
An overview of metrics-based approaches to support software
components reusability assessment

Miguel Goulão, Fernando Brito e Abreu

Informatics Department

Faculdade de Ciências e Tecnologia / Universidade Nova de Lisboa

Quinta da Torre, 2829-516 Caparica, Portugal
{miguel.goulao|fba}@di.fct.unl.pt
http://ctp.di.fct.unl.pt/QUASAR/

Abstract
Objective: To present an overview on the current state of the art concerning metrics-based
quality evaluation of software components and component assemblies.
Method: Comparison of several approaches available in the literature, using a framework
comprising several aspects, such as scope, intent, definition technique, and maturity.
Results: The identification of common shortcomings of current approaches, such as
ambiguity in definition, lack of adequacy of the specifying formalisms and insufficient
validation of current quality models and metrics for software components.
Conclusions: Quality evaluation of components and component-based infrastructures
presents new challenges to the Experimental Software Engineering community.

Keywords: Component-Based Software Engineering; Component Evaluation; Software
Metrics; Software Quality.

1 INTRODUCTION

1.1 Motivation
Component-based development (CBD) is playing an increasing role in the software industry [1,
2]. There is an economic push to such growth: the claim is that CBD allows the reduction of
cost and time to market, while increasing software quality, through reuse [3]. The rationale is
that cost savings can be obtained through economy of scale, while improved quality results from
the reuse of such components in different environments and applications. Recently, a component
broker conducted a case study with the cooperation of component producers [4]. Its goal was to
estimate the return on investment of commercial-of-the-shelf components (COTS). The referred
case study reports that the costs of acquiring such components are about 1/50 of the ones for
developing their required functionalities from scratch.

The Software Engineering Institute (SEI) defines a component as “an opaque implementation of
functionality subject to third party composition and conformant to a component model” [5].
With an increasing percentage of component-based architectures relying on black-box software
components, the quality of such architectures depends, to a large extent, on the quality of those
components and on the interactions among them [6]. Therefore, components evaluation should
be integrated in CBD [7].

One of the key roles in CBD is that of the component assembler. A component assembler starts
with application requirements, searches component repositories for selecting appropriate
components, and assembles them by providing the required glue [3]. His focus of attention is on
component composition rather than on component construction. From a component assembler
perspective, being able to assess the complexity of candidate alternative component assemblies
is crucial. This task is difficult, as he has to consider the integration of components that may be
acquired from different providers, each offering a different documentation detail level for every
component. Deciding whether to reuse components or to develop the corresponding
functionality from scratch is also part of the tasks performed by the component assembler.

In this context, it would be helpful for a component assembler to have an objective, integrated,
independent view of existing techniques that may assist him in this task. Objectivity can be
obtained by performing a quantitative comparison among alternatives, rather than just a
qualitative one. The integration of such comparative studies can be facilitated by using a
common evaluation framework. Independency can only be achieved by integrating assessments
from different independent sources. In contrast, it is common for component assemblers to be
forced to base decisions on their personal experience and the qualitative judgement of “experts”.
Component assemblers are therefore potentially vulnerable to biased information sources and
hype.

1.2 The need for CBD-specific evaluation techniques
Building upon SEI’s definition of a component, we can contrast evaluation of CBD with that of
object-oriented or structured development. The first major difference relates to the opaqueness
of components. While several metrics-based approaches for evaluation of software complexity
(e.g: McCabe metrics) rely on access to the source code, similar approaches for CBD should
depend only on the information publicly available on black-box components. Indeed, the
component’s source code is often not available to component assemblers. Moreover, there is a
problem of scope. The component assembler is not concerned with the internal complexity of a
component, but rather with the complexity involved in reusing it. Internal code metrics for
analysing the components are not useful, from his point of view. Instead, complexity analysis on
the interface of a component, the contracts associated with it and the adaptability of the
component to different contexts should be assessed.

There is no widely accepted quality model for CBD, although the community has proposed
extensions of the ISO9126 standard [8] to fit the needs of CBD [6, 9]. Such a model is required
for quality evaluation, whether this evaluation is of a qualitative or quantitative nature. A typical
example of qualitative evaluation is an expert’s opinion on the component artefact. Qualitative
evaluation is subjective, posing problems in results comparison and generalization. Besides,
experts may not be available at all. The quantitative approach to evaluation provides a more
pragmatic way of dealing with this problem. It consists on defining, collecting and analyzing
objective quantitative metrics that can be used, when framed by a quality model, to replace (or
complement) the expert’s opinion in an automated fashion. The goal is to provide heuristics-
based help as guidance to practitioners in the component selection process.

1.3 Overview outline
Our overview is focused on proposals for metrics-based approaches to component reusability
assessment. To the best of our knowledge, there is a lack of comparative reviews of such
proposals. Our contribution in this paper is threefold: we define an evaluation framework for
metrics proposals; we use that framework to provide a comparative study on component
reusability evaluation proposals; and we outline an approach to support the replication of
experiments to assess such proposals.

This overview is organized as follows: in section 2 we discuss typical problems in metrics-based
approaches to software products assessment; in section 3, we present a framework for our
review on the state of the art of metrics-based assessment for reuse in CBD; in section 4 we
discuss different metrics-based approaches to component evaluation, both in isolation and in
assemblies; our view on how the state of the art may be improved is presented on section 5;
finally, conclusions are presented in section 6.

2 COMMON SHORTCOMINGS OF METRIC-BASED APPROACHES

2.1 Metrics and their underlying quality model
The lack of a widely accepted quality model for CBD is the first challenge for a component
assembler in his component selection process. There are some proposals of quality models for
CBD, such as [9], where an adaptation of the ISO9126 [10] for component software is
proposed, but none of these proposals have achieved an industry-wide acceptance, yet.

Often, metrics definition is not performed to meet the information requirements of a particular
quality model, but rather in an ad-hoc fashion. In the absence of such a reference model,
interpreting measurements is troublesome. Consider the example of Lines of Code (LOC)
measurement, which could be used in the assessment of white box components. If we simply
define how to count the LOC with no reference to how we plan to use them, we are in fact only
defining a measurement, but not a metric. Defining the latter implies referring to a framework
(the quality model) upon which we plan to interpret the measurements. The LOC measurement
has been used in several contexts. As a size (or complexity measure), LOC has been used,
among other things, to assess the maintainability of software and the productivity in developing
code. Each of these usages requires a different validation process that should provide an answer
to the following questions:

• How does size influence maintainability?

• How does size influence developer productivity?

There is no lack of controversy regarding each of these questions. Factors such as the code reuse
level, the particular kind of reuse, or the coding style, may have a significant impact on the
value of LOC. Our point is that it is not possible to define and validate a metric, without clearly
stating what is its intended usage, and that implies specifying the underlying quality model.

2.2 Metrics ill-definition
The metrics ill-definition problem occurs due to several reasons. Metrics definitions are often
presented without the corresponding context. Without expressing which is the underlying
metamodel upon which the concepts and their interrelationships are defined, metrics definitions
become subjective, as different interpretations on which those concepts are and on how to
perform the measurements are possible. Finally, metrics definitions are performed without an
underlying formal approach that uses the previously mentioned metamodel as contextual input.
The formal specification of metrics should address not only how the underlying concepts are
accounted for and their interrelationships are traversed to collect the required metrics, but also
the pre-conditions that must be met to allow the collection of such metrics.

Without clear and precise definitions of metrics, it may be impossible to consistently develop
tools to collect those metrics, or to discuss their properties in a mathematically sound way. The
usage of natural language is a typical metrics definition problem. One of the first books on
metrics for object-oriented design contained natural language definitions for all its metrics [11].
While this may be considered helpful as a first glimpse on the metric’s objective, the absence of
a formal definition may hamper its systematic and repetitive collection and validation by
different researchers or practitioners. Consider the following natural language definitions,
borrowed from [12]:

• "Component Interface Complexity Metric (CICM): Component interface complexity
metric should provide an estimate of the complexity of interfaces. Such a metric could
be helpful in improving the systems quality because complex interfaces complicate the
testing, debugging and maintenance."

• "Component Resource Utilization Metric (CRUM): Resource utilization metric should
measure the utilization of target computer resources as a percentage of total capacity."

The first definition is a typical example of a "wish list" metric proposal. Although it contains an
intuition to the authors’ intentions when defining it, the description is too vague with respect to
how the interfaces complexity should be measured. The second definition is more objective, in
the sense that it implies that the metric is defined as a ratio between used and available
resources. It completely omits which resources should be measured and how they could be
measured. For the sake of argument, assume that we wish to instantiate the second metric by
computing CRUM considering memory as the resource under scrutiny. Which would be the
conditions for performing the measurement? Should we consider the average memory used by
the component during its lifetime, its highest value during a particular period of usage, or any
other option? Should we consider the total physical memory of the target computer as a
baseline, or discount the memory used by other applications, namely the operating system being
run by that computer? There are too many points of uncertainty in this kind of definition,
leading to points of variation in the implementation of tools for collecting them.

Note that even the apparently trivial LOC definition as a count of lines of code is susceptible to
different interpretations, in part due to its vulnerability to coding style options. When analyzing
a source code file, should we make a simple count of lines, or should we omit, for instance,
blank lines? Should comment lines be counted as well, or omitted? How do we deal with text
wrapping? Should we pre-process the source code to ensure a uniform formatting style?

Although in principle one can always detail all the counting rules down to their most intricate
details, natural language definitions of metrics are often incomplete and ambiguous. A
consequence is that different tools collecting allegedly the same metric may provide different
values for that metric, while analyzing the same artefact. This hampers the comparability of
metrics collected by independent teams using different tools. Results interpretation may also be
flawed, due to these potentially different interpretations of the natural language definitions.

A common approach to increase the quality of metrics specifications is to use a combination of
set theory and simple algebra to define metrics. Consider the following example, borrowed from
Hoek et al. [13], for the provided (PSUx) service utilization metric.

Total

Actual
x P

PPSU =

Hoek et al. define a service as follows: "Under the term service, we include such things as
public methods or functions, directly accessible data structures, and any other kind of publicly
accessible resource one may be able to express in an ADL." Their intention is to define these
metrics in a generic way, so that they are not tied to any particular ADL (Architecture
Description Language), or service. The price to pay for this option is that different
implementations will consider different kinds of services as relevant. Although the metrics
formulas are objective, the selection of the elements to be included in such formulas is
ambiguous, making these metrics ill-defined.

The alternative is to use a formal approach to define metrics. Dumke et al. proposed a taxonomy
for formal approaches to software measurement [14], as well as a discussion on their strengths
and weaknesses. The categories include algebraic, axiomatic, functional, rule-based, structure-
based, information-theoretical, and statistical approaches. In our opinion, their taxonomy lacks
cohesion, in the sense that some of the former 6 groups of approaches concern metrics
definition, while the latter (statistical) is mostly concerned with how to treat data obtained from
those metrics. The main shortcoming of formal approaches to metrics definition is that
understanding them requires mathematical skills that are often not held by common
practitioners.

2.3 Insufficient validation of metrics-based approaches
This problem is not specific to component-based development. As pointed out in [15],
Experimental Software Engineering research, in general, tends to be fragmented and not
properly integrated. This leads to the absence of a culture of replication of experiments and of
systematic reviews of the existing approaches, like, for instance, is common practice for
medical researchers [16]. This shortcoming of current Experimental Software Engineering
practices has been identified in several surveys. A systematic review on controlled experiments
conducted in software engineering [17] has reported that, out of 5453 scientific papers
published in 12 leading software engineering journals and conferences from 1993 to 2002, only
103 (1.9%) of them reported controlled experiments in the realm of software engineering tasks.
These included only 14 series of replications, where controlled experiment replications were
performed. Only 6 of these series replications included replications performed independently
(not by the original authors). While the above mentioned review focused on controlled
experiments, its observations are consistent with those of other surveys concerning alternative
forms of evidence-based validation of software engineering claims, ranging from controlled
experiments to observational studies (e.g. [18, 19]). The lack of standard protocols1 to conduct
experimental work in software engineering is one of the problems undermining the availability
of evidence to support decisions such as those that have to be made by component assemblers,
although there are recent guidelines proposals aimed at mitigating this problem [20].

3 A FRAMEWORK FOR CHARACTERIZATION OF PROPOSALS
It is useful to have a common framework, upon which we can characterize the reviewed work.
Framework-based analysis fosters a more systematic approach to proposals assessment than the
one usually achieved through a more traditional, non-structured, narrative review. Evidence
collected in the realm of medical sciences show that narrative reviews tend to lead to more
informal and subjective methods to collect and interpret the studies and even to selective
citation of literature to reinforce preconceived notions [16]. In contrast, having a framework for
characterizing proposals fosters a more objective analysis, partially mitigating the shortcomings
of narrative reviews. The framework also helps readers identifying which proposals are likely to
be applicable to their own context, and which are not. Therefore, we propose here a framework
upon which we will base our review.

This framework includes a set of qualitative characteristics plus a quantitative assessment
scheme, based on ordinal scales. The quantitative assessment enforces the required
comparability of proposals. Together, the qualitative and quantitative parts provide a basis for
identifying the strengths and shortcomings of each proposal, as discussed in the previous
section. The first four items of this structure aim to provide a very brief overview of the
proposals, while the last aims to characterize each proposal according to its maturity level.

• Scope – This refers to the granularity level and type of artifacts that are the target of the
metrics-based assessment proposal. A typical contrast is between coarse and fine-grained
components. Another one is that while some components are white-box, others are black-
box. The scope definition constrains the assessments that can be performed on components.

• Intent – A description of the main objectives of the proposal, to help the reader assessing
the extent to which each approach may help achieving those objectives.

1 In the context of experimentation, a protocol is a specification of the steps to be followed while
conducting an experiment, from the experiment setup to data analysis. Following standard protocols
increases the comparability of individual studies, as it fosters homogeneity in the data collection process.

• Technique – This refers to how the metrics were defined and validated. The metrics
definition technique may range from a purely informal description to a formal definition.
Several forms of validation of the proposals may have been attempted, both by the metrics
proponents and other researchers and practitioners. In metrics proposals, validation efforts
range from case-studies that use toy examples and aim at illustrating the metrics definition
and collection, to series of controlled experiments performed with real-world examples.

• Critique – Here, we provide a qualitative assessment of the most noticeable features of the
proposal, including its most interesting aspects, as well as its main shortcomings.

• Maturity – The maturity level of the proposal provides a comparison framework based on
the usage of ordinal scales to characterize the metrics proposals according to four different
dimensions: the underlying quality model, the mapping quality between metrics and the
quality model, the formality of the metrics definition, and the extent to which the proposal
was validated.

To assess the maturity of the proposals, we start by identifying a set of rating scales concerning
different aspects of metrics-based quality evaluation. For each of those rating scales, we then
identify several levels of maturity that will aid us in the graphical depiction of proposals
maturity. Table 1 presents a condensed view of our maturity comparison framework.

Maturity level Quality Model (QM) Mapping Quality (MQ) Metrics definition (MD) Level of Validation (LV)

0 N/A N/A N/A N/A

1 Ad-hoc Ad-hoc Wish list Anecdotal

2 Structured Rationale Informal Small experiment

3 Uncorrelated Goal-driven Semi-formal Industrial experiment

4 Validated Validated Formal Independent

 Table 1 - A metrics proposal maturity comparison framework

The maturity level is of an ordinal nature, ranging from 0, where the dimension is not available
in the proposal (N/A in all rating scales), to 4, where the proposal has reached a high maturity
level. It should be noted that a proposal’s maturity does not necessarily reflect its potential
interest. For instance, a radical proposal in an emerging field may be promising, while not yet
evidencing high values across all the aspects of our comparison framework. On the other hand,
we will expect that within a reasonable period of time, the same proposal will mature.

In the next section, we will present several proposals for metrics-based assessment of reusability
in CBD. For presentation purposes, we will use the following maturity mask, where level is
replaced by the appropriate value for each proposal:

 QM[level]; MQ[level]; MD[level]; LV[level]

The Quality Model (QM) represents the extent to which the metrics proposals fit into a quality
model. For the Quality Model, the identified categories, by increasing level of maturity,
represent:

0. N/A – The proposal is not explicitly related to a quality model.

1. Ad-hoc – A set of quality characteristics are identified.

2. Structured – Quality characteristics are organized, typically in a hierarchy.

3. Unassociated – Quality characteristics are shown to be independent, to avoid assessing the
same quality aspect repeatedly.

4. Validated – The quality model is conveniently validated through experiments.

The Mapping Quality (MQ) represents the level of integration between the model and the
metrics which are chosen to assess quality based on that model. The represented categories are:

0. N/A – Metrics are not related to a quality model.

1. Ad-hoc – Metrics are mapped to quality attributes in an ad-hoc fashion.

2. Rationale – A discussion on the rationale of the mapping is provided.

3. Goal-driven – Metrics are defined to answer specific evaluation needs, following an
approach such as the Goal Question Metric [21].

4. Validated – Building on the previous level, metrics are shown to effectively fulfill the
specific evaluation needs raised by the quality model.

Concerning Metrics Definition (MD), we use the following categories:

0. N/A – The proposal is only qualitative.

1. Wish list – The authors informally identify the need for a certain kind of metrics, without
actually proposing any.

2. Informal – A natural language description of the metrics is provided by the authors.

3. Semi-formal – Some degree of formalism is used in the metrics definitions. Typically, the
metrics themselves are defined through mathematical expressions, but the underlying
concepts being measured are only informally specified.

4. Formal – A formal definition of the metrics based upon the underlying concepts is
provided.

Finally, the Level of Validation (LV) is classified according to the following categories:

0. N/A – The proposal does not include any example of metrics collection.

1. Anecdotal – Anecdotal examples are provided to motivate the usefulness of the proposed
metric. Sometimes, they are complemented with some descriptive statistics.

2. Small experiment – An experiment is carried out to assess the metrics, with some statistical
approach to analyze the collected data, but the sample of analyzed artifacts does not allow
inference (conclusions generalization beyond the sample used in the experiment).

3. Industrial experiment – An experiment with a significant sample of artifacts is carried out,
with real-world artifacts and adequate statistical analysis.

4. Independently validated – Experiments conducted by independent research teams confirm
the original proponent’s claims.

4 METRICS FOR REUSE IN CBD
Our overview focuses on metrics-based approaches that aim at helping component assemblers
to choose adequate components. The selected proposals share a concern for assessing,
somehow, the reusability of components. For easier reference, the proposals will be identified
by the name of their first author, both in their textual description and in the chart with the
overall comparison, presented in Figure 1. A reference to the corresponding papers is provided
on the top of each of the proposals review.

We have divided these metrics into two groups. The first one contains proposals that consider
the components in isolation. The second relates to proposals that attempt to help assessing
components in a given context, which is typically either a component assembly or a component
library.

4.1 Approaches to the evaluation of individual components

Bertoa’s quality model and metrics [9, 22, 23]

Scope COTS software

Intent To introduce a quality model as an adaptation of the ISO9126 for component-
based development [9]. The adaptation of the ISO quality model consists on
assuming that the software will include black-box components and change the
quality model accordingly, so that any assessment of reused software takes into
account this restriction. A set of metrics to assess the attributes of that quality
model is also proposed. Its rationale is that the metrics collection has to be defined
considering the information made available by component brokers. While the first
attempt at metrics definition covers transversally the quality model, more recent
work by the same authors focuses on the usability of components, as perceived by
component assemblers [22].

Technique Although some of the metrics definitions included mathematical formulae, most
definitions were informal [9, 22]. In [23], where a validation effort for metrics
concerning the usability of components is presented, all metrics definitions are
presented in natural language. This presentation is complemented by a metamodel
describing the information available from COTS vendors that concerns usability.
The metrics set includes metrics on not only the COTS components, but also on
their documentation. The metrics collection requires a strong manual intervention,
as several of the metrics are collected from the analysis of the available
documentation of COTS components. The validation was conducted in a series of
5 experiments (one of them was a replica conducted by peers) with a total of 68
subjects that were asked to evaluate a sample of 12 COTS components. The first
three experiments concerned a subjective analysis performed by the participants
on each of the components in the sample. The remaining two experiments
consisted on an assessment of component reusability through the analysis of the
performance of users while answering objective questions concerning the
availability of specific tasks and services in the components that made up the
sample. Subject’s performance was measured as a combination of correctness of
responses and time required for providing such responses, and was used as an
indirect measure of component reusability.

Critique By using the information made available by vendors, there are limitations
concerning the ability to automate metrics collection, due to the noticeable lack of
standards in data presentation by COTS producers and brokers. To overcome this
problem, a UML model for the classification of COTS usability is proposed, but
populating that model in an automated fashion remains an open challenge. From
the original set of metrics [9], some were dropped out due to difficulties in their
collection. With respect to the validation efforts, the proponents’ attempt to build
up a set of experiments was successful in what concerns the replication of the
experiment by an independent team, but the small component sample is probably
the most noticeable threat to validity of the experiment series.

Maturity QM [Structured]; MQ[Rationale]; MD[Informal]; LV[Small experiment].

Gill’s quality attributes [12]

Scope Black-box components

Intent To propose a set of guidelines on how to select metrics for black-box components.

Technique No actual metrics are defined. Instead, the authors informally present a set of
quality attributes that should be evaluated through metrics.

Critique The proposal includes an interesting discussion on the focus shift caused by the
specificity of black-box components evaluation, as opposed to the evaluation of
OO design, or structured software and provides an interesting roadmap for
research in metrics-based component evaluation.

Maturity QM[Ad-hoc]; MQ[Rationale]; MD[Wish list]; LV[N/A].

Dumke’s metrics for reusability of JavaBeans [24]

Scope White-box Java Beans

Intent To present a metrics set for reusability of JavaBeans.

Technique Informal definition of metrics, relying on access to the source code. The metrics in
this set are adapted from other contexts, such as OO design (e.g. percentage of
public methods) and structured programming (e.g. maximal McCabe complexity
number, for a method in the JavaBean class).

Critique The white-box view of components renders this approach inadequate for
evaluation by independent component assemblers. The internal complexity of a
component method should not be relevant for the understandability of its interface
and the component’s reusability.

Maturity QM[N/A]; MQ[Ad-hoc]; MD[Informal]; LV[Anecdotal].

Boxall’s interface textual complexity metrics [25]

Scope Interfaces of components developed with C, C++, Java or Eiffel.

Intent To define a set of metrics to assess interface complexity, measuring aspects of
components’ interfaces, such as the interface size, number of distinct arguments in
operations, level of repetition of such arguments, the commonality in identifiers,
identifier’s length and the density of reference arguments.

Technique Metrics are defined through a set of mathematical expressions, but the elements of
such expressions are informally described.

Critique The level of detail in the analysis of arguments in the interface is richer than in
other approaches, in what concerns the relevance of naming conventions for
component interfaces’ understandability. However, this approach does not address
other potentially interesting aspects in the interface, such as arguments’
complexity.

Maturity QM[Informal]; MQ[Rationale]; MD[Semi-formal]; LV[Small experiment].

Washizaki’s reusability metrics for black-box components [26]

Scope JavaBeans Interfaces.

Intent To propose a metrics set for assessing the reusability of JavaBeans. The metrics set
is defined in the scope of a quality model for black-box component reusability,
considering understandability, adaptability and portability as relevant sub-
characteristics. More refined criteria are then defined for each of these sub-
characteristics, as well as metrics to assess JavaBeans in light of such criteria.

Technique Metrics are defined as ratios of the effective use of a given sort of interface feature
(e.g. BeanInfo class, readable properties, writable properties, methods with
parameters and methods with no return value) when compared to its potential use.

Critique It can be argued that the analysis of the interface complexity is over-simplistic
since at least two aspects are not considered: (i) the complexity of arguments, and
(ii) the repetition of argument types. In both cases no distinction is made.
Intuitively, increased complexity and variety of argument types would decrease the
understandability of the component’s interface.

Washizaki’s metrics set was validated with a case study where the reusability of
over 120 components was assessed, both with this metrics set and by a panel of
experts. Results show a high correlation between both assessments, indicating that
the metrics defined in this set can indeed be used to assess component’s
reusability. However, an independent case study showed the metrics to be
unreliable for components with a small number of features on their interface [27].
Further independent analysis is still required.

Maturity QM[Structured]; MQ[Rationale]; MD[Semi-formal]; LV[Industrial experiment].

Gill’s interface complexity metrics [28]

Scope Black-box components’ interface

Intent Besides the complexity aspects of interfaces’ signature, this proposal also
considers constraints upon those interfaces, as well as their packaging, to account
for different configurations that the interface may present, depending on the
context of use.

Technique The overall complexity is defined as the weighted sum of the complexities related
to signature, constraints and packaging of the interfaces. For each of these aspects
of interface complexity, a definition is also proposed, again using weighted sums
of features (e.g. events and operations count, for signature’s complexity).

Critique Although Gill’s proposal has the merit of including constraints and packaging
complexities on the assessment, it still lacks any sort of empirical assessment. This
hampers the ability of the authors to assign values to the coefficients on their
definitions, and, more significantly, our ability to assess the extent to which this
approach helps common practitioners to choose among alternative components.

Maturity QM[N/A]; MQ[N/A]; MD[Informal]; LV[N/A].

4.2 Approaches to the evaluation of component assemblies
The approaches described in the previous section are mostly targeted at the assessment of
components in isolation. They rely on the assumption that the quality of software components
influences in some way the quality of the assembled system. The apparent conclusion of this
would be that a component assembler should always try to choose the best components in order
to optimize the quality of the assembled system. This may reveal to be naïf, since we should
also consider the context in which the component will operate. Determining how well a

component integrates with other components in an assembly may lead to an evaluation that is
more worthy to the component assembler than the one made in isolation [29]. This change of
scope allows the component assembler to focus on the quality for his target product: the
component assembly.

Sedigh-Ali’s quality characteristics [30]

Scope COTS

Intent To discuss the requirements for metrics for CB-architectures based on relevant
quality aspects. The authors also present a taxonomy on the categories of costs
related to software quality, with cost drivers such as quality improvement, low
quality prevention, software failures and external costs related to those failures.

Technique High level discussion, rather than a concrete proposal.

Critique The main contribution of this paper is an interesting discussion on requirements
for metrics for CB architectures, measured at a system level, including insights on
how to choose relevant metrics. However, this is an exploratory work based on
expert opinions alone, rather than on some sort of quantitative evidence to back up
the presented arguments.

Maturity QM[Ad-hoc]; MQ[Ad-hoc]; MD[Wish list]; LV[N/A].

Seker’s coupling and cohesion for CBD [31]

Scope Black-box components and component assemblies

Intent To define coupling and cohesion metrics for CBD.

Technique The metrics are defined using an information theory based approach where
components and component infrastructures are represented as graphs.

Critique This approach adapts the well-known concepts of coupling and cohesion to the
scope of CBD. Except for the nodes in the graph being black-box components
rather than classes, the proposal is similar to coupling and cohesion for OO design.

Maturity QM[N/A]; MQ[N/A]; MD[Semi-formal]; LV[N/A].

Hoek’s service utilization metrics [13]

Scope Software product lines

Intent To propose a metrics set that allows assessing software product lines based on
service utilization. The rationale for their need is that service utilization in product
lines implies a degree of optionality among the components that get used in a
given configuration. While some services and components will be part of all
configurations of that product line, others are optional. Structural variability is also
an issue, as the component assembler has to choose among a range of alternative
configurations. Product lines are also typically hierarchical, composed of a set of
components, each of which with its own internal structure. The combination of the
above mentioned constraints violates the assumptions of most structural metrics
that the system structure under evaluation is: (i) single - no optionality considered,
snapshots of the system are usually evaluated); (ii) fixed - no structural variability,
the system structure is assumed to be kept constant throughout the evaluation; and
(iii) flat - the implications of the hierarchical decomposition of the system are not
considered in the metrics definition.

Technique The metrics are defined around the concept of service utilization (the rate of usage
of provided and required services of a component). For individual components,
metrics are simply ratios of used services (both for required and provided ones),
whereas for component architectures which are fixed and flat (assemblies) these
ratios are obtained using the sum of used services against the total of available
services.

Critique Of all the proposals presented in this overview, Hoek’s is the one that best fits the
notions of architectural components and assemblies’ evaluation rather than
individual components’ evaluation.

Maturity QM[N/A]; MQ[N/A]; MD[Semi-formal]; LV[Anecdotal].

Inoue’s ranking significance [32]

Scope Software component libraries. Although the proposal is instantiated to Java class
libraries, it is generic and could be used with other sorts of components, from fine
to coarse-grained, both white and black-box.

Intent To enable the implementation of a Java class retrieval system (SPARS-J) that aids
developers finding out relevant classes for reuse through natural language queries.
As the results of those queries tend to be too broad, a ranking system is required to
sort the search results in a convenient fashion. The approach is inspired by the
computation of impact factors of scientific publications (research papers, books,
etc.) and the ranking mechanisms used by modern web search engines.
Components are ranked with respect to their reuse in an existing software baseline.
The most reused components have a higher rank and are thus presented at the top
of query results, as they are more likely to be of interest for the practitioner
performing the query.

Technique The component rank model uses a weighted directed graph representation for
software components, where nodes represent the components and edges represent
the use relationships among those components. The weight of each node is
computed as a function of the weight of its incoming edges. In turn, the weight of
each edge is computed as a function of the weight of its origin node and the
number of outgoing edges that node contains. The computation of all these
weights corresponds to obtaining a stationary distribution of the Markov chain
[33] that the underlying graph models.

Critique One of the most noticeable features of this approach is that reuse is assessed in
terms of the effective reuse of software components, rather than in terms of
expected reuse (e.g. predicted from the component interface’s characteristics). This
means that the metrics are useless from the point of view of a component
developer. In turn, they may be very useful for component assemblers, as they help
locating the most frequently reused components. From all the presented proposals,
this was clearly the most thoroughly validated one. The ranking system is in use in
two different companies, where a small case study concerning user satisfaction
with the ranking system was conducted. The results were very encouraging,
although a larger sample of users would be required to confirm them. More
important, the ranking system was tested with a set of about 6100 components,
from the JDK 1.4.2, on a first observational study, and 180000 components from
publicly available Java component libraries, collected from SourceForge.net, on a
second one. In both cases, the ranking system obtained significantly better results
than those of non-specialized search engines. The authors do not specifically

present the underlying quality model, although the proposal assumes that
leveraging software component reusability is a promising approach to the
development of high-quality software.

Maturity QM[N/A]; MQ[N/A]; MD[Semi-formal]; LV[Industrial experiment].

4.3 Lessons learned
Figure 1 represents an overview of the maturity levels of each of the proposals described on
previous sections. In this chart, from left to right, we present each proposal; from front to back
we present each of the analysed rating scales. On the vertical axis we have the maturity level, as
defined in Table 1. The overall low level of maturity throughout the several rating scales
supports the claim that research in the area of software components quantitative evaluation is
still on a very early stage. We can revisit now the three aspects highlighted in section 2.

Be
rto

a

G
ill

 Q
A

D
um

ke

B
ox

al
l

W
as

hi
za

ki

G
ill

IC
M

S
ed

ig
h-

A
li

S
ek

er

H
oe

k

In
ou

e

QM

MQ

MD
LV

0

1

2

3

4

Maturity
Level

Proposal
Rating
Scale

Figure 1 – Overall proposal maturity assessment

4.3.1 Lack of an underlying quality model

This shortcoming is related to the generally weak relationship among metrics proposals and
quality attributes. In the best-case scenario we found proposals where a structured quality model
was included, along with a discussion associating the metrics with the quality attributes defined
in the model, including the expected effect that variations in those attributes may have on
metrics. Washizaki and Bertoa’s works were the ones dedicating more attention to this problem,
while several other proposals do not explicitly address it, in the reviewed publications. This
shortcoming of metrics proposals follows a more general tendency observed in other contexts,
such as that of OO development, where metrics proposals often lack an adequate quality model
context [34].

4.3.2 Metrics ill-definition

None of the reviewed proposals includes a formal definition of metrics. In some cases, the
author’s intentions were clearly to leave the metrics definitions abstract enough for readers to
adapt those definitions to their own context (e.g. Hoek’s metrics). There is a fairly balanced

distribution between whish-lists (3), informal definitions (3) and semi-formal definitions (4) of
metrics. Since the majority of definitions are too informal, replicated experiments aimed at
validating these proposals are bound to have difficulties related to the tacit knowledge problem:
insufficient information provided by the original authors of an experiment causes difficulties in
its replication. In this case, the tacit knowledge concerns the definition of the metrics, where
non-stated assumptions may lead to different interpretations of the original metrics definitions.
While the tacit knowledge problem, as describer by Shull et al. [35] is wider (it refers to all
relevant information for replicating an experiment, from its requirements statement to the results
packaging, which is not clearly specified in the experiment reporting, leading to possibly wrong
assumptions by those who attempt to replicate the experiment, with respect to what was really
done in the original experiment), it could be mitigated, in what concerns metrics definition, by
providing a formal definition of all the defined metrics.

4.3.3 Insufficient validation

Insufficient validation occurs when independent cross validation is not performed, mainly due
to difficulties in experiment replication. Independent metrics validation (not performed by their
authors) is fundamental for their proof of usefulness before widespread acceptance is sought.

It is worth noticing that only Washisaki’s and Inoue’s proposals were validated with industry-
level observational studies. Inoue’s validation efforts included two case studies carried out in
different companies and used significantly larger samples than any other proposal. It is fair to
recognize their validation efforts level as well above the usual state of practice with software
metrics, both in the context of CBD metrics and otherwise. The validation efforts on Bertoa’s
proposals were also noteworthy for their emphasis on replication, but their main shortcoming
seems to be that their metrics collection is partly manual. The majority of the proposals
discussed here were not validated at all.

5 MITIGATING SOME OF THE IDENTIFIED PROBLEMS

5.1 Providing adequate context for metrics proposals
Metrics proposals should be framed in the context of a quality model, to prevent the collection
of data for which there is no expected usage, with the corresponding waste of valuable
resources. The quality model should guide the establishment of goals, for which research
questions would be made, leading to the definition of objective metrics to answer those
questions. Although there is a well-known and widely accepted approach named Goal-Question-
Metric[21] that aims at guiding the definition of software metrics, the results of our survey
showed that the community is still not using this approach as much as would be desirable.

5.2 Facilitating the replication of validation efforts
Automated metrics extraction is fundamental to foster independent validation efforts. Manual
collection of metrics has been shown to be error prone and vulnerable, for instance, to the lack
of adherence to sound, widely accepted, coding principles [36]. Furthermore, the effort required
for large scale manual metrics extraction is prohibitive. Unfortunately, to the best of our
knowledge, most of the proposed metrics were only tested by their authors, using proprietary or
experimental, non-publicly available, tool support, therefore limiting Experiments replication.
This limits knowledge sharing, both in the research and practitioner’s communities, hampering
results comparison. We have proposed elsewhere an approach to mitigate this problem [27, 34,
37, 38], which relies on the usage of a metamodel to formally define the concepts we aim to
measure, and Object Constraint Language (OCL) expressions to define metrics over that
metamodel. It can be summarized as follows:

• Selecting or producing an adequate metamodel describing the domain concepts (for
instance, for CB systems, we could use the CORBA Components Metamodel[39], or an
extract of the UML 2 metamodel corresponding to component diagrams[40, 41].

• Specifying the metrics using OCL [42] upon the previous metamodel. Notice that the
latter is specified as a UML class diagram that can be traversed using OCL expressions.

• Instantiating the metamodel, with meta-objects and meta-links corresponding to the
target software piece (e.g. code, or model element) that we want to measure.

• Collecting the metrics using an OCL-enabled tool that evaluates the OCL expressions
upon the previously mentioned instantiation.

Our proposal for metrics definition and collection combines formality, understandability and
collection efficiency due to the usage of OCL. Furthermore, it ensures their portability among
OCL-enabled CASE tools. As OCL is part of the new UML standard, an increasing number of
UML CASE tools are supporting it. To collect the metrics, we execute their corresponding OCL
definition upon the referred metamodel, instantiated with meta-objects representing the
component assemblies to be analyzed.

Further details about this technique and case studies that illustrate its applicability have been
published in the recent years. The idea of using OCL for defining software metrics to evaluate
object-oriented design was proposed in [34]. FLAME, a library of OCL functions to aid in the
definition and extraction of software metrics, based on the UML metamodel was presented in
[43]. [44] moves to the evaluation of software components and discusses the formalization of
Washizaki’s metrics set [26], using the UML 2 metamodel. This formalization uses the new
abstractions for software components provided by UML 2. [27] presents a case study to assess
Washizaki’s metrics set in a quantitative way.

Last, but not the least, the adherence to a common set of research reporting guidelines for
presenting the results of experimental work in software engineering would certainly increase the
comparability of different research efforts. Using research reporting guidelines such as those
proposed in [45] is a promising path towards a more effective research on metrics-based
approaches to software development, in general, and CBD, in particular. Note that while such
guidelines are aimed at the description of experimental work (e.g. in a paper describing a
controlled experiment, or set of experiments), our framework was developed to facilitate a
systematic comparison of proposals found in the literature.

6 CONCLUSIONS AND FURTHER WORK
With the increasing demand of the software industry to include third party reusable components
in the software development process, component assemblers need effective ways of selecting
adequate components. Comparative reviews of existing approaches to software component
evaluation are required to aid component assemblers to identify the evaluation approaches better
suited to support their activity. As far as we know, this is the first attempt to provide such a
review in a systematic way.

We contribute with a common framework for the characterization of component assessment
proposals. The framework includes the proposal’s scope, intent and used technique, a critical
appreciation of the most noticeable features of the proposal, and an assessment of its maturity
level, regarding the underlying quality model, its mapping to metrics, the metrics definition and
the achieved level of validation.

Common problems on current approaches to CBD evaluation are identified. Overall, there is a
lack of maturity in existing proposals, which is likely due to the relative novelty of black-box
software components evaluation as a research topic. For instance, determining the relevant
quality attributes which should be assessed is still an open issue. Ambiguity in definition of

quality models and metrics, lack of adequacy of specifying formalisms and insufficient
validation of proposals are among the most common shortcomings in the analysed proposals.
We briefly outline our approach to mitigate these problems.

Our analysis focuses on metrics-based evaluation of structural properties of components and
component assemblies. This is only part of the “evaluation toolset” that should be available to
component assemblers. Other orthogonal evaluation techniques, such as the evaluation of non-
functional properties and, obviously, the assessment of the composability of candidate
components are essential to component selection, but are beyond the scope of the review
performed in this paper.

While conducting this survey we noticed that, on other research areas, such as clinical research,
where evidence-based healthcare databases are maintained (http://www.cochrane.org/), the
method for gathering the proposals to be reviewed is commonly presented using clear and
reproducible search and eligibility criteria. Unfortunately, this is not the current practice in the
realm of Experimental Software Engineering, due to the diversity and scattering of information.

Research networks such as the ESERNET (Experimental Software Engineering Network) have
attempted to coordinate efforts to mitigate the typically low number of related experimental
work, as well as their diversity to an extent that makes their comparison a very hard nut to crack
[46]. Empirical software engineering case studies are often conducted in an ad-hoc fashion.
Striving for well-defined protocols in metrics collection experiments would significantly
improve the comparability between different proposals, facilitating the production of systematic
reviews upon which meta-analysis of the experimental data collected by independent research
teams is more feasible.

REFERENCES
[1] L. Bass, C. Buhman, S. Comella-Dorda, F. Long, J. Robert, R. Seacord, and K. Wallnau,

"Volume I: Market Assessment of Component-Based Software Engineering," Software
Engineering Institute, Technical Note CMU/SEI-2001-TN-007, May, 2000 2001.

[2] J. D. Williams, "Raising Components," Application Development Trends, vol. 7, pp. 27-32,
2000.

[3] C. Szyperski, D. Gruntz, and S. Murer, Component Software: Beyond Object-Oriented
Programming, 2nd ed. New York: ACM Press - Addison Wesley, 2002.

[4] C. Brooke, "The Return on Investment on Commercial off-the-shelf (COTS) Software
Components - Preliminary Study Results," Component Source, Kennesay, GA, USA - Reading,
UK, White paper, August 2002.

[5] F. Bachman, L. Bass, C. Buhman, S. Cornella-Dorda, F. Long, J. Robert, R. Seacord, and K.
Wallnau, "Volume II: Technical Concepts of Component-Based Software Engineering,"
Software Engineering Institute, Technical Report CMU/SEI-2000-TR-008, May 2000.

[6] R. P. S. Simão and A. D. Belchior, "Quality Characteristics for Software Components: Hierarchy
and Quality Guides," in Component-Based Software Quality: Methods and Techniques, LNCS
2693, A. Cechich, M. Piattini, and A. Vallecillo, Eds.: Springer, pp. 184-206, 2003.

[7] L. Brownsword, T. Oberndorf, and C. A. Sledge, "Developing New Processes for COTS-Based
Systems," IEEE Software, pp. 48-55, 2000.

[8] ISO9126, "Information Technology - Software Product Evaluation - Software Quality
Characteristics and Metrics." Geneva, Switzerland: International Organization for
Standardization, 1995.

[9] M. Bertoa and A. Vallecillo, "Quality Attributes for COTS Components," presented at 6th
International Workshop on Quantitative Approaches in Object-Oriented Software Engineering
(QAOOSE'2002), Málaga, Spain, 2002.

[10] ISO9126, "ISO/IEC 9126: Information Technology - Software Product Evaluation - Software
Quality Characteristics and Metrics." Geneva, Switzerland: International Organization for
Standardization, 2001.

[11] M. Lorenz and J. Kidd, Object-Oriented Software Metrics: A Practical Guide. Englewood Cliffs,
NJ, EUA: Prentice Hall, 1994.

[12] N. S. Gill and P. S. Grover, "Component-Based Measurement: Few Useful Guidelines," ACM
SIGSOFT Software Engineering Notes, vol. 28, pp. 4-4, 2003.

[13] A. v. d. Hoek, E. Dincel, and N. Medvidovic, "Using Service Utilization Metrics to Assess and
Improve Product Line Architectures," presented at 9th IEEE International Software Metrics
Symposium (Metrics'2003), Sydney, Australia, 2003.

[14] R. Dumke, A. Schmietendorf, and H. Zuse, "Formal Descriptions of Software Measurement and
Evaluation - A Short Overview and Evaluation - Part I," Metrics News, vol. 11, pp. 35-72, 2006.

[15] B. A. Kitchenham, T. Dybå, and M. Jørgensen, "Evidence-based Software Engineering,"
presented at 26th International Conference on Software Engineering, Edinburgh, Scotland, 2004.

[16] M. Pai, M. McCulloch, J. D. Gorman, N. Pai, W. Enanoria, G. Kennedy, P. Tharian, and J. M.
Colford, Jr, "Systematic reviews and meta-analyses: An illustrated step-by-step guide," National
Medical Journal of India, vol. 17, pp. 86-95, 2004.

[17] D. I. K. Sjøberg, J. E. Hannay, O. Hansen, V. B. Kampenes, A. Karahasanovic, N.-K. Liborg,
and A. Rekdal, "A survey of controlled experiments in software engineering," IEEE
Transactions on Software Engineering, vol. 31, pp. 733-753, 2005.

[18] M. V. Zelkowitz and D. Wallace, "Experimental Validation in Software Engineering," Journal
of Information and Software Technology, vol. 39, pp. 735-743, 1997.

[19] R. L. Glass, I. Vessey, and V. Ramesh, "Research in software engineering: an analysis of the
literature," Information and Software Technology, vol. 44, pp. 491-506, 2002.

[20] A. Jedlitschka and M. Ciolkowski, "Guidelines for Empirical Work in Software Engineering,"
Fraunhofer Institute for Experimental Software Engineering, Technical Report IESE-Report No.
053.05/E (Version 1.0), August 2005.

[21] V. R. Basili, G. Caldiera, and D. H. Rombach, "Goal Question Metric Paradigm," in
Encyclopedia of Software Engineering, vol. 1, J. J. Marciniak, Ed.: John Wiley & Sons, 1994,
pp. 469-476.

[22] M. Bertoa and A. Vallecillo, "Usability metrics for software components," presented at
QAOOSE 2004, Oslo, 2004.

[23] M. Bertoa, J. Troya, and A. Vallecillo, "Measuring the usability of software components,"
Journal for Systems and Software, vol. 79, pp. 427-439, 2006.

[24] R. Dumke and A. Schmietendorf, "Possibilities of the Description and Evaluation of Software
Components," Metrics News, vol. 5, 2000.

[25] M. A. S. Boxall and S. Araban, "Interface Metrics for Reusability Analysis of Components,"
presented at Australian Software Engineering Conference (ASWEC'2004), Melbourne,
Australia, 2004.

[26] H. Washizaki, H. Yamamoto, and Y. Fukazawa, "A Metrics Suite for Measuring Reusability of
Software Components," presented at 9th IEEE International Software Metrics Symposium
(METRICS 2003), Sydney, Australia, 2003.

[27] M. Goulão and F. B. Abreu, "Cross-Validation of a Component Metrics Suite," presented at IX
Jornadas de Ingeniería del Software y Bases de Datos, Málaga, Spain, 2004.

[28] N. S. Gill and P. S. Grover, "Few Important Considerations for Deriving Interface Complexity
Metric for Component-Based Software," ACM SIGSOFT Software Engineering Notes, vol. 29,
pp. 4-4, 2004.

[29] K. Wallnau and J. A. Stafford, "Dispelling the Myth of Component Evaluation," in Building
Reliable Component-Based Software Systems, I. Crnkovic and Larsson, Eds. Boston, London:
Artech House, 2002, pp. 157-177.

[30] S. Sedigh-Ali, A. Ghafoor, and R. A. Paul, "Software Engineering Metrics for COTS-Based
Systems," IEEE Computer, 2001.

[31] R. Seker, "Assessment of Coupling and Cohesion for Component-Based Software by Using
Shannon Languages," presented at South African Institute of Computer Scientists and
Information Technologists, Stellenbosch, Western Cape, South Africa, 2004.

[32] K. Inoue, R. Yokomori, T. Yamamoto, M. Matsushita, and S. Kusumoto, "Ranking Significance
of Software Components Based on Use Relations," IEEE Transactions on Software Engineering,
vol. 31, pp. 213-225, 2005.

[33] W. J. Stewart, Introduction to the Numerical Solution of Markov Chains: Princeton University
Press, 1995.

[34] F. B. Abreu, "Using OCL to formalize object oriented metrics definitions," INESC, Software
Engineering Group, Technical Report ES007/2001, May 2001.

[35] F. Shull, V. R. Basili, J. Carver, J. C. Maldonado, G. H. Travassos, M. Mendonça, and S. Fabbri,
"Replicating software engineering experiments: addressing the tacit knowledge problem,"
presented at 2002 International Symposium on Empirical Software Engineering (ISESE'02),
2002.

[36] S. Counsell, G. Loizou, and R. Naijar, "Quality of manual data collection in Java software: an
empirical investigation," Empirical Software Engineering, vol. 12, pp. 275-293, 2007.

[37] M. Goulão and F. B. Abreu, "Composition Assessment Metrics for CBSE," presented at 31st
Euromicro Conference - Component-Based Software Engineering Track, Porto, Portugal, 2005.

[38] M. Goulão and F. B. Abreu, "Formal Definition of Metrics upon the CORBA Component
Model," presented at First International Conference on the Quality of Software Architectures,
QoSA'2005, Erfurt, Germany, 2005.

[39] OMG, "CORBA Components - Version 3.0," Object Management Group Inc., Specification
formal/02-06-65, June 2002.

[40] OMG, "Unified Modeling Language: Infrastructure - version 2.0," Object Management Group
Inc. formal/05-07-05, March 2006.

[41] OMG, "Unified Modeling Language: Superstructure - version 2.1.1," formal/2007-02-05,
February 2007.

[42] OMG, "UML 2.0 OCL Final Adopted specification," Object Management Group Inc. ptc/03-10-
14, October 2003.

[43] A. L. Baroni and F. B. Abreu, "Formalizing Object-Oriented Design Metrics upon the UML
Meta-Model," presented at Brazilian Symposium on Software Engineering, Gramado - RS,
Brazil, 2002.

[44] M. Goulão and F. B. Abreu, "Formalizing Metrics for COTS," presented at International
Workshop on Models and Processess for the Evaluation of COTS Components (MPEC 2004) at
ICSE 2004, Edimburgh, Scotland, 2004.

[45] A. Jedlitschka and D. Pfahl, "Reporting Guidelines for Controlled Experiments in Software
Engineering," presented at 4th International Symposium on Empirical Software Engineering
(ISESE 2005), Noosa Heads, Australia, 2005.

[46] A. Jedlitschka and M. Ciolkowski, "Towards Evidence in Software Engineering," presented at
International Symposium on Empirical Software Engineering (ISESE'04), 2004.

	INTRODUCTION
	Motivation
	The need for CBD-specific evaluation techniques
	Overview outline

	COMMON SHORTCOMINGS OF METRIC-BASED APPROACHES
	Metrics and their underlying quality model
	Metrics ill-definition
	Insufficient validation of metrics-based approaches

	A FRAMEWORK FOR CHARACTERIZATION OF PROPOSALS
	METRICS FOR REUSE IN CBD
	Approaches to the evaluation of individual components
	Approaches to the evaluation of component assemblies
	Lessons learned
	Lack of an underlying quality model
	Metrics ill-definition
	Insufficient validation

	MITIGATING SOME OF THE IDENTIFIED PROBLEMS
	Providing adequate context for metrics proposals
	Facilitating the replication of validation efforts

	CONCLUSIONS AND FURTHER WORK
	REFERENCES

