in
specification C11 and C12, then this “ indirect” use in A of symbols defined in C11 and C12 is not enlisted in A.

SPECIFICATION hotel
TYPE APPLICATION
VERSION “ 3.0”
DESCRIPTION “ Hotel management system”
OWNER “ Ecosoft Lda”
USES

winmanager, delphi2, oopascal
END_USES
MODULES

front_office, back_office, pos
END_MODULES
MAIN

...
END_MAIN

END_SPECIFICATION

SPECIFICATION winmanager
TYPE LIBRARY
VERSION “ 4.1”
DESCRIPTION “ Window manager library”
OWNER “ Borland Inc.”
USES

delphi2, oopascal
END_USES
MODULES

win_main, win_aux
END_MODULES

END_SPECIFICATION

SPECIFICATION delphi2
TYPE ENVIRONMENT
VERSION “ 2.0”
DESCRIPTION

“ Delphi Development System”
OWNER “ Borland Inc.”
USES

oopascal
END_USES
MODULES

delphi_features
END_MODULES

END_SPECIFICATION

SPECIFICATION oopascal
TYPE BUILTIN
VERSION “ 2.03”
DESCRIPTION
 “ Built-in OOPascal predefined types”
OWNER “ Borland Inc.”
MODULES

oopascal_types
END_MODULES

END_SPECIFICATION

55.2 .2 Main sectionMain section

A specification can have a start-up section. This section, represented by the <main_spec> clause, corresponds to the
specification fragment that would be3 automatically executed whenever the specification is activated. Most specifi-
cations of type APPLICATION will have a non-empty clause of this type, while the opposite happens for all other
specification types. An exception to this rule is the case where a library with a random number generator needs to be
initialized. The initialization procedures for this library (seed generation) should be placed in the corresponding
<main_spec> clause. The syntax of the <main_spec> clause follows. The syntax of the <operation_body> clause
will be introduced later.

<main_spec> ::= MAIN <operation_body> <trace_info> END_MAIN | <empty>

55.3 .3 ModulesModules

The separated compilation unit in GOODLY is the module. Each module within a specification has a unique identi-
fier. The mechanism for generating identifiers is distinct in direct and reverse engineering.

In direct engineering, that is, when the GOODLY code generation is done from specifications contained in a CASE
tool, each module is originated from each defined subsystem. The module names will be those of the corresponding
subsystems. If the system to be converted is not partitioned, then only one module will be generated and its name will
be the same of the specification.

In reverse engineering, that is, when the GOODLY code generation is done from source code, each module will have
the same name as the corresponding source file that is converted. For instance, when the C++ source code file origi-
nally designated by “xpto.cpp” is converted, it will originate the module “xpto” .

A specification header generally includes the declaration of which modules it comprises. However, in specifications
extracted from analysis and design formalisms supported by CASE tools, the environment may not include a set of
components to be reused in the construction of new systems. If that is the case, then <modules_spec> = <empty>.

<modules_spec> ::= MODULES <modules_id_list> END_MODULES | <empty>

<modules_id_list> ::= <module_id> | <module_id> , <modules_id_list>

<module_id> ::= <identifier>

If <modules_spec> is not empty then, besides the declaration of the specificaton header, we have those of the
corresponding modules:

<module_list> ::= <module_spec> | <module_spec> <module_list> | <empty>

The followin assertion then applies:

∀∀ <specification>, <spec_header>, <modules_spec> : <spec_header> ∈∈ <specification> ΛΛ <modules_spec> ∈∈
<spec_header> ΛΛ <modules_spec> ≠≠ <empty> ΛΛ <module_list> ∈∈ <specification> ⇒⇒ <module_list> ≠≠ <empty>

Each module in the list is declared with the following syntax:

<module_spec> ::= MODULE <module_id>

DESCRIPTION <string>

AUTHORS <authors_id>

PRODUCED <timestamp>

CONVERTED <timestamp>

<original_formalism>

<class_list>

END_MODULE

3 - Supposing that GOODLY specifications were executable.

Page 7/17

The module identifier generation was previously described. A module description and its author(s) are part of each
module header. For configuration management purposes, the moments in time when the original fragment was last
updated and when it was converted to GOODLY (ex: “23/1/1997_17:53:42”), are also added. The syntax is:

<authors_id> ::= <string>

<timestamp> ::= “ <date>_<time>“

<date> ::= <day> / <month> / <year>

<day> ::= <number>

<month> ::= <number>

<year> ::= <number>

<time> ::= <hour> : <minute> : <second>

<hour> ::= <number>

<minute> ::= <number>

<second> ::= <number>

The formalism in which the module was originally written (C++, SmallTalk, Eiffel, Java, OOPascal, OMT, Booch,
Fusion, etc) is made explicit by indicating the corresponding specification of “BUILTIN ” type:

<original_formalism> ::= FORMALISM <builtin_spec_id> | <empty>

<builtin_spec_id> ::= <spec_id>

The following assertion is applicable here:

∀∀ <specification>1,2 , <spec_header>1,2 , <spec_id>1,2 , <spec_type>, <builtin_spec_id> :

<spec_header>1 ∈∈ <specification>1 ΛΛ <spec_id>1 ∈∈ <spec_header>1 ΛΛ <spec_id>1 = CURRENT_SPEC ΛΛ

<specification>2 ≠≠ <specification>1 ΛΛ <spec_header>2 ∈∈ <specification>2 ΛΛ <spec_id>2 ∈∈ <spec_header>2 ΛΛ
<builtin_spec_id> = <spec_id>2 ΛΛ <spec_type>2 ∈∈ <spec_header>2 ⇒⇒ <spec_type>2 = BUILTIN

In a BUILTIN specification it is not relevant to indicate in which formalism were the modules originally written:

∀∀ <specification>, <spec_header>, <spec_type> : <spec_header> ∈∈ <specification>

ΛΛ <spec_type> ∈∈ <spec_header> ΛΛ <spec_type> = BUILTIN ⇒⇒ <original_formalism> = <empty>

As an example we include a BUILTIN specification with a single module:

SPECIFICATION xpto
TYPE BUILTIN
VERSION “1”
DESCRIPTION

“ Hypothetical formalism supporting
a given set of basic types”

OWNER “ MOOD Project”
MODULES

xpto_types
END_MODULES

END_ SPECIFICATION

MODULE xpto_types
DESCRIPTION

“ Basic types in the xpto formalism”
AUTHORS “ Fernando Brito e Abreu et al.”
PRODUCED “ 18/7/96_10:30:15”
CONVERTED “ 20/8/96_23:12:57”

CLASS Char END_CLASS
CLASS String END_CLASS
CLASS Integer END_CLASS
CLASS Real END_CLASS
CLASS Boolean END_CLASS
CLASS Date END_CLASS
CLASS Time END_CLASS

END_MODULE { xpto_types }

55.4 .4 Specification and Module PersistanceSpecification and Module Persistance

Each specification (header and corresponding modules) will be kept in a separate subdirectory whose name will be
the same as that of the specification it will contain, with no extension. This subdirectory will be located under the
“ specs” directory which, in turn, is located under the directory identified by the environment variable named
GOODLYDIR.

A specification header resides on a separated file and identifies which modules belong to the specification. This
header is used by the GOODLY link editor to find symbols referenced in the modules. A file that contains the header
of one specification will have a descriptor equal to the specification name, plus the spc extension. For instance a
specification named “salaries” would be kept in the file “salaries.spc” .

Each module is also stored in a distinct file whose name is that of the module it contains plus the gly extension.

Supposing that the environment variable GOODLYDIR has the value “ /usr/etc/goodly” , then the persistent storage of
the hotel and other related specifications introduced beforehand, would be4:

4 - On an operating system supporting long names; otherwise file identifiers can be truncated.

/usr/etc/goodly/specs/hotel/hotel.spc
/usr/etc/goodly/specs/hotel/front_office.gly
/usr/etc/goodly/specs/hotel/back_office.gly
/usr/etc/goodly/specs/hotel/pos.gly

/usr/etc/goodly/specs/lists/lists.spc
/usr/etc/goodly/specs/lists/listpack.gly

/usr/etc/goodly/specs/winmanager/winmanager.spc

/usr/etc/goodly/specs/winmanager/win_main.gly
/usr/etc/goodly/specs/winmanager/win_aux.gly

/usr/etc/goodly/specs/delphi2/delphi2.spc
/usr/etc/goodly/specs/delphi2/delphi_features.gly

/usr/etc/goodly/specs/oopascal/oopascal.spc
/usr/etc/goodly/specs/oopascal/oopascal_types.gly

55.5 .5 Classes and their ParametersClasses and their Parameters

The basic component of a module is the class. A module is no more than a set of classes which were physically
aggregated on the basis of a given modularization criterion. That criterion should be made explicit, for instance in the
module description clause. Each class must have a unique identifier within each specification.

<class_list> ::= <class_spec> | <class_spec> <class_list>

<class_spec> :: = CLASS <identifier> <class_parameters> <inheritance_spec>

<state_spec>

<behavior_spec>

<trace_info>

END_CLASS

<class_parameters> ::= [<parameter_id_list>] | <empty>

<parameter_id_list> ::= <parameter_id> | <parameter_id> , <parameter_id_list>

<parameter_id> ::= <class_id>

<class_id> ::= <identifier> <class_parameters> | UNKNOWN

The UNKNOWN keyword is used when it is not possible to determine the appropriate class identification at linking
time. This situation does not arise in the class declaration but rather in the references that can be made to classes in
other clauses.

A class with no parameters has an empty <class_parameters> clause. The class parameterization supported here is a
mechanism similar to those existing in languages such as C++ and Eiffel that allows building generic classes
(“ templates”). An example follows:

CLASS Queue [Something]
...

END_CLASS

Page 9/17

Based in this class we could get parameterized situations such as the following:

waiting_list: Queue [People];
doctor_booking: Queue [Patient];
loan_list: Queue [Request];

55.6 .6 InheritanceInheritance

The GOODLY language supports the specification of both single and multiple inheritance. It is not made any distinc-
tion between interface inheritance that implies an implicit type conversion (sub-typing) and implementation inheri-
tance (ex: private inheritance in C++). As an example:

CLASS Airplane {base class; no inheritance}
...

END_CLASS

CLASS Fighter ISA Airplane {single inheritance}
...

END_CLASS

CLASS Seaplane ISA Airplane, Ship {multiple inheritance}
...

END_CLASS

Formally we have:

<inheritance_spec> ::= ISA <class_id_list> | <empty>

<class_id_list> ::= <class_id> | <class_id> , <class_id_list>

There is no inheritance clause for a root class (class with any ancestors). Then we have <inheritance_spec> =
<empty>

55.7 .7 TraceabilityTraceability

When the link editing takes place in GOODLY, trace information is automatically inserted in the source code with
the syntax expressed in clause <trace_info>. That information consists on the identification of the places where the
classes locally referenced 5 are defined. If the code to be linked already has traceability clauses, because it has been
previously submitted to the link editor, these will be discarded and rewritten to guarantee a true conformity with the
version whose modules were effectively linked.

<trace_info> ::= TRACE <traced_class_list> END_TRACE | <empty>

<traced_class_list> ::= <traced_class_id> | <traced_class_id> ; <traced_class_list>

The traceability clause will only be inserted if it contains at least one entry; otherwise we get <trace_info> =
<empty>.

<traced_class_id> ::= <class_id> <origin_module>

<origin_module> ::= UNDEFINED | DEFINED_IN <module_id> <origin_spec>

<origin_spec> ::= OF <spec_id> | <empty>

The profusion of traceability information depends solely on the context, as follows:

• if the class referenced is defined in a module belonging to a BUILTIN specification, then no traceability infor-
mation is added, that is, <traced_class_id> = <empty>. This avoids the proliferation of “unnecessary” informa-
tion (pre-defined types are usually well known);

5 - the locality here corresponds to the clause to which the non-terminal symbol <trace_info> is associated;

Page 10/17

• if the class referenced is defined in the same module then, given the proximity, no traceability information is
added, that is, <traced_class_id> = <empty>;

• if the class referenced is defined in the same specification but not in the same module, then it is only added
information about the corresponding module. Thus we have <origin_spec> = <empty>;

• if the class referenced is defined in a module of other specification, then it is added information about both of
them. Thus we have <origin_spec> ≠ <empty>;

• if the class referenced was not found in any module of involved specifications, then it is added information
stating that situation (<origin_module> = UNDEFINED).

55.8 .8 Object StateObject State

The specification of a class has two parts: the state and the behavior. The state of each object (class instance)
depends on the value of the attributes it contains and which are defined in the corresponding class. Each attribute 6

has an identifier, a type (class) and a scope. Where applicable, its type definition will be enriched with traceability
information generated in the previously described fashion.

Some OO programming languages such as Smalltalk make a distinction between class state (class variables) and
object state (instance variables). Since GOODLY is not an executable formalism, this distinction is not made and
both cases are included in the <state_spec> clause:

<state_spec> ::= STATE <attribute_list> END_STATE | <empty>

If a class has no attributes then the state clause is omitted. Then we get <state_spec> = <empty>

<attribute_list> ::= <attribute> | <attribute> ; <attribute_list>

<attribute> ::= <unscoped_attribute> <scope_spec>

<unscoped_attribute> ::= <attribute_id> : <class_id_list> 7

<attribute_id> ::= <identifier>

55.9 .9 Scope of Attributes and OperationsScope of Attributes and Operations

The scope or range of an attribute or operation (clause <scope_spec>) can be defined in a very detailed fashion. The
scope is characterized by the visibility that components (classes) have on the attribute or operation. Invisibility
implies inability to use. The following scope options can be used:

• PRIVATE scope - only the class where the attribute or operation is defined can “see” it; this scope is not cumula-
tive with any other;

• PROTECTED scope - the class where the attribute or operation is defined, and its descendants, can “see” it;

• Discriminated class scope - the class referenced by <class_id> can “see” the attribute or operation; the referenced
class must be defined in the same specification, although it can be declared in another module;

• Discriminated class hierarchy scope - the class referenced by <class_id> and its descendants can “see” the
attribute or operation; the referenced class is supposed to be defined in the same specification, although it can be
declared in another module. The * suffix represents the inheritance hierarchy starting in the class where it is
appended; therefore <class_id> .* stands for the class referenced by <class_id> and all its descendants;

• MODULE scope - all classes in the module that contains the class where the attribute or operation is defined can
“see” it;

• Specification (SPEC) scope- all classes in the specification that contains the class where the attribute or operation
is defined can “see” it;

6 - in other formalisms these are designated by instance variables or data members;
7 - In most cases <class_id_list> will only have one element. In some cases (ex: Smalltalk) however, the same object
identifier can be associated with instances of distinct classes.

Page 11/17

• PUBLIC scope - all classes can “see” the attribute or operation, regardless of being defined in the same or other
specification.

<scope_spec> ::= SCOPE <scope_list>

<scope_list> ::= <scope_id> | <scope_id> , <scope_list>

<scope_id> ::= PRIVATE | PROTECTED | MODULE | SPEC | PUBLIC | <class_id> | <class_id>.*

The scope of an attribute or operation always includes the own class where it is defined. Therefore it does not make
sense to include it explicitly 8 in the scope clause. Formally we have the following assertion:

∀∀ <class_id>, <scope_id> : <class_id> ∈∈ <scope_list> ⇒⇒ <class_id> ≠≠ CURRENT_CLASS

The resulting scope, when a list of scope options is used, is the union of the class sets corresponding to each list ele-
ment when considered individually. Because some of the scopes are more ample than others, their simultaneous use
can become redundant. That will happen when a scope embraces some other. The PUBLIC scope, for instance,
embraces any other and so it can be considered as the absorbing 9 element in a scope clause. The PRIVATE scope is
more restrictive than any other is and so it can be considered as the neutral 10 element in a scope clause. The SPEC
scope embraces the MODULE scope and the discriminated class scope. The MODULE scope can embrace a
discriminated class if that is defined within the current module. It can further embrace the PRIVATE and discrimi-
nated class hierarchy scopes if the corresponding descendants are also contained in the current module.

The following table shows the resulting scope of the union, two by two, of named scope options. It can be used
recursively to determine the resulting scope of any list of scope options. The OWN acronym represents the current
class, that is, the one where is defined the attribute or operation we are concerned with. For simplification purposes
classes C1 and C2 and all their descendants were considered to belong to the current module.

PRIVATE PROTECTED CLASS C2 CLASS C2.* MODULE SPEC PUBLIC

PRIVATE OWN OWN.* {C2, OWN} {C2.*, OWN} MODULE SPEC PUBLIC

PROTECTED OWN.* OWN.* {C2, OWN.*} {C2.*, OWN.*} MODULE SPEC PUBLIC

CLASS C1 {C1, OWN} {C1, OWN.*} {C1, C2, OWN} {C1, C2.*, OWN} MODULE SPEC PUBLIC

CLASS C1.* {C1.*, OWN} {C1.*, OWN} {C1.*, C2, OWN} {C1.*, C2.*, OWN} MODULE SPEC PUBLIC

MODULE MODULE MODULE MODULE MODULE MODULE SPEC PUBLIC

SPEC SPEC SPEC SPEC SPEC SPEC SPEC PUBLIC

PUBLIC PUBLIC PUBLIC PUBLIC PUBLIC PUBLIC PUBLIC PUBLIC

Table 1: Resulting scope combinations

55.10 .10 Object BehaviorObject Behavior

5.10.1 Operation Interface

The behavior of all instances of the same class (objects) is common and is defined in the class to which they belong
as a set of operations 11. Each operation has an interface and a body or implementation. The operation interface

8 - Although its reference is implicit in the PRIVATE and PROTECTED scope options.
9 - In the sense that the other scopes that could be included in the same scope specification would be rendered
irrelevant.
10 - In the sense that any other scope that could be included in the same scope specification would include the private
scope, thus rendering its declaration irrelevant. In other words, it only makes sense to declare a private scope when
that is the only one applicable.
11 - In other formalisms these are often designated by methods or function members.

Page 12/17

includes its identifier, the formal parameter list and corresponding type(s), the returning type, its scope and trace-
ability information. The corresponding syntax is the following:

<behavior_spec> ::= BEHAVIOR <operations_list> END_BEHAVIOR | <empty>

<operations_list> ::= <operation> | <operation> <operation_list>

<operation> ::= OPERATION <operation_interface>

<operation_body>

END_OPERATION

<operation_interface>::= <operation_id> (<parameters>) <return_spec> <scope_spec>

<operation_id> ::= <identifier> | <operator>

<operator> ::= ‘+’ | ‘-’ | ‘++’ | ‘--’ | ‘=‘ | ‘<>‘ | ‘!=‘ | ‘>‘ | ‘>=‘ | ‘<‘ | ‘<=‘ | ‘&&’ | ‘| |’

<parameters> ::= <parameter_list> | <empty>

<parameter_list> ::= <parameter> | <parameter> ; <parameter_list>

<parameter> ::= <unscoped_attribute> 12

<return_spec> ::= : <class_id> | <empty>

If a class has no defined operations, then the behavior clause is omitted, that is <behavior_spec> = <empty>. The
body of an operation is also optional. That is often the case in third party libraries where only the behavior interface is
available.

5.10.2 Operation Body

The implementation or operation body includes the definition of its local variables, the attributes it employs, the
messages that this operation sends to instances of this or of other classes and the calls that it makes to services of
entities other than class instances. The corresponding syntax is:

<operation_body> ::= <locals_spec> <employs_spec> <messages_spec> <calls_spec> | <empty>

When compared with a computationally complete language, the GOODLY language does not include the entire
algorithmic component (instruction sequence that produce a given result) but only the information on collaborations
and responsibilities of classes among themselves. In the body of one operation, the references made to attributes and
operations declared in other classes are prefixed with their respective class name. Referenced attributes and opera-
tions declared in the same class do not carry the prefix.

A given operation can manipulate several variable types:

• temporary variables locally defined (usable only within its scope);

• attributes belonging to the current class;

• attributes belonging to other classes;

• other variables who are not associated with any class such as environment variables, global variables, etc.

The variables of the first type are described in the next section.

5.10.2.1 Local Variables

The local variables are similar to the attributes that define the state, but with no scope information. Their declaration
syntax is the following:

<locals_spec> ::= LOCALS <local_attribute_list> END_LOCALS | <empty>

12 - In most programming languages when a parameter is passed by value, the actual parameter list can include a
variable, constant, value returned by a function or any kind of compatible type expression. In GOODLY the actual
parameter lists (as will be seen in the message and call specifications ahead) will, at most, contain the identifier and
type of the corresponding formal parameter variables. By other words, there is no distinction here between formal and
actual parameter lists.

Page 13/17

<local_attribute_list> ::= <local_attribute> | <local_attribute> ; <local_attribute_list>

<local_attribute> ::= <unscoped_attribute>

If an operation has no local variables then the <locals_spec> clause can be omitted, that is <locals_spec> = <empty>.

5.10.2.2 Direct Access to Object State

An operation can access the instance attributes of the same or other classes. This kind of coupling is described in the
following clauses:

<employs_spec> ::= EMPLOYS <employed_attribute_list> END_EMPLOYS | <empty>

<employed_attribute_list>::= <employed_attribute> | <employed_attribute> ; <employed_attribute_list>

<employed_atribute> ::= <attribute_id> | <class_id>.<attribute_id>

As previously, the prefix <class_id> is applied to the <employed_attribute> when this does not correspond to an
attribute defined in the clause <state_spec> of the same class.

The <employs_spec> clause only refers to direct13 manipulations of attributes that describe the state of objects, either
in the same or other class.

5.10.2.3 Messages

To accomplish a given task an operation frequently uses the services of other operations. By other words, other
classes (or operations defined in the same class) can cooperate in the prosecution of a given operation. Their co-
operation is obtained by invoking its services through message sending. The description of which messages an opera-
tion sends is included in the following clause:

<messages_spec> ::= MESSAGES <message_list> END_MESSAGES | <empty>

<message_list> ::= <message> | <message> ; <message_list>

<message> ::= <message_id> | <message_id> (<parameters>)<return_spec>

If an operation does not send messages, or if those are unknown because only interface information is available, then
<messages_spec> = <empty>. If a message corresponds to an operation that is unambiguously determined only by its
identifier, then, in the previous clause, only that identifier is used. However some formalisms, such as C++, allow that
several operations with the same identifier (but with distinct formal parameter lists) can be defined in the same class.
In this case the corresponding messages must indicate, extensively, the formal parameter lists to withdraw the ambi-
guity, as shown in the next clause:

<message_id> ::= <operation_id> | <class_id>.<operation_id>

As it occurs in the <employed_attribute> clause, the <class_id> prefix is added to the <message> when this does not
correspond to an operation defined in the <behavior_spec> of the same class; by other words, when the message
recipient is an instance of other class.

5.10.2.4 Service Calls

To accomplish its objective an operation can invoke services from entities other than class instances as, for instance,
a window manager, operating system, network manager or other. These calls are represented in the following clause:

<calls_spec> ::= CALLS <call_list> END_CALLS | <empty>

<call_list> ::= <call> | <call> ; <call_list>

<call> ::= <call_id> (<parameters>) <return_spec>

<call_id> ::= <identifier>

13 - Not through message exchanges.

Page 14/17

Such as in the case of messages, if an operation does not use calls or if those are unknown because only interface
information is available, then <calls_spec> = <empty>.

55.11 .11 Identifiers and CommentsIdentifiers and Comments

This section includes some definitions of symbols used in previous clauses, which were still missing.

<empty> ::= ‘’

<identifier> ::= <alphanumeric> | <alphanumeric> <identifier>

<alphanumeric> ::= <letter> | <digit> | ‘_’ | ‘:’

<letter> ::= ‘A’..’Z’ | ‘a’..‘z’

<char> ::= <alphanumeric> | <punctuation>

<punctuation> ::= ‘,’ | ‘;’ | ‘.’ | ‘?’ | ‘!’ | ‘’’ | ‘ “ ‘ | ‘/’ | ‘-’ | ‘_’ | ‘{‘ | ‘}’ | ‘#’ | ...

Comments can appear in any point of a specification, delimited by brackets.

<comments> ::= { <text> }

6 6 A short exampleA short example
To illustrate the syntax and semantics of the GOODLY language we include hereafter the following specification of a
hypothetical application in the car races domain:

SPECIFICATION An_example
TYPE APPLICATION
VERSION “ 2.1”
DESCRIPTION “ A rally competition”
OWNER “ MOOD Project”
USES

xpto
END_USES
MODULES

Race
END_MODULES

MAIN
LOCALS

mikkola: Pilot;
chuck: Mechanic;

END_LOCALS

MESSAGES
Pilot.creates;
Mechanic.creates;
Pilot.qualification;
Pilot.talks_to {Mechanic};
Mechanic.repairs;
Pilot.qualification;
Pilot.talks_to {Mechanic};
Mechanic.repairs;
Pilot.qualification;
Pilot.destroys;
Mechanic.destroys

END_MESSAGES

CALLS ... END_CALLS
END_MAIN

END_ SPECIFICATION

Page 15/17

MODULE Race
DESCRIPTION “ Example of a module of an application in the race car world”
AUTHORS “ Fernando Brito e Abreu et al.”
PRODUCED “ 18/7/96_12:00:03”
CONVERTED “ 20/8/96_15:34:45”
FORMALISM xpto

CLASS Document[Objective] END_CLASS

CLASS Sport END_CLASS

CLASS Bank END_CLASS

CLASS Person
STATE

name: String SCOPE PRIVATE;
birth_date: Date SCOPE PRIVATE;
weight: Integer SCOPE PRIVATE;
address: String SCOPE PRIVATE;
bankcard: Document[Bank] SCOPE PRIVATE

END_STATE

BEHAVIOR
OPERATION creates() SCOPE PUBLIC END_OPERATION
OPERATION destroys() SCOPE PUBLIC END_OPERATION

END_BEHAVIOR
END_CLASS { Person }

CLASS Pilot ISA Person
STATE

driving_permit: Document[Sport] SCOPE PRIVATE;
helmet: Protection SCOPE PROTECTED

END_STATE

BEHAVIOR
OPERATION qualification(start: Time; from: String; to: String) SCOPE PUBLIC

MESSAGES
Protection.creates;
Protection.put_on;
Document[Sport].shows;
RaceCar.close_window;
RaceCar.starts;
drives;
RaceCar.stops;
RaceCar.open_window;
Document[Sport].shows;
Protection.take_off;
Protection.destroys

END_MESSAGES
END_OPERATION

OPERATION drives(vehicle : RaceCar): Boolean SCOPE PUBLIC
MESSAGES

Co-pilot.read_notes;
RaceCar.accelerates;
Co-pilot.read_notes;
RaceCar.breaks;
RaceCar.turns

END_MESSAGES
END_OPERATION

Page 16/17

OPERATION talks_to(whom: Person): Boolean SCOPE Co-pilot, Mechanic
END_OPERATION

END_BEHAVIOR
END_CLASS {Pilot}

CLASS Co-pilot ISA Person
BEHAVIOR

OPERATION read_notes() SCOPE PUBLIC END_OPERATION
END_BEHAVIOR

END_CLASS { Co-pilot }

CLASS Mechanic ISA Person
BEHAVIOR

OPERATION repairs (vehicle : RaceCar) SCOPE PUBLIC END_OPERATION
END_BEHAVIOR

END_CLASS { Mechanic }

CLASS Artifact
STATE

brand: String SCOPE PUBLIC;
model: String SCOPE PROTECTED;
production_date: Date SCOPE PRIVATE

END_STATE

BEHAVIOR
OPERATION creates() SCOPE PUBLIC END_OPERATION;
OPERATION destroys() SCOPE PUBLIC END_OPERATION

END_BEHAVIOR
END_CLASS { Artifact }

CLASS Protection ISA Artifact
BEHAVIOR

OPERATION put_on(): Boolean SCOPE PUBLIC END_OPERATION
OPERATION take_off(): Boolean SCOPE PUBLIC END_OPERATION

END_BEHAVIOR
END_CLASS { Protection }

CLASS RaceCar ISA Artifact
STATE

zero_to_hundred: Time SCOPE PUBLIC;
horse_power: Integer SCOPE PUBLIC;
oil_level: Real SCOPE Mechanic.*, Pilot, Co-Pilot;
actual_speed: Integer SCOPE PROTECTED, Pilot, Co-Pilot

END_STATE
BEHAVIOR

OPERATION starts(): Boolean SCOPE PUBLIC END_OPERATION
OPERATION accelerates (duration: Time; acceleration: Integer) SCOPE PUBLIC
END_OPERATION
OPERATION breaks(duration: Time; desacceleration: Integer) SCOPE PUBLIC
END_OPERATION
OPERATION turns(angle: Integer) SCOPE PUBLIC END_OPERATION
OPERATION stops(distance: Integer): Boolean SCOPE PUBLIC
END_OPERATION
OPERATION open_window(): Boolean SCOPE PUBLIC END_OPERATION
OPERATION close_window(): Boolean SCOPE PUBLIC END_OPERATION

END_BEHAVIOR
END_CLASS { RaceCar }

END_MODULE { Race }

Page 17/17

7 7 Final considerationsFinal considerations
This paper described the architectural evolution of MOODKIT, a set of tools to collect the MOOD metrics, along
with its rationale. The GOODLY design language plays a fundamental role in this effort. A full description of the
language syntax and semantics was included. Some examples written in this language were also included.

The foundations for the cooperation with other research teams in the OO metrics collection arena are now laid. We
hope to strengthen the joint efforts already in place and to launch new ones.

To browse HT-GOODLY examples and to access available MOODKIT G114 versions and a database of collected
metrics plus the original code from where they were extracted, and to get papers produced within the MOOD project,
visit our web site (http://albertina.inesc.pt/ftp/pub/esw/mood) or ftp to albertina.inesc.pt (user: anonymous; pass-
word: your email address; directory: pub/esw/mood).

8 8 ReferencesReferences

[Abreu94] Abreu, F. Brito and Carapuça R., “Object-Oriented Software Engineering: Measuring and Controlling
the Development Process” , Proceedings of the 4th International Conference on Software Quality,
ASQC, McLean, VA, USA, October 1994.

[Abreu95] Abreu, F. Brito; Goulão, Miguel and Esteves, Rita, “Toward the Design Quality Evaluation of Object-
Oriented Software Systems” . Proceedings of the 5th International Conference on Software Quality,
Austin, Texas, USA, October 1995.

[Abreu96a] Abreu, F. Brito and Melo, Walcelio, “Evaluating the Impact of Object-Oriented Design on Software
Quality” . Proceedings of the Third International Software Metrics Symposium, Berlin, March 1996.

[Abreu96b] Abreu, F. Brito; Esteves, Rita and Goulão, Miguel, “The Design of Eiffel Programs: Quantitative
Evaluation Using the MOOD Metrics” , Proceedings of TOOLS USA’96 (Technology of Object
Oriented Languages and Systems), Santa Barbara, California, USA, August 96.

[Booch95] Booch, Grady; Rumbaugh, James, “Unified Method for Object-Oriented Development - Documen-
tation Set” , Version 0.8, Rational Software Corporation, October 1995.

[Booch96] Booch, Grady; Rumbaugh, James; Jacobson, Ivar, “Unified Modeling Language - Documentation
Set” , Version 0.9, Rational Software Corporation, July 1996.

[Chidamber94]Chidamber S. and Kemerer C., “A metrics suite for object oriented design” , IEEE Transactions on
Software Engineering, vol. 20, n. 6, pp. 476-493, June 1994.

[Firesmith96] Firesmith, Donald; Henderson-Sellers, Brian; Graham, Ian, “OPEN Modeling Language (OML) -
Core Notation Specification” , Version 0.1, OPEN Consortium, July 1996.

14 - G2 versions will also be available in the near future!

