
 1

Using OCL to Formalize Object-Oriented Design Metrics Definitions

Aline Lúcia Baroni 1, 2 Sofia Braz 1, 3 Fernando Brito e Abreu 1, 2, 4

FCT / Universidade Nova de Lisboa - Portugal 1
École des Mines de Nantes - France 2

Universidade da Beira Interior - Portugal 3
INESC - Portugal 4

{aline, braz, fba}@di.fct.unl.pt

Abstract

This paper describes the formalization effort of different sets of object-oriented
metrics definitions using the Object Constraint Language (OCL), a part of the Unified
Modeling Language (UML) standard. The formalization is based upon the UML meta-model.
This approach allows unambiguous metrics definition, which in turn helps increasing tool
support for Object-Oriented metrics. Also, it is possible to establish comparisons among the
formalized sets of metrics.

1. Introduction

The lack of formalization has been long felt in the object-oriented software modeling

area [Meyer1985, Wand1989]. In the first known book on the subject of metrics for the

Object-Oriented paradigm all metrics are defined in natural language [Lorenz1994].

Additionally, many authors have used a combination of set theory and simple algebra to

express their metrics [Chidamber1994, Abreu1995, Abreu1996a, Henderson-Sellers1996a].

In spite of the existence of many metric sets, problems often arise from the formality

degree used to define them. When metrics are informally expressed, using natural language,

people using metrics can interpret them in several ways. Two distinct teams can obtain

completely different results when applying a particular metric to the same system. On the

other extreme, when metrics are defined using some kind of mathematical formalism, the

majority of software designers may not have the required background to understand the

complex mathematical expressions that are used.

To illustrate these problems, consider the metrics “Number of Times a Class is

Reused” [Lorenz1994] and “Count of Synchronization-based Coupled Object Types (CSCO)”

[Poels2001]. The former is defined as the number of references to a class. However it is not

clear what references are and how the metric should be computed. Should we count internal

 2

and external references? Should references be considered in different modules, packages or

subsystem? Does the inheritance relationship count as a reference? It is visible that without

clear and precise definitions it is impossible to build adequate metric extraction tools,

experiments replication is hampered, and results interpretation may be flawed.

Poels define

CSCO(P) = #{Q ? T – {P} | ? e ? A: (?1(e, P) = C ? ?1(e, Q) = E) ? (?1(e, P) = E ? ?1(e, Q) = C)}.

Finding out the meaning of this formula, even knowing each of the components

involved, is probably not an easy nut to crack, for most software designers. In other words,

these two metrics solve the problem of metric definition, but introduce others, difficult to

solve.

 In this work, we propose an approach to metrics definition that combines

understandability with formality. The remaining part of this article is organized as follows. In

section 2, the problem of formalization in Object-Oriented paradigm is presented, introducing

one approach that has been used as formal method. In section 3, the formalization of metrics

is explained and illustrated with the GOODLY language [Abreu2001]. Section 4 shows the

architecture that supports the approach being proposed. Section 5 outlines our conclusions

and further work. It enunciates our intention of setting up a framework for metrics definition

and comparison, creating a meta-model for the metrics construction. Finally, some references

used in this work are shown.

2. Formalization in Object-Oriented Design

The problem of the lack of formalization in the metrics field has always been an

Achilles’ heel in the area. Although the basic elements of the diagrammatic specifications

used in this area are very powerful and obvious, several modeling details (such as uniqueness

and referential restraints, limitations and other constraints) are expressed ambiguously, or

even cannot be conveyed at all by those graphical notations.

As pointed out in [Cook1994], there is a difference between precision and detail. In

object-oriented modeling the details are often left out but at the same time, precision is

needed. Our approach uses the Object Constraint Language (OCL) to guarantee precision.

Section 2.1 introduces OCL. In section 2.2 we utilize OCL to formalize some Object-Oriented

metrics.

 3

2.1 The Object Constraint Language (OCL)

Accuracy and non-ambiguity in specification have been, for many years, the aims of

the branch of computer science known as “formal methods”. Several attempts have been

made to combine them with object-oriented modeling [Abreu2001]. The most recent and

promising approach, which bridges formal methods with object-orientation is called OCL -

Object Constraint Language [Warmer1999], and it is a part of the UML standard, published

by the OMG (Object Management Group) [OMG1997].

OCL is a formal, yet simple notation, to be used jointly with UML diagrams and

whose syntax has some similarities to those of object-oriented languages such as Smalltalk,

C++ or Eiffel. It is underpinned by mathematical set theory and logic, as it happens with

formal languages, but was designed for usability and is easily grasped by anybody familiar

with object-oriented modeling concepts in general, and UML notation in particular. OCL is

the result of an effort to combine formalism soundness with usability and has its roots in the

Syntropy method [Cook1994]. It allows expressing three kinds of constraints on parts of

object-oriented models: invariants, pre-conditions an post-conditions which are predefined in

UML as standard stereotypes: «invariant», «precondition» and «postcondition». Constraints

convey a number of benefits, namely improved precision and better design documentation,

resulting in better (unambiguous) communication among the parties involved, such as

designers, users, programmers, testers or managers.

The context of both pre and post-conditions is an operation. As an example, consider

the prepend operation included in the Sequence type definition:

Sequence::prepend(object: T): Sequence(T)
post: result->size() = self@pre->size() +1
post: result->at(1) = object

OCL is a declarative typed language whose expressions are free of side effects. This

means that the state of the objects does not change by the application of an OCL expression.

These expressions can range from simple comparisons (e.g. an attribute having an upper limit)

to complex navigations in a class diagram through their associations. Since it is a typed

language, it is possible to check expressions for validity during modeling. To obtain a better

description of the syntax and semantics of OCL, refer to [OMG1997].

 4

2.2 Object-Oriented Metrics Formalization

To bring precision into design, one has to fully understand the semantics of the

modeling concepts, which is usually described through what is called a meta-model. A meta-

model is a language for describing models. It describes the model objects and the

relationships that can exist between them. For instance, the UML meta-model is the

description of UML elements, produced with the UML notation itself. Both the UML notation

and meta-model can be found in [OMG1997].

In our research we proposed a textual Object-Oriented design language, named

GOODLY (a Generic Object-Oriented Design Languague? Yes!), and we produced its

corresponding respective meta-model [Abreu2001]. GOODLY is used as a basis for the

extraction of quantitative data (metrics). During the construction of the GOODLY meta-

model, OCL is used to provide precision, as shown next.

In GOODLY, one specification is a set of linked parts of the design. It is controlled by

someone (the owner of the specification) and it can use services of other specifications. For

example, one application can be built using available parts of others. Figure 1 shows the

Specification meta-class. Following the figure, some OCL expressions are exemplified.

Figure 1 – Part of the GOODLY meta-model

The identifiers of one specification must be unique. This restriction can be expressed

as:
Specification
Specification.allInstances -> forAll (s1, s2: Specification |

 s1 <> s2 implies s1.spec_id <> s2.spec_id)

 Each specification can use others, but one specification cannot use itself. This

invariant can be formalized in OCL as:

Specification
not (uses -> includes (self))

Specification
spec_id : String
spec_type : enum {BUILTIN, APPLICATION, LIBRARY, ENVIRONMENT}
version : Real
description : String
owner : String

IL()
TIL()
AllClasses()

0..*

-uses

0..*

 5

 In GOODLY, four types of specification were defined (spec_type attribute on figure

1). The next invariant indicates that one specification of the type Application must have a

main clause not empty.
Specification
spec_type = #APPLICATION implies (main_spec -> notEmpty())

The complete meta-model of GOODLY can be seen in Appendix B.

3. Formalization of Object-Oriented Metrics

In this work, our intention is to formalize different sets of metrics using OCL. We

believe that even when expressed mathematically, some metrics may be ill defined and we

want to verify this hypothesis.

The ill definition problem may happen due to two reasons:

i) Metrics definitions are usually presented without the corresponding context, that is,

without expressing which is the corresponding meta-model where the entities of

interest and their interrelationships are expressed;

ii) Metrics definition is done without an underlying formal specification approach that

uses the former meta-model as contextual input. This formal specification should

specify under which conditions the metrics are applicable.

We formalized the set of the MOOD2 metrics [Abreu1998] using the GOODLY meta-

model as background. Now, we want to formalize this set and others using the UML meta-

model and OCL to express different metrics as meta-model operations. The metrics

applicability limitations are defined with OCL pre-conditions. The metrics result itself is

formally defined with OCL post-conditions. As an example, we present the formalization of

two metrics over the GOODLY meta-model. The DIT – Depth of Inheritance Tree - metric

belongs to the MOOSE set [Chidamber1994] and corresponds to the maximum depth of the

inheritance chain above the considered class, i.e., the number of inheritance relations between

the considered class and the root class.
Class::DIT():Integer
post: result = (if self.IsRoot() then
 0

 else
 1 + self.Parents()->iterate(elem:Class; acc:Integer=0 |

if elem.DIT() > acc then
elem.DIT()

else
acc

endif)
 endif)

 6

 Here, elem is an iterator. There is an iteration over the set of direct ascendant classes

of the current class - self. The variable acc is the accumulator, initialized with zero. The

iteration allows to calculate the maximum DIT() among the parent classes of the class (taking

into account multiple inheritance). In each iteration the accumulator receives the value

indicated after the “|”, which in this case can be the value of a recursive call to DIT() or its

previous value (when the accumulator is not altered).

 The EIF – External Inheritance Factor – belongs to the MOOD2 group [Abreu1999]

and is expressed as a ratio. The numerator, represented as IL – Inheritance Links, is the

number of inheritance relations where the derived class belongs to the current specification

and the base class belongs to the specification passed in the parameter. The denominator,

represented as TIL – Total Inheritance Links, is the total number of inheritance relations

where the derived class belongs to the current specification. This is formalized as:

Specification::EIF(s: Specification): Percentage
pre: self.uses -> includes (s)
pre: self.TIL() > 0
post: result = self.IL(s) / self.TIL()

Specification::IL(s: Specification): Integer
post: result = AllClasses().Parents() -> select(IsInternal(s)) -> size()

Specification::TIL(): Integer
post: result = AllClasses() -> iterate(elem: Class; acc: Integer = 0 |

 acc + elem.PC())

In the complete version of this paper, we will describe several examples of design

metrics, expressed upon the UML meta-model instead of the GOODLY one.

4. Architecture of the Solution

The current state of art for giving precision to Object-Oriented modeling is depicted in

figure 2. Commercial UML modeling tools (e.g.: Rational Rose, Objectory, Visio, etc.)

provide some graphic diagram editors that allow building models of systems. The models

(represented by X, Y and Z in the picture) are stored in the tool repository.

Nowadays, those modeling tools do not offer facilities for the evaluation of OCL

expressions. Nevertheless, several tools (Use, Cybernetic Parser, Elixer, etc.) emerging from

undergoing research projects can be obtained and used to formalize the models designed with

the commercial tools, provided that the models can be exported with an appropriate input

format to the OCL tools.

 7

Figure 2 – Model-Level Architecture

After the file conversion (of the model to a representation that can be understood by

OCL tools), the real instances of the entities in the diagram are created and the model is

populated (i.e., a plenty of objects, corresponding to the entities in the model, is created).

These instances are the base of the assertions that are constructed with OCL. Until now, the

workload (creation of the objects) is done “by hand”, but it can be automated.

The diagrams that compose the models serve as input to an OCL evaluation tool,

which take the converted representation of the diagram (as GOODLY, for example), the

added OCL constraints and the instances of the model, and evaluate each of the constraints,

showing the results. Each assertion is tested and its result is showed to the user.

 While the architecture depicted in figure 2 corresponds to a model-level evaluation,

the one depict in figure 3 is related to a meta-model-level evaluation.

Figure 3 – Meta-Model-Level Architecture

Graphic Editors

System X
Diagrams

System Z
Diagrams

System Y
Diagrams

Modeling Tools

Tool
Repository

OCL
Expressions
Evaluator

UML Model

Workload
(Model Objects)

OCL Expressions
(Model Constraints)

Expression Results

Workload
Generator

UML Model

UML
Meta
Model

Diagrams

System Z
Diagrams

System X
Diagrams

UML Modeling Tools

Existing
Systems

UML Model

Design Metrics
(as OCL Expressions)

Metric Values
(Expression Results)

OCL
Expressions
Evaluator

Meta-Model
Instance
Generator

UML Meta - Model
Objects

UML Meta - ModelGraphic Editors

 8

In the meta-model level architecture, all the functionalities of the previous one are

preserved. Notwithstanding, there are two main additions: one is the introduction of the class

diagram of the UML meta-model. Another is the introduction of an automatic instance

generator, that will take the meta-model and automatically generate all the instances to

populate it. Using these features (meta-model and corresponding instances) we will formalize

and test a relatively large sample of metrics that can be found in the literature, expressed as

pre and post-conditions, over the UML meta-model.

 We used a modeling tool to create the UML meta-model diagram, and with the

architecture in figure 2, we can already convert it to a textual format. We are currently

working on the generation of the automatic instances and on the formalization of the metric

sets. We hope to clarify the metrics definitions through formalization, and also to compare the

existing sets and abstract the best characteristics of each one of them. Our idea is to introduce

a framework that allows practitioners to build new metrics or improve old ones and

afterwards, to create the meta-metrics. We also expect to detect the limitations of the sets of

metrics during the formalization process.

5. Conclusions and further work

We used the Object Constraint Language, a part of the UML standard, to define

object-oriented design metrics in a very natural and understandable way. The precision

granted by the formality of OCL comes at a much lower cost, for both practitioners and tool

builders, than when using other formal specification constructs. Since UML has also become

a de facto standard both in academia and industry, more and more people are expected to

master OCL and use it currently it their designs.

Besides formalizing some metrics sets using the UML meta-model, we also plan to

make a similar effort based upon the OML (OPEN Modeling Language) meta-model. OML

emerged from the OPEN (Object-oriented Process, Environment and Notation) consortium

[Firesmith1996, Henderson-Sellers1996b, Henderson-Sellers1996c, Henderson-Sellers1998].

The latter is supported by a large group of well-known methodologists such as Brian

Henderson-Sellers (author of the MOSES method [Henderson-Sellers1991, Henderson-

Sellers1994]), Ian Graham (author of SOMA – Semantic Object Modelling Approach

[Graham]), Donald Firesmith or Jim Odell.

 9

After the formalization efforts, we will test and compare the metric sets, performing

empirical studies. Furthermore, we will abstract the common characteristics of those sets in

order to build a high level meta-model. The latter will be a framework for describing,

classifying and accessing existing metric sets, as well as a basis for the production of new

ones.

6. References
[Abreu2001] Fernando Brito Abreu : Using OCL to Formalize Object-Oriented Metrics Definition , Report

ES007/01 of the Software Engineering Group, INESC, Portugal, 2001.

[Abreu1998] Fernando Brito Abreu : The MOOD2 Metrics Set (In Portuguese), Report R7/98 of the

Software Engineering Group, INESC, Portugal, 1998.

[Abreu1996a] Fernando Brito Abreu, Rita Esteves & Miguel Afonso Goulão : “The Design of Eiffel

Programs: Quantitative Evaluation Using the MOOD Metrics”, actas de TOOLS'96

(Technology of Object Oriented Languages and Systems) , Santa Barbara, CA, EUA, Julho,

1996a.

[Abreu1995] Fernando Brito Abreu, Miguel Afonso Goulão & Rita Esteves : “Toward the Design Quality

Evaluation of Object-Oriented Software Systems”, actas de 5th International Conference on

Software Quality, pp.44-57, Austin, Texas, EUA, Outubro, 1995.

[Araújo1998] João Araújo & P. Sawyer : “Integrating Object -Oriented Analysis and Formal Specification”,

Journal of Brazilian Computer Society, July, 1998.

[Chidamber1994] Shyam R. Chidamber & Chris F. Kemerer : “A Metrics Suite for Object Oriented Design”,

IEEE Transactions on Software Engineering, vol.20, nº6, pp.476-493, IEEE, Junho, 1994,

publicado também em: Center of Information Systems Research, MIT, EUA, WP No. 249, July

1993.

[Cook1994] Steve Cook & John Daniels : Designing Object Systems: Object Oriented Modeling with

Syntropy, Prentice Hall, Hemel Hempstead (U.K.), 1994.

[Duke1991] D. Duke, P. King, G. A. Rose & G. Smith : “The Object-Z Specification Language",

Department of Computing Science, University of Queensland, Australia , relatório 91-1, 1991.

[Firesmith1996] Donald Firesmith, Brian Henderson-Sellers & Ian Graham : “OPEN Modeling Language

(OML) - Core Notation Specification", OPEN Consortium , relatório Version 0.1, Julho, 1996.

[Henderson-Sellers1991] Brian Henderson-Sellers : A BOOK of Object-Oriented Knowledge, Prentice Hall

PTR, Sydney, Australia, 1991.

[Henderson-Sellers1994] Brian Henderson-Sellers & Julian M. Edwards : BOOK TWO of Object-Oriented

Knowledge: the Working Object , Prentice Hall, Sydney, Australia, 1994.

[Henderson-Sellers1996a] Brian Henderson-Sellers : Object-Oriented Metrics - Measures of Complexity, série:

The Object-Oriented Series, Prentice Hall PTR, Upper Saddle River, NJ, EUA, ISBN 0-13-

 10

239872, 1996a.

[Henderson-Sellers1996b] Brian Henderson-Sellers : “The OPEN Methodology”, Object Magazine, vol.6, nº9,

pp.56-59, Novembro, 1996b.

[Henderson-Sellers1996c] Brian Henderson-Sellers & Ian Graham : “OPEN: Towards Method Convergence?”,

IEEE Computer, vol.29, nº4, pp.86-89, IEEE / Object Technology Department, Abril, 1996c.

[Henderson-Sellers1998] Brian Henderson-Sellers, Tony Simons & Houman Younessi : The OPEN Toolbox of

Techniques, Addison-Wesley Publishing Company, ISBN 0-201-33134-9, 1998.

[Jones1990] Cliff B. Jones : Systematic Software Development Using VDM, 2ª edição, Prentice-Hall

International, Hemel Hempstead (U.K.), 1990.

[Lorenz1994] Mark Lorenz & Jeff Kidd: Object-Oriented Software Metrics, Prentice-Hall, Englewood Cliffs,

NJ, EUA, 1994.

[Meyer1985] Bertrand Meyer : “On Formalism in Specifications”, IEEE Software, vol.2, nº1, pp.6-26,

Janeiro, 1985, publicado também em: T. Colburn, J. Fetzer, and T. Rankin (eds.), Program

Verification: Fundamental Problems in Computer Science, Kluwe r Academic Publishers,

Dordrecht (The Netherlands), 1993.

[Meyer1995] Bertrand Meyer : “Beyond Design by Contract: Putting More Formality into Object -Oriented

Development”, actas de TOOLS EUROPE, Versailles, France, 1995.

[Meyer1997] Bertrand Meyer : Object-Oriented Software Construction , 2ª edição, Prentice Hall PTR, Upper

Saddle River, NJ, EUA, ISBN 0-13-629155-4, 1997.

[Moreira1996] Ana Moreira & R. Clark : “Adding Rigour to Object-Oriented Analysis”, Software

Engineering Journal, vol.11, nº5, pp.270-280, July, 1996.

[OMG1997] OMG : Object Constraint Language Specification (version 1.1), Rational et al. (ed.), ad97-08-

08, Object Management Group, 1997.

[Poels2001] Geert Poels & Guido Dedene : Measuring Event-Based Object-Oriented Conceptual Models.

L'Object Magazine, 2001.

[Rumbaugh1991] James Rumbaugh, Michael Blaha, William Premerlani, Frederick Eddy & William Lorensen :

Object-Oriented Modelling and Design, Prentice Hall, Englewood Cliffs, NJ, EUA, 1991.

[Spivey1992] J. Michael Spivey : The Z Notation: A Reference Manual, 2ª edição, Prentice Hall, Hemel

Hempstead, Reino Unido, 1992.

[Waldén1995] Kim Waldén & Jean-Marc Nerson : Seamless Object-Oriented Software Architecture: Analysis

and Design of Reliable Systems, Prentice Hall, Hemel Hempstead, Reino Unido, 1995.

[Wand1989] Yair Wand : “A Proposal for a Formal Model of Objects”, em Kim WoneFrederick H.

Lochovsky (eds.): Object-Oriented Concepts, Databases, and Applications, Addison-Wesley,

Reading, MA, EUA, 1989.

[Warmer1999] Jos Warmer & Anneke Kleppe : The Object Constraint Language: Precise Modeling with

UML, Addison-Wesley Publishing Company, ISBN 0-201-37940-6, 1999.

 11

Appendix A – The GOODLY Meta-Model
To clarify the examples presented through this document, the GOODLY meta-model

is illustrated in this section. For a complete description, refer to [Abreu2001].

Figure 4 – The GOODLY Meta-Model

Sp
ec

ifi
ca

tio
n

0.
.*

*

-u
se

s
0.

.*
*

M
es

sa
ge

M
ai

n
0.

.1

1

-m
ai

n_
sp

ec
0.

.1

1

Im
pl

em
en

ta
tio

nB
od

y

0.
.*1

-m
es

sa
ge

s_
sp

ec

0.
.*1

*

1 -m
ai

n_
bo

dy

*

1

Tr
ac

ed
Cl

as
s

id
en

tif
ie

d
: B

oo
le

an

0.
.1

*

-o
rig

in
_s

pe
c

0.
.1

*

M
od

ul
e

1.
.*

*

-m
od

ul
e_

lis
t

1.
.*

*

0.
.1

*

-o
rig

in
al

_f
or

m
al

is
m

_s
pe

c
0.

.1

*
0.

.1

*

-o
rig

in
_m

od
ul

e

0.
.1

*

Cl
as

sP
ar

am
et

er

O
pe

ra
tio

n
0.

.*

1

0.
.*

-in
vo

ca
tio

n_
of

1

*

1

-o
pe

ra
tio

n_
bo

dy
*

1

Tr
ac

e

0.
.1

*

-tr
ac

e_
in

fo
0.

.1

*

*
1

*
1

Un
sc

op
ed

At
tri

bu
te

*1

-p
ar

am
et

er
_l

is
t

*1

*

1

-lo
ca

ls
_s

pe
c

*

1

Sc
op

e

*

1

-s
co

pe
_l

is
t

*

1 At
tri

bu
te

0.
.*

1

-e
m

pl
oy

s_
sp

ec

0.
.*

1

*
1

-s
co

pe
_l

is
t

*
1

C
la

ss

0.
.1

*

-th
e_

cl
as

s

0.
.1

*

1.
.*

*

-c
la

ss
_l

ist

1.
.*

*

0.
.*

*

-in
st

an
ci

at
ed

_a
s

0.
.*

* 0.
.*

1
-fo

rm
al

_p
ar

am
et

er
s

0.
.*

1
1

*
-re

tu
rn

_t
yp

e

1

*0.
.1

*

+t
ra

ce
_i

nf
o

0.
.1

* *
*

-a
ttr

ib
ut

e_
ty

pe

*
*

*

0.
.1 *

-s
co

pe
d_

cla
ss

0.
.1

0.
.*

*

-in
he

rit
s_

fro
m

0.
.*

*

0.
.*

1

-a
ttr

ib
ut

e_
lis

t
0.

.*

1

