
Universidade Nova de Lisboa
Faculdade de Ciências e Tecnologia
Departamento de Informática

Modularity Improvements
with

Aspect-Oriented Programming

Fernando Sérgio Bryton Dias Marques

Dissertação apresentada para a obtenção do Grau de
Mestre em Engenharia Informática pela Universidade
Nova de Lisboa, Faculdade de Ciências e Tecnologia.

Lisboa
(2008)

This dissertation was prepared under the supervision of
Professor Fernando Brito e Abreu,

of the Faculdade de Ciências e Tecnologia,
Universidade Nova de Lisboa.

ii

Measure what is measurable, and make measurable what is not so.
Galileo Galilei (1564 - 1642)

[This page was intentionally left blank]

iv

Summary

Aspect-Oriented Programming is a topic of growing interest, since its presentation in
1997, and significant modularity improvement has, since then, been claimed as one of
its main benefits, both by researchers and practitioners.

The importance of modularity for maintenance and reuse which, consequently,
are crucial for software development time and costs, emphasizes this programming
paradigm, and strongly suggests its adoption by academia and industry. However,
most of the claims on those benefits are, so far, qualitative, and only a small subset of
them has quantitative grounds; therefore, any decision regarding where to adopt or
not this paradigm is not yet sufficiently grounded.

This dissertation presents a modularity quantitative evaluation of the Gang-of-Four
Design Patterns functionally equivalent implementations, in Java and AspectJ, by Han-
nemann and Kiczales and, within this context, draws conclusions about the modular-
ity improvements obtained with Aspect-Oriented Programming, which are expected
to contribute to decisions on where this paradigm should or not be adopted. This
evaluation is made with the Paradigm Independent Metrics (PIMETRICS), defined ac-
cording to the Meta-Model Driven Measurement (M2DM) technique, and grounded
at the Paradigm Independent Meta-model (PIMETA) which implements the Paradigm
Independent Modularity Factors (PIFACTORS).

v

[This page was intentionally left blank]

vi

Sumário

A Programação Orientada a Aspectos é um tópico cujo interesse tem vindo a aumen-
tar, desde a sua apresentação em 1997. Os benefícios que este paradigma introduz
na modularidade têm sido reconhecidos, desde então, como uma das suas principais
vantagens.

A importância da modularidade na manutenção e reutilização e, consequente-
mente, no tempo de desenvolvimento do software e respectivo custo, relevam assim a
importância deste paradigma e recomendam a sua adopção. Contudo, a maioria das
avaliações efectuadas sobre os benefícios deste paradigma têm sido, até à data, na sua
maioria de natureza qualitativa, resumido-se as de natureza quantitativa a um grupo
muito restrito. Por conseguinte, a decisão sobre a adopção ou não deste paradigma
ainda não está suficientemente consolidada.

Esta dissertação apresenta uma avaliação quantitativa das implementações fun-
cionalmente equivalentes, em Java e AspectJ, dos padrões de desenho do Gang-
of-Four , desenvolvidas por Hannemann e Kiczales, e neste contexto, retira con-
clusões sobre os benefícios da modularidade obtidos com a Programação Orien-
tada a Aspectos, que se espera venham a contribuir para a decisão sobre a adopção
ou não deste paradigma. Esta avaliação é feita com métricas independentes do
paradigma(PIMETRICS), definidas de acordo com a técnica Meta-model Driven Mea-
surement(M2DM), e baseadas num meta-modelo independente do paradigma para
avaliação da modularidade(PIMETA) e em factores de modularidade também inde-
pendentes do paradigma(PIFACTORS).

vii

[This page was intentionally left blank]

viii

Contents

1 Introduction 1

1.1 Introduction . 2

1.2 Modularity . 4

1.3 Coupling . 5

1.4 Cohesion . 5

1.5 Aspect-Oriented Programming . 6

1.6 Meta-Model Driven Measurement . 7

1.7 Contributions of this Thesis . 8

1.8 Outline of the Dissertation . 9

2 PIMETA: Paradigm Independent Meta-model 11

2.1 Introduction . 12

2.2 Paradigm Independent Meta-model . 12

2.2.1 PIMETA description . 12

2.2.2 PIMETA well-formedness rules . 14

2.3 PIMETA instantiation with OOP and AOP 16

2.3.1 PIMETA instantiation with OOP/Java 16

2.3.2 PIMETA instantiation with AOP/AspectJ 17

2.4 The Observer Design Pattern in Java and AspectJ 17

2.5 PIMETA instantiation with the Observer versions 18

2.5.1 PIMETA instantiation with the Java version of the Observer . . . 18

2.5.2 PIMETA instantiation with the AspectJ version of the Observer . 22

3 PIFACTORS: Paradigm Independent Modularity Factors 23

3.1 Introduction . 24

3.2 Taxonomy for dependency topologies . 25

3.2.1 Role . 25

3.2.2 Coverage . 26

3.2.3 Commitment . 27

3.2.4 Clustering . 29

3.2.5 Density . 31

3.2.6 Type . 32

ix

CONTENTS

4 PIMETRICS: Paradigm Independent Metrics 35
4.1 Introduction . 36
4.2 Definitions . 37
4.3 Formalizations . 43
4.4 Metrics collection . 50
4.5 Exemplification . 51
4.6 Validation . 56

5 GoF Design Patterns Modularity 59
5.1 Introduction . 60
5.2 The sample . 60
5.3 Descriptive statistics . 63
5.4 EDA: Exploratory Data Analysis . 65

5.4.1 Outlier analysis . 65
5.4.2 Testing distribution adherence . 67

5.5 Hypotheses identification and testing . 69
5.5.1 Metrics discriminative power . 69
5.5.2 Overall coupling changes . 71
5.5.3 Core modular features coupling changes 73
5.5.4 Overall cohesion changes . 75
5.5.5 Core modular features cohesion changes 76
5.5.6 Overall modularity changes . 78

6 Related Work 81
6.1 Introduction . 82
6.2 PIFACTORS . 82
6.3 PIMETRICS . 83
6.4 AOP Modularity Improvements Evaluation 84

7 Conclusions and Future work 87
7.1 Conclusions . 88
7.2 Threats to validity . 89
7.3 Future work . 90

7.3.1 Quantitative Modularity Evaluation 90
7.3.2 Refactoring . 91

A Java Feature and Dependency Types 93

B AspectJ Feature and Dependency Types 97

C PIMETRICS primitives 103

x

List of Figures

1.1 Code scattering and tangling . 7
1.2 Meta-model Driven Measurement Technique 8

2.1 PIMETA Meta-class diagram . 13
2.2 PIMETA well-formedness rules in OCL 14
2.3 PIMETA well-formedness rules auxiliary operations in OCL 15
2.4 PIMETA instantiation extract for Java . 16
2.5 PIMETA instantiation extract for AspectJ 17
2.6 Observer - Java version class diagram . 18
2.7 Observer - AspectJ version class diagram 19
2.8 Screen class source code from the Observer pattern in Java 20
2.9 PIMETA instantiation with the Screen class of the Observer in Java 21
2.10 Screen class source code from the Observer pattern in AspectJ 22
2.11 PIMETA instantiation with the Screen class of the Observer in AspectJ . 22

3.1 Aspectized Screen class dependencies graph 24
3.2 Source Coverage example . 26

3.3 Target Coverage example . 27
3.4 Source Commitment example . 28
3.5 Target Commitment example . 28
3.6 Source Clustering example . 30
3.7 Target Clustering example . 30
3.8 Source Density example . 31
3.9 Target Density example . 32

4.1 Summary of the metrics for features . 41
4.2 Metrics collection process . 50
4.3 Results of the absolute metrics from goal G1 52
4.4 Results of the absolute metrics from goal G1 (cont.) 52
4.5 Results of the ratio metrics from goal G1 52
4.6 Results of the absolute metrics from goal G2 53
4.7 Results of the ratio metrics from goal G2 53

4.8 Results of the absolute metrics from goal G3 54

xi

LIST OF FIGURES

4.9 Results of the ratio metrics from goal G3 55

4.10 Results of the absolute metrics from goal G3 (cont.) 55

4.11 Results of the absolute metrics from goal G4 55

4.12 Results of the ratio metrics from goal G4 56

5.1 Coarsest grained modular features distribution by the GoF implementa-
tions . 61

5.2 Number of features per design pattern and language for the coarsest
feature types . 61

5.3 Number of features per FeatureType and Language 62

5.4 Number of features per Design Pattern and Language 62

5.5 Number of dependencies per DependencyType and Language 63

5.6 Number of dependencies per Design Pattern and Language 64

5.7 Variables used, their scale types and description 64

5.8 Descriptive statistics on the PIMETRICS (indexes) 65

5.9 Outlier analysis for the PIMETRICS (indexes) 66

5.10 QQ Plots for SCouCovI, TCouCovI, SCouCluI and TCouCluI 67

5.11 QQ Plots for SCouComI, TCoucomI, SCohComI and TCohComI 68

5.12 Testing Normal distribution adherence with the Kolmogorov-Smirnov
test for the PIMETRICS . 68

5.13 Testing Normal distribution adherence with the Kolmogorov-Smirnov
test for the remaining metrics . 68

5.14 Testing the influence of the Java design pattern on coupling and cohe-
sion metrics with the Kruskal-Wallis one-way analysis of variance test . 70

5.15 Testing the influence of the AspectJ design pattern on coupling and co-
hesion metrics with the Kruskal-Wallis one-way analysis of variance test

. 70

5.16 Testing the influence of the Java design pattern on modularity metrics
with the Kruskal-Wallis one-way analysis of variance test 70

5.17 Testing the influence of the AspectJ design pattern on modularity met-
rics with the Kruskal-Wallis one-way analysis of variance test 70

5.18 PIMETRICS average per GoF implementation 72

5.19 t-test applied to the PIMETRICS indexes 72

5.20 Paired samples statistics for core modular features coupling 73

5.21 Paired samples correlations for core modular features coupling 74

5.22 Paired samples test for core modular features coupling 74

5.23 Paired samples statistics for SCohComI and TCohComI for the Gof in Java

and AspectJ . 75

5.24 Levene’s and t-test for SCohComI and TCohComI for the Gof in Java and
AspectJ . 76

xii

LIST OF FIGURES

5.25 Paired descriptive statistics for SCohComI and TCohComI for the Gof in
Java and AspectJ . 77

5.26 Paired correlations for SCohComI and TCohComI for the Gof in Java and
AspectJ . 77

5.27 t-test for SCohComI and TCohComI for the Gof in Java and AspectJ 77
5.28 Paired samples statistics for PCI and MMF for the GoF patterns in Java

and AspectJ . 78
5.29 Levene’s and t-test for PCI and MMF for the GoF patterns in Java and

AspectJ . 78

xiii

LIST OF FIGURES

[This page was intentionally left blank]

xiv

List of Tables

1.1 System architecture features . 5

4.1 Goals summary . 37
4.2 GQM model for coupling evaluation for features 38
4.3 GQM model for coupling evaluation for modular features 39
4.4 GQM model for cohesion evaluation for modular features 40
4.5 GQM model for system modularity evaluation 42
4.6 Metrics formalization for coupling evaluation for features 43
4.7 Metrics formalization for coupling evaluation for features (cont.) 44
4.8 Metrics formalization for coupling evaluation for features (cont.) 45
4.9 Metrics formalization for coupling evaluation for modular features . . . 46
4.10 Metrics formalization for cohesion evaluation for modular features . . . 47
4.11 Metrics formalization for cohesion evaluation for modular features (cont.) 48
4.12 Metrics formalization for Modularity evaluation for systems 49

A.1 Java Feature Types . 94
A.2 Java Dependency Types . 95

B.1 AspectJ Feature Types . 98
B.2 AspectJ Features (cont.) . 99
B.3 AspectJ Dependency Types . 100
B.4 AspectJ Dependency Types (cont.) . 101

C.1 Feature operations . 104
C.2 Feature operations (cont.) . 105
C.3 Feature operations (cont.) . 106
C.4 Feature operations (cont.) . 107
C.5 Feature operations (cont.) . 108
C.6 ModularFeature operations (cont.) . 109
C.7 ModularFeature operations (cont.) . 110
C.8 ModularFeature operations . 111

xv

LIST OF TABLES

[This page was intentionally left blank]

xvi

Chapter 1

Introduction

Contents
1.1 Introduction . 2

1.2 Modularity . 4

1.3 Coupling . 5

1.4 Cohesion . 5

1.5 Aspect-Oriented Programming . 6

1.6 Meta-Model Driven Measurement . 7

1.7 Contributions of this Thesis . 8

1.8 Outline of the Dissertation . 9

This chapter introduces the main concepts that are present throughout this dissertation
and the motivation to the quantitative modularity assessment of systems developed
with aspect-oriented programming. It also enumerates the main contributions of this
dissertation and presents its outline, with a brief summary of each of the remaining
chapters.

1

1. INTRODUCTION 1.1. Introduction

1.1 Introduction

New software development paradigms usually emerge and grow on a bottom-up fash-
ion, following a sequence of overlapping concern phases. This evolution path can be
observed through surveys on researchers’ and leading practitioners’ work evidences
(conference communications, journal papers, books, etc).

First, computer scientists come up with new programming metaphors usually bun-
dled within programming languages; then commercial software-houses and open-
source communities conceive development environments supporting those new lan-
guages; software engineering researchers then focus their attention on analysis and
design concerns; methodologists start to be concerned on supporting new kinds of de-
velopment and assessment processes; information systems people develop new argu-
ments for business value of technology migration; and finally everybody gets worried
on evolution and legacy systems.

This was the case for the procedural and object-oriented paradigms and the whole
story will most probably repeat for the more recent one - the aspect-oriented paradigm.

First of all notice that each paradigm wave is usually long. They often span over
more than a decade. This long period of time corresponds to the ad nausea exhaustion
of each of the above mentioned research concerns in the context of the paradigm in
hand.

If we take a specific concern from the above list, we can observe, throughout time,
a strong evidence of periodic research output bursts, each one corresponding to the
emergence of a new paradigm. For instance, regarding the concern of the quantitative
assessment of software products we had a wave of interest centered on the procedural
paradigm until the mid-eighties, then on the object-oriented paradigm until the late
nineties and currently a wave is rising around the aspect-oriented paradigm. While
the creation of new research niches may be interesting for PhD students searching for
a potential new research topic, there are several perverse side-effects associated with
this paradigm-shift phenomenon both on the research and practitioner’s sides.

Let us look at the research side first. When performing a state of the art survey for
finding who is doing what and where your bright new ideas can be published, you
will often disregard or even avoid the exhausted old gold lode. In other words, either
you ignore the work developed in the same topic, but in the context of a previous
paradigm, more than a decade old as we saw, or you look at it with haughtiness to
quickly conclude that the whole work performed in the past simply does not apply for
the new paradigm. This is a very convenient conclusion for new researchers eager for
publishing and creating their own space.

Besides, comparing things across the paradigm border is a hard nut to crack, since
new paradigm heralds tend to stress innovative paradigm characteristics and not the
commonalities with the old paradigm. You have to be an expert on both (old and new)

2

1. INTRODUCTION 1.1. Introduction

paradigms to understand the whole picture. The perverse effects of just looking at
the new paradigm are that good reusable ideas of the past are forgotten and new re-
searchers often reinvent the wheel. Also reprehensible is to adapt good old ideas, pre-
senting them as innovative (i.e. not crediting their origin).

Now let us look to the world of business. In smaller businesses where you can
afford the risk of being adventurous, you are usually in the hands of hype marketers
when it comes to paradigm shift. You are simply left in the dark because the quantita-
tive studies bringing evidence on the technological and consequent managerial bene-
fits of migration are very scarce [GVR02] [RGV04].

This unfortunate tradition for a lack of insufficient validation of claims has been
reported for more than a decade [TLPH95] [ZW97]. It has been pointed out that one
of the strongest reasons for this scarcity is the lack of cooperation among academic
researchers and practitioners facing the migration dilemma. As far as we know very
few joint works of this sort were published [LTBM99].

On the other hand, although researchers gather to discuss migration concerns, their
focus, although technical, is qualitative in nature (e.g. [MRC06] reports on aspect ori-
ented software development and software engineering researchers with a focus on re-
verse engineering, program comprehension, software evolution and software mainte-
nance confronting their thoughts).

However, for software managers, concerned with training, development and main-
tenance costs, Return On Investment (ROI) and other economic figures, a pure tech-
nical and qualitative discussion is fruitless. A responsible Chief Information Officer
(CIO) or project manager (PM) will not take unplanned risks. He will let others prove
that the technology supporting the new paradigm is mature enough before streamlin-
ing it in his development shop. In the end, strong players, such as big software vendors
with their huge marketing sales force, will be the ones to impose the evolution track,
after very careful technology maturation. By that time the careful CIO may have lost a
competitive advantage.

Summing up, this status quo of long transition periods for paradigm shift
(widespread adoption) will not change unless researchers do their share of the work:
provide quantitative evidence that migration is cost-effective. This proof can be per-
formed partly if researchers show, beyond doubt, that a system developed with a new
paradigm is easier to understand and maintain than a functionally equivalent one,
built with the previous paradigm (see for instance [DMM05]).

To be adequate and fair, this kind of quantitative comparisons require that you do
not compare apples with oranges. If, for instance, you are interested in comparing
the object-oriented programming (OOP) and the aspect-oriented programming (AOP)
paradigms, then you should use the same ruler for measuring (quantifying) the char-
acteristics of functionally-equivalent OOP and AOP artifacts. However, for reasons
presented above, academic researchers are too much often tempted to do the opposite,

3

1. INTRODUCTION 1.2. Modularity

that is, suggesting new rulers [GBB06] [ZH03] [Zha04] [ZX04] [CT04]. The justifica-
tion for proposing specific metrics is that each paradigm is supported in formalisms
that offer different constructs, introducing new sorts of containment and dependency
relations.

To compare apples with oranges, we must be able to abstract from their differences
and concentrate on their commonalities. After all, apples and oranges have previously
been shown to be remarkably similar [Bar00]. In our case this means that we should
concentrate on the empiric concepts that explain the software properties under mea-
surement (see the representational theory of measurement in [FP97]). For instance, if
we are interested in evaluating modularity, then we should consider modules, items
belonging to them and their internal and external dependencies. Each paradigm (and
in fact each reification language), will have its own instantiation of those concepts.

This dissertation proposes and demonstrates a sound alternative for cross-
paradigm modularity quantitative evaluation, based on the Meta-Model Driven Mea-
surement (M2DM) [Abr01], which encompasses the usage of metrics defined upon
meta-models, and presents the modularity improvements obtained with aspect-
oriented programming in a functional equivalent implementation.

Throughout the remainder sections of this chapter, the main concepts encompassed
in this dissertation will be summarily introduced, followed by the presentations of the
main contributes and of the dissertation outline.

1.2 Modularity

One of the main reasons why systems are modularized is because one of the most
fundamental principles of solving large and complex problems is that breaking up the
problem into smaller parts enhances understandability and tractability [Pol57].

According to Myers, modularity 1 is the single attribute of software that allows a program
to be intellectually manageable [Mye78]. With this and reusability2 in mind, software is
divided into modules, a set of one or more continuous program statements having a name
by which other parts of the system can invoke it, and preferably having its own distinct set of
variable names that interact to satisfy problem requirements [SMC74].

The criteria followed to accomplish this division is the key issue to achieve good
modularity 3, which is claimed to provide lower development effort and costs [Pre00].

With such consequences, it is not surprising that modularity has been addressed by
several programming paradigms, within the last 40 years, from which Aspect-Oriented
Programming is one of the newest.

Notice that this definition of a module, such an important concept for software

1The division of software into modules
2The capability provided by a module to be used outside the scope to which it was developed to

reduce the development effort
3Undermodularity or overmodularity should be avoided.

4

1. INTRODUCTION 1.3. Coupling

development, was given 40 years ago but is still up-to-date, is quite broad, and not
bound to any programming paradigm or language in particular.

According to Pressman, modules should be developed in order to be functionally
independent. They should address a specific set of requirements and, this way, their
interfaces will be easier to understand and maintain and reusability is possible. This
independence is usually assessed using two criteria: coupling and cohesion [Pre00].

Many taxonomies could be used to describe the architecture of a software system,
like the one from Meyer’s [Mey97], for instance, but since that one of the purposes of
this research is to achieve its goal without being bound to any particular programming
paradigm or language, it was chosen to describe such an architecture in neutral terms,
more abstract, to avoid semantic bias, that will be used throughout this dissertation.

A software system architecture is then composed by architectural features which
implement the requirements. These features can be atomic features or modular features
regarding their capability of containing other features . If a feature is able to contain
other features , then it is a modular feature. If the feature does not have this capability,
then it is an atomic feature. Table 1.1 shows concrete examples for these concepts in the
context of UML, Java and AspectJ.

Modular Feature Atomic Feature
UML Component, Class, Interface Method, Property
Java Package, Class, Interface Function, Variable

AspectJ Package, Aspect Advice, Pointcut

Table 1.1: Examples from different languages for the system architecture features

1.3 Coupling

Coupling has been defined as the degree of interaction within two modules [Mye78] or,
more recently, as a measure of the relative interdependence among modules [Pre00].

Either way, modules, by definition, must interact with each other to satisfy require-
ments, but should do it as little as possible. In other words, they should not depend
too much on the remaining modules.

Low coupling has been pointed out as a benefic factor on several aspects such as un-
derstandability, reusability and reduction on the impact of modifications and therefore
error propagation [Pre00].

1.4 Cohesion

Cohesion has been defined as the degree of interaction within a module [Mye78] or,
more recently, as a measure of the relative functional strength of a module [Pre00].

5

1. INTRODUCTION 1.5. Aspect-Oriented Programming

To summarize, a module contains code that interacts to achieve a common goal.
The higher this interaction, the higher the cohesion, as long as the functional objective
to achieve remains the same.

When the code from a module is combined with a loose functional relation, the
module is more difficult to maintain and reuse.

1.5 Aspect-Oriented Programming

Aspect-Oriented Programming (AOP), proposed by Kiczales et al. [KLM+97], is a pro-
gramming paradigm of growing interest, given its claimed modularity benefits both
by researchers and practitioners as in [HK02], [SGK+04] or [KSG+06].

AOP tries to eliminate two important causes for the loss of modularity from Object-
Oriented Programming. These are code tangling and code scattering, which are origi-
nated by the implementation of the crosscutting concerns.

Code tangling is the name given to the introduction of code into a module that
does not implement the same requirement for which the module was designed, in
other words, the module is implementing a crosscutting concern. This action potentially
decreases cohesion.

Code scattering is the name given to the introduction of code that implements one
requirement into several modules simultaneously. This action potentially increases
coupling.

These concepts are depicted in figure 1.1 [PHP08], where the database access and
the logging concerns originate code scattering and code tangling when implemented
within the core system modules, Bookshell, Book and Modules.

The way AOP tries to solve these problems is by encapsulating the crosscutting con-
cerns into aspects, removing them from the modules they are deforming and, with spe-
cific constructs, applying the code again to the places where it should be executed, in
compile or run-time. From a design point-of-view, the software allegedly gains mod-
ularity due to the decrease of coupling and the increase of cohesion. However, this
analysis is merely qualitative, restricted to the core classes, and does not mean that
AOP does not encompass other dependencies that can harm modularity.

By quantitatively evaluating the modularity obtained with aspect-oriented pro-
gramming, it will be possible to clearly understand the impact of this new paradigm,
from which many qualitative appreciations have been made so far, exemplified by
those in [KLM+97], in [HK02] or in [Lad03]. It will also be possible to objectively
decide if, when, and how, it should be applied, as well as to identify where it can be
improved.

6

1. INTRODUCTION 1.6. Meta-Model Driven Measurement

Figure 1.1: Code scattering and tangling

1.6 Meta-Model Driven Measurement

The Meta-Model Driven Measurement (M2DM) approach is a technique introduced
in [Abr01], where the concepts of the domain to measure and their relations are first
specified in a Unified Modeling Language (UML) [OMG03c] [OMG03a] meta-model.
Having this meta-model as a ground, a set of metrics is developed and formalized in
the Object Constraint Language (OCL) [OMG03b]. Then, this meta-model is instanti-
ated with the concrete objects to measure, and finally the measurement is done with a
UML tool like the USE tool [GBR07]. This technique is depicted at figure 1.2.

The most relevant benefits of this methodology are:

i) the formalization of metrics by using a clarified conceptual content provided by
the meta model;

ii) the expressiveness and adequacy of OCL for this purpose;

iii) the usage of UML Class and Object diagrams to represent both the domain and the
system to measure as well as the OCL metrics, considering that UML is probably
one of the most used languages for the analysis and design of software systems;

iv) the OCL expressions are executable thus eliminating the need for further metrics
collection instruments.

7

1. INTRODUCTION 1.7. Contributions of this Thesis

Figure 1.2: Meta-model Driven Measurement Technique

1.7 Contributions of this Thesis

We may summarize the research work discussed in this dissertation as follows:

We have developed PIMETA, a Paradigm Independent Meta-model for
modularity;

We have researched the modularity concepts and its manifestations to
understand how it can be described in terms of the dependencies among
software modules and developed PIFACTORS, the Paradigm Indepen-
dent Modularity Factors;

We have defined, validated and formalized PIMETRICS, a set of
Paradigm Independent Metrics for modularity assessment;

We have evaluated modularity for the Gang-of-Four Design Patterns
functionally equivalent implementations in Java and AspectJ and dis-
cussed the results obtained with Aspect-Oriented Programming.

The above contributions can be further detailed as follows:

a) PIMETA. This is a meta-model independent from any particular programming
paradigm or language which describes the relations between the concepts subjacent
to modularity in a system. This meta-model is instantiated, within this research,
with the already mentioned design patterns implementation presented in [HK02]

b) PIFACTORS. The modularity of a software module can be described in terms of its
coupling and cohesion, that is, in terms of the dependencies that exist among the

8

1. INTRODUCTION 1.8. Outline of the Dissertation

module and the remainder modules of the system (coupling), and in terms of the
dependencies that exist among the inner parts of a module (cohesion). The PIFAC-
TORS are a set of dependency-based properties, created to distinguish the modules
from a system based on their modularity. The PIFACTORS are independent of any
particular programming paradigm or language.

c) PIMETRICS. This set of modularity metrics was created to measure the PIFACTORS
and is formalized in OCL upon the PIMETA;

d) Design Patterns modularity assessment and improvements with AOP. We have evaluated
the modularity at both design pattern implementations using the M2DM method-
ology with the PIMETA and the PIMETRICS. The functionally equivalent imple-
mentations of the Gang-of-Four Design Patterns, implemented in Java and AspectJ

by Hannemann and Kiczales, encompass 186 classes, 58 interfaces and 40 aspects.
Even though not being real systems, the overall size and diversity of the features
implemented and the fact of having been developed by experts is a good guarantee
regarding the validity and inference capability of the comparative study between
the two programming languages. Also, these implementations have already been
used for similar studies, thus increasing the comparability of our results.

1.8 Outline of the Dissertation

This dissertation is organized in a set of chapters which are briefly summarized as
follows:

Chapter 2. This chapter presents the PIMETA and its instantiation with OOP and
AOP. It also presents its instantiation with the functional equivalent implemen-
tations of the Observer Design Pattern in Java and AspectJ, to show how PIMETA
can be instantiated with any of these languages and paradigms, and how effec-
tively their modularity differences are evidenced.

Chapter 3. This chapter introduces the PIFACTORS. Here, the different ways features
can be distinguished based on the types of dependencies in which they are in-
volved, are thoroughly discussed.

Chapter 4. In this chapter, the PIMETRICS are defined according to the Goal Ques-
tion Metric methodology, based on the PIMETA and the PIFACTORS, formalized
with OCL according to the M2DM methodology, exemplified with the Screen
class from the Observer design pattern functional equivalent implementations
and finally validated.

Chapter 5. In this chapter the results from the measurement of the GoF design patterns
in Java and AspectJ with the PIMETRICS will be presented and discussed.

9

1. INTRODUCTION 1.8. Outline of the Dissertation

Chapter 6. In this chapter an overview of the related work is presented and discussed.

Chapter 7. This chapter summarizes the achievements of the research work described
in this thesis and lists some open issues, which should and hopefully will ground
our future research work.

10

Chapter 2

PIMETA: Paradigm Independent
Meta-model

Contents
2.1 Introduction . 12

2.2 Paradigm Independent Meta-model . 12

2.3 PIMETA instantiation with OOP and AOP 16

2.4 The Observer Design Pattern in Java and AspectJ 17

2.5 PIMETA instantiation with the Observer versions 18

This chapter presents the PIMETA and its instantiation with OOP and AOP. It also
presents its instantiation with the functional equivalent implementations of the Ob-
server Design Pattern in Java and AspectJ, to show how PIMETA can be instantiated
with any of these languages and paradigms, and how effectively their modularity dif-
ferences are evidenced.

11

2. PIMETA: PARADIGM INDEPENDENT META-MODEL 2.1. Introduction

2.1 Introduction

In this chapter, a meta-model for describing the structural relationships of software
systems, required to perform modularity assessments, across paradigm borders, will
be proposed. The constructs of a given development language, either textual or graphi-
cal, implementing a paradigm, are mapped to elementary paradigm-independent con-
cepts. Those concepts (e.g. features and dependencies) are represented within a single
layer of abstraction, instead of being scattered throughout several layers, like for in-
stance in a system modeled with several UML diagrams.

The meta-model is instantiated either from source code or from design models
using appropriate loaders (transformers). The resulting model can be assessed on a
paradigm independent fashion, since the meta-model only includes generic concepts,
which are omnipresent in all paradigms. Since the meta-model is expressed as an UML
meta-class diagram, modularity metrics can then be defined over the meta-model us-
ing a formal language, the Object Constraint Language (OCL) [OMG03b], like pro-
posed in [Abr01]. OCL is also used for expressing well-formedness rules for the meta-
model itself. To add support for a new language, or paradigm, a mapping of its specific
constructs to the core concepts represented in the meta-model can be proposed. This
possibility makes the meta-model based approach to metrics definition flexible.

In the next section the paradigm-independent meta-model(PIMETA) [BA07] is pre-
sented.

In section 2.3 the PIMETA will be instantiated with Java and AspectJ, to demonstrate
how the specific constructs of different languages and paradigms can be mapped to its
elementary modularity concepts.

In section 2.4 the two functional equivalent implementations, in Java and AspectJ,
of the Observer Design pattern, are presented. These two languages are good repre-
sentatives of the object-oriented and of the aspect-oriented paradigms, respectively.

These implementations will be the ground for section 2.5, where PIMETA is instan-
tiated with both versions, to demonstrate how it can be instantiated by any system
implemented with either Java or AspectJ, and its effectiveness in evidencing the mod-
ularity differences between these languages and the paradigms they represent.

2.2 Paradigm Independent Meta-model

2.2.1 PIMETA description

Modularity is an architectural property with impact on software maintenance and
reusability [Pre00]. From a modularity perspective, a system is composed of features,
which interact among each other, originating dependencies. Features are modular, and
consequently called modules, when they have the capability to aggregate other features

12

2. PIMETA: PARADIGM INDEPENDENT META-MODEL 2.2. Paradigm Independent Meta-model

to logically organize them, like packages, classes or operations. Features are atomic
when they do not allow the aggregation of other features (e.g. a parameter or a class
attribute).

The meta-model depicted in figure 2.1 can be logically divided into two different
parts. This division is represented by the double line and is inspired by the powertypes
concept [Hal04].

The upper part, composed by the Paradigm, Language, FeatureType, ModularFea-
tureType, AtomicFeatureType and DependencyType meta-classes, allows representing
paradigms and languages, the kind of features and dependencies they offer, and how
they can be organized. The Paradigm meta-class is meant to represent paradigms like
OOP or AOP. The Language meta-class represents languages like Java or AspectJ. Each
language implements a specific paradigm, and one language can extend another (e.g.
AspectJ extends Java), thus enabling the reuse of the base language definitions. The
abstract meta-class FeatureType represents the types of features that languages offer.
ModularFeatureType represents the different modules offered by languages (e.g. the
class and package modules are offered by Java). A ModularFeatureType may contain
any other FeatureType(e.g. a class may contain an attribute or another class in Java).
AtomicFeatureType represents all non-modular features offered by languages (e.g. inter-
face declaration or inheritance implementation are offered by Java). Finally, the Depen-
dencyType meta-class represents the different dependency types that can exist among
features, provided by languages (e.g. an operation calls another operation in Java).

Figure 2.1: PIMETA Meta-class diagram

13

2. PIMETA: PARADIGM INDEPENDENT META-MODEL 2.2. Paradigm Independent Meta-model

The lower part, composed by the Feature, ModularFeature, AtomicFeature and Depen-
dency meta-classes, allows the representation of the system to be analyzed, its concrete
features, dependencies and organization. The abstract meta-class Feature represents
the features from the system under analysis. The ModularFeature meta-class is meant
to be instantiated with the modules from the system under analysis (e.g. system classes
or packages if Java is the language). A ModularFeature may contain any Feature, like a
class may contain an attribute or another class in Java. The AtomicFeature meta-class
should be instantiated by the features which are not modular, from the system under
analysis, like an instance variable if Java is, again, the language used. The Dependency
meta-class should be instantiated with the dependencies that exist in the system under
analysis, like an operation calling another operation in a Java system. ModularFeature,
AtomicFeature and Dependency instances always have a type from the corresponding
meta-classes of the upper part of the meta-model.

2.2.2 PIMETA well-formedness rules

To ensure the meta-model’s consistency, several well-formedness rules need to be ex-
pressed. These were formalized as OCL invariants and can be found at figure2.2. This
is the same technique as that used in the UML series of standards for defining the
corresponding meta-model [OMG03c] [OMG03a].

Figure 2.2: PIMETA well-formedness rules in OCL

The OCL invariants make use of several auxiliary operations, also defined in OCL,
which can be found at figure 2.3.

14

2. PIMETA: PARADIGM INDEPENDENT META-MODEL 2.2. Paradigm Independent Meta-model

Figure 2.3: PIMETA well-formedness rules auxiliary operations in OCL

15

2. PIMETA: PARADIGM INDEPENDENT META-MODEL 2.3. PIMETA instantiation with OOP and AOP

2.3 PIMETA instantiation with OOP and AOP

To demonstrate how PIMETA can be used for representing software systems de-
signed (input is a model) or written (input is source code) in different languages and
paradigms, a full instantiation has been performed, for the Java and AspectJ languages.

In the following subsections, fragments of that instantiation are presented, repre-
sented as UML meta-object diagrams. The complete instantiation cannot be shown due
to space limitation, since the corresponding diagrams are very large. Nevertheless, it
is believed that the represented extracts are sufficient for a good understanding of the
instantiation process.

2.3.1 PIMETA instantiation with OOP/Java

Figure 2.4 exhibits a partial representation of the PIMETA instantiation with the OOP
paradigm, the Java language which implements it, as well as some of its features,
namely the Package which aggregates other packages, and the Class which, in turn,
aggregates other classes and variables, and the type of a variable, represented by the
variable type dependency type binding the variable and the class which provides its
type.

Further details on how and which Features and Dependencies, from the Java lan-
guage, have been instantiated at PIMETA, can be found at appendix A.

Figure 2.4: PIMETA instantiation extract for Java

16

2. PIMETA: PARADIGM INDEPENDENT META-MODEL 2.4. The Observer Design Pattern in Java and AspectJ

2.3.2 PIMETA instantiation with AOP/AspectJ

Figure 2.5 shows a fragment of the resulting meta-object diagram from the PIMETA
instantiation with AOP and AspectJ. In the history of programming languages and
also of modeling languages, many proposals were made to extend existing languages
while guaranteeing backward compatibility. Well-known cases are C++ (compatible
with C) and AspectJ (compatible with Java). PIMETA provides a language extension
mechanism (reflexive meta-dependency extends in figure 2.1). This mechanism allows
reusing the meta-objects created for Java in the context of AspectJ. The specific features
of AspectJ are the only ones that must then be added, such as the fact that a package may
contain aspects and that an aspect may contain variables. The dependency corresponding
to an aspect inheriting from a class is also represented, through the AspectInheritsFrom-
Class meta-object.

Further details on how and which Features and Dependencies, from the AspectJ lan-
guage, have been instantiated at PIMETA, can be found at appendix B.

Figure 2.5: PIMETA instantiation extract for AspectJ

2.4 The Observer Design Pattern in Java and AspectJ

The Observer Design Pattern [GHJV95], implemented both with Java and AspectJ by
Hannemann and Kiczales [HK02], was chosen to show how PIMETA can be instanti-
ated with systems from any of these two different languages and paradigms, and how
their modularity differences can effectively be put in evidence by PIMETA. This choice
has the following advantages:

i) its small size facilitates understanding;

ii) it complements the PIMETA instantiation examples started in previous sub-
sections;

17

2. PIMETA: PARADIGM INDEPENDENT META-MODEL 2.5. PIMETA instantiation with the Observer versions

iii) the instantiated systems are functionally equivalent;

iv) the Observer pattern is a paradigmatic example of a way to avoid high coupling;

v) it was developed by experts with the purpose of putting in evidence the differ-
ences between both paradigms (OOP and AOP).

However, this example only encompasses a small subset of the features offered by
both languages. Another disadvantage is the fact of not being a real world example.

The UML class diagram of the Observer Design Pattern implementation in Java

is presented in figure 2.6. The UML class diagram of the Observer Design Pattern
implementation in AspectJ is presented in figure 2.7.

Figure 2.6: Observer - Java version class diagram

2.5 PIMETA instantiation with the Observer versions

2.5.1 PIMETA instantiation with the Java version of the Observer

To demonstrate how PIMETA can be instantiated by a Java system, PIMETA was in-
stantiated with the Java version of the Observer design pattern. An extract of that
instantiation is shown at figure 2.9 where only the Screen class is represented, also
due to space constraints. For simplicity and understandability reasons, we chose not
to represent this instantiation as an object diagram but, instead, to represent it as a
graph, based on the PIMETA meta-classes. For the same reasons, several objects are

18

2. PIMETA: PARADIGM INDEPENDENT META-MODEL 2.5. PIMETA instantiation with the Observer versions

Figure 2.7: Observer - AspectJ version class diagram

not shown, namely the Java objects needed by this instantiation, the profuse Depen-
dencyType meta-objects corresponding to the Dependency meta-objects represented, and
the dependencies’ names.

The code corresponding to the Screen class from the Java implementation of the
Observer design pattern is fully presented at figure 2.8. At this example, depicted in
figure 2.9 there are atomic features, represented by a circle (i.e. Screen.name), modu-
lar features represented by a square (i.e. Screen.display) and features with an undeter-
mined1 type are represented by a polygon (i.e. Iterator).

Each solid black line represents a containment relation, that is, each feature that
contains another feature has a solid black line with an arrow pointing towards it (i.e.
Screen contains Screen.display). Each dashed line represents a dependency, that is, when
one feature dependends on another, a dashed line is drawn from the dependent to-
wards the depended with an arrow pointing towards it (i.e. Screen.display calls Sys-
tem.out.println).

The big grey box represents the border of the Screen class. All the features outside
this box do not belong to the Screen class, while the opposite is also true. In this ex-
ample, all the dependencies that leave the box are responsible for the coupling of the
Screen class, while those that remain inside the box are responsible for its cohesion.

For clarification, all features have their names fully qualified according to their con-
tainer (i.e. Screen.Screen is the constructor of the Screen class). Also should be noticed
that the Screen class is represented inside its own border for two reasons. One is for
coherence on the graphical representation of the containment relations, and the other
is because the class itself can be part of dependencies that may contribute either for
coupling or cohesion, and having the class inside its own border makes it easy to see

1Undetermined due to limitations of the automatic process which generated this graph

19

2. PIMETA: PARADIGM INDEPENDENT META-MODEL 2.5. PIMETA instantiation with the Observer versions

those that are directed towards the outside (coupling) and those that remain in the
inside (cohesion).

This notation for the representation of features and dependencies from a system as
a graph will be used at similar examples throughout this dissertation.

Each solid black line represents a containment relation, that is, each feature that
contains another feature has a solid black line with an arrow pointing towards it. Each
dashed line represents a dependency from the dependent towards the depended.

The big gray box represents the border of the Screen class. None of the features out-
side this box belong to the Screen class, while all the ones inside it do. In this example,
all the dependencies that leave the box are responsible for the coupling of the Screen
class, while those that remain inside the box are responsible for its cohesion.

Figure 2.8: Screen class source code from the Observer pattern in Java

20

2. PIMETA: PARADIGM INDEPENDENT META-MODEL 2.5. PIMETA instantiation with the Observer versions

Figure 2.9: PIMETA instantiation with the Screen class of the Observer in Java

21

2. PIMETA: PARADIGM INDEPENDENT META-MODEL 2.5. PIMETA instantiation with the Observer versions

2.5.2 PIMETA instantiation with the AspectJ version of the Observer

To demonstrate how PIMETA can be used for representing an AspectJ system, PIMETA
was instantiated with the AspectJ version of the Observer design pattern. An extract of
that instantiation is shown at figure 2.11 where only the Screen class is represented2.

Several objects are also not shown, namely, the AspectJ objects needed by this in-
stantiation, the profuse DependencyType meta-objects corresponding to the Dependency
meta-objects represented, and the dependencies’ names.

The code corresponding to the Screen class from the AspectJ implementation of the
Observer design pattern is fully depicted at figure 2.10.

By looking at figures 2.9 and 2.11, the modularity differences introduced by AOP at
this concrete pattern implementation are perceivable, being this capability one of the
benefits of PIMETA.

Figure 2.10: Screen class source code from the Observer pattern in AspectJ

Figure 2.11: PIMETA instantiation with the Screen class of the Observer in AspectJ

2The notation used is the same described at section 2.5.1

22

Chapter 3

PIFACTORS: Paradigm Independent
Modularity Factors

Contents
3.1 Introduction . 24

3.2 Taxonomy for dependency topologies 25

This chapter introduces the PIFACTORS. Here, the different ways features can be dis-
tinguished based on the types of dependencies in which they are involved, are thor-
oughly discussed.

23

3. PIFACTORS: PARADIGM INDEPENDENT MODULARITY FACTORS 3.1. Introduction

3.1 Introduction

As mentioned in chapter 1, modularity can be assessed using the concepts of coupling
and cohesion which, in turn, are the result of the dependencies that exist among the
features from a software system. So, to evaluate modularity, these dependencies must
be evaluated.

If, when evaluating the modularity of a feature, the dependencies under considera-
tion are those towards other features rather than the one being considered and those it
may contain, then we are talking about coupling. If, on the other hand, the dependen-
cies under consideration are only those between the features that are contained within
the feature being considered, then we are talking about cohesion.

Figure 3.1: Aspectized Screen class dependencies graph

Take for instance the example at figure 3.11. In it, we can observe a graph with
the dependencies of the Screen class from the AspectJ implementation of the Observer
Design Pattern.

If we are measuring the modularity of a Java class, then its coupling comes from the
dependencies between it and the remainder features of the system, not contained by it
(i.e. other classes), and cohesion comes from the dependencies among the features it
contains (i.e. methods).

However, if we raise the level of abstraction and try to measure the modularity
of a Java package, then its coupling comes from the dependencies between it and the
remainder features of the system not contained by it (i.e. other packages), while its co-
hesion comes from the dependencies among the features it contains (i.e. Internal Java

classes coupling). When we change the level of abstraction, we notice that the border

1Uses the same notations as those described in section 2.5.1

24

3. PIFACTORS: PARADIGM INDEPENDENT MODULARITY FACTORS 3.2. Taxonomy for dependency topologies

between coupling and cohesion is the same as the border of the feature under consid-
eration. Also, if we consider, for any feature, that it only has dependencies among the
features it contains and dependencies towards external features, then we can say that
coupling and cohesion are complementary.

Several ways have been proposed for improving cohesion(increasing it) and cou-
pling(reducing it) for the object-oriented paradigm. The application of design pat-
terns [GHJV95] is one of them. More recently, object-oriented programming was refac-
tored to accomodate a new modularization paradigm as described in section 1.5. AOP,
by encapsulating the crosscutting concerns in a special kind of modules called aspects,
claims to improve modularity by improving coupling and cohesion. Since coupling
and cohesion result from dependencies among the features of a software system, we
should study the different manifestations of those dependencies in terms of how the
corresponding features participate in them.

3.2 Taxonomy for dependency topologies

Dependencies can be analyzed in many ways. The following PIFACTORS are ways
to analyze these dependencies with the purpose to differentiate the features from a
software system.

3.2.1 Role

A dependency always encompasses a pair of features, even though sometimes these
may be the same. The dependent feature is called source, and the depended is called
target.

The role factor regards to the part a feature plays at each dependency in which it
is involved. A feature acting as a source must know about the features on which it
depends, because those may affect its purpose. On the other hand, a feature acting as
a target should be aware of its probable impact at the features which rely on it.

Features contribute to the overall modularity when they act as sources or targets,
thus it is important to understand how a feature contributes to modularity from both
roles. Besides, a feature might also exclusively act as a source or as a target. So, if
one of the roles is disregarded, some features may not be considered when evaluating
modularity, in spite of playing a part in it.

At the following factors descriptions, each factor will be explained considering both
perspectives (source and target) a feature can have from a dependency. For a better
understanding of how each factor can distinguish features by itself, the previously
explained factors will always be made equal at those features. For instance, when
looking at commitment, coverage is made equal at the examples, as not to interfere
with the modularity evaluation among the features, which will only be done with the
commitment factor, in this case.

25

3. PIFACTORS: PARADIGM INDEPENDENT MODULARITY FACTORS 3.2. Taxonomy for dependency topologies

3.2.2 Coverage

The coverage factor distinguishes features based on how many other different features
are involved within its dependencies.

If coverage is being considered for coupling evaluation then, from the source fea-
ture perspective, the more different features a feature uses, the more that feature is
coupled.

On the other hand, if coverage is being considered for cohesion evaluation, the
higher the coverage of the feature which is being analyzed, the higher is its contribute
to the cohesion of the modular feature to which it belongs, as long as it shares its
functional concern with the targets.

At Figure 3.2 there are three modular features represented by the gray squares (A,
B and C), each of them containing two features represented by the polygons(A1, A2,
B1, B2, C1 and C2). There are also four dependencies represented by the dashed lines,
where the target is indicated by an arrow. A1 depends on C1, A2 depends on C2, B1
and B2 depend on C1. At this example, modular feature A has more coverage (2), as a
source, than modular feature B (1).

Figure 3.2: Source Coverage example

From the target feature perspective, if coverage is being considered for coupling
evaluation then, the more different features use it, the higher is its importance to the
overall coupling.

On the other hand, if coverage is being considered for cohesion evaluation, then the
higher the coverage of the feature which is being analyzed, the higher is its contribu-
tion to the cohesion of the modular feature to which it belongs, as long as it shares its
functional concern with the sources.

In Figure 3.3 there are three modular features represented by the squares(A, B and
C), each of them containing two features represented by the polygons(A1, A2, B1, B2,

26

3. PIFACTORS: PARADIGM INDEPENDENT MODULARITY FACTORS 3.2. Taxonomy for dependency topologies

Figure 3.3: Target Coverage example

C1 and C2). There are also four dependencies represented by the dashed lines. A1
depends on B1, C1 and C2, and A2 depends on B2.

At this example, modular feature B has more coverage (2), as a target, than modular
feature C (1).

3.2.3 Commitment

The commitment factor expresses how much of a module is committed to the depen-
dencies in which it is involved.

If commitment is being considered for coupling evaluation then, the more different
features, within this modular feature are involved as sources in dependencies towards
external features, the more this modular feature is coupled.

On the other hand, if commitment is being considered for cohesion evaluation then,
the more different features, within this modular feature, are involved as sources in
dependencies towards internal features, the more this modular feature is cohesive, as
long as they share their functional concern with their targets.

At Figure 3.4 there are three modular features represented by the squares (A, B and
C), each of them containing two features represented by the polygons (A1, A2, B1, B2,
C1 and C2).

There are also four dependencies represented by the dashed lines, where the target
is indicated by an arrow. A1 depends on C1, A2 depends on C2, B1 depends on C1 and
C2. In this example, modular feature A has more commitment (2), as a source, than
modular feature B (1). Notice that coverage, from the source perspective, has been
made equal for modular features B and A.

If commitment is being considered for coupling evaluation then, the more different
features, within this modular feature, are involved as sources in dependencies towards

27

3. PIFACTORS: PARADIGM INDEPENDENT MODULARITY FACTORS 3.2. Taxonomy for dependency topologies

Figure 3.4: Source Commitment example

Figure 3.5: Target Commitment example

28

3. PIFACTORS: PARADIGM INDEPENDENT MODULARITY FACTORS 3.2. Taxonomy for dependency topologies

external features, the more this modular feature is coupled.
On the other hand, if commitment is being considered for cohesion evaluation then,

the more different features, within this modular feature, are involved as sources in
dependencies towards internal features, the more this modular feature is cohesive, as
long as they share their functional concern with their targets.

In figure 3.5 there are three modular features represented by the squares(A, B and
C), each of them containing two features represented by the polygons (A1, A2, B1, B2,
C1 and C2). There are also four dependencies represented by the dashed lines, where
the target is indicated by an arrow. A1 depends on B1 and C1, A2 depends on B2 and
C1. In this example, modular feature B has more commitment (2), as a target, than
modular feature C (1). Notice that coverage, from the target perspective, has been
made equal for modular features B and C.

3.2.4 Clustering

The clustering factor distinguishes features based on how many disjoint clusters are
involved within the dependencies at which they are involved. Disjoint clusters are
modular features that do not share any of the modular features that contains them (i.e.
a system composed by two packages. Each package is a cluster disjoint from the other).

Clustering only makes sense when evaluating coupling, once that for cohesion,
only the dependencies from (and to) the features within the same modular feature
are considered.

The more different disjoint clusters contain targets of dependencies, the more the
feature under evaluation is coupled.

At figure 3.6 there are two disjoint clusters represented by the big dotted rectan-
gles (X and Y). At cluster X, there are three modular features represented by the gray
squares(A, B and D). Modular Features A and B contain three features (A1, A2 and A3)
and (B1, B2 and B3) respectively, while modular feature D contains only two (D1 and
D2). At cluster Y, there is only one modular feature (C) containing also only one fea-
ture (C1). Each of the previously mentioned features are represented by the polygons.
There are also four dependencies represented by the dashed lines, where the target is
indicated by an arrow. A1 depends on C1, A2 depends on D1, B1 depends on A3 and
B2 depends on D2. In this example, modular feature A has more clustering (1), as a
source, than modular feature B (0). Notice that coverage and commitment, from the
source perspective, have been made equal for modular features B and A.

The more different disjoint clusters contain features that use the feature under eval-
uation, the higher is its importance to the overall coupling.

At Figure 3.7 there are two disjoint clusters represented by the big dotted rectangles
(X and Y). At cluster X, there are two modular features represented by the squares(A,
and B). At cluster Y, there is only one modular feature (C). Modular Features C and B
contain only one feature (C1 and B1) respectively, while modular feature A contains

29

3. PIFACTORS: PARADIGM INDEPENDENT MODULARITY FACTORS 3.2. Taxonomy for dependency topologies

Figure 3.6: Source Clustering example

Figure 3.7: Target Clustering example

30

3. PIFACTORS: PARADIGM INDEPENDENT MODULARITY FACTORS 3.2. Taxonomy for dependency topologies

two (A1 and A2). Each of the previously mentioned features are represented by the
polygons. There are also two dependencies represented by the dashed lines, where the
target is indicated by an arrow. A1 depends on C1, A2 depends on B1. In this example,
modular feature C has more clustering (1), as a source, than modular feature B (0).
Notice that coverage and commitment, from the target perspective, have been made
equal for modular features B and C.

3.2.5 Density

The density factor distinguishes features based on how many instances a dependency
has. Only design-time instances are being considered (i.e. a method that within its
code calls another method several times).

If density is being considered for coupling evaluation then, from the source feature
perspective, the more instances a dependency has, the more that feature is coupled.

On the other hand, if density is being considered for cohesion evaluation, the higher
the density of the dependencies from the feature which is being analyzed, the higher
is its contribute to the cohesion of the modular feature to which it belongs, as long as
it shares its functional concern with the targets.

At Figure 3.8 there are three modular features represented by the squares(A, B and
C), each of them containing two features represented by the polygons (A1, A2, B1, B2,
C1 and C2). There are also five dependencies represented by the dashed lines, where
the target is indicated by an arrow. A1 depends on C1 (twice), A2 depends on C2,
B1 and B2 depend on C1 and C2 respectively. In this example, modular feature A
has more density (3), as a source, than modular feature B (2). Notice that coverage,
commitment and clustering, from the source perspective, have been made equal for
modular features A and B.

Figure 3.8: Source Density example

31

3. PIFACTORS: PARADIGM INDEPENDENT MODULARITY FACTORS 3.2. Taxonomy for dependency topologies

Figure 3.9: Target Density example

From the target feature perspective, if density is being considered for coupling eval-
uation then, the more different instances from a dependency use it, the higher is its
importance to the overall coupling.

On the other hand, if density is being considered for cohesion evaluation, then the
higher the density of the feature which is being analyzed, the higher is its contribute
to the cohesion of the modular feature to which it belongs, as long as it shares its
functional concern with the sources.

At Figure 3.9 there are three modular features represented by the squares(A, B and
C), each of them containing two features represented by the polygons (A1, A2, B1, B2,
C1 and C2). There are also five dependencies represented by the dashed lines, where
the target is indicated by an arrow. A1 depends on B1(twice) and C1, and A2 depends
on B2 and C2. In this example, modular feature B has more density (3), as a target,
than modular feature C (2). Notice that coverage, commitment and clustering, from
the target perspective, have been made equal for modular features B and C.

3.2.6 Type

Each paradigm and programming language has its own set of features, each one im-
plementing dependencies towards other features in many different ways.

We believe that each way these dependencies are implemented does not necessarily
produce the same impact at modularity, and that this impact can be estimated based on
a statistical analysis on maintenance effort. Part of this idea is based at the traditional
coupling and cohesion types [Pre00].

However, these traditional modularity types are represented in an ordinal scale,
while it is believed that the different dependencies types for any programming lan-
guage can be represented in a continuous scale. This representation is out of the scope

32

3. PIFACTORS: PARADIGM INDEPENDENT MODULARITY FACTORS 3.2. Taxonomy for dependency topologies

of this dissertation, however a weight attribute for dependencies has already been re-
served at the PIMETA, which will most certainly be used at future work. For the mo-
ment, this weight will be set to 1 for any dependency, as a default value, assuming that
their influence at modularity is equal.

33

3. PIFACTORS: PARADIGM INDEPENDENT MODULARITY FACTORS 3.2. Taxonomy for dependency topologies

[This page was intentionally left blank]

34

Chapter 4

PIMETRICS: Paradigm Independent
Metrics

Contents
4.1 Introduction . 36

4.2 Definitions . 37

4.3 Formalizations . 43

4.4 Metrics collection . 50

4.5 Exemplification . 51

4.6 Validation . 56

In this chapter, the PIMETRICS are defined according to the Goal Question Metric
methodology, based on the PIMETA and the PIFACTORS, formalized with OCL ac-
cording to the M2DM methodology, exemplified with the Screen class from the Ob-
server design pattern functional equivalent implementations and finally validated.

35

4. PIMETRICS: PARADIGM INDEPENDENT METRICS 4.1. Introduction

4.1 Introduction

To enable meta-model driven measurement (M2DM) [Abr01], two core artifacts are
required, besides the system to measure:

i) a meta-model;

ii) a set of metrics expressed as a set of OCL operations upon the preceding meta-
model.

While in the previous chapters, the meta-model (PIMETA) and the concepts which
embody it were presented, in this chapter, a set of metrics will be defined, formalized,
exemplified and validated, with the purpose of evaluating modularity independently
of paradigm using the M2DM.

Along this chapter, Abreu’s criteria for the development of software metrics [AC94]
are ever present concerns:

i) metrics determination should be formally defined;

ii) non-size metrics should be system size independent;

iii) metrics should be dimensionless or expressed in some consistent unit system;

iv) metrics should be obtainable early in the life cycle;

v) metrics should be down scalable;

vi) metrics should be easily computable;

vii) metrics should be language independent;

The Goal-Question-Metric (GQM) paradigm [BCR94] has proven to be an effective
approach to selecting and implementing metrics, is widely adopted for this purpose
and, as such, will be used to define the PIMETRICS. Succintly, this process consists in
defining metrics in a top-down approach by first declaring the goals to be met, then
posing the questions which answers will allow to understand if the goals are being met
and, last but not least, identifying the metrics required to answer the questions. While
ensuring that the identified metrics are relevant to understand if the goals are being
met, the GQM also provides traceability between them and the metrics.

According to the Representational Theory of Measurement [FP97], the direct measure-
ment of an attribute must be preceeded by its intuitive understanding. Since that the
PIFACTORS have been developed to meet this, the metrics definition wil be driven by
those modularity factors.

Any metric should be formalized, for the simple reason that when this does not oc-
cur, a door is open to different interpretations which, among other things, will almost

36

4. PIMETRICS: PARADIGM INDEPENDENT METRICS 4.2. Definitions

surely lead to different results for the same subject. Obviously this is not acceptable
but, unfortunately, metrics proposal without an adequate formalization is still a com-
mon practice, in spite of adequate alternatives have already been proposed, like using
the OCL [OMG03b] language to formalize metrics upon UML models [Abr01]. This
approach will be used in section 4.3, where the PIMETRICS will be formalized in OCL
upon the PIMETA meta-model.

In section 4.5, an example of the PIMETRICS will be presented, which will be used
to quantify the modularity of the Screen class of the Observer design pattern implemen-
tations in Java and AspectJ. The metrics collection was made as described in section 4.4.

Last but not least, a fundamental step in metrics development is making sure that
metrics actually assess the right attribute, because making decisions with wrong infor-
mation often leads to wrong decisions and this will most surely happen if we measure
the wrong attributes. The process by which this is ensured is called validation, and in-
volves this demonstration in the sense of the measurement theory which, in this case,
means that the PIMETRICS must preserve the intuitive notions about modularity, as
described by the PIFACTORS. This process will be addressed at section 4.6.

4.2 Definitions

The PIMETRICS will be defined in this section, as stated before, by following the GQM
paradigm.

Since that the main purpose of this dissertation is to evaluate modularity, the GQM
goals are defined in terms of modularity and its main drivers, coupling and cohesion.
The questions are elaborated in terms of the PIFACTORS, because these are what it
is believed to affect coupling and cohesion. Finally, the metrics are defined with the
PIMETA concepts.

Since that in PIMETA there are two kinds of features, those that are modular, and
those that are not, the atomic features, and that the PIFACTORS only apply partially to
the latter, namely those for cohesion, the goals have been divided into those applicable
only to modular features and those applicable to any feature or the whole system in
general. These goals are summarized in table4.1 and described from table 4.2 to table
4.5.

Goals
G1 - Decrease features coupling
G2 - Decrease modular features coupling
G3 - Increase modular features cohesion
G4 - Increase systems modularity

Table 4.1: Goals summary

37

4. PIMETRICS: PARADIGM INDEPENDENT METRICS 4.2. Definitions

G1 - Goal: Decrease features coupling
Purpose Decrease
Issue Coupling
Object Features
Viewpoint Software Engineer

Questions and Metrics

Q1.1 - What is the coupling coverage of a feature as source?
M1.1.1 - SCouCovS Source Coupling

Coverage Size
Number of different external features on
which a feature depends

M1.1.2 - SCouCovI Source Coupling
Coverage Index

Percentage of different external
features on which a feature depends

Q1.2 - What is the coupling coverage of a feature as target?
M1.2.1 - TCouCovS Target Coupling

Coverage Size
Number of different external features
depending on a feature

M1.2.2 - TCouCovI Target Coupling
Coverage Index

Percentage of different external
features depending on a feature

Q1.3 - What is the coupling clustering of a feature as source?
M1.3.1 - SCouCluS Source Coupling

Clustering Size
Number of different disjoint clusters
containing features on which a feature
depends

M1.3.2 - SCouCluI Source Coupling
Clustering
Index

Percentage of different disjoint
clusters containing features on which
a feature depends

Q1.4 - What is the coupling clustering of a feature as target?
M1.4.1 - TCouCluS Target Coupling

Clustering Size
Number of different disjoint clusters
with inner features depending on a
feature

M1.4.2 - TCouCluI Target Coupling
Clustering
Index

Percentage of different disjoint
clusters with inner features depending
on a feature

Q1.5 - What is the coupling density of a feature as source?
M1.5.1 - SCouDenS Source Coupling

Density Size
Number of different dependencies from
a feature and its internals towards its
external features

M1.5.2 - SCouWDenS Source Coupling
Weigted Density
Size

Weighed number of different dependencies
from a feature and its internals towards
its external features

Q1.6 - What is the coupling density of a feature as target?
M1.6.1 - TCouDenS Target Coupling

Density Size
Number of different dependencies from
the external features towards a feature
and its internal features

M1.6.2 - TCouWDenS Target Coupling
Weighed Density
Size

Weighed number of different dependencies
from the external features towards a
feature and its internal features

Table 4.2: GQM model for coupling evaluation for features

38

4. PIMETRICS: PARADIGM INDEPENDENT METRICS 4.2. Definitions

G2 - Goal: Decrease modular features’ coupling
Purpose Decrease
Issue Coupling
Object Modular Features
Viewpoint Software Engineer

Questions and Metrics

Q2.1 - What is the coupling commitment of a modular feature as source?
M2.1.1 - SCouComS Source Coupling

Commitment Size
Number of different internal features
depending on external features

M2.1.2 - SCouComI Source Coupling
Commitment
Index

Percentage of different internal
features depending on external features

Q2.2 - What is the coupling commitment of a modular feature as target?
M2.2.1 - TCouComS Target Coupling

Commitment Size
Number of different internal features on
which external features depend

M2.2.2 - TCouComI Target Coupling
Commitment
Index

Percentage of different internal
features on which external features
depend

Table 4.3: GQM model for coupling evaluation for modular features

39

4. PIMETRICS: PARADIGM INDEPENDENT METRICS 4.2. Definitions

G3 - Goal: Increase modular features’ cohesion
Purpose Increase
Issue Cohesion
Object Modular Features
Viewpoint Software Engineer

Questions and Metrics

Q3.1 - What is the cohesion commitment of a modular feature as source?
M3.1.1 - SCohComS Source Cohesion

Commitment Size
Number of different internal features
depending on any internal feature

M3.1.2 - SCohComI Source Cohesion
Commitment
Index

Percentage of different internal
features depending on any internal
feature

Q3.2 - What is the cohesion commitment of a modular feature as target?
M3.2.1 - TCohComS Target Cohesion

Commitment Size
Number of different internal features on
which any internal feature depends

M3.2.2 - TCohComI Target Cohesion
Commitment
Index

Percentage of different internal
features on which any internal feature
depends

Q3.3 - What is the cohesion density of a modular feature as source?
M3.3.1 - SCohDenS Source Cohesion

Density Size
Number of different dependencies from
a feature and its internals towards its
internal features

M3.3.2 - SCohWDenS Source Cohesion
Weiged Density
Size

Weighed number of different dependencies
from a feature and its internals towards
its internal features

Q3.4 - What is the cohesion density of a modular feature as target?
M3.4.1 - TCohDenS Target Cohesion

Density Size
Number of different dependencies from
the external features towards a feature
and its internal features

M3.4.2 - TCohWDenS Target Cohesion
Weighed Density
Size

Weighed number of different dependencies
from the external features towards a
feature and its internal features

Table 4.4: GQM model for cohesion evaluation for modular features

40

4. PIMETRICS: PARADIGM INDEPENDENT METRICS 4.2. Definitions

To summarize the, so far, defined metrics, figure 4.1 presents them in a different
perspective, according to the modularity factor they measure, as well as the feature
types and roles to which they apply.

Figure 4.1 evidences that other metrics could have been defined, namely weighed
size and weighed index metrics. This is in fact true however, since that the dependency
weights for the dependencies have not yet been defined, they would be fruitless and,
as such, their study, definition, formalization and validation have been postponed for
future work.

Figure 4.1: Summary of the metrics for features

The PIMETRICS defined so far provide us an evaluation of coupling and cohesion
from the feature perspective, while the fourth goal implies an evaluation of modularity
from the system perspective. To achieve this purpose we will use three modularity
metrics proposed by Abreu in [AG01], the Average Module Membership (AMM), the
Intra-Modular Coupling Density (ICD) and the Modularity Merit Factor (MMF), and
define two new metrics for crosscutting, the Potential Crosscutting Size (PCS) and the
Potential Crosscutting Index (PCI), from which modularity will be inferred.

The MMF is an indicator of how balanced coupling and cohesion are at the modules
of a a system. To achieve good modularity, we should strive for high cohesion and low
coupling, so the better these two are balanced, the better is modularity. The higher
the value of MMF the better is the modularity of a system. The AMM and ICD are
primitives which contribute to the definition and formalization of the MMF.

As introduced in section 1.5, code tangling and code scattering are the facets of the
concerns that crosscut a system diminishing its modularity. We can not tell yet, for
sure, which of the features from a system that originate coupling belong to crosscut-
ting concerns; however, we can tell that all of them are potential candidates. Thus, we
can tell that if we implement the same system in a way to remove the code scattering

41

4. PIMETRICS: PARADIGM INDEPENDENT METRICS 4.2. Definitions

provoked by those crosscutting concerns, we will unavoidably diminish these poten-
tial candidates. In other words, for functional equivalent systems, a reduction of the
potential candidates for crosscutting, means a reduction in the crosscutting itself, since
at a functional equivalent system, the crosscutting concerns are the same. Since that a
reduction in crosscutting means an increase in modularity, a reduction in the potential
candidates for crosscutting also means an increase in modularity.

The Potential Crosscutting Size (PCS) and the Potential Crosscutting Index (PCI)
will be defined and formalized together with the remaining metrics. While the first
counts the potential candidates for crosscutting, the latter provides the same informa-
tion in a dimensionless way, that is, contextualized within the system dimensions,as a
ratio. Within two functional equivalent systems, PCs and PCI are reverse indicators of
modularity. When they rise, modularity falls, and the opposite is also true.

G4 - Goal: Increase a system’s modularity
Purpose Increase
Issue Modularity
Object System
Viewpoint Software Engineer

Questions and Metrics

Q4.1 - What is the potential crosscutting?
M4.1.1 - PCS Potential

Crosscutting
Size

Total of different dependent features in
a system

M4.1.2 - PCI Potential
Crosscutting
Index

Ratio between the dependent features and
all the features from a system

Q4.2 - What is the modularity merit factor?
M4.2.1 - AMM Average Module

Membership
Ratio between the total of features in
a system, except the total of modular
features with the required grain1, and
the total of modular features with the
required grain

M4.2.2 - ICD Intramodular
Coupling
Density

Ratio between the total of internal
dependencies from all the modular
features with the required grain, and
the total dependencies in a system

M4.2.3 - MMF Modularity
Merit Factor

Ratio between ICD and AMM

Table 4.5: GQM model for system modularity evaluation

42

4. PIMETRICS: PARADIGM INDEPENDENT METRICS 4.3. Formalizations

4.3 Formalizations

In this section the previously defined metrics will be formalized. As stated before, this
is a very important step towards its verification, validation and eventual adoption.

The PIMETRICS will be formalized with OCL upon the PIMETA. This formaliza-
tion required the development of finer grained functions in OCL which, for reasons of
understandability, are defined in appendix C.

For this dissertation, the dependency weight attributes, for every weighed metric,
have been set to one, as explained in section 3.2.6, so all the results between for the
unweighed and its corresponding weighed metric will be the same.

The formalization that follows, is presented from table4.6 to table 4.12, according to
the following criteria:

i) separate metrics applicable only to modular features from those applicable to any
feature or the whole system in general;

ii) separate coupling metrics from those of cohesion and modularity.

Name SCouCovS - Source Coupling Coverage Size
Informal definition Number of different external features on which a feature

depends
Formal definition PIMETA::Feature

SCouCovS(): Integer = externalDependeeFeatures()->size()

Name SCouCovI - Source Coupling Coverage Index
Informal definition Percentage of different external features on which a

feature depends
Formal definition PIMETA::Feature

SCouCovI(): Real = if self.externalFeatures()->isEmpty()
then 0.0 else SCouCovS() / self.externalFeatures()->size()
endif

Name TCouCovS - Target Coupling Coverage Size
Informal definition Number of different external features depending on a

feature
Formal definition PIMETA::Feature

TCouCovS(): Integer = externalDependentFeatures()->size()

Name TCouCovI - Target Coupling Coverage Index
Informal definition Percentage of different external features depending on a

feature
Formal definition PIMETA::Feature

TCouCovI(): Real = if self.externalFeatures()->isEmpty()
then 0.0 else TCouCovS() / self.externalFeatures()->size()
endif

Table 4.6: Metrics formalization for coupling evaluation for features

43

4. PIMETRICS: PARADIGM INDEPENDENT METRICS 4.3. Formalizations

Name SCouCluS - Source Coupling Clustering Size
Informal definition Number of different disjoint clusters on which a feature

depends
Formal definition PIMETA::Feature

SCouCluS():Integer =
disjointExternalDependeeFeatures().
rootFeature()->asSet()->size()

Name SCouCluI - Source Coupling Clustering Index
Informal definition Percentage of different disjoint clusters on which a

feature depends
Formal definition PIMETA::Feature

SCouCluI(): Real =
if self.featuresWithoutCommonRoot()->
isEmpty() then 0.0 else
SCouCluS() / self.featuresWithoutCommonRoot().
rootFeature()->asSet()->size() endif

Name TCouCluS - Target Coupling Clustering Size
Informal definition Number of different disjoint clusters depending on a

feature
Formal definition PIMETA::Feature

TCouCluS():Integer =
disjointExternalDependentFeatures().rootFeature()->
asSet()->size()

Name TCouCluI - Target Coupling Clustering Index
Informal definition Percentage of different disjoint clusters depending on a

feature
Formal definition PIMETA::Feature

TCouCluI(): Real =
if self.featuresWithoutCommonRoot()->isEmpty()
then 0.0 else
TCouCluS() / self.featuresWithoutCommonRoot().rootFeature()
->asSet()->size() endif

Table 4.7: Metrics formalization for coupling evaluation for features (cont.)

44

4. PIMETRICS: PARADIGM INDEPENDENT METRICS 4.3. Formalizations

Name SCouDenS - Source Coupling Density Size
Informal definition Number of different dependencies from a feature and its

internals towards its external features
Formal definition PIMETA::Feature

SCouDenS(): Integer = outboundDependencies()->
collect(counter())->sum

Name SCouWDenS - Source Coupling weighed Density Size
Informal definition Weighed number of different dependencies from a feature

and its internals towards its external features
Formal definition PIMETA::Feature

SCouWDenS(): Real = outboundDependencies()->
collect(weighedCounter())->sum

Name TCouDenS - Target Coupling Density Size
Informal definition Number of different dependencies from the external

features towards a feature and its internal features
Formal definition PIMETA::Feature

TCouDenS(): Integer = inboundDependencies()->
collect(counter())->sum

Name TCouWDenS - Target Coupling weighed Density Size
Informal definition Weighed number of different dependencies from the

external features towards a feature and its internal
features

Formal definition PIMETA::Feature
TCouWDenS(): Real = inboundDependencies()->
collect(weighedCounter())->sum

Table 4.8: Metrics formalization for coupling evaluation for features (cont.)

45

4. PIMETRICS: PARADIGM INDEPENDENT METRICS 4.3. Formalizations

Name SCouComS - Source Coupling Commitment Size
Informal definition Number of different internal features depending on

external features
Formal definition PIMETA::ModularFeature

SCouComS(): Integer =
externalDependeeFeatures().dependencyDestinations.
origin->asSet->
intersection(self.allEnclosedFeaturesRecursively())->
size()

Name SCouComI - Source Coupling Commitment Index
Informal definition Percentage of different internal features depending on

external features
Formal definition PIMETA::ModularFeature

SCouComI(): Real =
if self.internalFeatures()->isEmpty()
then 0.0 else
SCouComS() / self.internalFeatures()->size()
endif

Name TCouComS - Target Coupling Commitment Size
Informal definition Number of different internal features on which external

features depend
Formal definition PIMETA::ModularFeature

TCouComS(): Integer =
self.externalDependentFeatures().dependencyOrigins.
destination->asSet->
intersection(self.allEnclosedFeaturesRecursively())
->size()

Name TCouComI - Target Coupling Commitment Index
Informal definition Percentage of different internal features on which

external features depend
Formal definition PIMETA::ModularFeature

TCouComI(): Real =
if self.internalFeatures()->isEmpty()
then 0.0 else
TCouComS() / self.internalFeatures()->size()
endif

Table 4.9: Metrics formalization for coupling evaluation for modular features

46

4. PIMETRICS: PARADIGM INDEPENDENT METRICS 4.3. Formalizations

Name SCohComS - Source Cohesion Commitment Size
Informal definition Number of different internal features depending on any

internal feature
Formal definition PIMETA::ModularFeature

SCohComS(): Integer = RSCohComS(self)

Name SCohComI - Source Cohesion Commitment Index
Informal definition Percentage of different internal features depending on

any internal feature
Formal definition PIMETA::ModularFeature

SCohComI(): Real = RSCohComI(self)

Name TCohComS - Target Cohesion Commitment Size
Informal definition Number of different internal features on which any

internal feature depends
Formal definition PIMETA::ModularFeature

TCohComS(): Integer = RTCohComS(self)

Name TCohComI - Target Cohesion Commitment Index
Informal definition Percentage of different internal features on which any

internal feature depends
Formal definition PIMETA::ModularFeature

TCohComI(): Real = RTCohComI(self)

Table 4.10: Metrics formalization for cohesion evaluation for modular features

47

4. PIMETRICS: PARADIGM INDEPENDENT METRICS 4.3. Formalizations

Name SCohDenS - Source Cohesion Density Size
Informal definition Number of different dependencies from a feature and its

internals towards its internal features
Formal definition PIMETA::ModularFeature

SCohDenS(): Integer =
(allDependencies()-outboundDependencies())->
collect(counter())->sum

Name SCohWDenS - Source Cohesion Weighed Density Size
Informal definition Weighed number of different dependencies from a feature

and its internals towards its internal features
Formal definition PIMETA::ModularFeature

SCohWDenS(): Real = (allDependencies()-outboundDependencies())->
collect(weighedCounter())->sum

Name TCohDenS - Target Cohesion Density Size
Informal definition Number of different dependencies from the external

features towards a feature and its internal features
Formal definition PIMETA::ModularFeature

TCohDenS(): Integer =
(allDependencies()-inboundDependencies()-
outboundDependencies()) ->collect(counter())->sum

Name TCohWDenS - Target Cohesion Weighed Density Size
Informal definition Weighed number of different dependencies from the

external features towards a feature and its internal
features

Formal definition PIMETA::ModularFeature
TCohWDenS(): Real =
(allDependencies()-inboundDependencies()-
outboundDependencies())->collect(weighedCounter())->sum

Table 4.11: Metrics formalization for cohesion evaluation for modular features (cont.)

48

4. PIMETRICS: PARADIGM INDEPENDENT METRICS 4.3. Formalizations

Name PCS - Potential Crosscutting Size
Informal definition Total of different dependent features in a system

Formal definition PIMETA::ModularFeature
PCS():Integer = AOPmodules().TCouCovS()->sum()

Name PCI - Potential Crosscutting Index
Informal definition Ratio between the dependent features and all the

features from a system
Formal definition PIMETA::ModularFeature

PCI():Real = self.PCS()/Feature.allInstances()->sum()

Name AMM - Average Module Membership
Informal definition Ratio between the total of features in a system, except

the total of modular features with the required grain,
and the total of modular features with the required
grain2

Formal definition PIMETA::ModularFeature
AMM(): Real = (Feature.allInstances-AOPmodules())->
size() / AOPmodules()->size()

Name ICD - Intramodular Coupling Density
Informal definition Ratio between the total of internal dependencies from

all the modular features with the required grain, and
the total dependencies in a system

Formal definition PIMETA::ModularFeature
ICD(): Real =
ModularFeature.allInstances.internalDependencies()->
collect(counter())->sum /
ModularFeature.allInstances.internalDependencies()->
union(ModularFeature.allInstances.outboundDependencies())->
collect(counter())->sum

Name MMF - Modularity Merit Factor
Informal definition Ratio between ICD and AMM

Formal definition PIMETA::ModularFeature
MMF(): Real = ICD() / AMM()

Table 4.12: Metrics formalization for Modularity evaluation for systems

49

4. PIMETRICS: PARADIGM INDEPENDENT METRICS 4.4. Metrics collection

4.4 Metrics collection

The collection method plays an important role in the whole process of measurement.
When this is done automatically, the process is less prone for errors, and even though
some may occur, they are easily traceable, thus increasing the accuracy of the whole
process. Another important advantage of having an automatic process for metrics col-
lection is that once set up, can be performed quickly, which can be of great advantage
when dealing with medium or large scale systems. Besides, while tuning the process,
this can be quickly corrected and repeated whenever deemed necessary, without fur-
ther effort.

An automatized collection process has been developed within the context of this
dissertation, as depicted in figure 4.2 having the observer design pattern as an ex-
ample. Between the source code and the metrics’ results, five steps take place which
main artifacts are sorted top down at the left side of figure 4.2. First the source code is
parsed into XML(.ajfml files) by using a parser for AspectJ and Java, the AspectJ-front
parser [Bra08]. The second step is transforming the output from the AspectJ-Front
parser into XML files (.pimetaml files) compliant with the PIMETA XML schema, us-
ing a XSLT file(AJFML2PIMETAML). From here, another transformation occurs for
generating input(.cmd files), with another XSLT file(PIMETAML2USE), for the USE

tool [RG], which will be used to instantiate the PIMETA. An excerpt of one of these files
is presented at the right side of figure4.2. Finally, the metrics are ran(step 4) against the
previously loaded USE tool(step 5), making the results available for the analysis.

Figure 4.2: Metrics collection process

The dimension3 of the GoF implementation in Java and AspectJ difficults a system-
atic manual validation of all the transformation results for each class, aspect or inter-

3More than 275 classes, interfaces and aspects.

50

4. PIMETRICS: PARADIGM INDEPENDENT METRICS 4.5. Exemplification

face. However, along the elaboration of this dissertation randomly selected classes,
interfaces and aspects were validated manually.

4.5 Exemplification

Now that the PIMETRICS have been defined and formalized, and the collection pro-
cess explained, their usage will be exemplified. To achieve this purpose, the Screen
class from the Observer pattern implementations in Java and AspectJ will be used. Their
graphical representations and source code were already presented and can be found
at figures 2.9 and 2.8 for the Java implementation, and at figures 2.11 and 2.10 for the
AspectJ implementation. Besides having already been presented in a previous chap-
ter, thus decreasing the effort to understand them and allowing a better focus at the
purpose of this example, these classes are small enough to allow manual measurement
and verification. All the metrics values presented here were extracted by the process
described in section 4.4.

The metrics results will now be depicted and analyzed in graphs, from figure 4.3 to
figure 4.12, according to the following criteria:

i) understandability;

ii) different graphs for different scales (absolute and ratio);

iii) directed mapping to the goals (defined at section 4.2).

For the first goal(G1), to decrease feature’s coupling, the corresponding metrics’ results
are depicted at figures 4.3, 4.4 and 4.5.

It is expectable that with AOP, the coupling as source of dependencies for the core4

Java classes to decrease in their aspectized versions. the clustering metrics are as ex-
pected , because there is only one cluster.

For the second goal(G2), to decrease modular features’ coupling, the corresponding
metrics’ results are depicted at figures 4.6 and 4.7.

The absolute and ratio metrics are coherent with the expected results. Notice that
for TCouComS and TCouComI, the result for both languages is zero. Strange would
be if in AspectJ these values would have increased.

As for the third goal(G3), to increase modular features’ cohesion, the corresponding
metrics’ results are depicted at figures 4.8, 4.9 and 4.10. The absolute and ratio metrics
are also coherent with the expected results. Notice that TCouComS and TCouComI
also have the values zero like TCouDenS and TCouWDenS and, like these, if this value
would have increased with AspectJ it would not be normal and worth of a deeper
investigation.

4Java classes that implement the core functional concerns, from which the screen class is an example

51

4. PIMETRICS: PARADIGM INDEPENDENT METRICS 4.5. Exemplification

Figure 4.3: Results of the absolute metrics from goal G1

Figure 4.4: Results of the absolute metrics from goal G1 (cont.)

Figure 4.5: Results of the ratio metrics from goal G1

52

4. PIMETRICS: PARADIGM INDEPENDENT METRICS 4.5. Exemplification

Figure 4.6: Results of the absolute metrics from goal G2

Figure 4.7: Results of the ratio metrics from goal G2

53

4. PIMETRICS: PARADIGM INDEPENDENT METRICS 4.5. Exemplification

It may seem surprising that as cohesion is increasing the metrics’ values are de-
creasing. However, the explanation for this is that with cross-cutting concerns, when
code tangling occurs, the native code5 highly depends on the alien code6.

It is worth noticing that cohesion not only has to do with the relative interdepen-
dence among the features from a module, but this interdependence must adhere to
a commom purpose or concern. Therefore, these interdependences between the core
and the alien code, should not be considered cohesion. As such, when code tangling
occurs, we believe to be in the presence of delusional cohesion, that is, the cohesion
values increase, but due to an inadequate implementation of dependencies.

It is worth to mention that if these metrics are sensible to delusional cohesion, they
probably may be used for identifying candidate aspects, together with the remainder
metrics. Even though being out of the scope of this dissertation, this subject will most
certainly be included in future work.

Figure 4.8: Results of the absolute metrics from goal G3

Finally, for the last goal(G4), to increase a system’s modularity, the corresponding met-
rics’ results are depicted at figures 4.11 and 4.12. The absolute and ratio metrics are also
coherent with the expected results.

It is worth noticing that crosscutting has decreased and modularity has increased,
if considered the PCI and MMF metrics, respectively.

To summarize the above described results, we can say that, for the Screen class:

i) most of the metrics for coupling have improved. Some have remained the same
and only the results of TCouCovI show that AspectJ worsened the class;

ii) all of the metrics for cohesion confirm that cohesion is worse at the aspectj version
of the screen class. We explain that with the delusional cohesion originated by the
code tangling;

5Code that implements the core concern of the class
6Code that implements secondary concerns, from the class perspective

54

4. PIMETRICS: PARADIGM INDEPENDENT METRICS 4.5. Exemplification

Figure 4.9: Results of the ratio metrics from goal G3

Figure 4.10: Results of the absolute metrics from goal G3 (cont.)

Figure 4.11: Results of the absolute metrics from goal G4

55

4. PIMETRICS: PARADIGM INDEPENDENT METRICS 4.6. Validation

Figure 4.12: Results of the ratio metrics from goal G4

iii) the modularity of the class has slightly improved, according to the modularity
metrics.

4.6 Validation

Several publications address this subject, the validation of software metrics, being
those from Fenton [FP97], Henderson-Sellers [HS96] and Briand [BEEM95] unavoid-
able.

Even though each of them encompassing several methods to achieve this purpose,
they agree on two important requirements for considering a metric valid:

i) a metric must undoubtedly measure the attribute it was defined for;

ii) to be useful, a metric should be related to external software properties;

Since that several metrics have been defined and formalized in the previous sec-
tions, it seems appropriate to, at this moment, define their purpose.

The goal of this dissertation is to evaluate modularity improvements obtained with
AOP, which will be accomplished by using the PIMETRICS to compare modularity
at functional equivalent systems implemented both in AOP and OOP. Therefore, to
achieve this goal, only internal software properties must be assessed, which means that
establishing relations between the PIMETRICS and other external software properties,
like maintainability, for instance, are not required, thus being out of the scope of this
dissertation.

As such, the PIMETRICS will not be useful as previously defined. They will only
provide the means to perform the intended evaluation.

Of course, by not fulfilling the second requirement, the PIMETRICS can not aspire
to be considered valid in latu sense, but only internally or theoretically valid.

56

4. PIMETRICS: PARADIGM INDEPENDENT METRICS 4.6. Validation

The requirements for a theoretical validation are [BEEM95]:

i) the measure must be consistent with the intuitive understanding of the concept;

ii) a model of the intuitive understanding of the attribute under measurement must
be developed;

Chapter 3 presented a model of the intuitive understanding about modularity with
the PIFACTORS, while section 4.2 provides the alignment between Modularity, PIFAC-
TORS and the PIMETRICS. Further, the example of the PIMETRICS usage, provided at
section 4.5, with a real case, enforces the previously showed consistency between the
measures and the intuitive understanding of modularity.

By fulfilling both the requirements for theoretical validation, the PIMETRICS can
be considered internally or theoretically valid.

57

4. PIMETRICS: PARADIGM INDEPENDENT METRICS 4.6. Validation

[This page was intentionally left blank]

58

Chapter 5

GoF Design Patterns Modularity

Contents
5.1 Introduction . 60

5.2 The sample . 60

5.3 Descriptive statistics . 63

5.4 EDA: Exploratory Data Analysis . 65

5.5 Hypotheses identification and testing 69

In this chapter the results from the measurement of the GoF design patterns in Java

and AspectJ with the PIMETRICS will be presented and discussed.

59

5. GOF DESIGN PATTERNS MODULARITY 5.1. Introduction

5.1 Introduction

In this chapter the results from the measurement of the GoF design patterns in Java and
AspectJ with the PIMETRICS will be discussed. These results will provide the grounds
to answer the following research questions:

i) Does the refactoring of software systems produced with an OOP language to an
AOP extension of the same language produce a significant change on the overall
coupling?

ii) Does the refactoring of software systems produced with an OOP language to an
AOP extension of the same language produce a significant change on the coupling
of the core modular features 1?

iii) Does the refactoring of software systems developed with an OOP language to an
AOP extension of the same language produce a significant change on the overall
cohesion?

iv) Does the refactoring of software systems developed with an OOP language to an
AOP extension of the same language produce a significant change on the cohesion
of the core modular features?

v) Does the refactoring of software systems developed with an OOP language to an
AOP extension of the same language produce a significant change on the overall
modularity?

To answer the previous questions, statistics will be used to validate the data ob-
tained and support the conclusions. These will be explained as appropriate, along the
following sections.

5.2 The sample

The subjects of our experiment are a set of 2003 features (either atomic or modular).
The coarsest grained modular features (classes, interfaces and aspects) are distributed
among the two design patterns implementations as depicted in figure 5.1 and fig-
ure 5.2. All of the 2003 features are distributed as depicted in figure 5.3 and figure 5.4.
For each feature we have calculated the values for the PIMETRICS, using the M2DM
approach, upon the PIMETA loaded with a set of 2039 dependencies among the previ-
ous features. The latter are distributed as depicted in figure 5.5 and figure 5.6.

Considering all the Java feature types described at appendix A and the data pre-
sented at figure 5.3, only Package and Enumeration were not found within the sample.

1Classes and interfaces that existed in the Java patterns and were kept in the AspectJ implementations

60

5. GOF DESIGN PATTERNS MODULARITY 5.2. The sample

Figure 5.1: Coarsest grained modular features distribution by the GoF implementa-
tions

Figure 5.2: Number of features per design pattern and language for the coarsest feature
types

61

5. GOF DESIGN PATTERNS MODULARITY 5.2. The sample

Figure 5.3: Number of features per FeatureType and Language

Figure 5.4: Number of features per Design Pattern and Language

62

5. GOF DESIGN PATTERNS MODULARITY 5.3. Descriptive statistics

Considering all the AspectJ feature types described at appendix B and the data pre-
sented at figure 5.3, only the modular feature AdviceBefore was not found within the
sample. As for the atomic features only DeclareParents was found within the sample.

Figure 5.5: Number of dependencies per DependencyType and Language

Considering all the Java dependency types described at appendix A and the data
presented at figure 5.5, only a few were not found within the sample.

Considering all the AspectJ dependency types described at appendix B and the data
presented at figure 5.5, only a few were found within the sample. It is worth mention-
ing that while the referred appendix was developed based at some of the latest AspectJ

documentation [AT08], the sample under study was published in [HK02] six years ago,
meaning that the features of the AspectJ version available at the time were not as many
as today.

5.3 Descriptive statistics

The variables used in this experiment are self-described in figure 5.7.
As expected, all PIMETRICS indexes are within the expected range [0, 1], as de-

scribed in figure 5.8. However, notice that while SCouCluI, TCouCluI, SCouComI and
TCouComI take values along all the range, SCouCovI, TCouCovI, SCohComI and TCo-
hComI do not behave the same. Another aspect that deserves our attention is that the
standard deviation (a measure of dispersion around the mean, that is measured in the

63

5. GOF DESIGN PATTERNS MODULARITY 5.3. Descriptive statistics

Figure 5.6: Number of dependencies per Design Pattern and Language

Figure 5.7: Variables used, their scale types and description

64

5. GOF DESIGN PATTERNS MODULARITY 5.4. EDA: Exploratory Data Analysis

same units as the variable itself) is considerably high for most indexes, specially for
SCouCluI and SCouComI. The mentioned indexes are measures of coupling and co-
hesion relative to the context of the feature under measurement. The above facts tell
us that for example, it is easier for a class to depend on or be depended by all of the
remainder classes of the pattern to which it belongs (SCouCluI, TCouCluI) and to have
all its features committed to this coupling (SCouComI, TCoucomI), than to have de-
pendencies towards all the features of a system or the other way around (SCouCovI,
TCouCovI), or even have all its features depending on each other(SCohComI, TCo-
hComI).

Figure 5.8: Descriptive statistics on the PIMETRICS (indexes)

5.4 EDA: Exploratory Data Analysis

Some of the main purposes for conducting an exploratory data analysis are:

i) identify data problems like outliers or non-normal distributions;

ii) make sure that the assumptions for using the intended statistics are gathered;

The following subsections encompass this analysis.

5.4.1 Outlier analysis

From the box-plots in figure 5.9 we can conclude that most PIMETRICS indexes have
outliers (represented as empty circles) and half of them also have extreme values (rep-
resented as asterisks). Each outlier or extreme value should be investigated to assess if
it is due to one of two alternatives:

i) a collection or transcription error - in this case we should remove the correspond-
ing case from the sample (or correct it);

ii) a source of natural variability - here we should identify that source and keep the
case in the sample.

65

5. GOF DESIGN PATTERNS MODULARITY 5.4. EDA: Exploratory Data Analysis

Although the first alternative occurs more frequently, that was not the case here.
We have investigated manually most outliers and extremes and found out that this
phenomenon was indeed due to options made by the developers while implementing
the patterns.

Figure 5.9: Outlier analysis for the PIMETRICS (indexes)

66

5. GOF DESIGN PATTERNS MODULARITY 5.4. EDA: Exploratory Data Analysis

5.4.2 Testing distribution adherence

To assess if we can apply parametric tests in the evaluation of our hypothesis, we need
to test if the PIMETRICS values in our sample match a Normal distribution. In fig-
ure 5.10 and figure 5.11 we reproduce the detrended standardized QQ plots. The latter
plot the standardized deviation of the observed values from a Normal distribution. To
be Normal, a given variable should have its points near the horizontal line correspond-
ing to a null deviation. None of the metrics being analyzed exhibits such a behavior,
so most probably they do not have a Normal distribution.

Figure 5.10: QQ Plots for SCouCovI, TCouCovI, SCouCluI and TCouCluI

To test the hypothesis of normality we have applied the Kolmogorov-Smirnov one-
sample test, which is based on the maximum difference between the sample cumula-
tive distribution and the hypothesized cumulative distribution. The underlying hy-
potheses for this test are the following:

H0 : X ∼ N(µ;σ);H1 : ¬X ∼ N(µ;σ)

Considering a test significance α = 0.05 (probability of Type I error of 5 %) we can
conclude, from figure 5.12 and figure 5.13, that we must reject the null hypothesis for
all variables, since we get a significance p≤ 0.05, which means that we have significant
Z statistics for all variables being analyzed. In other words, we cannot sustain that the
considered variables of our sample come from a Normal population.

67

5. GOF DESIGN PATTERNS MODULARITY 5.4. EDA: Exploratory Data Analysis

Figure 5.11: QQ Plots for SCouComI, TCoucomI, SCohComI and TCohComI

Figure 5.12: Testing Normal distribution adherence with the Kolmogorov-Smirnov test
for the PIMETRICS

Figure 5.13: Testing Normal distribution adherence with the Kolmogorov-Smirnov test
for the remaining metrics

68

5. GOF DESIGN PATTERNS MODULARITY 5.5. Hypotheses identification and testing

5.5 Hypotheses identification and testing

In this section we identify and justify the research questions statistical hypotheses that
must be tested in order to answer the previously stated research questions. We then
apply the adequate statistical tests and interpret their results.

From now on, for the sake of comparability, we will only consider the coarsest
grained features in both the Java and AspectJ implementations, which are the following
modular features: classes, interfaces and aspects, which are described in figure 5.1.

5.5.1 Metrics discriminative power

Research question: Do the proposed metrics for coupling, cohesion and modularity vary
significantly from pattern to pattern within the same implementation language?

Justification: While it can easily be observed that the 23 GoF pattern implementa-
tions, either on Java or AspectJ, differ significantly in size (see figure 5.4), the same is not
expected for size-independent metrics like the PIMETRICS ones. However, according
to what was said in chapter 4, we expect that those metrics have some discriminative
power. In other words, they are expected to show some kind of variance, depending
on the considered design pattern.

Statistical hypothesis: We want to know if each of the coupling, cohesion and modu-
larity metrics, taken from the independent samples corresponding to features of each
of the design patterns may be considered as drawn from the same population. In other
words, we want to see if the values of those metrics vary significantly from design
pattern to design pattern. We will perform two separate tests, one only for the Java
patterns and another for the AspectJ patterns. Due to the fact that the considered met-
rics are not normally distributed, as we have seen on a previous section, we can only
perform a nonparametric analysis of variance. We will use the Kruskal-Wallis one-way
analysis of variance, an extension of the Mann-Whitney U test, which is the nonpara-
metric analog of the one-way ANOVA test. The Kruskal-Wallis H test allows assessing
whether several independent samples are from the same population (i.e. if they have
similar statistical distributions). In our case those independent samples correspond to
the 23 implementations of the GoF patterns for a given language. Let M be a coupling,
cohesion or modularity metric and i and j two different design patterns. Then, the
underlying hypotheses for this test are the following:

H0 : ∀i, j : Mi∼M j;H1 : ∀i, j : Mi∼M j

Results interpretation: The Kruskal-Wallis H test statistic is distributed approximately
as chi-square. Consulting a chi-square table with df = 22 (degrees of freedom) and for a
significance of α = 0.05 (probability of Type I error of 1 %) we obtain a critical value of
chi-square of 12.3. Since this value is less than the computed H values (for each of the

69

5. GOF DESIGN PATTERNS MODULARITY 5.5. Hypotheses identification and testing

Figure 5.14: Testing the influence of the Java design pattern on coupling and cohesion
metrics with the Kruskal-Wallis one-way analysis of variance test

Figure 5.15: Testing the influence of the AspectJ design pattern on coupling and cohe-
sion metrics with the Kruskal-Wallis one-way analysis of variance test

Figure 5.16: Testing the influence of the Java design pattern on modularity metrics with
the Kruskal-Wallis one-way analysis of variance test

Figure 5.17: Testing the influence of the AspectJ design pattern on modularity metrics
with the Kruskal-Wallis one-way analysis of variance test

70

5. GOF DESIGN PATTERNS MODULARITY 5.5. Hypotheses identification and testing

metrics in figure 5.14 to figure 5.17), we reject the null hypothesis that the samples do
not differ on the criterion variable (the Design Pattern). In other words, given any of
the proposed metrics, we cannot sustain that the statistical distributions of the groups
of modular features corresponding to each of the design patterns are the same. This
means that we accept the alternative hypothesis that the design pattern has influence
on the values of the proposed metrics. In other words, the metrics have discriminative
power, as we have planned.

5.5.2 Overall coupling changes

Research question: Does the refactoring of software systems produced with an OOP
language to an AOP extension of the same language produces a significant change on
the overall coupling?

Justification: Regarding coupling, we expect that the AOP pattern versions are sta-
tistically different and, as claimed, exhibiting lower values for coupling from the OOP
ones.

Statistical hypothesis: If we consider that we have two independent groups of cases,
one for the Java language and another for the AspectJ language, we can compare the
averages for each of the testing variables in the two groups. In other words we want to
test if there is a significant difference between the averages of the variables describing
cohesion, for the two languages.

H0 : µ SCouCovI Java = µ SCouCovI AspectJ

H1 : µ SCouCovI Java 6= µ SCouCovI AspectJ

H0 : µ TCouCovI Java = µ TCouCovI AspectJ

H1 : µ TCouCovI Java 6= µ TCouCovI AspectJ

H0 : µ SCouCluI Java = µ SCouCluI AspectJ

H1 : µ SCouCluI Java 6= µ SCouCluI AspectJ

H0 : µ TCouCluI Java = µ TCouCluI AspectJ

H1 : µ TCouCluI Java 6= µ TCouCluI AspectJ

H0 : µ SCouComI Java = µ SCouComI AspectJ

H1 : µ SCouComI Java 6= µ SCouComI AspectJ

H0 : µ TCouComI Java = µ TCouComIAspectJ

H1 : µ TCouComI Java 6= µ TCouComI AspectJ

The corresponding test is called the Independent Samples T-Test. If both groups have

71

5. GOF DESIGN PATTERNS MODULARITY 5.5. Hypotheses identification and testing

sizes above 30 cases, then the distribution t with v degrees of freedom t(v), approaches
the Normal distribution. For samples below 30 cases, this test is only applicable if the
testing variables are Normal, which is not the case as we have previously determined.
From figure 5.1 we can then see that both groups have much more than 30 cases, so
this test is applicable.

Figure 5.18: PIMETRICS average per GoF implementation

Figure 5.19: t-test applied to the PIMETRICS indexes

Results interpretation: Based upon the result of the Levene’s test and an α = 0.05, we
can say that we have to reject the hypothesis of the equality of variances between the
two groups, for all testing variables. Therefore we have to choose the rows signalized
with Equal variances not assumed. The positive value for the t statistic shows us that the
values of the coupling metrics are, on the average, superior for Java than for AspectJ.
Considering a test significance α = 0.05 we can conclude from figure 5.19, that we

72

5. GOF DESIGN PATTERNS MODULARITY 5.5. Hypotheses identification and testing

must reject the null hypotheses that the averages of all coupling variables are the same
between the two groups. In other words, we can say that there is statistical evidence
that the coupling for the OOP versions is, on average, higher than the coupling for AOP module
versions.

5.5.3 Core modular features coupling changes

Research question: Does the refactoring of software systems produced with an OOP
language to a AOP extension of the same language produces a significant change on
the coupling of the core modular features 2?

With a rotation operation we were able to produce a paired list version of our data,
so that for equivalent modular features, we get two variables within the same case,
representing the values for the same variable in Java and in AspectJ, like for instance:
TCouComI-Java and TCouComI-AJ. Notice that we get fewer cases than for independent
tests, because only classes and interfaces are pairable. The hypotheses are the same as
above. The corresponding test is called the "Paired Samples T-Test".

Figure 5.20: Paired samples statistics for core modular features coupling

The positive value for the t statistic shows us that the values of the coupling metrics
are on the average superior for Java than for AspectJ. Considering a test significance
α = 0.10 we can conclude from figure 5.22, that for some paired variables we can reject
the null hypotheses that the averages of both coupling variables are the same between
the two groups, and for others we cannot. Specifically speaking we can say that:

i) for coupling coverage (SCouCovI, TCouCovI), for coupling clustering on the
source perspective (SCouCluI) and for coupling commitment also on the source
perspective (SCouComI) there is statistical evidence that the coupling for the OOP mod-
ules version is, on average, higher than the coupling of the corresponding AOP modules
version;

2Classes and interfaces that existed in the Java patterns and were kept in the AspectJ implementations

73

5. GOF DESIGN PATTERNS MODULARITY 5.5. Hypotheses identification and testing

Figure 5.21: Paired samples correlations for core modular features coupling

Figure 5.22: Paired samples test for core modular features coupling

74

5. GOF DESIGN PATTERNS MODULARITY 5.5. Hypotheses identification and testing

ii) coupling clustering on the target perspective (TCouCluI) and for coupling com-
mitment also on the target perspective (TCouComI), and with a degree of confi-
dence as low as 90%, emphthere is no statistical evidence that the coupling for
the OOP modules version is, on average, different from the coupling of the corre-
sponding AOP modules version;

5.5.4 Overall cohesion changes

Research question: Does the refactoring of software systems developed with an OOP
language to an AOP extension of the same language produces a significant change on
the overall cohesion?

Justification: Regarding cohesion, we expect that the AOP pattern versions are sta-
tistically different and exhibiting, as claimed, higher values for cohesion from the OOP
ones.

Statistical hypothesis: If we consider that we have two independent groups of cases,
one for the Java language and another for the AspectJ language, we can compare the
averages for each of the testing variables in the two groups. In other words, we want to
test if there is a significant difference between the averages of the variables describing
cohesion, for the two languages.

H0 : µ SCohComI Java = µ SCohComI AspectJ

H1 : µ SCohComI Java 6= µ SCohComI AspectJ

H0 : µ TCohComI Java = µ TCohComI AspectJ

H1 : µ TCohComI Java 6= µ TCohComI AspectJ

Here we will use again the Independent Samples T-Test.

Figure 5.23: Paired samples statistics for SCohComI and TCohComI for the Gof in Java
and AspectJ

Results interpretation: Based upon the result of the Levene test and an α = 0.05 we
can say that we have to reject the hypothesis of the equality of variances between the
two groups, for both testing variables. Therefore we have to choose the rows signalized
with Equal variances not assumed. The positive value for the t statistic shows us that the
values of the cohesion metrics are on the average superior for Java than for AspectJ.
Considering a test significance α = 0.05, we can conclude from figure 5.24 that we must

75

5. GOF DESIGN PATTERNS MODULARITY 5.5. Hypotheses identification and testing

Figure 5.24: Levene’s and t-test for SCohComI and TCohComI for the Gof in Java and
AspectJ

reject the null hypotheses that the averages of both cohesion variables are the same
between the two groups. In other words, we can say that there is statistical evidence
that the cohesion for the OOP versions is, on average, higher than the cohesion for AOP module
versions.

These results, in spite of not corroborating the most common claims regarding co-
hesion of AOP systems, had already been announced in section 4.5 when analyzing
cohesion for the Screen class from the Observer, and has now been evidenced by the
remainder design patterns. As explained earlier, we believe these results do not evi-
dence the real cohesion differences but, instead, the differences between the delusional
cohesion at the OOP implementations, due to the code tangling and the cohesion of
their AOP equivalent versions.

5.5.5 Core modular features cohesion changes

Research question: Does the refactoring of software systems developed with an OOP
language to an AOP extension of the same language produces a significant change on
the cohesion of the core modular features?

With a rotation operation we were able to produce a paired list version of our data,
so that for equivalent modular features, we get two variables within the same case,
representing the values for the same variable in Java and in AspectJ, like for instance:
TCohComI-Java and TCohComI-AJ. Notice that we get fewer cases than for indepen-
dent tests, because only classes and interfaces are pairable. The hypotheses are the same
as above. The corresponding test is called the Paired Samples T-Test.

Results interpretation: The positive value for the t statistic shows us that the values of
the cohesion metrics are on the average superior for Java than for AspectJ. Considering
a test significance α = 0.10 we can conclude from figure 5.27, that we must reject the
null hypotheses that the averages of both cohesion variables are the same between the
two groups. Again we confirm that there is statistical evidence that the cohesion for
the OOP modules version is, on average, higher than the cohesion of the corresponding AOP
modules version.

76

5. GOF DESIGN PATTERNS MODULARITY 5.5. Hypotheses identification and testing

Figure 5.25: Paired descriptive statistics for SCohComI and TCohComI for the Gof in
Java and AspectJ

Figure 5.26: Paired correlations for SCohComI and TCohComI for the Gof in Java and
AspectJ

Figure 5.27: t-test for SCohComI and TCohComI for the Gof in Java and AspectJ

77

5. GOF DESIGN PATTERNS MODULARITY 5.5. Hypotheses identification and testing

5.5.6 Overall modularity changes

Research question: Does the refactoring of software systems developed with an OOP
language to an AOP extension of the same language produce a significant change on
the overall modularity?

Justification: We expect that the AOP pattern versions are statistically different and
exhibiting, as claimed, higher values for modularity from the OOP ones.

Statistical hypothesis: If we consider that we have two independent groups of cases,
one for the Java language and another for the AspectJ language, we can compare the
averages for each of the testing variables in the two groups. In other words, we want to
test if there is a significant difference between the averages of the variables describing
modularity, for the two languages.

H0 : µ PCI Java = µ PCI AspectJ

H1 : µ PCI Java 6= µ PCI AspectJ

H0 : µ MMF Java = µ MMF AspectJ

H1 : µ MMF Java 6= µ MMF AspectJ

Here we will use once again the Independent Samples T-Test.

Figure 5.28: Paired samples statistics for PCI and MMF for the GoF patterns in Java
and AspectJ

Figure 5.29: Levene’s and t-test for PCI and MMF for the GoF patterns in Java and
AspectJ

Results interpretation: Based upon the result of the Levene’s test and an α = 0.05 we
can say that we have to reject the hypothesis of the equality of variances between the

78

5. GOF DESIGN PATTERNS MODULARITY 5.5. Hypotheses identification and testing

two groups, for both testing variables. Therefore we have to choose the rows signalized
with Equal variances not assumed.

The positive value for the t statistic shows us that the values of the potential cross-
cutting metric (PCI) is on the average superior for Java than for AspectJ. Considering a
test significance α = 0.05, we can conclude from figure 5.29 that we must reject the null
hypotheses that the averages of the potential crosscutting is the same between the two
groups. In other words, we can say that there is statistical evidence that the potential
crosscutting for the OOP versions is, on average, higher than the potential crosscutting for the
AOP versions, which, as explained earlier, between functional equivalent systems also
means that modularity is higher on the AOP versions of those systems.

The negative value for the t statistic shows us that the values of the modularity
merit factor (MMF) is on the average inferior for Java than for AspectJ. Considering
a test significance α = 0.05, we can conclude from figure 5.29 that we must reject the
null hypotheses that the averages of the modularity merit factor is the same between
the two groups. In other words, we can say that there is statistical evidence that the
modularity merit factor for the OOP versions is, on average, lower than the modularity merit
factor for the AOP versions, meaning that modularity is higher on the AOP versions of
those systems.

79

5. GOF DESIGN PATTERNS MODULARITY 5.5. Hypotheses identification and testing

[This page was intentionally left blank]

80

Chapter 6

Related Work

Contents
6.1 Introduction . 82

6.2 PIFACTORS . 82

6.3 PIMETRICS . 83

6.4 AOP Modularity Improvements Evaluation 84

In this chapter an overview of the related work is presented and discussed.

81

6. RELATED WORK 6.1. Introduction

6.1 Introduction

In this section, the work related to this dissertation is summarized and discussed. For
this purpose it was grouped according to its relation with the PIFACTORS, the PIMET-
RICS and the AOP Modularity improvements evaluation.

6.2 PIFACTORS

Eder et al. coupling dimensions, interaction, component and inheritance cou-
pling [EKS92] are heavily focused at object-oriented coupling mechanisms. This is
a good example of how metrics for paradigm independent software properties like
modularity have been defined so far, highly dependent on paradigms.

Hitz and Montazeri coupling levels, class and object level coupling [HM95] address
static and dynamic coupling. The PIFACTORS address the static coupling and cohe-
sion only. Anyway, dynamic coupling is believed to interfere with performance and
testing issues and not so much with understandibility and reuse, therefore being out
of the scope of a research on modularity like this.

Hitz and Montazeri and Briand et al. corroborate the importance of the type mod-
ularity factor. The former redefined coupling types for OOP [HM95], while the latter
states that the strength of coupling between two classes is determined by the type of
connections between the classes [BBDW99].

Briand corroborates the importance of the density modularity factor when mention-
ing that coupling between two classes is determined by two things, frequency and
types of connections among modules [BBDW99].

Briand work is presented in [BBDW99] is focused essentially on coupling relations
available during the high level design phase, more concretely coupling caused by inter-
actions that occur between classes. His framework heavily focuses on object-oriented
coupling mechanisms. However, by introducing the locus of impact kind of coupling
interaction, he corroborates the relevance of the role modularity factor.

Ceccatto and Tonella seem to corroborate the relevance of the coverage factor, con-
sidering their CMC1 and CFA2 metrics [CT04]. Briand et al. also seem to agree on the
relevance of this factor, at least from the source point of view, when considering that
a class coupling depends on the set of invoked methods like at their SIM3 and PIM4

metrics [BBDW99].
Ceccato and Tonella enforce the idea of the target role importance on the AOP con-

text by considering aspects new coupling mechanisms, where classes ignore their exis-
tence [CT04].

1Coupling on method call
2Coupling on field access
3Statically invoked metrics
4Polimorphically invoked metrics

82

6. RELATED WORK 6.3. PIMETRICS

Neto et al. [NRD+07] proposed the adoption of the concept semantic coupling, as an
opposition to syntactic coupling, being the latter the most common one at OOP, where
it is generated by the syntactic constructs of the adopted language, while the former
emerges from new paradigms and languages, like AspectJ, where the dependencies
may not be so explicit. He also refers that semantic coupling does not provoke compi-
lation errors, however some problems may occur. This sort of side effects, specific to a
programming language, should not be called coupling.

To summarize, the PIFACTORS capture, in a paradigm independent way, most of
the concerns, related with modularity, evidenced by many paradigm specific metrics
defined so far. The PIFACTORS also capture the clustering and commitment factors
which are not usually addressed by traditional metrics.

6.3 PIMETRICS

Several coupling measurement frameworks exist like those by Eder et al. [EKS92], Hitz
and Montazeri [HM95] and Briand et al. [HM95], but none of those has an approach
like the PIMETRICS, independent of paradigm or programming languages.

We disagree when Briand concludes, after analyzing the empirical differences be-
tween two classes using MPC5 and DAC6, that there is not one right way to count fre-
quencies of connections. There must be only one way to count them, otherwise, we
will never be able to measure the same thing. Our density modularity factor addresses
this subject.

Sant’Anna et al. proposed a framework [San03] for assessing Aspect-Oriented soft-
ware. This framework extends some OOP traditional metrics into AOP, to enable
cross-paradigm comparisons, and proposes a set of metrics to evaluate the separa-
tion of concerns, also at both paradigms. The metrics from this framework, apparently
were not validated or formalized and we are not aware of any study about their or-
thogonality. For comparability and experiment replication sake, we must guarantee
precision on metrics definition, which can only be achieved through formality. Even
if this had been accomplished, it is our belief that, after analyzing the scope of each of
the measurements defined it is very narrow, when compared to the PIFACTORS.

Some authors like Ceccato and Tonella [CT04], Zhao [Zha04] and other, also defend
the idea that OOP metrics must be adapted or extended to cover AOP new coupling
mechanisms. These are good examples of how researchers on metrics are dealing with
paradigm shifts. They often adapt old metrics to cope with the innovative features pro-
posed in formalisms supporting the new paradigm. However, the basic architectural
concepts such as coupling, cohesion and modularity have not changed over the last
decades. If we base our metrics on those basic concepts, instead of proposing paradigm

5Message passing coupling
6Data abstraction coupling

83

6. RELATED WORK 6.4. AOP Modularity Improvements Evaluation

tailored-based metrics, we can compare systems built in different paradigms.

We disagree with Ceccato and Tonella [CT04] when, grounding their CAE7 metric,
they state that if the behavior of an operation can be altered by an advice, due to a
pointcut intercepting it, there is an (implicit) dependency of the operation from the
advice. The method should not depend at all from the advice. If it does, then the design
is probably not right. Each class should implement its own concern alone regardless
of the paradigm being used. When the method behaviour depends on the advice,
either the method is implementing more than one concern, or the concern the method
is implementing is scattered between the method and the advice, which should not
occur also.

Too summarize, we are not aware of any other paradigm independent metrics for
modularity. All the metrics discussed have paradigm dependent definitions and to
provide cross-paradigm comparisons, some of these metrics have evolved to support
the features of the new paradigms. Unlike the PIMETRICS, most of the metrics be-
ing used to quantitatively compare the modularity of OOP and AOP systems are not
validated or formalized.

6.4 AOP Modularity Improvements Evaluation

There seems to exist two streams, when it comes to the evaluation of AOP modularity
improvements. One makes use of the Design Structure Matrixes(DSM) and other related
developments, like the one in [CCH07], while the other makes use of metrics, as in
[BBDW99].

Some approaches based on DSM claim [LB06] that metrics are not thought of for
assessing design options at certain decision points, but can be useful for a posteriori analy-
sis. As a matter of fact, there are today many software metrics for assessing the soft-
ware design like those proposed in [BBA02], and its usage is increasing to a point
where commercial tools are being developed to support this practice, like the ones
from [SDM06] or [Bor08]. The PIMETRICS can also be used for design evaluations, as
long as the PIMETA is instantiated with the features from the design language being
used. Metrics in general can be used for estimation models or even for identifying poor
design decisions and proposing alternatives, like suggested in [BA08].

Hannemann and Kiczales [HK02] presented the, to the best of our knowledge, first
functional equivalent implementation of the gang-of-four design patterns in Java and
AspectJ. Along with this implementation’s presentation came a comparative study,
where the authors claimed modularity improvements in 17 of the 23 design patterns.
Although being a qualitative study, it should be taken into consideration the empirical
understanding of the paradigm effects on modularity, given the authors expertise on
the subject.

7Coupling on advice execution

84

6. RELATED WORK 6.4. AOP Modularity Improvements Evaluation

In [GSF+05], a quantitative study on the modularization of the design patterns
with aspects is presented. The conclusions seem appealing, however the fact of be-
ing grounded on the framework proposed in [San03], which is not validated or for-
malized, poses a serious threat to the validity of those conclusions. Still, there is an
apparent contradiction in [San03] that caught our attention. Within the results pre-
sented, the prototype, command, iterator, chain of responsability, strategy and memento de-
sign patterns in AspectJ are ranked among those that present the highest separation of
concerns. However, they are simultaneously among those that presented the best cou-
pling and cohesion in their OOP versions, suggesting that to a decrease in modularity
corresponds an increase in the separation of concerns.

Kulesza presents another study [KSG+06] on the effects of aspect-oriented pro-
gramming on maintainability. Again, the conclusions clearly favour aspect-oriented
programming. However, this work is once again grounded on the same framework
discussed above [San03] and therefore its conclusions are not well grounded.

Lopes and Bajra [LB06] proposed the assessment of aspect modularizations by us-
ing the design structure matrix(DSM) and the net option value(NOV), and present a case
study where several object-oriented and aspect-oriented design variants for a software
application are compared and analyzed. They concluded that aspects can be beneficial
as well as detrimental. This study was grounded on a small, however relatively complex
example, which inhibited more ambitious conclusions beyond the scope of the system
itself.

Cai and Huynh [CCH07] proposed an evolution model for software modularity
assessment using a decision tree based assessment framework grounded on augmented
constraint networks. The authors claimed its independency of particular languages and
paradigms and that the proposed model quantitatively corroborates the qualitative
claims of Hannemann and Kiczales [HK02] about the modularity improvements on the
Observer design pattern. However, the fact of only encompassing one simple example
reduces the external validity of the conclusions.

The above DSM-based approaches do not seem to provide a scale against which
the results can be compared, to find out whether a design is good or bad. Their theo-
retical validity was not discussed and they reach slightly different conclusions. While
in [CCH07] the qualitative claims in [HK02] are corroborated, in [LB06] aspects are
considered to be detrimental as well.

From all the above, we can conclude that most OOP versus AOP modularity evalua-
tions made so far are grounded on poor metrics or processes meaning that the validity
of their conclusions is threatened. We believe to have contributed with a more solid
ground on which these kind of evaluations can be performed and achieve stronger
results.

85

6. RELATED WORK 6.4. AOP Modularity Improvements Evaluation

[This page was intentionally left blank]

86

Chapter 7

Conclusions and Future work

Contents
7.1 Conclusions . 88

7.2 Threats to validity . 89

7.3 Future work . 90

This chapter summarizes the achievements of the research work described in this the-
sis and lists some open issues, which should and hopefully will ground our future
research work.

87

7. CONCLUSIONS AND FUTURE WORK 7.1. Conclusions

7.1 Conclusions

We have defined a meta-model (PIMETA) and a set of metrics (PIMETRICS) based on
our intuitive notions about the modularity within a software system described by the
PIFACTORS. The PIMETRICS were also internally validated and formalized in OCL
upon the PIMETA.

We applied the M2DM technique, with the PIMETA and the PIMETRICS, at the
GoF Design Patterns functionally equivalent implementations, developed in Java and
AspectJ by Hannemann and Kiczales, and measured the modularity from both imple-
mentations.

We used statistic tests and techniques to consolidate the PIMETRICS adequacy, to
validate the results obtained and to support our conclusions.

Our conclusions about the modularity improvements with aspect-oriented pro-
gramming are as follows:

i) The coupling of the coarser grained modules (classes and interfaces) which be-
long to the OOP version of the GoF design patterns in Java is, on average, higher
than the coupling of the coarser grained modules (aspects, classes and interfaces)
which belong to the AOP version of the same patterns in AspectJ. This difference
is around 11% on average on all indexes, where the lowest difference is 7% and
the highest is 20%;

ii) The cohesion of the coarser grained modules which belong to the OOP version
of the GoF design patterns in Java is, on average, higher than the cohesion of the
coarser grained modules which belong to the AOP version of the same patterns in
AspectJ. This difference is around 20% on average on both indexes. This decrease
in the AspectJ version of the patterns is, in our opinion, due to the fact of being
compared with the cohesion in the modules of the Java version influenced by the
non-functional cohesion inherent to code tangling which we named delusional co-
hesion;

iii) The potential crosscutting in the Java version of the patterns is, on average, higher
than the potential crosscutting in the AspectJ version of the same patterns. This
difference is around 16% and means also modularity improvements for functional
equivalent systems, as explained earlier;

iv) The modularity merit factor in the Java version of the patterns is, on average, lower
than the modularity merit factor in the AspectJ version of the same patterns. This
difference is around 16%;

v) Modularity does improve when OOP systems are refactored to AOP, but these
improvements, according to our results, are far more moderate than those claimed
so far in equivalent studies like [SGK+04] or [KSG+06].

88

7. CONCLUSIONS AND FUTURE WORK 7.2. Threats to validity

We believe to have provided a sound contribute towards the AOP modularity im-
provements evaluation, as well as towards the paradigm independent evaluation of
software.

7.2 Threats to validity

Some of the PIFACTORS evidenced some unexpected values of high correlation. Even-
though they could be explained by the sample characteristics, future work should be
conducted to clarify this point.

The PIMETA has only been instantiated with Java and AspectJ. To truly prove
its adequacy for the representation of the features and dependencies from different
paradigm and languages, it should be instantiated with some more distinct examples.

The PIMETRICS do not measure indirect dependencies [HYYT05], that is, ambigu-
ous dependencies that are the consequence of explicit or direct dependencies, from
which properties like indirect coupling can derive. Therefore, in spite of not being
clear the relevance of these dependencies, they were not considered within the pre-
sented modularity evaluation.

The PIMETRICS do not distinguish when a dependency is towards a feature imple-
mented natively in a feature different from its target(e.g. A method calling an inherited
method from the child class. Should this be a double dependency, a direct dependency
towards the parent, or as now is being considered, a direct dependency towards the
child?). Even though this case has not been addressed, it is recognized as relevant
enough to be followed.

The dependency type weight has been set to 1, for not being known, up to date,
an appropriate scale which can be used for the dependencies of Java or AspectJ. This
implies the consent that all dependencies have the same effect on modularity, in spite
of not being at all our conviction. It is believed that these weights must be defined for
each dependency from each language willing to be compared, and should come from
a thorough statistical analysis based on maintenance effort.

The design patterns implementation in Java and AspectJ is a very interesting case
study, yet small. If the systems under study are big and complex, the credibility of the
results achieved is higher, granted that the experiments are properly conducted and
validated.

The PIMETRICS must be used with larger systems. Even if only at systems pro-
grammed with the same language, the sample size is very important to externally vali-
date the metrics with, for instance, maintenance effort. If used in systems implemented
with both paradigms (OOP and AOP), it may help to consolidate the importance of PI-
METRICS for non-paradigm modularity evaluation as well as it may consolidate the
evaluation of the modularity benefits of AOP.

To improve the reliability of the automated data collection and measurement pro-

89

7. CONCLUSIONS AND FUTURE WORK 7.3. Future work

cess, more validation and enhancement is required. The AspectJ-Front parser evi-
denced the lack of some features that would be of value like, for instance, an xml schema
for the generated xml files.

7.3 Future work

In this section, some potential research threads are presented and grouped by the fol-
lowing areas.

7.3.1 Quantitative Modularity Evaluation

i) Our dimensionless PIMETRIC indexes are supposed to be size independent and
to represent different modularity factors. This suggests the following research
questions:

(a) Are PIMETRIC indexes size-independent?

(b) Do PIMETRICS represent non-overlapping modularity factors?

(c) Has the role factor an effect on the modularity?

(d) Has the coverage factor an effect on modularity?

(e) Has the commitment factor an effect on the modularity?

(f) Has the clustering factor an effect on the modularity?

(g) Has the density factor an effect on the modularity?

(h) Is the distribution of modularity improvement the same across design pat-
terns?

ii) Clarify the high correlation presented between some of the PIFACTORS, namely
by applying the PIMETRICS to larger and real world examples.

iii) Define ordinal scales and weights for the dependencies of Java and AspectJ, con-
sidering their impact on modularity.

iv) Study indirect dependencies impact on modularity and consider evolving the PI-
METRICS accordingly.

v) Study delusional cohesion.

vi) Validate the PIMETRICS externally using maintenance effort as the dependent
variable.

90

7. CONCLUSIONS AND FUTURE WORK 7.3. Future work

7.3.2 Refactoring

i) Implementation of a process supported by a tool to suggest and implement cross-
paradigm refactorings, from OOP to AOP, based on the PIMETRICS capability to
identify code smells, as described in [BA08].

ii) Evolve the current scripts used in the measurement process into a meta-model
based measurement and refactoring prototype.

91

7. CONCLUSIONS AND FUTURE WORK 7.3. Future work

[This page was intentionally left blank]

92

Appendix A

Java Feature and Dependency Types

This appendix presents the Java Feature Types, their mutual aggregation possibilities
and their DependencyTypes with which PIMETA is instantiated.

93

A. JAVA FEATURE AND DEPENDENCY TYPES

ModularFeatureTypes
Package
Class
Interface
Method
Constructor

AtomicFeatureTypes
Field
LocalVariable
Enumeration
Parameter
ReturnValue
Exception

Aggregations
(Package, Package)
(Package, Class)
(Package, Interface)
(Class, Class)
(Class, Interface)
(Class, Method)
(Class, Constructor)
(Class, Field)
(Class, Enumeration)
(Method, LocalVariable)
(Method, Class)
(Method, Parameter)
(Method, ReturnValue)
(Method, Enumeration)
(Constructor, LocalVariable)
(Constructor, Class)
(Constructor, Parameter)
(Constructor, Enumeration)
(Interface, Method)
(Interface, Constructor)
(Interface, Enumeration)
(Interface, Field)
(Interface, Class)
(Interface, Interface)

Table A.1: Java Feature Types

94

A. JAVA FEATURE AND DEPENDENCY TYPES

DependencyTypes
ClassInheritance : (Class, Class)
ClassInterfaceImplementation : (Class, Interface)
ClassImportsPackage : (Class, Package)
ClassImportsClass : (Class, Class)
ClassCallsConstructor : (Class, Constructor)
InterfaceInheritance : (Interface, Interface)
InterfaceImportsPackage : (Interface, Package)
InterfaceImportsClass : (Interface, Class)
MethodUsesField : (Method, Field)
MethodUsesEnumeration : (Method, Enumeration)
MethodCallsMethod : (Method, Method)
MethodCallsConstructor : (Method, Constructor)
MethodRaisesException : (Method, Exception)
ConstructorUsesField : (Constructor, Field)
ConstructorUsesEnumeration : (Constructor, Enumeration)
ConstructorCallsMethod : (Constructor, Method)
ConstructorCallsConstructor : (Constructor, Constructor)
ConstructorRaisesException : (Constructor, Exception)
ReturnValueType : (ReturnValue, Class)
ParameterType : (Parameter, Class)
ExceptionType : (Exception, Class)
FieldType : (Field, Class)
LocalVariableType : (LocalVariable, Class)

Table A.2: Java Dependency Types

95

A. JAVA FEATURE AND DEPENDENCY TYPES

[This page was intentionally left blank]

96

Appendix B

AspectJ Feature and Dependency Types

This appendix presents the AspectJ Feature Types, their mutual aggregation possibili-
ties and their DependencyTypes with which PIMETA is instantiated.

97

B. ASPECTJ FEATURE AND DEPENDENCY TYPES

ModularFeatureTypes
Aspect
AdviceBefore
AdviceAround
AdviceAfter
InterTypeOperation
PointcutDefinition

AtomicFeatureTypes
InterTypeField
DeclareParents
DeclareWarning
DeclareError
DeclareSoft
DeclarePrecedence
DeclareAtType
DeclareAtMethod
DeclareAtConstructor
DeclareAtField
Pointcut

Table B.1: AspectJ Feature Types

98

B. ASPECTJ FEATURE AND DEPENDENCY TYPES

Aggregations
(Package, Aspect)
(Class, Aspect)
(Aspect, Aspect)
(Aspect, Class)
(Aspect, Interface)
(Aspect, Method)
(Aspect, Field)
(Aspect, Enumeration)
(Aspect, AdviceBefore)
(Aspect, AdviceAround)
(Aspect, AdviceAfter)
(Aspect, InterTypeOperation)
(Aspect, PointcutDefinition)
(Aspect, InterTypeField)
(Aspect, DeclareParents)
(Aspect, DeclareWarning)
(Aspect, DeclareError)
(Aspect, DeclareSoft)
(Aspect, DeclarePrecedence)
(Aspect, DeclareAtType)
(Aspect, DeclareAtMethod)
(Aspect, DeclareAtConstructor)
(Aspect, DeclareAtField)
(PointcutDefinition, Pointcut)
(PointcutDefinition, Parameter)
(AdviceBefore, Pointcut)
(AdviceBefore, LocalVariable)
(AdviceBefore, Class)
(AdviceBefore, Parameter)
(AdviceBefore, ReturnValue)
(AdviceAround, Pointcut)
(AdviceAround, LocalVariable)
(AdviceAround, Parameter)
(AdviceAround, ReturnValue)
(AdviceAfter, Pointcut)
(AdviceAfter, LocalVariable)
(AdviceAfter, Class)
(AdviceAfter, Parameter)
(AdviceAfter, ReturnValue)
(InterTypeOperation, Pointcut)
(InterTypeOperation, LocalVariable)
(InterTypeOperation, Class)
(InterTypeOperation, Parameter)
(InterTypeOperation, ReturnValue)

Table B.2: AspectJ Features (cont.)

99

B. ASPECTJ FEATURE AND DEPENDENCY TYPES

DependencyTypes
AspectInheritsFromClass : (Aspect, Class)
AspectInheritsFromAspect : (Aspect, Aspect)
AspectImplementsInterface : (Aspect, Interface)
AspectImportsPackage : (Aspect, Package)
AspectImportsClass : (Aspect, Class)
AspectCallsConstructor : (Aspect, Constructor)
MethodUsesInterTypeField : (Method, InterTypeField)
MethodCallsInterTypeOperation : (Method, InterTypeOperation)
ConstructorUsesInterTypeField : (Constructor, InterTypeField)
ConstructorCallsInterTypeOperation : (Constructor, InterTypeOperation)
AdviceBeforeUsesField : (AdviceBefore, Field)
AdviceBeforeUsesEnumeration : (AdviceBefore, Enumeration)
AdviceBeforeCallsMethod : (AdviceBefore, Method)
AdviceBeforeCallsConstructor : (AdviceBefore, Constructor)
AdviceBeforeRaisesException : (AdviceBefore, Class)
AdviceBeforeUsesPointcutDefinition : (AdviceBefore, PointcutDefinition)
AdviceBeforeUsesInterTypeField : (AdviceBefore, InterTypeField)
AdviceBeforeCallsInterTypeOperation : (AdviceBefore, InterTypeOperation)
AdviceAroundUsesField : (AdviceAround, Field)
AdviceAroundUsesEnumeration : (AdviceAround, Enumeration)
AdviceAroundCallsMethod : (AdviceAround, Method)
AdviceAroundCallsConstructor : (AdviceAround, Constructor)
AdviceAroundRaisesException : (AdviceAround, Class)
AdviceAroundUsesPointcutDefinition : (AdviceAround, PointcutDefinition)
AdviceAroundUsesInterTypeField : (AdviceAround, InterTypeField)
AdviceAroundCallsInterTypeOperation : (AdviceAround, InterTypeOperation)
AdviceAfterUsesField : (AdviceAfter, Field)
AdviceAfterUsesEnumeration : (AdviceAfter, Enumeration)
AdviceAfterCallsMethod : (AdviceAfter, Method)
AdviceAfterCallsConstructor : (AdviceAfter, Constructor)
AdviceAfterRaisesException : (AdviceAfter, Class)
AdviceAfterUsesPointcutDefinition : (AdviceAfter, PointcutDefinition)
AdviceAfterUsesInterTypeField : (AdviceAfter, InterTypeField)
AdviceAfterCallsInterTypeOperation : (AdviceAfter, InterTypeOperation)
InterTypeOperationUsesField : (InterTypeOperation, Field)
InterTypeOperationUsesEnumeration : (InterTypeOperation, Enumeration)
InterTypeOperationCallsMethod : (InterTypeOperation, Method)
InterTypeOperationCallsConstructor : (InterTypeOperation, Constructor)
InterTypeOperationRaisesException : (InterTypeOperation, Class)
InterTypeOperationDestinationClass : (InterTypeOperation, Class)
InterTypeOperationDestinationAspect : (InterTypeOperation, Aspect)
InterTypeOperationUsesInterTypeField : (InterTypeOperation, InterTypeField)
InterTypeOperationCallsInterTypeOperation : (InterTypeOperation, InterTypeOperation)
InterTypeFieldType : (InterTypeField, Class)
InterTypeFieldDestinationClass : (InterTypeField, Class)
InterTypeFieldDestinationAspect : (InterTypeField, Aspect)

Table B.3: AspectJ Dependency Types

100

B. ASPECTJ FEATURE AND DEPENDENCY TYPES

DependencyTypes
DeclareParentsParentClass : (DeclareParents, Class)
DeclareParentsParentInterface : (DeclareParents, Interface)
DeclareParentsParentAspect : (DeclareParents, Aspect)
DeclareParentsChildClass : (DeclareParents, Class)
DeclareParentsChildInterface : (DeclareParents, Interface)
DeclareParentsChildAspect : (DeclareParents, Aspect)
DeclareParentsImplementedInterface : (DeclareParents, Interface)
DeclareParentsClassImplementingInterface : (DeclareParents, Class)
DeclareParentsAspectImplementingInterface : (DeclareParents, Aspect)
DeclareWarningUsesPointcutDefinition : (DeclareWarning, PointcutDefinition)
DeclareErrorUsesPointcutDefinition : (DeclareError, PointcutDefinition)
DeclareSoftUsesPointcutDefinition : (DeclareSoft, PointcutDefinition)
DeclarePrecedenceUsesAspect : (DeclarePrecedence, Aspect)
DeclareAtTypeUsesClass : (DeclareAtType, Class)
DeclareAtTypeUsesAspect : (DeclareAtType, Aspect)
DeclareAtMethodUsesPointcutDefinition : (DeclareAtMethod, PointcutDefinition)
DeclareAtConstructorUsesClass : (DeclareAtConstructor, Class)
DeclareAtFieldUsesClass : (DeclareAtField, Class)
PointcutUsesPointcutDefinition : (Pointcut, PointcutDefinition)
PointcutUsesPackage : (Pointcut, Package)
PointcutUsesClass : (Pointcut, Class)
PointcutUsesInterface : (Pointcut, Interface)
PointcutUsesAspect : (Pointcut, Aspect)
PointcutUsesMethod : (Pointcut, Methhod)
PointcutUsesConstructor : (Pointcut, Constructor)
PointcutUsesField : (Pointcut, Field)

Table B.4: AspectJ Dependency Types (cont.)

101

B. ASPECTJ FEATURE AND DEPENDENCY TYPES

[This page was intentionally left blank]

102

Appendix C

PIMETRICS primitives

This appendix presents the primitive functions in OCL upon which the PIMETRICS
are formalized.

103

C. PIMETRICS PRIMITIVES

Name enclosingModularFeature()
Informal definition Modular feature which encloses this feature
Formal definition PIMETA::Feature

enclosingModularFeature() : ModularFeature =
self.modularFeature

Name rootFeature()
Informal definition Modular feature which encloses all the modular features

which enclose this modular feature
Formal definition PIMETA::Feature

rootFeature(): ModularFeature =
if self.modularFeature = oclUndefined(ModularFeature)
then
self.oclAsType(ModularFeature)
else
self.modularFeature.rootFeature()
endif

Name modularSiblings()
Informal definition My sibling features
Formal definition PIMETA::Feature

modularSiblings(): Set(Feature) =
if enclosingModularFeature() = oclUndefined(ModularFeature)
then
oclEmpty(Set(Feature))
else
enclosingModularFeature().allEnclosedFeatures()->
excluding(self)
endif

Name siblingDependedFeatures()
Informal definition Sibling features on which this feature depends
Formal definition PIMETA::Feature

siblingDependedFeatures(): Set(Feature) =
self.modularSiblings()->
intersection(self.allDependedFeatures().
allEnclosingModularFeaturesRecursively())

Name siblingDependentFeatures()
Informal definition Sibling features which depend on this feature
Formal definition PIMETA::Feature

siblingDependentFeatures(): Set(Feature) =
self.modularSiblings()->
intersection(self.allDependentFeatures().
allEnclosingModularFeaturesRecursively())

Table C.1: Feature operations

104

C. PIMETRICS PRIMITIVES

Name allEnclosingModularFeaturesRecursively()
Informal definition All features which enclose this feature recursively

Formal definition PIMETA::Feature
allEnclosingModularFeaturesRecursively():
Set(ModularFeature) =
if self.modularFeature = oclUndefined(ModularFeature)
then
oclEmpty(Set(ModularFeature))
else
self.modularFeature.
allEnclosingModularFeaturesRecursively()->
including(self.modularFeature)
endif

Name internalDependencies()
Informal definition All dependencies among the features enclosed by me

Formal definition PIMETA::Feature
internalDependencies(): Set(Dependency) =
oclEmpty(Set(Dependency))

Name inboundDependencies()
Informal definition All dependencies which destinations are any

of my enclosed features
Formal definition PIMETA::Feature

inboundDependencies(): Set(Dependency) =
self.dependencyDestinations

Name outboundDependencies()
Informal definition All dependencies which origins are any of my enclosed

features
Formal definition PIMETA::Feature

outboundDependencies(): Set(Dependency) =
self.dependencyOrigins

Name externalDependencies()
Informal definition All dependencies which origins and destinations

are not any of my enclosed features
Formal definition PIMETA::Feature

externalDependencies(): Set(Dependency) =
Dependency.allInstances-internalDependencies()-
inboundDependencies()-outboundDependencies()

Name internalFeatures()
Informal definition All features enclosed by me

Formal definition PIMETA::Feature
internalFeatures(): Set(Feature) =
oclEmpty(Set(Feature))

Table C.2: Feature operations (cont.)

105

C. PIMETRICS PRIMITIVES

Name externalFeatures()
Informal definition All features not enclosed by me
Formal definition PIMETA::Feature

externalFeatures(): Set(Feature) =
(Feature.allInstances->reject(oclIsTypeOf(Feature))-
self.internalFeatures())->excluding(self)

Name allDependedFeatures()
Informal definition All features which I depend on
Formal definition PIMETA::Feature

allDependedFeatures(): Set(Feature) =
self.dependencyOrigins.destination->asSet

Name allDependentFeatures()
Informal definition All features which depend on me
Formal definition PIMETA::Feature

allDependentFeatures(): Set(Feature) =
self.dependencyDestinations.origin->asSet

Name internalDependedFeatures()
Informal definition All enclosed features from which other features depend

on
Formal definition PIMETA::Feature

internalDependedFeatures(): Set(Feature) =
oclEmpty(Set(Feature))

Name internalDependentFeatures()
Informal definition All enclosed features which are dependent on other

features
Formal definition PIMETA::Feature

internalDependentFeatures(): Set(Feature) =
oclEmpty(Set(Feature))

Name externalDependedFeatures()
Informal definition All external features which I depend on
Formal definition PIMETA::Feature

externalDependedFeatures(): Set(Feature) =
self.allDependedFeatures() -
self.internalDependedFeatures()

Table C.3: Feature operations (cont.)

106

C. PIMETRICS PRIMITIVES

Name externalDependentFeatures()
Informal definition All external features which depend on me
Formal definition PIMETA::Feature

externalDependentFeatures(): Set(Feature) =
self.allDependentFeatures() -
self.internalDependentFeatures()

Name allDependencies()
Informal definition All dependencies from which I am the origin
Formal definition PIMETA::Feature

allDependencies(): Set(Dependency) =
Dependency.allInstances->select(origin=self)

Name hasCommonRoot()
Informal definition True if the provided feature shares its root with

me
Formal definition PIMETA::Feature

hasCommonRoot(other: Feature): Boolean =
self.rootFeature() = other.rootFeature()

Name featuresWithoutCommonRoot()
Informal definition All features which do not have the same root as I

do
Formal definition PIMETA::Feature

featuresWithoutCommonRoot(): Set(Feature) =
self.externalFeatures()->
reject(f: Feature | self.hasCommonRoot(f))

Name featuresWithCommonRoot()
Informal definition All features which share their root with me
Formal definition PIMETA::Feature

featuresWithCommonRoot(): Set(Feature) =
Feature.allInstances->excluding(self) -
featuresWithoutCommonRoot()

Name externalDependedFeaturesSharedWith()
Informal definition Common external depended features between the

current feature and the "other" feature
Formal definition PIMETA::Feature

externalDependedFeaturesSharedWith(other:
ModularFeature):
Set(Feature) =
self.externalDependedFeatures()->
intersection(other.externalDependedFeatures())

Table C.4: Feature operations (cont.)

107

C. PIMETRICS PRIMITIVES

Name externalDependentFeaturesSharedWith()
Informal definition Common external dependent features between the

current feature and the "other" feature
Formal definition PIMETA::Feature

externalDependentFeaturesSharedWith(other:
ModularFeature):
Set(Feature) =
self.externalDependentFeatures()->
intersection(other.externalDependentFeatures())

Name externalDependedFeaturesAggregatedBy()
Informal definition External depended features belonging to the "other"

feature
Formal definition PIMETA::Feature

externalDependedFeaturesAggregatedBy(other:
ModularFeature):
Set(Feature) =
self.externalDependedFeatures()->
intersection(other.internalFeatures())

Name externalDependentFeaturesAggregatedBy()
Informal definition External dependent features belonging to the "other"

feature
Formal definition PIMETA::Feature

externalDependentFeaturesAggregatedBy(other:
ModularFeature):
Set(Feature) =
self.externalDependentFeatures()->
intersection(other.internalFeatures())

Name disjointExternalDependedFeatures()
Informal definition Different external features on which a feature depends

which belongs to disjoint clusters
Formal definition PIMETA::Feature

disjointExternalDependedFeatures():Set(Feature) =
self.externalDependedFeatures()->
reject(f: Feature | self.hasCommonRoot(f))

Name disjointExternalDependentFeatures()
Informal definition Different external features depending on a feature which

belongs to disjoint clusters
Formal definition PIMETA::Feature

disjointExternalDependentFeatures():Set(Feature) =
self.externalDependentFeatures()->
reject(f: Feature | self.hasCommonRoot(f))

Table C.5: Feature operations (cont.)

108

C. PIMETRICS PRIMITIVES

Name internalDependencies()
Informal definition All dependencies which origins and destinations

are any of my enclosed features or myself
Formal definition PIMETA::ModularFeature

internalDependencies(): Set(Dependency) =
allEnclosedFeaturesRecursively()->
including(self).dependencyDestinations->asSet->
intersection(allEnclosedFeaturesRecursively()->
including(self).dependencyOrigins->asSet)

Name inboundDependencies()
Informal definition All dependencies which origins are any external

feature and which destinations are any internal
feature or myself

Formal definition PIMETA::ModularFeature
inboundDependencies(): Set(Dependency) =
allEnclosedFeaturesRecursively()->
including(self).dependencyDestinations->asSet->
intersection(externalFeatures().dependencyOrigins->asSet)

Name outboundDependencies()
Informal definition All dependencies which origins are any

of my internal features or myself, and which
destinations are any of my external features

Formal definition PIMETA::ModularFeature
outboundDependencies(): Set(Dependency) =
allEnclosedFeaturesRecursively()->
including(self).dependencyOrigins->asSet->
intersection(externalFeatures().
dependencyDestinations->asSet)

Name allDependencies()
Informal definition All dependencies among all the system features

Formal definition PIMETA::ModularFeature
allDependencies(): Set(Dependency) =
internalDependencies()->
union(inboundDependencies())->
union(outboundDependencies())

Name internalFeatures()
Informal definition All features enclosed by me (recursively)

Formal definition PIMETA::ModularFeature
internalFeatures(): Set(Feature) =
allEnclosedFeaturesRecursively()

Table C.6: ModularFeature operations (cont.)

109

C. PIMETRICS PRIMITIVES

Name allEnclosedFeatures()
Informal definition All features enclosed by me (not recursively)
Formal definition PIMETA::ModularFeature

allEnclosedFeatures(): Set(Feature) = self.feature

Name allEnclosedFeaturesRecursively()
Informal definition All features enclosed by me (recursively)
Formal definition PIMETA::ModularFeature

allEnclosedFeaturesRecursively(): Set(Feature) =
allEnclosedFeatures()->union(self.allEnclosedFeatures()->
iterate(e: Feature; acc: Set(Feature) =
oclEmpty(Set(Feature)) |
if e.oclIsTypeOf(ModularFeature) then
acc -> union(e.oclAsType(ModularFeature).
allEnclosedFeaturesRecursively())
else
acc -> including(e)
endif))

Name allEnclosedModularFeatures()
Informal definition All modular features enclosed by me (not recursively)
Formal definition PIMETA::ModularFeature

allEnclosedModularFeatures(): Set(ModularFeature) =
self.feature -> select(oclIsTypeOf(ModularFeature))->
collect(oclAsType(ModularFeature)) -> asSet()

Name allEnclosedModularFeaturesRecursively()
Informal definition All modular features enclosed by me (recursively)
Formal definition PIMETA::ModularFeature

allEnclosedModularFeaturesRecursively():
Set(ModularFeature) =
self.allEnclosedFeaturesRecursively()->
select(oclIsTypeOf(ModularFeature))->
collect(oclAsType(ModularFeature))->asSet()

Name allDependedFeatures()
Informal definition All features on which I or my enclosed features depend
Formal definition PIMETA::ModularFeature

allDependedFeatures(): Set(Feature) =
self.dependencyOrigins.destination->
asSet->union(
self.allEnclosedFeaturesRecursively()->
iterate(e: Feature; acc: Set(Feature) =
oclEmpty(Set(Feature)) |
acc ->union(e.allDependedFeatures())))

Table C.7: ModularFeature operations (cont.)

110

C. PIMETRICS PRIMITIVES

Name allDependentFeatures()
Informal definition All features which depend on me or my enclosed features

Formal definition PIMETA::ModularFeature
allDependentFeatures(): Set(Feature) =
self.dependencyDestinations.origin->
asSet->union(
self.allEnclosedFeaturesRecursively()->
iterate(e: Feature; acc: Set(Feature) =
oclEmpty(Set(Feature)) |
acc ->union(e.allDependentFeatures())))

Name internalDependedFeatures()
Informal definition All my enclosed features on which external features

depend
Formal definition PIMETA::ModularFeature

internalDependedFeatures(): Set(Feature) =
self.allEnclosedFeaturesRecursively()->
intersection(allEnclosedFeaturesRecursively()->
collect(allDependedFeatures())->asSet()->flatten())

Name internalDependentFeatures()
Informal definition All my enclosed features which depend on external

features
Formal definition PIMETA::ModularFeature

internalDependentFeatures(): Set(Feature) =
self.allEnclosedFeaturesRecursively()->
intersection(allEnclosedFeaturesRecursively()->
collect(allDependentFeatures())->asSet()->flatten())

Name AOPmodules()
Informal definition All system’s classes, interfaces and aspects

Formal definition PIMETA::ModularFeature
AOPmodules(): Set(ModularFeature) =
ModularFeature.allInstances->
select(modularFeatureType.name=’Class’ or
modularFeatureType.name=’Aspect’ or
modularFeatureType.name = ’Interface’)

Table C.8: ModularFeature operations

111

C. PIMETRICS PRIMITIVES

[This page was intentionally left blank]

112

Bibliography

[Abr01] Fernando Brito Abreu. Using ocl to formalize object oriented metrics def-
initions. Technical Report ES007/2001, Software Engineering Group, IN-
ESC, May 2001.

[AC94] Fernando Brito Abreu and Rogerio Carapuca. Object-oriented software
engineering: Measuring and controlling the development process. In Pro-
ceedings of 4th Int. Conf. on Software Quality, 1994.

[AG01] Fernando Brito Abreu and Miguel Goulao. A merit factor driven approach
to the modularization of object-oriented systems. LObject, 7, nr 4, 2001.

[AT08] AspectJ5-Team. Aspectj 5, quick reference guide. Available at: http://
www.eclipse.org/ aspectj/ doc/ released/ quick5.pdf, 2008.

[BA07] Sérgio Bryton and Fernando Brito e Abreu. Towards paradigm-
independent software assessment. In Proceedings of the 6th International
Conference on the Quality of Information and Communications Technology,
QUATIC2007, pages 40–54, Los Alamitos, CA, USA, 2007. IEEE Computer
Society.

[BA08] Sérgio Bryton and Fernando Brito e Abreu. Modularity-oriented refactor-
ing. In Proceedings of the 12th European Conference on Software Maintenance
and Reengineering, CSMR’08, 2008.

[Bar00] J. Barone. Comparing apples and oranges: a randomised prospective study.
British Medical Journal, pages 1569–1570, 2000.

[BBA02] A. Baroni, S. Braz, and F. Abreu. Using ocl to formalize object-oriented de-
sign metrics definitions. Lecture Notes in Computer Science: Springer-Verlag,
2002.

[BBDW99] L.C. Briand, L.C. Briand, J.W. Daly, and J.K. Wust. A unified framework for
coupling measurement in object-oriented systems. Transactions on Software
Engineering, 25(1):91–121, 1999.

[BCR94] V. Basili, G. Caldiera, and H.D. Rombach. Encyclopedia of Software Engi-
neering, chapter The Goal Question Metric Paradigm, pages 528–532. John
Wiley & Sons, 1994.

113

BIBLIOGRAPHY

[BEEM95] Lionel Briand, Khaled El-Emam, and Sandro Morasca. Theoretical and em-
pirical validation of software product measures. Technical Report ISERN-
95-03, International Software Engineering Research Network, 1995.

[Bor08] Borland. Borland together - visual modeling for software architecture de-
sign. http://www.borland.com/us/products/together/index.html, 2008.

[Bra08] Martin Bravenboer. Aspectj-front parser for aspectj. Available at: http://
www.program-transformation.org/ Stratego/ AspectJFront, 2008.

[CCH07] Yuangfang Cai, Yuangfang Cai, and Sunny Huynh. An evolution model
for software modularity assessment. In Sunny Huynh, editor, Proc. Fifth
International Workshop on Software Quality WoSQ’07: ICSE Workshops 2007,
pages 3–3, 2007.

[CT04] M. Ceccato and P. Tonella. Measuring the effects of software aspectization.
First Workshop on Aspect Reverse Engineering (WARE 2004) in conjuction
with WCRE 2004, Delft, The Netherlands, 2004.

[DMM05] A. v. Deursen, M. Marin, and L. Moonen. Ajhotdraw: A showcase for
refactoring to aspects. Linking Aspect Technology and Evolution Work-
shop (LATE) at AOSD’2005, Chicago, USA, 2005.

[EKS92] J. Eder, G. Kappel, and M. Schrefl. Coupling and cohesion in object-
oriented systems, 1992.

[FP97] N. E. Fenton and S. L. Pfleeger. Software Metrics: A Rigorous & Practical
Approach. UK: International Thomson Computer Press, London, second
edition, 1997.

[GBB06] J.-F. Gelinas, M. Badri, and L. Badri. A cohesion measure for aspects. Jour-
nal of Object Technology, 5:97–114, 2006.

[GBR07] Martin Gogolla, Fabian Buttner, and Mark Richters. Use: A uml-based
specification environment for validating uml and ocl. Science of Computer
Programming, 69:27–34, 2007.

[GHJV95] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns: Elements
of Reusable Object-Oriented Software. Addison-Wesley, 1995.

[GSF+05] Alessandro Garcia, Claudio Sant’Anna, Eduardo Figueiredo, Uira Kulesza,
Carlos Lucena, and Arndt von Staa. Modularizing design patterns with
aspects: a quantitative study. In AOSD ’05: Proceedings of the 4th inter-
national conference on Aspect-oriented software development, pages 3–14, New
York, NY, USA, 2005. ACM.

114

BIBLIOGRAPHY

[GVR02] R. L. Glass, I. Vessey, and V. Ramesh. Research in software engineering: an
analysis of the literature. Information and Software Technology, 44:491–506,
2002.

[Hal04] T. A. Halpin. Information modeling and higher-order types. EMMSAD’04
Workshop at CAiSE’04, Riga, Latvia, 2004.

[HK02] J. Hannemann and G. Kiczales. Design pattern implementation in java and
aspectj. In ACM Press, editor, Proceedings of OOPSLA’02, pages 161–173,
2002.

[HM95] Martin Hitz and Behzad Montazeri. Measuring product attributes of
object-oriented systems. Lecture Notes in Computer Science: Springer,
989:124–136, 1995.

[HS96] Brian Henderson-Sellers. Object-Oriented Metrics. Measures of Complexity.
Prentice Hall, 1996.

[HYYT05] R. Hong Yul Yang; Tempero, E.; Berrigan. Detecting indirect coupling. In
Software Engineering Conference, 2005. Proceedings. 2005 Australian Volume,
pages 212 – 221, March 2005.

[KLM+97] Gregor Kiczales, John Lamping, Anurag Menhdhekar, Chris Maeda,
Cristina Lopes, Jean-Marc Loingtier, and John Irwin. Aspect-oriented pro-
gramming. In Mehmet Akşit and Satoshi Matsuoka, editors, Proceedings
European Conference on Object-Oriented Programming, volume 1241, pages
220–242, Berlin, Heidelberg, and New York, 1997. Springer-Verlag.

[KSG+06] Uira Kulesza, Claudio Sant’Anna, Alessandro Garcia, Roberta Coelho,
Arndt von Staa, and Carlos Lucena. Quantifying the effects of aspect-
oriented programming: A maintenance study. In Proc. 22nd IEEE Inter-
national Conference on Software Maintenance ICSM ’06, pages 223–233, 2006.

[Lad03] R. Laddad. AspectJ in Action: Practical Aspect-Oriented Programming. Man-
ning Publications Co., 2003.

[LB06] Cristina Videira Lopes and Sushil Krishna Bajracharya. Assessing aspect
modularizations using design structure matrix and net option value. T.
Aspect-Oriented Software Development, I:1–35, 2006.

[LTBM99] D. J. Leigh, C. J. Theaker, N. Blackwood, and R. Mason. Measuring the im-
pact of migration to an object oriented paradigm. Workshop on Quantita-
tive Approaches in Object Oriented Software Engineering (QAOOSE’1999),
Lisbon, Portugal, 1999.

[Mey97] Bertrand Meyer. Object-Oriented Software Construction. Prentice Hall, 1997.

115

BIBLIOGRAPHY

[MRC06] L. Moonen, G. Ramalingam, and S. Clarke. Aspects for legacy applications.
Dagstuhl Seminar 06302, International Conference and Research Center
(IBFI), Schloss Dagstuhl, Germany, July 2006.

[Mye78] G. Myers. Composite Structured Design. Van Nostrand, 1978.

[NRD+07] Alberto Neto, Marcio de Medeiros Ribeiro, Marcos Dosea, Rodrigo Boni-
facio, and Paulo Borba. Semantic dependencies and modularity of aspect-
oriented software. In Proceedings of the 1st Workshop on Assessment of Con-
temporary Modularization Techniques (ACoM.07), 2007.

[OMG03a] OMG. Uml 2.0 infrastructure. Object Management Group, Inc., Final
Adopted Specification ptc/03-09-15, September 2003.

[OMG03b] OMG. Uml 2.0 ocl. Object Management Group Inc., Final adopted specifi-
cation ptc/03-10-14, October 2003.

[OMG03c] OMG. Uml 2.0 superstructure. Object Management Group Inc., Final
Adopted Specification ptc/03-08-02, August 2003.

[PHP08] PHPA. phpaspect. http://phpaspect.org/documentation/aop.html, 2008.

[Pol57] G. Polya. How to solve it. Princeton University Press, 1957.

[Pre00] Pressman. Software Engineering. Mcgraw-Hill, 2000.

[RG] Mark Richters and Martin Gogolla. Use, a uml-based specification environ-
ment. Available at: http:// www.db.informatik.uni-bremen.de/ projects/
USE/.

[RGV04] V. Ramesh, R. L. Glass, and I. Vessey. Research in computer science: an
empirical study. Information and Software Technology, 70:165–176, 2004.

[San03] Claudio SantAnna. On the reuse and maintenance of aspect-oriented soft-
ware: An assessment framework. In Proc. Brazilian Symp. on Software Engi-
neering, pages 19–34, 2003.

[SDM06] SDMetrics. Sdmetrics. the software design metrics tool for the uml.
http://www.sdmetrics.com/index.html, 2006.

[SGK+04] C. SantAnna, A. Garcia, U. Kulesza, C. Lucena, and A. Staa. Design pat-
terns as aspects: A quantitative assessment. In Proceedings of the XVIII Simp.
Bras. de Eng. Software, Brasilia, Brasil, Outubro 2004.

[SMC74] W. P. Stevens, G. J. Myers, and L. L. Constantine. Structured design. IBM
Systems Journal 13 nr. 2, pages 115–39, 1974.

116

BIBLIOGRAPHY

[TLPH95] W. Tichy, P. Lukowicz, L. Prechelt, and E. A. Heinz. Experimental eval-
uation in computer science: A quantitative study. Journal for Systems and
Software, 28:9–18, 1995.

[ZH03] A. A. Zakaria and H. Hosny. Metrics for aspect-oriented software design.
Workshop on Aspect-Oriented Modeling with UML at AOSD’2003, Boston,
USA, 2003.

[Zha04] J. Zhao. Measuring coupling in aspect-oriented systems. 10th International
Software Metrics Symposium, METRICS’04, 2004.

[ZW97] M. V. Zelkowitz and D. Wallace. Experimental validation in software engi-
neering. Journal of Information and Software Technology, 39:735–743, 1997.

[ZX04] J. Zhao and B. Xu. Measuring aspect cohesion. In Proceedings of the
International Conference on Fundamental Approaches to Software Engineering
(FASE’2004), 2004.

117

BIBLIOGRAPHY

[This page was intentionally left blank]

118

	1 Introduction
	1.1 Introduction
	1.2 Modularity
	1.3 Coupling
	1.4 Cohesion
	1.5 Aspect-Oriented Programming
	1.6 Meta-Model Driven Measurement
	1.7 Contributions of this Thesis
	1.8 Outline of the Dissertation

	2 PIMETA: Paradigm Independent Meta-model
	2.1 Introduction
	2.2 Paradigm Independent Meta-model
	2.2.1 PIMETA description
	2.2.2 PIMETA well-formedness rules

	2.3 PIMETA instantiation with OOP and AOP
	2.3.1 PIMETA instantiation with OOP/Java
	2.3.2 PIMETA instantiation with AOP/AspectJ

	2.4 The Observer Design Pattern in Java and AspectJ
	2.5 PIMETA instantiation with the Observer versions
	2.5.1 PIMETA instantiation with the Java version of the Observer
	2.5.2 PIMETA instantiation with the AspectJ version of the Observer

	3 PIFACTORS: Paradigm Independent Modularity Factors
	3.1 Introduction
	3.2 Taxonomy for dependency topologies
	3.2.1 Role
	3.2.2 Coverage
	3.2.3 Commitment
	3.2.4 Clustering
	3.2.5 Density
	3.2.6 Type

	4 PIMETRICS: Paradigm Independent Metrics
	4.1 Introduction
	4.2 Definitions
	4.3 Formalizations
	4.4 Metrics collection
	4.5 Exemplification
	4.6 Validation

	5 GoF Design Patterns Modularity
	5.1 Introduction
	5.2 The sample
	5.3 Descriptive statistics
	5.4 EDA: Exploratory Data Analysis
	5.4.1 Outlier analysis
	5.4.2 Testing distribution adherence

	5.5 Hypotheses identification and testing
	5.5.1 Metrics discriminative power
	5.5.2 Overall coupling changes
	5.5.3 Core modular features coupling changes
	5.5.4 Overall cohesion changes
	5.5.5 Core modular features cohesion changes
	5.5.6 Overall modularity changes

	6 Related Work
	6.1 Introduction
	6.2 PIFACTORS
	6.3 PIMETRICS
	6.4 AOP Modularity Improvements Evaluation

	7 Conclusions and Future work
	7.1 Conclusions
	7.2 Threats to validity
	7.3 Future work
	7.3.1 Quantitative Modularity Evaluation
	7.3.2 Refactoring

	A Java Feature and Dependency Types
	B AspectJ Feature and Dependency Types
	C PIMETRICS primitives

