
Universidade Nova de Lisboa
Faculdade de Ciências e Tecnologia
Departamento de Informática

Component-Based
Software Engineering: a
Quantitative Approach

Miguel Carlos Pacheco Afonso Goulão

Dissertação apresentada para a obtenção
do Grau de Doutor em Informática pela
Universidade Nova de Lisboa, Faculdade
de Ciências e Tecnologia.

Lisboa
(2008)

This dissertation was prepared under the supervision of
Professor Fernando Manuel Pereira da Costa Brito e Abreu,

of the Faculdade de Ciências e Tecnologia,
Universidade Nova de Lisboa.

ii

To my father, Manuel

[This page was intentionally left blank]

iv

Acknowledgements

I would like to thank all those who have directly or indirectly helped me along the
way.

To my supervisor, Fernando Brito e Abreu, for all his advices for so many years
now, on research, teaching, life, and so many other things. He encouraged me to start
my research career and has continuously supported me ever since, with his guidance,
know-how, and endless suggestions for improvement on whatever we do, while pro-
viding me the freedom so that I could try new ideas and follow my own path.

To Pedro Guerreiro, Ana Moreira, João Araújo, Miguel Monteiro, and all the stu-
dents of the Software Engineering research group. They have always been available
to exchange thoughts and help me through this work, and were very pro-active in
making me feel a member of the team since I joined the group. Fernando’s students,
including Aline Baroni, Sérgio Bryton, Eduardo Miranda, Vítor Gouveia, Filipa Silva,
Ricardo Santos, and so many others, were particularly helpful in the last few years,
with endless discussions on their work and mine, which have certainly helped me to
mature as a researcher.

To all my other colleagues in the Informatics Department, for providing me with
good companionship and a pleasant working environment. Luís Monteiro has always
been supportive and has avoided overloading me with tasks which would distract
me from my research. To Pedro Barahona, José Cardoso e Cunha, and Legatheaux
Martins, for all their help as heads of the Informatics Department. I was extremely
lucky to share the office with Armanda Rodrigues for several years. She has been a
source of good mood and interesting discussions, in spite of the increasingly higher
piles of papers and books she finds on my desk. Luís Russo was my personal trainer in
how to postpone procrastination and other useful time management skills, during the
final part of writing this dissertation. João Lourenço gave me the LATEXtemplate for this
dissertation. Adriano Lopes has been a good friend and a great help in understanding
how things work in the University. José Pacheco has been the best example of an
altruistic colleague since our undergraduate course and I am looking forward to seeing
him finishing his own PhD dissertation soon.

To the organizers and mentors of the ECOOP’2003, SEDES’2004 and OOPSLA’2005
doctoral symposiums, for their challenging questions and useful feedback. To all the
reviewers of the papers we have submitted during this work, for their comments and

v

suggestions, which were very helpful in maturing this dissertation.
To all my friends, who made sure I had a social life, even when I thought I had no

time for that. They were always there to celebrate the good moments, help me through
the bad ones, and send me pesky short messages whenever my soccer team lost a
match. They are too many to mention here, but nothing would make sense without
them. So, let me just thank Nuno, Pedro and Ana, three brothers who sort of adopted
me some thirty years ago, and have been around since then, the Pasta fans that have
been with me for more than a decade, the Medeia fellows with whom I share countless
evenings, the choir friends who made me a tenor feared all over the country, and my
drama teachers, who just made me a better person.

Last, but not the least, I would like to thank my family. My father, Manuel, my
lovely step-mother Fátima, and my brothers and sisters, Pedro, Jorge, Beatriz, Amélia
and Maria, my sister-in-law Marta, my uncle Armando, my aunt Lourdes, my cousin
Bates, and so many other cousins, who make sure I feel homesick when they go on
vacation. And then, of course, there is Guida, my better half, the One, and her family,
who I have learned to treasure in the last few years.

I would also like to acknowledge the following organizations for their financial
support in the fulfillment of the research activities described in this dissertation: De-
partamento de Informática of the Faculdade de Ciências e Tecnologia, Universidade
Nova de Lisboa (FCT/UNL); Centro de Informática e Tecnologias da Informação of
the FCT/UNL; Fundação para a Ciência e Tecnologia through the STACOS project
(POSI/CHS/48875/2002); The Experimental Software Engineering Network (ESER-
NET); Association Internationale pour les Technologies Objets (AITO); Association for
Computing Machinery (ACM).

vi

Summary

Background: Often, claims in Component-Based Development (CBD) are only sup-
ported by qualitative expert opinion, rather than by quantitative data. This contrasts
with the normal practice in other sciences, where a sound experimental validation of
claims is standard practice. Experimental Software Engineering (ESE) aims to bridge
this gap. Unfortunately, it is common to find experimental validation efforts that are
hard to replicate and compare, to build up the body of knowledge in CBD.
Objectives: In this dissertation our goals are (i) to contribute to evolution of ESE, in
what concerns the replicability and comparability of experimental work, and (ii) to ap-
ply our proposals to CBD, thus contributing to its deeper and sounder understanding.
Techniques: We propose a process model for ESE, aligned with current experimen-
tal best practices, and combine this model with a measurement technique called
Ontology-Driven Measurement (ODM). ODM is aimed at improving the state of prac-
tice in metrics definition and collection, by making metrics definitions formal and ex-
ecutable, without sacrificing their usability. ODM uses standard technologies that can
be well adapted to current integrated development environments.
Results: Our contributions include the definition and preliminary validation of a pro-
cess model for ESE and the proposal of ODM for supporting metrics definition and
collection in the context of CBD. We use both the process model and ODM to perform
a series experimental works in CBD, including the cross-validation of a component
metrics set for JavaBeans, a case study on the influence of practitioners expertise in
a sub-process of component development (component code inspections), and an ob-
servational study on reusability patterns of pluggable components (Eclipse plug-ins).
These experimental works implied proposing, adapting, or selecting adequate ontolo-
gies, as well as the formal definition of metrics upon each of those ontologies.
Limitations: Although our experimental work covers a variety of component models
and, orthogonally, both process and product, the plethora of opportunities for using
our quantitative approach to CBD is far from exhausted.
Conclusions: The main contribution of this dissertation is the illustration, through
practical examples, of how we can combine our experimental process model with
ODM to support the experimental validation of claims in the context of CBD, in a re-
peatable and comparable way. In addition, the techniques proposed in this dissertation
are generic and can be applied to other software development paradigms.

vii

[This page was intentionally left blank]

viii

Sumário

Enquadramento: As afirmações sobre o Desenvolvimento Baseado em Componentes
(DBC) são, normalmente, suportadas pela opinião qualitativa de peritos, mas não por
dados quantitativos. Este cenário, também observado na Ciência da Computação e em
Engenharia de Software, contrasta com o de outras ciências, em que a validação experi-
mental de propostas e teorias é prática corrente. A Engenharia de Software Experimen-
tal (ESE) procura mitigar este problema, mas frequentemente encontramos validações
experimentais que são dificilmente comparáveis e replicáveis.
Objectivos: Nesta dissertação pretendemos (i) contribuir para a evolução da ESE por
forma a favorecer a facilidade de comparação e replicação de validações experimen-
tais, e (ii) aplicar as nossas propostas de evolução em problemas do DBC.
Técnicas: Propomos a combinação de um modelo de processo que procura reflectir
as melhores práticas em ESE, com uma abordagem à medição denominada Medição
Guiada pelas Ontologias (MGO). A MGO melhora as técnicas usuais de definição de
métricas, formalizando e tornando executáveis essas definições, sem sacrificar a sua
usabilidade. A MGO é baseada em tecnologias padrão, o que facilita a sua integração
com ambientes de desenvolvimento de software modernos.
Resultados: Realizamos a uma validação do modelo de processo para ESE. A utiliza-
ção da MGO no âmbito do processo para ESE facilita a definição e recolha de métricas
para o DBC. Estas técnicas são usadas em vários casos de estudo, incluindo uma va-
lidação cruzada de métricas para JavaBeans, uma análise dos efeitos da capacidade
individual no sucesso de equipas que realizam um sub-processo do DBC (inspecções
sobre o código de componentes), e um estudo sobre padrões de reutilização numa ar-
quitectura baseada em plug-ins (Eclipse). Cada estudo efectuado inclui a definição,
adaptação, ou selecção de uma ontologia, bem como a definição formal de métricas.
Limitações: A versatilidade das nossas propostas é ilustrada pela variedade de mo-
delos de componentes em que as aplicamos, bem como pela sua a aplicação sobre o
processo e sobre o produto. Sobram inúmeras possibilidades de aplicação das técnicas
propostas que contribuiriam para novas formas de validação das mesmas.
Conclusões: O principal contributo deste trabalho é a ilustração, através de exemplos
concretos, de como o nosso modelo de processo para ESE pode ser combinado com a
abordagem MGO para suportar uma validação experimental, replicável e comparável,
de propostas feitas no contexto do DBC. A genericidade das nossas propostas também
as torna adequadas a outros paradigmas de desenvolvimento de software.

ix

[This page was intentionally left blank]

x

Contents

1 Introduction 1

1.1 Component-based development . 2

1.2 Current state of the art . 4

1.3 Contributions of this dissertation . 6

1.4 The approach . 9

1.5 Dissertation outline . 12

2 Component-Based Software Engineering 15

2.1 Component-based development . 16

2.2 Software components . 19

2.2.1 Software components specification 22

2.2.2 Component certification . 27

2.2.3 Component integration and composition 29

2.2.4 Model structure . 32

2.3 Component-based development process 32

2.3.1 Fundamental changes from traditional software development . . 32

2.3.2 Roles in component-based development 33

2.4 Component models . 35

2.4.1 A taxonomy for component models and technologies 35

2.4.2 Models summary . 37

2.5 Metrics for component-based development 40

2.5.1 Metrics and their underlying context 42

2.5.2 Metrics ill-definition . 43

2.5.3 Insufficient validation . 46

2.5.4 A taxonomy for metrics proposals classification 49

2.5.5 Environment-free component metrics 52

2.5.6 Environment-dependent component metrics 57

2.5.7 Discussion on metrics proposals 61

2.6 Quantitative vs. Qualitative research . 62

2.7 Conclusions . 63

xi

CONTENTS

3 Experimental Software Engineering 65
3.1 The scientific method . 66
3.2 Evidence-Based Software Engineering . 68

3.2.1 The benefits of evidence . 68
3.2.2 The pitfalls of evidence . 70
3.2.3 Experiment replication and tacit knowledge 72

3.3 An Experimental Software Engineering process 72
3.3.1 Experiment’s requirements definition 73
3.3.2 Experiment planning . 76
3.3.3 Experiment execution . 87
3.3.4 Data analysis . 90
3.3.5 Results packaging . 92
3.3.6 An overview of all the sub-processes 98

3.4 The experimental process case study . 98
3.4.1 Motivation . 98
3.4.2 Related work . 100
3.4.3 Experimental planning . 101
3.4.4 Execution . 104
3.4.5 Analysis . 105
3.4.6 Interpretation . 108
3.4.7 Case study’s conclusions and further work 111

3.5 Related work . 112
3.5.1 Experimental Software Engineering process models 112
3.5.2 Alternatives to experimental results evaluation 114
3.5.3 Qualitative approaches to evaluation in Software Engineering . . 114
3.5.4 Benchmarking . 116

3.6 Conclusions . 116

4 Ontology-driven Measurement 117
4.1 Revisiting metrics proposals limitations 118

4.1.1 Providing adequate context for metrics proposals 118
4.1.2 Toward a sound and usable approach to metrics definition 118
4.1.3 Facilitating metrics validation . 119

4.2 Defining Ontology-Driven Measurement 120
4.2.1 Aligning the approach with a standard 120

4.3 Defining and collecting metrics with OCL 126
4.3.1 Using OCL expressions to collect information 126

4.4 The FukaBeans case study . 129
4.4.1 Motivation . 129
4.4.2 Related work . 130
4.4.3 Experimental planning . 132

xii

CONTENTS

4.4.4 Execution . 143
4.4.5 Analysis . 144
4.4.6 Interpretation . 145
4.4.7 Case study’s conclusions and further work 148

4.5 Related work . 149
4.5.1 ODM applications to other domains 149

4.6 Conclusions . 150

5 ODM expressiveness assessment 151
5.1 Introduction . 152
5.2 A component assembly toy example . 152

5.2.1 Structural model in UML 2.0 . 152
5.2.2 Structural model, in CCM . 155
5.2.3 Concerns addressed in our example 156

5.3 Informal description of structural metrics 157
5.3.1 Component metrics . 158
5.3.2 Assembly-dependent component metrics 162
5.3.3 Collected metrics . 165
5.3.4 Comments on metrics values . 166

5.4 Metrics definition formalization . 168
5.4.1 UML 2.0 . 168
5.4.2 CORBA Component Metamodel 176

5.5 Comments on the metrics’ definitions . 185
5.5.1 Uncovering shortcomings in the original metrics definitions . . . 185
5.5.2 Reusing formalizations . 186
5.5.3 Uncovering hidden relationships between metrics sets 187
5.5.4 Metrics definition patterns . 187
5.5.5 Quality framework . 187
5.5.6 Metrics definition context . 188
5.5.7 Specification formalism . 188
5.5.8 Computational support . 189
5.5.9 Flexibility . 189
5.5.10 Validation . 189

5.6 On the complexity of metamodels . 190
5.7 Conclusions . 191

6 Process assessment in CBD 193
6.1 Motivation . 194

6.1.1 Problem statement . 195
6.1.2 Research objectives . 196
6.1.3 Context . 196

xiii

CONTENTS

6.2 Related work . 197
6.2.1 Inspection techniques . 197
6.2.2 Inspection success drivers . 200

6.3 Experimental planning . 201
6.3.1 Goals . 201
6.3.2 Experimental units . 202
6.3.3 Experimental material . 203
6.3.4 Tasks . 204
6.3.5 Hypotheses and variables . 206
6.3.6 Design . 209
6.3.7 Procedure . 209
6.3.8 Analysis procedure . 213

6.4 Execution . 214
6.4.1 Sample . 214
6.4.2 Preparation . 215
6.4.3 Data collection performed . 215

6.5 Analysis . 216
6.5.1 Descriptive statistics . 216
6.5.2 Data set reduction . 219
6.5.3 Hypothesis testing . 221

6.6 Interpretation . 230
6.6.1 Evaluation of results and implications 230
6.6.2 Threats to validity . 232
6.6.3 Inferences . 237
6.6.4 Lessons learned . 238

6.7 Conclusions and future work . 238
6.7.1 Summary . 238
6.7.2 Impact . 239
6.7.3 Future work . 239

7 Component reusability assessment 241
7.1 Motivation . 242

7.1.1 Problem statement . 242
7.1.2 Research objectives . 244
7.1.3 Context . 245

7.2 Related work . 245
7.2.1 The Eclipse plug-ins architecture 245
7.2.2 Experimental assessment of component reuse 246

7.3 Experimental design . 248
7.3.1 Goals . 248
7.3.2 Experimental units . 249

xiv

CONTENTS

7.3.3 Experimental material . 250
7.3.4 Tasks . 250
7.3.5 Hypotheses and variables . 251
7.3.6 Design . 254
7.3.7 Procedure . 254
7.3.8 Analysis procedure . 256

7.4 Execution . 257
7.4.1 Sample . 257
7.4.2 Preparation . 257
7.4.3 Data collection performed . 257

7.5 Analysis . 258
7.5.1 Descriptive statistics . 258
7.5.2 Data set reduction . 259
7.5.3 Hypotheses testing . 260

7.6 Interpretation . 264
7.6.1 Evaluation of results and implications 264
7.6.2 Threats to validity . 265
7.6.3 Inferences . 270
7.6.4 Lessons learned . 271

7.7 Conclusions and future work . 272
7.7.1 Summary . 272
7.7.2 Impact . 273
7.7.3 Future work . 273

8 Conclusions 275
8.1 Summary . 276
8.2 Contributions . 278

8.2.1 Metamodels construction and extension 278
8.2.2 Quality models and their validation 280
8.2.3 Formalization of metrics for CBD 280
8.2.4 Validation of proposals through a common process model 281
8.2.5 Development of tool support for experimentation 282

8.3 Future work . 283
8.3.1 Experimental process improvement 283
8.3.2 Extensions to our experimental work 285

A Component models 289
A.1 Introduction . 290
A.2 A toy example . 290
A.3 Inclusion criteria . 291
A.4 Component models . 291

xv

CONTENTS

A.4.1 JavaBeans . 291
A.4.2 Enterprise JavaBeans . 293
A.4.3 COM+ . 295
A.4.4 .Net . 297
A.4.5 CCM . 299
A.4.6 Fractal . 302
A.4.7 OSGi . 304
A.4.8 Web services . 306
A.4.9 Acme . 307
A.4.10 UML 2.0 . 312
A.4.11 Kobra . 314
A.4.12 Koala . 317
A.4.13 SOFA 2.0 . 319
A.4.14 PECOS . 323

B Bridging the gap between Acme and UML for CBD 325
B.1 Introduction . 326
B.2 Mapping Acme into UML . 327

B.2.1 Components . 327
B.2.2 Ports . 327
B.2.3 Connectors . 328
B.2.4 Roles . 329
B.2.5 Systems . 329
B.2.6 Representations . 330
B.2.7 Properties . 330
B.2.8 Constraints (invariants and heuristics) 331
B.2.9 Styles and types . 332

B.3 Discussion . 332
B.4 Related work . 333
B.5 Conclusions . 334

C Tool support 337
C.1 Documentation roadmap . 338
C.2 System overview . 338
C.3 Requirements . 339
C.4 Views . 339

C.4.1 Structural view . 340
C.4.2 Dynamic view . 343

C.5 Mapping between the views . 346
C.6 Architecture Analysis and Rationale . 347
C.7 Mapping architecture to requirements . 348

xvi

CONTENTS

C.7.1 Ontology definition in UML . 348
C.7.2 Metrics and heuristics definition, in OCL, using the ODM approach348
C.7.3 Representation of the experimental data as an instantiation of the

ontology . 348
C.7.4 Automatic metrics collection and heuristics test 348
C.7.5 Automatic statistical analysis of results 348

xvii

CONTENTS

[This page was intentionally left blank]

xviii

List of Figures

1.1 Metrics collection process . 10
1.2 Dissertation outline . 13

2.1 Basic component specification concepts 22
2.2 Adding semantics to component interfaces 25
2.3 Component Credentials . 28
2.4 Component Life Cycle . 30
2.5 Design without repository . 31
2.6 Design with deposit-only repository . 31
2.7 Design with repository . 31
2.8 Deployment with repository . 32
2.9 CBD process as a combination of several parallel processes 34
2.10 Metrics proposals maturity profile . 61

3.1 The scientific method . 66
3.2 Overview of the experimental process . 73
3.3 Experiment’s requirements definition . 74
3.4 Problem statement . 74
3.5 Statement of experimental objectives and its context 75
3.6 Experiment design planning . 76
3.7 Detailed experiment context parameters 77
3.8 Sample characteristics . 78
3.9 Hypothesis specification and variables selection 80
3.10 Classification of sampling techniques . 82
3.11 Experimental design concepts overview 84
3.12 Experiment design selection overview . 84
3.13 Group assignment . 85
3.14 The sequence of observations and treatments 86
3.15 Data types taxonomy and statistical tests categories 87
3.16 Experiment data collection . 88
3.17 Experiment data analysis . 90
3.18 Experiment results packaging activity . 92
3.19 Experimental Software Engineering process model 99

xix

LIST OF FIGURES

3.20 Boxplots . 108

4.1 OMG’s common Core package and its relation to other metamodels . . . 121

4.2 UML infrastructure library . 121

4.3 An example of the layered metamodel hierarchy 123

4.4 Extract of the UML 2.0 metamodel . 124

4.5 UML 2.0 metamodel extract . 127

4.6 The SQLSelect component . 128

4.7 The SQLSelect component instantiation 128

4.8 The quality model used by Washizaki et al. 131

4.9 Data collection and analysis . 143

4.10 Quality model thresholds Kiviat diagram 145

5.1 Low-end car model configuration (assembly A) 153

5.2 Middle-range car model configuration (assembly B) 154

5.3 High-end car model configuration (assembly C) 154

5.4 Interfaces used in our car example . 155

5.5 Low-end car model assembly, in CCM . 155

5.6 Middle-end car model assembly, in CCM 156

5.7 High-end car model assembly, in CCM . 156

5.8 A filtered view of the UML 2.0 metamodel 169

5.9 CCM packages . 177

5.10 Excerpt of the CCM . 178

5.11 Extended CCM model . 178

5.12 Metamodel extensions for component wiring through provided and
used interfaces . 179

5.13 Metamodel extensions for component wiring through emitted events . . 179

5.14 Metamodel extensions for component wiring through published events 180

5.15 The component assembly metaclass . 180

6.1 Expected expertise impact on the review process 195

6.2 Inspection process . 197

6.3 Development tasks in the elevator project 203

6.4 Development process in the elevator project 203

6.5 Subjects expertise penalty factors . 207

6.6 Experiment data class diagram . 210

6.7 NDSCode histogram . 216

6.8 B_DT_AG boxplot . 217

6.9 Number of diverse specific defect codes, by peer team expertise 221

6.10 Reported NDScode distribution, grouped by W_PT_CWAG quartiles . . 225

6.11 Reported NDGClass distribution, grouped by A_RT_AG quartiles 228

xx

LIST OF FIGURES

7.1 An excerpt of the Eclipse plug-ins metamodel 246
7.2 Data collection activities . 256
7.3 Extension points distribution . 262

A.1 JavaBean’s interface features . 292
A.2 Enterprise JavaBean’s example . 295
A.3 COM+ components . 296
A.4 CCM components . 300
A.5 Fractal components . 303
A.6 A simple clock system in Acme . 308
A.7 UML 2.0 components . 313
A.8 KobrA structural diagram . 316
A.9 SOFA 2.0 components . 321
A.10 The clock system, in PECOS . 324

B.1 Using the Acme connector . 329
B.2 Detailing a component specification . 331
B.3 The pipe and filter family . 332

C.1 Context view of the system . 338
C.2 Structural view . 341
C.3 Metrics collection activities . 344

xxi

LIST OF FIGURES

[This page was intentionally left blank]

xxii

List of Tables

2.1 Component models. 38
2.2 A metrics proposal comparison taxonomy 50

3.1 Descriptive statistics . 105
3.2 Normality tests for the dependent variables 106
3.3 Ranks of the grades, for testing hypothesis H1. 106
3.4 Friedman test for hypothesis H1. 107
3.5 Kendall’s W test for hypothesis H1 . 107
3.6 Friedman and Kendall’s tests, without outliers 109

4.1 Metrics heuristics thresholds. 141
4.2 Metrics collected on the FukaBeans component library. 144

5.1 Component metrics . 165
5.2 Component metrics . 166
5.3 Component assembly metrics . 166
5.4 Evolution of the UML 2.0 metamodel. 190

6.1 Independent variables . 208
6.2 Descriptive statistics . 218
6.3 Normality tests for independent and dependent variables 220
6.4 Correlation analysis for the variables of H1. 222
6.5 Correlation analysis for the variables of H2. 223
6.6 Kruskal-Wallis test for hypothesis H2, using NDDCode 224
6.7 Jonckheere-Terpstra test for the number of specific defect codes. 225
6.8 Kruskal-Wallis test for defect classes. 226
6.9 Jonckheere-Terpstra test for defect classes. 226
6.10 Correlation analysis for the variables of H3. 227
6.11 Kruskal-Wallis test for H3 defect classes. 227
6.12 Jonkeera-Terpstra test for H3 defect classes 227
6.13 Correlation analysis for the variables of H4. 229
6.14 Kruskal-Wallis test for H4 defect codes. 229
6.15 Jonckheere-Terpstra Test for H4 defect codes. 229
6.16 Kruskal-Wallis test for H4 defect classes. 230

xxiii

LIST OF TABLES

6.17 Jonckheere-Terpstra Test for H4 defect classes. 230

7.1 Descriptive statistics of the number of Extension points. 258
7.2 Normality tests for the Extension points variable. 259
7.3 Descriptive statistics for the filtered sample 260
7.4 Normality tests . 260
7.5 Ranks for H1 . 261
7.6 Mann-Whitney U test . 261
7.7 Two-Sample Kolmogorov-Smirnov test for Extension points 261
7.8 Ranks for H2 . 263
7.9 Mann-Whitney U test . 263
7.10 Kolmogorov-Smirnov test . 263

xxiv

Chapter 1

Introduction

Contents
1.1 Component-based development . 2

1.2 Current state of the art . 4

1.3 Contributions of this dissertation . 6

1.4 The approach . 9

1.5 Dissertation outline . 12

Background: Experimental Software Engineering (ESE) is concerned with the design
and execution of experimental work aimed at collecting empirical evidence that can
be used to build up the Software Engineering body of knowledge. Component-Based
Development (CBD) presents new challenges to the ESE community.
Objectives: Our goals are to introduce the notion of CBD, to motivate the usage of
quantitative approaches to support it, and to outline the contents of this dissertation.
Methods: We characterize CBD, quantitative approaches to support it, and several
shortcomings of those approaches. Our main contributions to mitigate those short-
comings are underpinned by a process model for ESE and an approach to software
measurement called Ontology-Driven Measurement (ODM).
Results: This introduction motivates the discussion of the process model and ODM in
the context of CBD, and outlines our contributions to advancing the state of the art of
experimentation in the context of CBD.
Limitations: It is unfeasible to cover all the relevant component models and process
models for CBD. While our proposals are generic and can be applied to several com-
ponent models, as well as to the CBD process, their validation will use a set of selected
examples, ranging from toy examples to real-world CBD projects.
Conclusions: Our work is aimed at conducting replicable experimental work and fa-
cilitating its meta-analysis by our peers, in the context of CBD, to facilitate advances in
the CBD body of knowledge.

1

1. INTRODUCTION 1.1. Component-based development

1.1 Component-based development

The goal of Component-based development (CBD) is to achieve a rapid assembly
of new software systems from existing software components [Bachman 00]. We can
describe CBD’s main activities through a software process model. A software pro-
cess is a set of activities, and associated results, which produce a software product.
A software process model is an abstract representation of a software process [Som-
merville 06]. The fundamental activities, common to most software processes, include
software specification, design, implementation, validation and evolution.

In the context of CBD, where component-based systems are, for the most part,
built from existing third-party components, one should consider not only (i) the soft-
ware process of developing a component-based system, but also (ii) the software
process of developing software components. The components to be integrated in a
new component-based system may be already developed, tested, and used in other
projects, when the system development process begins. In that sense, they are inde-
pendent from the systems they may have been integrated in. A good example of such
components are the so called Commercial Of The Shelf components (COTS). COTS
components may range from fine (e.g. a calendar component) to coarse-grained (e.g.
a SQL database manager component). This separation between component users and
component developers, implies a third process for (iii) finding and evaluating compo-
nents.

A discussion on these three parallel processes and their combination in a family of
process models for CBD can be found in [Crnkovic 06]. The heterogeneity that may
result from following different approaches to CBD, such as Architecture-driven CBD,
product line development, and COTS-based development, leads to specific process
models for each of these approaches. All the process models in this family include pro-
cesses (i) through (iii) as intrinsically separate sub-processes of the CBD process that
can be carried out by independent organizations. As such, they lead to three different
practitioner profiles, each with his own concerns.

Consider a component-based system developer:

• While defining the requirements for the component-based system and the subse-
quent design, system developers are concerned with the availability of existing
components that may be reused. They need to identify the most suitable com-
ponents for their needs and integrate those components, but often have neither
access to the component implementation details nor control on the evolution of
those components.

• System developers may not find a perfect match to their requirements. This may
lead to the adaptation of the component (e.g. by using a component wrapper),
or even, inversely, to a change in the requirements, to conform with the provided
features.

2

1. INTRODUCTION 1.1. Component-based development

• System developers have to test the component assemblies, to check whether the
combination of the chosen components conforms to the requirements or not. Cur-
rent component models are not well suited to allow a safe prediction of the final
component-based system properties based on the properties of the individual
components.

• When a new version of a component replaces a previous one, system developers
may have to readapt their assembly to support the usage of the new version of
the component.

From the point of view of a component developer, the following concerns can be
highlighted:

• Often, component developers build their components without fully knowing
where and how those components will be reused in the future. They can test
their components in isolation, but they can not anticipate all the possible inter-
actions their components may have with other components they are integrated
with.

• While evolving components, there is a risk of breaking the compatibility with
the component-based systems where the previous versions of those components
are used. This risk stems from explicit and implicit dependencies that may exist
on the previous version of the component. While the former are supported by
current component technologies, e.g. through a standard interfaces description
language, the latter are not. An example of implicit dependencies for which cur-
rent component technologies provide inadequate support is the representation of
non-functional properties. The lack of an explicit standard representation of such
properties may lead to undeclared dependencies on them, and those dependen-
cies may be broken in the new version of the software component.

Finally, those engaged in finding and selecting components deal with a different set
of problems:

• Using the requirements provided by system developers, they must find the com-
ponents that best match the requirements. This involves not only finding candi-
date components, but also being able to compare and rank them, as it is often the
case where no perfect match can be found.

• Component selection involves testing the components in isolation and integrated
with other components. These tests should cover functional and non-functional
properties.

• Components identified as good reuse candidates should be stored along with
meta-information in a component repository, to facilitate their reuse in other con-
texts.

3

1. INTRODUCTION 1.2. Current state of the art

• Finding and evaluating components for reuse can be performed as a service of
a component repository provider, to facilitate the selection of software compo-
nents for reuse, thus leading to economies of scale with respect to component
assessment. On the other hand, this clear separation between component users
and component selectors is not without its costs: for instance, testing the compo-
nents without access to the assemblies they will be integrated in becomes more
complex.

CBD fosters reductions on the development costs and time to market, and improvg
the developed system’s overall quality [Szyperski 02]. These improvements stem from
the reuse of software components. The extra effort required for selecting, evaluating,
adapting, and integrating components is mitigated by avoiding the much larger effort
that would be required to develop the functionality of such components from scratch.
As components get to be reused in several systems, with different requirements, they
tend to become well tested and robust pieces of software, thus contributing to the in-
crease of the final system’s quality.

The challenge is that existing components have to be evaluated, selected and, often,
adapted to suit the particular needs of the software system being assembled, frequently
without access to the component’s source code. This constrains the extent to which
we can assess such components, and differentiates component assessment activities
from those available for white-box software reuse. As there is no generally accepted
standard for assessing components, the evaluation of software components is often
carried out in an ad-hoc fashion. However, if evaluations are not independently and
consistently replicable, their success depends highly on the assessor’s expertise.

1.2 Current state of the art

The bulk of research in CBD has been devoted to the functionality and composability
of software components. As a young discipline, Component-Based Software Engi-
neering (CBSE), which is the branch of Software Engineering dedicated to CBD, is still
focused on technology issues, such as modeling, system specifications and design, and
implementation. The area of assessment for CBD remains unexplored. For instance,
there is no widely accepted quality model suited for CBD assessment [Simão 03], al-
though there have been attempts to adapt the ISO9126 quality model [ISO9126 01] to
CBD, such as the model proposed by Bertoa and Vallecillo [Bertoa 02], which uses a
subset of ISO’s quality attributes. Some of those attributes are redefined to better re-
flect the specificity of CBD. Washizaki et al. proposed a quality model for components
reusability [Washizaki 03], and Bertoa et al. focused on the usability of COTS compo-
nents [Bertoa 06].

The ability to predict the system’s properties from the properties of reused compo-
nents is a growing concern for the research community [Crnkovic 04]. Some proposals

4

1. INTRODUCTION 1.2. Current state of the art

aim at developing prediction-enabled component specifications to facilitate automated
prediction of properties [Wallnau 03, Larsson 04]. They focus on the analysis of run-
time quality attributes, but the effectiveness and the feasibility of their method require
further validation.

A complementary research area, where we have been conducting our research, is
static analysis of quality attributes, such as reusability or maintainability, using soft-
ware metrics [Goulão 05c, Goulão 05a, Goulão 05b]. Several authors contributed with
proposals for the evaluation of component interfaces and their dependencies [Box-
all 04, Gill 04, Washizaki 03], with a particular concern on their reusability. Others
use metrics to assess component packing density (the density of a given constituent
element, such as operations within the component) as an indirect measure of the com-
ponent’s internal complexity [Narasimhan 04]. Bertoa et al. defined and validated a
set of component usability measures [Bertoa 06]. Their metrics set combines metrics
related to the complexity of the design with others related to the documentation of the
components. All of these proposals take a component-centric approach, meaning they
assess components in isolation.

Wallnau and Stafford argue that it is more effective to perform the evaluation on
assemblies, rather than on individual components [Wallnau 02]. Component-based
systems’ developers are concerned with selecting the components that maximize the
overall system quality. In this assembly-focused view, individual component assess-
ment may be performed as part of the component assembly evaluation, but the fo-
cus is on selecting the overall best solution with respect to the quality attributes
one is trying to maximize. Examples of metrics following this view can be found
in [Narasimhan 04, Hoek 03].

The existing quality models and metrics include informal specifications. Even
when the metrics are specified through mathematical formulas, the elements in those
formulas are usually expressed in natural language. This creates ambiguity, if there
are several plausible interpretations for such definitions. Ambiguity is an obstacle for
independent validation efforts. Such experimental replication effort is essential to a
sound validation of quality models and metrics proposals. Furthermore, tool sup-
port for metrics collection is usually unavailable, as their proponents either did not
build collection tools or do not provide access to them. With few exceptions, such
as [Washizaki 03, Bertoa 06], most proposals went through scarce validation, if any.

In the absence of a systematic and feasible approach to quantitative evaluation, an
alternative is to adhere to a qualitative solution, i.e. the opinion of an expert. Based
on their experience and on a subjective quality model, experts make informal judg-
ments that are hard to replicate. Moreover, experts may not be available to perform
the assessment. In such an event, practitioners often perform relatively blind choices,
with respect to the quality of components. With the growing reuse of components in
software construction, such choices are a threat to the success of CBD projects.

5

1. INTRODUCTION 1.3. Contributions of this dissertation

Another unexplored research area is that of the CBD process. Many principles of
CBD influence the development and maintenance process and require considerable
modifications to more traditional development processes. Currently, there is no widely
accepted CBD process model. The ability to perform assessments at a CBD process
level should provide the research and development communities with appropriate ap-
proaches to facilitate the comparison between alternative software processes.

In summary, we identify the following problems:

• there is no widely accepted quality model for CBD;

• existing quality models were not independently validated;

• most of the existing metrics are unrelated to a quality model, and some of them
have unclear specific measurement goals;

• most of the existing metrics lack sufficient validation;

• existing metrics definitions use an inadequate formality level;

• most of the metrics for CBD are designed to assess components in isolation, but
components should also be assessed in the context of the system in which they
are to be integrated;

• current assessment practices rely mostly on subjective expert’s opinions;

• CBD process definition and assessment have not been studied in detail.

1.3 Contributions of this dissertation

A way of mitigating the problems identified in the previous section is to evolve the
integrated development environments (IDEs) so that they include functionalities to fa-
cilitate quantitative assessment in CBD. An analogy can be made to the automated
refactoring functionalities of some IDEs. Without the inclusion of these refactoring
functionalities, their usage would have a smaller impact on the current state of prac-
tice in software development. The validation of metrics to assess components and
assemblies in the context of well-defined measurement goals is a pre-requisite for such
IDE evolution. Practitioners should be able to know when and how to use quantitative
information to support their work. The integration of such support in IDEs is essential,
if a widespread adoption of a quantitative approach to CBD is sought.

In this dissertation, we demonstrate the feasibility of a formal approach to CBD as-
sessment that combines rigor with simplicity, is replicable, and can be integrated with
current development environments, thus providing automated advice to practitioners
involved in CBD assessment. This approach, called Ontology-Driven Measurement
(ODM), is an evolution from the MetaModel Driven Measurement (M2DM) approach,

6

1. INTRODUCTION 1.3. Contributions of this dissertation

originally proposed in [Abreu 01b,Abreu 01a] for the evaluation of object-oriented de-
signs using software metrics.

We extend the concept of M2DM to models which may not necessarily be metamod-
els. This evolution is required so that we can define metrics at different meta-levels,
according to the requirements of each experimental work. In some situations, we use
a metamodel, while in others we use a model. In any case, our metrics will be defined
using an ontology of the domain upon which we want to perform the measurements.
The nature of this domain is also an evolution from M2DM’s original proposal: while
M2DM was created to allow defining and computing metrics in object-oriented de-
signs, in this dissertation we will use ODM to define and compute metrics both at the
process and at the product level, in the context of CBD.

Our main contributions include:

• Ontologies (metamodels and models) construction and extension.

• The formalization of metrics for CBD, using several underlying ontologies, to
explore the expressiveness of the ODM approach.

• Experimental validation of our proposals, by using a common software experi-
mentation process model, also proposed in this dissertation.

• Development of prototypical tool support for the experimental activities de-
scribed in this dissertation.

We regard ontology construction as a first step towards assessment in CBD. Ex-
pressing the CBD concepts relevant to a particular measurement initiative through a
ontology helps eliciting such concepts and their relations. In some situations, an ex-
isting ontology can be readily adopted (e.g. when UML 2.0 components are assessed,
we can use the UML 2.0 metamodel [OMG 07]). In others, we have to either extend
an existing ontology, or to create a new one, in order to reach adequate expressiveness
for our assessment tasks. The lack of a generic, widely accepted, component model
hampers the adoption of a generic ontology for CBD.

While preparing this dissertation, we proposed several metamodels and extensions.
In [Goulão 03], we created a UML profile representing Acme [Garlan 00b] compo-
nents in UML 2.0. We created this profile to assess the suitability of UML 2.0 as a
component Architecture Description Language (ADL), with respect to the structural
view of component-based architectures. We chose to create a profile for the Acme
language, because Acme was originally designed to capture the main structural con-
cepts of ADLs. We concluded that UML was indeed suitable for expressing the struc-
tural views of although it has less syntactic sugar than Acme, particularly for express-
ing synchronous communication between components. While defining metrics upon
the standard Corba Components Metamodel (CCM) [OMG 02a] we identified some
limitations in that metamodel, concerning the specification of component assemblies.

7

1. INTRODUCTION 1.3. Contributions of this dissertation

In [Goulão 05a], we proposed an extension of the CCM to support the representation
of the instantiation of component assemblies. We will discuss it in chapter 5. The
experimental work carried out in chapter 7 lead to the definition of a metamodel for
representing Eclipse plug-ins. We also define a process model for representing part
of the component development process, in chapter 6 [Goulão 06], in order to support
measurement at the process level.

The quantitative assessment of components and component assemblies requires a
rigorous approach. Different assessors evaluating the same component or component
assembly in different locations must be able to replicate the assessment conditions and
get the same results. This requirement of replicability is generic to scientific experi-
mentation and is earning a growing attention in industry and academia, although its
fulfillment remains a challenge (see, for instance, [Jedlitschka 04]). The driver behind
the replicability requirement is the ability to offer evidence on the effects of using a par-
ticular technology, or technique, rather than providing a set of toy examples and un-
convincing claims. This concern crosscuts the whole dissertation and is made explicit
through the process model for conducting experimental work, in chapter 3 (originally
proposed in [Goulão 07a]).

Using an ontology-based approach to metrics collection experiments, at a process
and product level, reduces the subjectivity in the experiment design, thus facilitating
its replication. Moreover, expressing metrics definitions formally upon an ontology
removes ambiguity from the definitions, and provides an executable way of collecting
the metrics. Furthermore, the technique used in the metrics definition can be extended
for defining heuristics that help assessing the metrics results, thus providing a stronger
integration with the underlying measurement goals.

As a proof of concept with respect to the expressiveness of the metrics specification
technique, we formalize the definition of metrics available in the literature as well as
propose new metrics for CBD. The formalized metrics include not only metrics for
individual components (both in isolation and within a specific component assembly),
but also for component assemblies. This formalization (as well as that of heuristics) is
carried out upon several component models.

The usefulness of a quantitative approach to support assessment in the scope of
CBD is carried out through the experimental work presented in this dissertation. This
work includes:

• A case study for the cross validation of a metrics set proposed by Washizaki et
al. [Washizaki 03], in chapter 4 [Goulão 05c].

• A quasi-experiment on the influence of practitioners’ expertise in one of the pro-
cess activities carried out during software component development, in chapter
6 [Goulão 06].

• An observational study on the reusability of software components in a large

8

1. INTRODUCTION 1.4. The approach

repository.

For each of these experimental validations, the set of research goals, the underlying
ontology, the metrics definitions and collection, and their interpretation with respect
to the research goals are discussed.

All the experimental work presented in this dissertation follows the experimental
process model defined in chapter 3. While the experimental work presented in this dis-
sertation provides a set of anecdotal examples of the usage of the experimental process
model, we also include a case study in chapter 3 to evaluate the process model itself.
Naturally, this case study was also conducted using the process model.

The experimental work presented in this dissertation required developing tool sup-
port to define and collect software metrics. The architecture of such tool support will
also be discussed, with a focus on how it can be integrated with a modern IDE for pro-
viding automated support for assessment in CBD. The integration of assessment tools
with common IDEs is essential to foster its usage and has influenced our choices of the
formalization technique, as discussed in the next section.

1.4 The approach

Our overall approach to adopting Experimental Software Engineering practices in the
context of component-based development can be viewed as an instantiation of the pro-
cess model that we will describe in detail in chapter 3.

While studying the problem of selecting, or creating, a quality model for CBD (see,
for instance, [Goulão 02a, Goulão 02b]), we concluded that defining fine-grained qual-
ity models aimed at specific niches of CBD is more feasible than aiming for a general
CBD quality model. The diversity of issues that such a generic quality model involves
would lead to a quality model too complex to be easily grasped by practitioners and
therefore useless. This option for quality models aimed at specific niches is supported
by the analysis of work of [Bertoa 02, Bertoa 06], where we observed how an evolu-
tion from a generic quality model to a specific one facilitated the feasibility of their
validation.

Although we do not propose new quality models in this dissertation, we present
quality concerns that underpin the goals of each of the experimental works described
throughout this dissertation. This is followed by a Goal-Question-Metric approach
[Basili 94], to determine which metrics should be collected to assess components, as-
semblies, or some process aspect.

Figure 1.1 outlines the metrics collection process. We use a domain ontology to
express the basic concepts from which we want to extract relevant properties. Then,
we populate the ontology with an instantiation that represents the target to be assessed.
For instance, in the most frequent case in this dissertation, the ontology is a metamodel.
Therefore, the instantiation is a graph where the nodes are meta-objects and the edges

9

1. INTRODUCTION 1.4. The approach

are meta-links. We use OCL expressions which define the metrics to be collected to
traverse the graph and compute the metrics. Heuristics definitions may also be defined
in OCL, at this stage. Finally, we analyze the results of the OCL expressions - both
metrics and heuristics.

Figure 1.1: Metrics collection process

The OCL provides the required formality without sacrificing understandability,
since it was conceived with usability in mind for UML practitioners.

The approach itself is generic: we can use it for assessing products and processes.
For products, we will use ODM for assessing both individual components and com-
ponent assemblies in chapters 4, 5, and 7. These assessments are carried out using a
variety of component models, including JavaBeans - chapter 4 -, UML 2.0 components,
the CORBA Component Model (CCM) - chapter 5 -, and Eclipse plugins - chapter 7.

The usage of ODM in process assessment is illustrated in the the quasi-experiment

10

1. INTRODUCTION 1.4. The approach

described in chapter 6.
The approach is also flexible: adding a new metric, requires defining a new OCL ex-

pression that specifies how the metric should be computed. Heuristics may also be de-
fined using the same technique, typically through the specification of OCL predicates
that check for metrics values outside their expected range [Goulão 04a, Goulão 05c].

The approach is open in the sense that the metrics are defined using standard OCL
clauses, and it only requires a common UML tool with OCL support, upon which we
can load a model (the domain ontology) and populate it with the appropriate instances.
We are currently using the USE tool 1 [Richters 01] for this purpose, but this kind of
computational support is becoming increasingly available in several UML tools, as
they become “OCL-enabled”. Several of those tools support the UML 2.0 component
metamodel, either internally (on their data dictionary) or at least through their external
interface (e.g. by providing an import/export feature using UML 2.0-compliant XMI).
By basing our approach in a de facto standard such as UML 2.0, combined with OCL, we
enable a smooth integration of our proposals into current and future IDEs that support
UML 2.0 and OCL.

For other component metamodels, we will still have to go on developing instances
generators, or, in alternative, to use UML profiles, such as the one for EJB, so that we
can specify and collect the metrics on top of the UML 2.0 metamodel and the used
UML profile.

The evaluation of our proposals is carried out in four different ways:

• The work described in chapters 4 through 7 included setting up an assessment in-
frastructure and exercising it with different underlying ontologies and metrics for
different purposes. It covers covering different aspects of component interfaces
and interaction mechanisms, at the product level. It also covers different parts
of the software process, namely code inspections and software maintenance and
evolution. By doing so, we are able to assess the flexibility of our approach.

• The peer review of our work in the context of international scientific forums pro-
vided us with an external assessment of the soundness of our proposals. The vast
majority of the contents of chapters 2 through 6, as well as appendix B has been
published in peer reviewed journals, conferences or workshops.

• The primary source of validation of our proposals consists on the experimental
work in chapter 6 [Goulão 06], and the observational studies described in chap-
ters 7. A case study for the validation of the proposed experimental approach is
also presented, in chapter 3.

• We also contribute to the external validation of proposals by other authors, as in
the cross-validation case study presented in chapter 4 [Goulão 04a, Goulão 05c].

1http://www.db.informatik.uni-bremen.de/projects/USE/

11

http://www.db.informatik.uni-bremen.de/projects/USE/

1. INTRODUCTION 1.5. Dissertation outline

1.5 Dissertation outline

Figure 1.2 outlines the contents of this dissertation. The dissertation is organized into
four parts. In the first part we provide an introduction and some background, in order
create an adequate framework for the discussion on the usage of experimental tech-
niques to support CBD, both in what concerns the development of components for
reuse and the development of component-based software. It includes chapters 1 and
2. The second part presents our research contributions and is focused mainly in ODM.
It includes chapters 4 and 5. As we can observe in figure 1.2, chapter 3 merges charac-
teristics of a background chapter with those of a contributions chapter. The reason for
this hybrid nature is that we chose to provide the background on Experimental Soft-
ware Engineering through the proposal of a process model for it. So, we can regard
chapter 3 as a transition chapter from the first part of this dissertation to the second
one. The third part of this dissertation is concerned with the experimental validation
of our claims, and includes chapters 6, and 7. The experimental reports presented in
these chapters can be safely visited in any order the reader might prefer. Finally, the
fourth part of this dissertation contains chapter 8, with the dissertation’s conclusions
and our view on possible extensions to our work.

Chapter 1 introduces the theme of this dissertation, outlines the current state of the
art in CBD, its main shortcomings, and how our work helps overcoming them. We
briefly discuss the research approach, both with respect to the proposed solution and
to the validation strategy for our work.

Chapter 2 provides a background on CBD, both with respect to the definition of
software components and component models, and to the discussion of the changes
that underpin CBD, when compared to other software development approaches. The
chapter also includes a discussion on the state of the art of component-based software
assessment and its current challenges to the community.

Experimental Software Engineering is at the heart of this dissertation. Chapter 3 is
devoted to it, in particular to the modeling of the experimental process. It contributes
a process model for conducting experimentation in Software Engineering. The model
is generic to Software Engineering. We use it as a common process framework for all
the experimental work described in the remaining of the dissertation. So, although the
process model is generic, we will present several instantiations of it with examples of
Experimental Software Engineering dedicated to CBD.

In chapter 4 we introduce Ontology-Driven Measurement (M2DM) as the funda-
mental approach used throughout this dissertation to deal with the technical chal-
lenges of the software measurement needs raised by the experimental process de-
scribed in chapter 3. In chapter 4 we provide the tools to support the data collection
part of such process, through the definition of metrics in OCL upon appropriate on-
tologies. We illustrate ODM with the cross-validation of a component metrics set for

12

1. INTRODUCTION 1.5. Dissertation outline

Figure 1.2: Dissertation outline

indirectly measuring the reusability of JavaBeans.
Chapter 5 discusses the expressiveness of ODM. It starts by introducing a set of

examples specified using UML 2.0, and CCM. Then, it presents a metrics set covering
metrics for components and component assemblies. The metrics set addresses differ-
ent aspects, ranging from interface complexity to the effective reuse level of the com-
ponents within a component assembly. We formalize the metrics for each of the com-
ponent models, thus supporting the discussion on the expressiveness of the approach.

Chapter 6 presents a controlled experiment on the component development pro-
cess. It focuses on code inspections conducted during component development, and
on the effect of the level of expertise of inspectors in the outcome of the inspections. It
illustrates how ODM may also be used to support the process assessment.

Chapter 7 presents an observational study on reusability patterns in open source
component software. The sample used in this study is built from Eclipse plugins,

13

1. INTRODUCTION 1.5. Dissertation outline

which are a particular kind of software components. We analyze reusability based on
the public information provided by the Eclipse plugins, through their manifest files.
Again, ODM is used to specify and compute metrics that support reusability assess-
ment.

Chapter 8 presents the overall conclusions of our work and outlines future research
streams that emerge from it.

Although not represented in figure 1.2, the dissertation includes three appendixes
that complement the information in the main text.

Appendix A is dedicated to a review of existing component models. This review
details the information provided in chapter 2, concerning those models. While in chap-
ter 2 we adopt a set of criteria for conducting our review in a systematic way, and then
summarize our observations, in appendix A we provide more details on each of the
reviewed component models, following the criteria defined in chapter 2.

Appendix B is dedicated to a mapping between Acme and UML 2.0., referred to
while describing the contributions of this dissertation. We created this mapping as an
expressiveness assessment of the UML 2.0 notation, when compared with the core fea-
tures of ADLs. This allowed identifying the strengths and shortcomings of the UML
metamodel as an ADL. Furthermore, this mapping is a facilitator for quantitative ex-
periments using components specified in other ADLs. The rationale is that Acme itself
is considered as an interchange language for specifications in several ADLs. By provid-
ing a bridge from Acme to UML 2.0, we have created an indirect mapping from those
ADLs that can potentially be used to express components and component assemblies
upon a UML 2.0 profile, and then use ODM, with our Acme profile as the ontology.

Finally, in appendix C we discuss the architecture for the tool support created dur-
ing this dissertation. This tool support is used in our experiments, to implement the
ODM approach and subsequent statistical data analysis.

14

Chapter 2

Component-Based Software
Engineering

Contents
2.1 Component-based development . 16

2.2 Software components . 19

2.3 Component-based development process 32

2.4 Component models . 35

2.5 Metrics for component-based development 40

2.6 Quantitative vs. Qualitative research 62

2.7 Conclusions . 63

Background: Before addressing the usage of an Experimental Software Engineering
(ESE) approach to Component-Based Development (CBD), it is useful to define some
basic concepts in CBD.
Objectives: We present an overview of software components definitions, models, and
technologies, as well as a discussion on the main peculiarities of the CBD process.
Methods: We provide a narrative overview of the basic concepts of CBD, and present
two systematic discussions on component models and metrics proposals for CBD.
Results: We characterize current CBD technologies and identify shortcomings in cur-
rent quantitative approaches to assessment in CBD, including problems with the con-
text for those metrics, definition formalism, and insufficient validation of proposals.
Limitations: The plethora of component models and metrics proposals for CBD would
make unfeasible the inclusion of all of them, so we discuss a representative set of each.
Conclusions: The discussion on CBD and component models provides the back-
ground, while the identification of shortcomings in the quantitative assessment in CBD
motivates our proposals, in the remainder of the dissertation.

15

2. COMPONENT-BASED SOFTWARE ENGINEERING 2.1. Component-based development

2.1 Component-based development

As software becomes ubiquitous and increasingly sophisticated, there is a demand for
improved software development processes and techniques that allow practitioners to
tame software’s growing complexity, while reducing development costs and time to
market. Software reuse has been regarded as one of the keys to face this challenge.
Reuse is a process for creating software systems from existing software pieces rather
than developing them from scratch [Krueger 92].

The concept of reuse in the software development context was introduced by McIl-
roy almost forty years ago. He proposed the creation of a software component industry
that would offer families of routines for any given job [McIlroy 69].

While opportunistic reuse (by cut and paste of code from old systems to new ones)
has been used by individuals and small teams, it does not scale up well to larger orga-
nizations and complex software systems [Schmidt 99].

As proposed by McIlroy, early approaches to reuse were mostly based on the in-
clusion of function libraries (e.g. the C Standard Library [Plauger 91]). Later, with the
shift to object oriented programming, class libraries became a common reuse asset (e.g.
the C++ Standard Library [Josuttis 99]).

Both cut and paste coding and the usage of library functions, or classes, can be
considered fine-grained approaches to reuse. Cut and paste coding is a dangerous
form of reuse, in that it leads to the proliferation of code clones throughout the source
code. If a bug is found in a portion of code which has been reused through cut and
paste, or a requirement that lead to its creation changes, then producing the required
modifications in that piece of code is expensive, as it is replicated in several different
clones.

The reuse of library functions and classes has achieved a large success in the soft-
ware development community. Widely used programming languages, such as Java,
rely on a fairly small core, along with large libraries of classes aimed at simplifying
development by providing commonly used abstractions to the programmer, such as
support for handling collections, and other frequently used data structures and algo-
rithms.

A shortcoming of fine-grained reuse is that it relies on fairly low-level units of ab-
straction. Function libraries and class libraries are not adequate for supporting coarser-
grained reuse. Frequently, the elements of these libraries have to be combined so that
we can obtain the desired functionality. So, we have a mismatch between the abstrac-
tion level of the reuse assets and that of the reuse requirements. This has lead to the
adoption, by the software industry, of other, more sophisticated forms of reuse, such as
the reuse of design knowledge, through design patterns [Gamma 95] and the reuse of
component frameworks for specific domains (e.g. graphics components, for building
graphical user interfaces).

16

2. COMPONENT-BASED SOFTWARE ENGINEERING 2.1. Component-based development

A design pattern is a general design solution for a problem that occurs frequently
in software development. This design solution is generic, rather than instantiated into
a particular problem, so it can be thought of as a template of a design solution. The
rationale is that these patterns can speed up the development process by providing
a well-known solution to a common problem, so that developers can avoid “rein-
venting the wheel”. Furthermore, patterns improve the readability of the design, at
least in the perspective of developers who are familiar with those patterns, and there-
fore able to recognize them when analyzing a software design. Pattern catalogs, such
as [Gamma 95] provide a common terminology for software designers, which includes
not only a description of the design issues the pattern covers, but also how the pattern
should be implemented, as well as when it should and should not be used. A short-
coming in patterns is that, for the sake of their reusability, they may provide a solution
which is too generic and complex for a specific problem, leading to an implementation
that is less efficient and more expensive to develop than a fine tuned alternative. This
occurs when developers overuse patterns [Kerievsky 05]. This shortcoming is essen-
tially similar to that of speculative generality, a bad smell in code that occurs when the
code implements functionalities to handle unasked for requirements [Beck 99].

Meyer and Arnout have argued that the need to implement the design patterns is a
major shortcoming, as developers have to re-implement the design patterns whenever
they want to reuse them, thus making pattern reuse a “concept” reuse, rather than full
reuse [Meyer 06]. They set out to implement in Eiffel [Meyer 92b] a well known pat-
terns catalog [Gamma 95] as a set of reusable components, one for each pattern. Meyer
and Arnout claim that, out of 23 patterns, this process, which they named “componen-
tization”, was fully successful with only 11 of them. 4 patterns were only partially
“componentized”. They were not able to “componentize” the remaining 8 patterns, al-
though they were able to provide some automated support for their integration in a
component library (e.g., through the automatic production of component skeletons)
for 6 of those 8 patterns.

In spite of reusability being considered an important quality attribute in software
[ISO9126 01], several authors still argue that reuse has not yet fulfilled its true potential,
although it remains a promising approach to the efficient development of high quality
software [Heineman 01, Crnkovic 02, Szyperski 02, Inoue 05]. Difficulties to effective
reuse can include both technical and non-technical aspects. It takes skill, expertise, and
domain knowledge, to identify the best opportunities for developing or integrating
reusable assets. The “not invented here” syndrome 1 is also a common obstacle to reuse.
Difficulties to effective reuse include locating the appropriate reuse assets, adapting
them to one’s particular needs, and coping with those assets’ evolution (which the
reuser does not control).

A recent systematic review, by Mohagheghi and Conradi, on industrial studies con-

1This syndrome denotes the unwillingness to adopt an idea, or product, because it was not created
in-house [Katz 82].

17

2. COMPONENT-BASED SOFTWARE ENGINEERING 2.1. Component-based development

cerning the benefits of software reuse [Mohagheghi 07] shows that although there are
several cost-benefit models for reuse, there is little empirical evidence from indus-
try concerning the economic benefits due to reuse. Several of the studies reviewed
supported the economic benefits claim, but their results were not statistically signifi-
cant. However, improvements concerning reducing problem density and rework effort
through reuse were reported consistently and significantly in several of the reviewed
studies.

In our opinion, this contrast in the strength of evidences on the benefits of reuse
may result, at least partially, from the difficulties inherent to each sort of analysis. Veri-
fying the economic benefits due to reuse implies a data collection effort which is harder
to enact, when compared to studying the effect of reuse in problem density. It is usu-
ally difficult to obtain reliable information concerning the effort of development teams,
while a problem reporting system may automate the data collection required for as-
sessing problem density. Effort information is also a problem when assessing rework
effort, but perhaps the slightly more self-contained nature of this effort helps explain-
ing the increased success of experimental work on rework effort, when compared to
the one concerned with the economic benefits of reuse.

Mohagheghi and Conradi also profiled the reusable assets (e.g. functions, mod-
ules, and components) in software development. The fine-grained reuse of modules,
or functions, favors small assets with as little external dependencies as possible. For
coarser-grained reuse, such as the reuse of software components, the most noticeable
driving factor for reuse is complexity. Encapsulating complex design in reusable assets
helps reusers to benefit from the expertise of the asset’s producers.

CBD is an approach to software development that relies on the reuse of existing
software components to reduce the development costs and cycle, while increasing the
final product’s quality. A case study conducted by a component broker, in coopera-
tion with software component producers on the return on investment of using COTS
reported that the costs of acquiring such components were about 1/50 of the ones of
developing their required functionalities from scratch [Brooke 02], although, as we
have seen earlier, such benefits are yet to be confirmed through independent empirical
validation.

CBD involves several risks both for component producers and users. From the
point of view of component producers, the time and effort required to build reusable
components, is likely to be higher, when compared to the one needed to build a solu-
tion specific piece of software. There is also a trade-off between usability and reusabil-
ity, as generic, scalable, adaptable components tend to be more complex and resource
consuming than their specific counterparts. Components may have unclear or am-
biguous requirements: they are typically reused in different systems that may have
conflicting requirements, and are often built independently from the systems they are
later reused in, which adds uncertainty in what concerns component requirements

18

2. COMPONENT-BASED SOFTWARE ENGINEERING 2.2. Software components

specification. Furthermore, components and the systems where they are integrated in
have separate life cycles. This is a concern for component users and producers. The
former may have no control on the evolution of the components they are reusing, while
the latter have no control on the evolution of the software their components are reused
in. On one hand, this separation of life cycles may lead to ripple effects in maintenance,
in the event of changes either on the component or on the application side. In other
words, maintenance actions in one of the sides may induce the need for maintenance
actions on the other side, thus leading to increased maintenance costs. On the other
hand, the separation of life cycles may also lead to economies of scale, as the same
component gets reused in several different contexts. Components are often distributed
as black-boxes. Therefore, component users have limited knowledge with respect to
the component properties, both functional and non-functional, which may lead to be-
havior that do not match the expectations.

The area of Software Engineering that deals with CBD is called Component-Based
Software Engineering (CBSE). The Software Engineering Institute (SEI) defines CBSE
as being “concerned with the rapid assembly of systems from components where components
and frameworks have certified properties, and these certified properties provide the basis for
predicting the properties of systems built from components” [Bachman 00]. Their vision on
CBSE, encompasses both the developer’s ability to manage quality concerns and the
market pressures (rapid assembly of systems from components) that are key motiva-
tions for CBD, such as a short time to market, combined with lower costs. In partic-
ular, SEI’s vision encompasses the ability to use the individual component properties
to predict the component assembly properties. As we will see while discussing cur-
rent component models both from industry and academia, the quest for predictable
assembly properties is an active topic of research, as current component technologies
provide little or no support for it.

2.2 Software components

Industries such as the automobile, building, computer hardware or consumer elec-
tronics deeply rely upon the availability of application-domain specific components.
Those components are often standardized, therefore allowing their availability from
multiple sources. In those industries, developing a project is often an exercise of com-
ponents selection (from catalogs of available ones) and composition (gluing the com-
ponents together). This industry metaphor for developing a project by selecting and
composing components is often used when introducing component-based software
(e.g. [Crnkovic 02, Szyperski 02]).

However, unlike the components from other industries, software is an intangible
product. As put by Szyperski, rather than delivering a final product, software devel-
opers deliver the blueprints of a product, or, as he calls it, a “metaproduct” [Szyper-

19

2. COMPONENT-BASED SOFTWARE ENGINEERING 2.2. Software components

ski 02]. The instantiation of software components may include their parametrization,
thus leading to different component instances based on the same component abstrac-
tion.

Other metaphors, such as comparing Lego-block building with component-based
software development are also common, but they break down when closely scruti-
nized. Shaw argued that building software from components “is more like having a bath-
tub full of Tinkertoy, Lego, Erector set, Lincoln logs, Block City, and six other incompatible kits
- picking out parts that fit specific functions and expecting them to fit together” [Shaw 95a].
The problem is components are built using different architectural styles, and, possi-
bly, to meet different interconnection standards. Of course, one can (and often tries
to) choose a particular architectural style and select one software component model, in
order to reduce this heterogeneity. But it is often the case that no single architectural
style is a perfect match for the requirements of a software system, so the software ar-
chitect ends up choosing a hybrid architectural style that merges the strengths (and,
hopefully, mitigates the weaknesses) of several styles.

The technical implications of the extra flexibility described by Szyperski, and het-
erogeneity commented by Shaw break the over-simplistic analogies to the notion of
components in other domains. We need a definition for software component.

The Software Engineering community has struggled to reach a consensus on what
a software component is. There is no shortage of definitions for it:

• Bachman et al. define software component as “an opaque implementation of
functionality subject to third-party composition and is conformant with a component
model” [Bachman 00].

• Szyperski et al. define it as “a unit of composition with contractually specified inter-
faces and explicit context dependencies only, which is subject to third party composi-
tion” [Szyperski 02].

• Crnkovic and Larsson define it as a reusable unit of deployment and composition
that is accessed through an interface [Crnkovic 02].

• Councill and Heineman define components as software elements that conform to
a component model and can be independently deployed and composed without
modification according to a composition standard [Heineman 01].

While all these “text-book” definitions overlap on the most fundamental issues, the
more intricate technical details may vary. For instance, only two of them make an
explicit reference to the component model.

The definitions presented so far for software components were fairly independent
of the particular component model. There are also definitions of components proposed
in the specification of a particular component technology, or model:

20

2. COMPONENT-BASED SOFTWARE ENGINEERING 2.2. Software components

• In Catalysis, D’Souza and Wills define component as a reusable part of software
that is independently developed and can be combined with other components to
build larger units, and may be adapted, but not modified [D’Souza 98].

• In the UML specification, the Object Management Group (OMG) defines a com-
ponent as “a modular part of a system that encapsulates its contents and whose mani-
festation is replaceable within its environment” [OMG 07].

• In the Component Object Model (COM) specification, a component is defined as
a piece of compiled software which is offering a service [Microsoft 96].

Finally, it is also common to find object-oriented classes referred to as components
(e.g. [Inoue 05] refers to Java classes as components).

A classification of software components proposed by Lau and Wang [Lau 07] helps
clarifying how the concept of components is mapped to software. There are three main
categories: components may be represented as classes, objects, or architectural units:

• The first category corresponds to components which are represented as special
classes, in an object-oriented language. A typical example of this category is
that of JavaBeans components [Hamilton 97], which are, essentially, special Java
classes.

• The second category corresponds to components which are represented as run-
time entities that behave like objects in the component model (e.g. .Net compo-
nents 2).

• The third category corresponds to components which are represented as archi-
tectural units (e.g. UML 2.0 components [OMG 05b]).

Another possible way of classifying components refers to their granularity, and
allows classifying components from fine-grained to coarse-grained.

In summary, the term software component is too overloaded and there is no gen-
erally accepted definition for it. Throughout this dissertation, the reader can assume
Szyperski’s definition as a reference. Szyperski’s definition is cited more often in the
literature than the alternatives and is neutral with respect to several possible compo-
nent classification taxonomies, such as the component representation and granularity.
The definition by Crnkovic and Larsson is more minimalistic than Szyperski’s in its
most simple form (the one reproduced here) although the Crnkovic and Larsson also
present a set of desirable, but not mandatory, extra requirements on components. Both
the definition of Bachman et al. and that of Councill and Heineman are stricter than
Szyperski’s, by requiring a component to be defined according to a component model.
While we regard this property as highly desirable in a CBD approach, we do not con-
sider it mandatory.

2http://www.microsoft.com/net

21

http://www.microsoft.com/net

2. COMPONENT-BASED SOFTWARE ENGINEERING 2.2. Software components

The remaining definitions presented in this section either have a more specific tech-
nology oriented background (e.g. Microsoft’s COM components), or refer to an earlier
notion of what software components are (e.g. McIlroy’s reference to a component in-
dustry that would provide libraries of reusable functions).

2.2.1 Software components specification

Components and interfaces

Figure 2.1 depicts the basic concepts concerning components specification using a sim-
plistic UML metamodel, adapted from [Lüders 02].

Figure 2.1: Basic component specification concepts

A component exposes its functionalities by providing one or more access points.
An access point is specified as an interface. A component may provide more than
one interface, each interface corresponding to a different access point. An interface is
specified as a collection of operations. It does not provide the implementation of any
of those operations. Depending on the interface specification technique, the interface
may include descriptions of the semantics of the operations it provides with differ-
ent degrees of formality. The separation between interface and internal implementa-
tion allows the implementation to change while maintaining the interface unchanged.
It follows that the implementation of components may evolve without breaking the
compatibility of software using those components, as long as the interfaces and their
behavior, as perceived by the component user, are kept unchanged with respect to an
interaction model. A common example is to improve the efficiency of the implemen-
tation of the component, without breaking its interfaces. As long as that improvement
has no negative effect on the interaction model between the component and the com-
ponent clients, and the component’s functionality remains unchanged, the component
can be replaced by the new version.

A component may externalize its set of provided functionalities through its set of
provided interfaces.

In order to operate correctly, a component may require the existence of a set of inter-
faces to be available in its surrounding environment. Such interfaces can be provided
by other components. These interfaces are often referred to as required interfaces.

22

2. COMPONENT-BASED SOFTWARE ENGINEERING 2.2. Software components

An operation is specified along with its set of typed parameters. In the metamodel
represented in figure 2.1 parameters can be specialized into input or output parame-
ters. In this metamodel, we consider the return value of a function as an output pa-
rameter.

Contracts

An interface specification can be viewed as a contract between the provider of the in-
terface and the interface’s client [Szyperski 02]. A contract establishes the obligations
and benefits of each of the contract’s partners. An interface defined in a programming
language such as Java [Gosling 96] can be regarded as a contract between classes im-
plementing that interface and classes using the interface: a class that implements the
interface is obliged to fulfill the interface specification while the interface client pro-
vides arguments of appropriate types [Plösh 04].

Depending on the expressiveness of the component’s interface description lan-
guage, the coverage level of the contract may vary significantly. Beugnard et al. iden-
tify 4 levels of contract support, ranging from non-negotiable contracts to dynamically
negotiable contracts [Beugnard 99]:

• Syntactic level contracts, such as the one used in typed programming languages
as well as on interface description languages.

• Behavioral level contracts, where invariants, pre and post conditions can be de-
fined and checked.

• Synchronization level contracts, concerning issues related to distribution and
concurrency issues.

• Quality of service level contracts, address other non-functional properties of the
components, such as performance or reliability.

Meyer [Meyer 00] uses a different taxonomy of four levels, maintaining the first two
levels, suppressing Beugnard’s third level(synchronization) and breaking down Beug-
nard’s fourth level into two: performance contracts and quality of service contracts.
Although Meyer’s taxonomy also has 4 levels, we consider performance contracts to
be part of the quality of service contracts. We will follow Beugnard’s taxonomy to
guide our discussion on contracts, as it is, in our opinion, more relevant than Meyer’s,
in the sense that it explicitly considers the synchronization issues that emerge when
distribution and concurrency are considered.

Syntactic level contracts

The basic level of contract support is the type checking mechanism of the programming
languages used in the development of the components and component-based applica-
tions. On a single programming language environment, this is achieved through the

23

2. COMPONENT-BASED SOFTWARE ENGINEERING 2.2. Software components

language’s type-checking mechanism. With multiple programming languages, a com-
mon interface description language has to be used, so that pieces of software devel-
oped in different languages can interact.

The coverage of the syntactic aspects of a contract is far from ideal. Developers
cannot safely reuse components without understanding their semantics. This problem,
common to other software development approaches, is crucial in CBD, as components
are frequently developed by a third party and reused as black boxes. Relying on the
access to their source code to understand the details of a component is usually not an
option, either because the component is reused as a black box, or because the effort
required for understanding the component’s semantics would be prohibitive, when
the source code is available. Last, but not the least, even if the code is available and
the effort to understand it in detail can be spent, the principles of encapsulation and
information hiding advise practitioners against doing so. The usage of components
should be dependent on their semantics, but not on a particular implementation of
that semantics.

Behavioral contracts

The syntactic level of contracts does not define precisely the effect of executing oper-
ations. Behavioral contracts are aimed at solving this shortcoming of syntactic con-
tracts. A common approach to provide support to semantics in contracts is the usage
of design by contract (DbC) [Meyer 92a]. DbC relies on three basic mechanisms: pre-
conditions, post-conditions, and invariants. Pre and post-conditions are assertions
that must hold before and after the execution of an operation, respectively. As such,
they are defined at the operation level, in specification languages that support DbC. An
invariant is an assertion that is kept true throughout the life cycle of the constrained
model element. In the context of CBD, we can define invariants to constrain the valid
states of components. Figure 2.2, adapted from [Lüders 02], adds the semantics to the
component interfaces described in figure 2.1.

While some programming languages have built-in support to DbC (the most no-
ticeable example being Eiffel [Meyer 92b]), others rely on language extensions [Ci-
calese 99], pre-processing-based approaches [Bartezko 01,Kramer 98], additional class
libraries [Guerreiro 01], or on the usage of reflection mechanisms [Duncan 98] for DbC
support. At a higher abstraction level, DbC is supported in modeling languages such
as the UML 2.* [OMG 07, OMG 06b]. The UML 2.0 standard includes the Object Con-
straint Language 2.0 (OCL) [OMG 03b], a typed, side-effect free, specification language
that allows, among other things, to express invariants on a UML model, as well as de-
scribing pre and post-conditions in operations. As such, OCL provides UML with sup-
port to DbC. Formal specification languages, such as the Vienna Development Method
(VDM) [Jones 90, Fitzgerald 05] also support the specification of invariants, pre and
post conditions.

24

2. COMPONENT-BASED SOFTWARE ENGINEERING 2.2. Software components

Figure 2.2: Adding semantics to component interfaces

Synchronization level contracts

Behavioral contracts assume that the operations are executed as transactions, which
may not necessarily be the case. The third level of contracts concerns the specification
of synchronization and concurrency. The aim of these contracts is to describe the de-
pendencies among services provided by a component, such as sequence, parallelism,
or shuffle [Beugnard 99]. In other words, they define interaction protocols among co-
operating components.

As we increase the sophistication of contracts, we can observe that the direct sup-
port for specification of behavior at the interface level, rather than at the implemen-
tation level becomes increasingly scarce on mainstream approaches to software devel-
opment. In modern mainstream programming languages such as Java, or C], there is
some basic support for synchronization (e.g. through the synchronized keyword, used
to avoid thread interference). Of course, more sophisticated synchronization policies
can also be implemented, but if these concerns are expressed as part of the implemen-
tation, rather than directly on interfaces specification, they may become obscure to
component users, particularly if the component is being reused as a black box.

There are several proposals for defining synchronization protocols. They are mostly
based on formal approaches, such as π-calculus [Milner 92]. By using standard calculi,
those approaches benefit from the support of the corresponding model checkers to for-
mally derive properties such as liveness, or safety. Some of these approaches use the
concept of roles (roles hide the component details which are irrelevant to the particu-
lar interaction) to define a modular specification of the observable behavior of compo-
nents, in the context of their interaction [Canal 03, Li 05]. This corresponds to defining
the protocol governing the communication among the components playing those roles,
while reducing the complexity that would result from considering the whole compo-
nents. These protocol specifications are added to the component interfaces definitions.

25

2. COMPONENT-BASED SOFTWARE ENGINEERING 2.2. Software components

The protocols are specified with an extension of polyadic π-calculus [Milner 93].

A less formal alternative is to sacrifice the power of process calculus in exchange
for notations such as UML’s sequence diagrams, which are easier to grasp by common
practitioners, but are often used to denote a simplified overview of the behavior, or
common use cases, rather than complete interaction protocols between components.

Quality of service (QoS) contracts

The fourth level of contracts concerns non-functional properties (other than distribu-
tion and concurrency properties). Again, this is far from being a solved problem by
the research community. For instance, consider the specification of the efficiency of a
software component, when performing a given task. Such efficiency may depend, to a
large extent, on the environment under which the component is expected to operate.
Although benchmarking information may be obtained, this may not be sufficient for
component clients.

Consider the following example: a client component with strict real-time con-
straints requires the services of an off-the-shelf server component for a given task to be
executed in a time period smaller than a fixed threshold. Now, suppose the producer
of the server component deploys an upgrade of its component that adds new services
at the expense of a small efficiency loss. The client component may cease to work as ex-
pected due to this server component upgrade, if it can no longer use the same service
as before within its required time frame. Note that as client and server components
may be produced by different organizations, the server component producer may not
be aware of that specific client’s time constraints, when upgrading its component. On
the other hand, the contract information available to the client may not be expressive
enough to document this performance loss on the server side in a convenient way. In
a distributed environment, where factors such as network overload can interfere with
real-time constraints, the problem becomes even more complex.

There are some examples of non-functional properties specification at the compo-
nent interface level. OMG has two standard profiles to the UML language aimed at ad-
dressing real-time constraints [OMG 05a] and Quality of Service properties [OMG 06a].
These profiles extend the basic UML metamodel with meta-classes that allow repre-
senting the non-functional properties. The Software Engineering Institute has a re-
search stream called “Predictable Assembly from Certifiable Components” that adds an
analytic interface to the constructive interface of software components. The term con-
structive interface refers to our traditional notion of interface (a syntactic interface with
an API description). The rationale is that these analytic interfaces provide insight on
the inner workings of the components, namely on their non-functional properties. The
analytic interface concept is used by Grassi et al. to extend an architecture description
language (xADL [Dashofy 01]) to support those interfaces [Grassi 05].

More generally, there is a close relationship between the approach of defining con-

26

2. COMPONENT-BASED SOFTWARE ENGINEERING 2.2. Software components

tracts aware of non-functional properties and the body of work of compositional rea-
soning. Compositional reasoning is mostly dominated by work on formal systems,
and is based on a divide and conquer approach to system properties prediction: in or-
der to obtain properties about the whole (in the scope of this dissertation, component
assemblies), we start by obtaining properties on the parts (software components) and
then compose those parts properties to obtain the properties of the whole. A common
difficulty with formal approaches to compositional reasoning is their complexity and
limited scalability, particularly because the most powerful techniques often require the
intervention of an expert user [Berezin 98]. When scale renders current formal ap-
proaches unfeasible, an alternative is to use an empirical approach, where component
properties are observed, rather than asserted, or proved [Moreno 05].

2.2.2 Component certification

Councill defines third-party certification of components as a method to ensure that
software components conform to well-defined standards, in such a way that trusted
assemblies of components can be constructed, based on that certification [Councill 01].
One of the interesting points of this definition is the usage of the notion of trust. As
put by Shaw, there is a difference between what a component does and what we know
it does [Shaw 96]. This gap results from the usually inevitable incompleteness of the
specification of a software component.

There are good reasons to accept the fact that most component specifications will
be incomplete: it is impossible to anticipate all the properties that will eventually be
of interest to any particular user of the component. As new information needs arise,
the specification can evolve to meet them. If these evolutions are frequent, it may
be unfeasible to have a third party certification up to date with those changes. From a
pragmatical point of view, we should also consider the costs involved in the production
and consumption of the specification as a constraint. Adding too many details to a
specification increases those costs, both from the producer’s and the consumer’s point
of view. The latter will have more difficulty in locating the details of the specification
which are relevant to him, as the specification grows.

We can only reasonably expect components to be certified within a certain context,
with respect to some of their properties. Even with these constraints, at least for some
of the component properties (in particular, extra-functional ones), it is more likely that
we can trust the components to perform as expected, rather than knowing that they will.

In their survey on component certification [Alvaro 05], Álvaro and Lemos note
a shift from early works, where most of the research concerning certification was
focused on mathematical and test-based models. The limitations of such ap-
proaches, particularly for some extra-functional properties, facilitated the creation
of a second research vein, that recognizes that testing is not suitable in all situa-

27

2. COMPONENT-BASED SOFTWARE ENGINEERING 2.2. Software components

tions (and may even be unfeasible) and transforms the pair <property, value>3 into
<property, value, credibility> [Stafford 01b].

Credibility can be represented through the concept of credentials, originally pro-
posed by Shaw [Shaw 96]. Figure 2.3 illustrates this concept. Credentials may be as-
signed to components, their interfaces, and even their operations.

Figure 2.3: Component Credentials

A credential includes an property, which is a description of a property of the com-
ponent, a value, which is a measure of that property and a credibility indication, which
is a description on how the measure was obtained. A partial implementation of Shaw’s
credentials can be found in UNICon [Shaw 95b]. The boolean attribute isPostulate
adds to Shaw’s notion of credentials, and was introduced in Ensemble [Wallnau 01] to
facilitate handling properties for which we have not obtained measures yet, although
we need them. If this attribute is true, the credibility is replaced by a plan on how the
measure can be obtained.

The diversity of potential extra-functional properties makes the selection of a uni-
form representation for them a difficult challenge. Although a flexible approach (e.g.
using XML) can be used, the added flexibility may, in turn, contribute to the complexity
of building analysis support on those properties. Nevertheless, the notion of creden-
tials facilitates building up a repository for storing different tests to the same property,
of the same component, each with their own credentials. In the end, the judgment
on the merits of the property assessments is still left to the component user, but this
approach facilitates the comparison of credentials provided by multiple independent
sources, thus contributing to the potential trust users may have on the components
they are reusing.

Finally, apart from the technical challenges of certification, it would also be nec-
essary to build up an independent component certification organization that would
certify and make those credentials publicly available.

3The pair <property, value> stands here for the “traditional” definition of a non-functional property,
where a quality attribute, or property, is assigned a value. For instance, one may say that the maximum
response time for a given operation is 20 milliseconds, and this information could be conveyed by the
pair <maxRespTime, 20>.

28

2. COMPONENT-BASED SOFTWARE ENGINEERING 2.2. Software components

2.2.3 Component integration and composition

Integration vs. composition

Components are for composition. As such, practitioners have to use a composition
language to specify how they want components to be composed. Such a language
should provide the syntax and semantics to specify the composition details.

Component integration is the process of “wiring” components so that the needs
of a component are satisfied by other components in the integration and vice-versa
[Stafford 01a]. The integration often includes not only selecting suitable components,
but also defining adapters, so that components which have provided and required
interfaces that do not match directly can nevertheless be connected. Although the po-
tential incompatibilities between components are at least partially avoided through the
adoption of a component model, which defines standards to support communication
between components, mismatches can nevertheless occur. For instance, component
producers may have different assumptions concerning how data should be exchanged
among components. If the mismatches occur during integration, we call them integra-
tion mismatches.

Component composition adds to the notion of integration the concern on predict-
ing the behavior of the component assembly, based on the properties of the assembled
components. We can think of component integration as the result of using the two
inner levels of Beugnard’s contracts (syntactic and semantic contracts, including the
interfaces, invariants, pre and post conditions), discussed in section 2.2.1. Composi-
tion is concerned about the remaining levels of the contracts: synchronization, and
the definition of extra-functional properties. For instance, it may be possible to plug
(integrate) a set of components in such a way that although there are no integration
mismatches, behavioral mismatches may still occur. An example of such mismatch is
an integration of two components that can provoke a deadlock condition, when inter-
acting together. Another example is an excessive response time of the assembly.

Part of the difficulty with component composition is to select which properties
we want to be able to reason about, define techniques for that compositional rea-
soning, and enacting the specification, measurement and certification of those prop-
erties [Stafford 01a]. None of these problems has been thoroughly solved by research
in CBSE, yet.

Component integration categories

An orthogonal way of addressing component integration is to discuss the phases of
the component life cycle during which integration occurs. Lau and Wang proposed
an idealized component life cycle with three phases [Lau 05b, Lau 05a, Lau 07]:

• Design. In this phase, components are designed, defined and/or implemented,
and, if possible, compiled into binaries.

29

2. COMPONENT-BASED SOFTWARE ENGINEERING 2.2. Software components

• Deployment. In this phase, components are deployed into the target execution
environment, where the component-based system under construction will run.

• Runtime. In this phase, component binaries are instantiated with data, and these
instances are used within the running component-based system.

Figure 2.4 represents the three phases of the idealized component life cycle, adapted
from [Lau 07]. Our adaptation considers component integration, rather than composi-
tion, as we regard the latter as too restrictive for the state of the art of current compo-
nent models, as we will discuss in section 2.4.

Figure 2.4: Component Life Cycle

The design phase is split into Builder and Repository, to convey the notion that
while some components will be created from scratch and stored in a component repos-
itory, other components already exist and can be retrieved from a component reposi-
tory. The integration of two components results in a new component, in the repository
(component BC, in this example). The builder corresponds to the set of tools used in
developing a component. The repository is a registry, or a directory, that allows stor-
ing, cataloging, searching and retrieving the components.

In the deployment phase, the component assembler tool retrieves the components
from the repository, transforms them into binary code, and integrates them into a com-
ponent assembly.

The component assembly is then instantiated with data in the runtime environ-
ment, where the component-based system can be executed.

Depending on the adopted component model, the support to each of these phases
may exist, or not. There are four typical combinations of integration mechanisms:

• design without repository,

30

2. COMPONENT-BASED SOFTWARE ENGINEERING 2.2. Software components

• design with deposit-only repository,

• design with repository, or

• deployment with repository.

The design without repository category, shown in figure 2.5, corresponds to ADLs
where it is possible to integrate the components in the design phase, but there is no
repository for storing components, and, conversely, for retrieving them (e.g. Acme
[Garlan 00b]).

Figure 2.5: Design without repository

The design with deposit-only repository category, shown in figure 2.6, applies to
component models where it is possible to design components and store them into a
repository, as well as to integrate components at a design stage, although it is impossi-
ble to retrieve components from that repository in design time (e.g. CORBA [OMG 02a]
components). In this category, it is also impossible to deposit composite components
in the repository.

Figure 2.6: Design with deposit-only repository

The design with repository category, shown in figure 2.7 allows for components and
composite components to be stored in and retrieved from the component repository
(e.g. Koala [Ommering 04] components). As with the other categories, composition
cannot be made after deployment and is only available at the design phase.

Figure 2.7: Design with repository

31

2. COMPONENT-BASED SOFTWARE ENGINEERING 2.3. Component-based development process

The deployment with repository category, shown in figure 2.8 includes components
which can be deposited at design time in component repositories, but are only inte-
grated in the deployment phase, when components are retrieved from the component
repository and their instances are integrated (e.g. JavaBeans).

Figure 2.8: Deployment with repository

It should be noted that the component life cycle presented in figure 2.4 would allow
other categories here (the ideal one being a component model that allows integrating
components in design and deployment, as well as being able to store and retrieve com-
ponents from the component repository, as discussed in [Lau 07].

2.2.4 Model structure

With respect to the structure of the component model, there are two alternatives:

• flat, or

• hierarchical.

Flat component models put all components at the same level. In contrast, hier-
archical component models allow components to be composed in such a way that
the functionality of coarser-grained components can be implemented by finer-grained
components, which are encapsulated by the coarser-grained ones. This hierarchical
organization of components adds to the flexibility of the component model, with re-
spect to the granularity of components. This enhanced flexibility results from a more
powerful mechanism for supporting two important software development principles,
abstraction and information hiding, when compared to the flat model alternative.

2.3 Component-based development process

2.3.1 Fundamental changes from traditional software development

Mature software development follows a well-defined process model. Considering
CBD is one of the many possible approaches to software development, it is worth dis-
cussing whether or not a generic software development process model is well suited
for CBD. Several authors have argued against using a traditional process model in
CBD, as described in the next paragraphs.

32

2. COMPONENT-BASED SOFTWARE ENGINEERING 2.3. Component-based development process

Ning refers to several aspects of development which are typical in CBD and re-
quire special attention, when defining a suitable process model for CBD [Ning 96]. He
contrasts CBD with object-oriented development (OOD), where typical development
models such as the waterfall model [Royce 70] encourage opportunistic forms of reuse,
rather than systematic approaches to it. In such process models, reuse is not regarded
as a “first class activity”, and it is up to the designers and developers to recognize op-
portunities for reuse. The lack of a “de facto” standard definition for components adds
to the lack of systematic reuse by making the identification of potential reuse artifacts
harder.

Aoyama identifies several potential approaches to facilitate reuse in OOD, includ-
ing software architectures, design patterns, and frameworks [Aoyama 98]. All these
approaches to reuse are set during development or maintenance. An important con-
trast from OO reuse to component reuse is that components may have to be composed
at run-time, without further compilation, using a plug&play mechanism. This requires
components to be viewed as black-boxes, accessible through their interfaces and fos-
ters the definition of architectures for which the components are developed, including
the standards for connecting components in those architectures. Component reuse en-
courages a development process that is concurrent, rather than monolithic, where there
are several specialized organizations, as we will discuss in section 2.3.2.

Crnkovic et al. add to the discussion the existence of several kinds of CBD, in-
cluding architecture-driven CBD, product-line CBD, and COTS-based CBD, and ar-
gue for the adoption of a process model tailored for each of these varieties of CBD
[Crnkovic 06]. The model presented in figure 2.9, illustrates how the CBD process
model can be regarded as a combination of several processes that occur in parallel,
which may be carried out by independent organizations, to support COTS-based CBD.
With some adaptations, Crnkovic et al. define variations of this model to support
architecture-driven and product-line CBD.

A common point to these three studies ([Ning 96, Aoyama 98, Crnkovic 06]) is the
adoption of a modified version of some existing well-known process model (a waterfall
model, in the example of figure 2.9), with a shift of focus in some activities and the
introduction of parallel process flows for each of the participating organizations. It is
also worth noticing the introduction of a third process, component assessment, that can
be carried out by an organization independent both from the component developers
and component users. Typically, this organization will play the role of a component
broker, as discussed in the next section.

2.3.2 Roles in component-based development

With the evolution of the development process to benefit from the reuse of software
components, there are a number of novel roles associated to CBD. The roles presented
in this section will be used as reference point, when discussing how the quantitative ap-

33

2. COMPONENT-BASED SOFTWARE ENGINEERING 2.3. Component-based development process

Figure 2.9: CBD process as a combination of several parallel processes [Crnkovic 06].

proaches described throughout the dissertation can aid practitioners performing each
of those roles.

Several alternative roles lists have been proposed. Aoyama refers to component
vendors, component brokers and component integrators [Aoyama 98]. Aoyama’s
list is interesting in that it clearly denotes a concern in keeping component producers
(vendors) independent from component users (integrators). This separation is further
enhanced by the identification of the role of component brokers, who are responsi-
ble for selling and distributing software components. Furthermore, in a CBD process
such as the one described in figure 2.9, brokers may also play a role in component
assessment. For instance, it is common for component brokers to include some form
of assessment support for the components they make available (e.g. the Eclipse Plu-
gin Central4 provides a classification of components, based on user ratings). Different
expertise is required for developing and using components, thus leading to organiza-
tions specializing in one of the two roles and creating a market for the brokers to aid
component users to find and select components produced by the vendors.

Szyperski presents a slightly different list, including component system architects,
component framework architects, component programmers, and component assem-
blers [Szyperski 02]. When compared to Aoyama’s list, we note the absence of the
component brokers and a more specialized view on the roles of component producers
(framework architects and programmers) and the component users (system architects
and assemblers).

4http://www.eclipseplugincentral.com/

34

http://www.eclipseplugincentral.com/

2. COMPONENT-BASED SOFTWARE ENGINEERING 2.4. Component models

The separation between component producers and users creates a challenging tech-
nical difficulty: how to test the component, both for functional and non-functional
properties.

In practice, these distinctions are not always clear-cut, and practitioners from the
same organization can play more than one role, depending on the situation. An ex-
ample of this can be found in the Eclipse community, where organizations are at the
same time developing and providing Eclipse plug-ins to the community, while they
are also using plug-ins developed by other organizations (thus accumulating the roles
of producers and users). There are a few brokers used by the community to make the
components (plug-ins) available to other Eclipse users. Some of the practitioners of the
community are also active contributors to the evolution of Eclipse as a plug-in platform
and perform, as such, the role of framework architects, as well.

2.4 Component models

A component model is “the set of component types, their interfaces, and, additionally, a
specification of the allowable patterns of interaction among component types. A component
framework provides a set of runtime services to support and enforce the component model”
[Bachman 00].

2.4.1 A taxonomy for component models and technologies

When discussing component models, it is useful to have a common taxonomy, to facil-
itate their comparison. Taxonomy-based analysis fosters a more systematic approach
to the description of the models than the one usually achieved through a more tradi-
tional, non-structured, narrative review. Evidence collected in the realm of medical
sciences shows that narrative reviews tend to lead to more informal and subjective
methods to collect and interpret the studies, including selective citation of literature to
reinforce preconceived notions [Pai 04]. In contrast, having a taxonomy for character-
izing proposals fosters a more objective analysis, partially mitigating the shortcomings
of narrative reviews. The taxonomy also helps readers identifying which models are
likely to be applicable to their own context, and which are not. The potential for “se-
lective citation of literature” can also be mitigated by establishing clear inclusion and
exclusion criteria for the models and technologies under scrutiny.

The approach of using taxonomies in surveys has been advocated by several au-
thors in the context of the Evidence-Based Software Engineering movement [Kitchen-
ham 04, Dybå 05], with the goal of promoting best practices of other sciences concern-
ing the analysis of accumulated evidence, in the context of Software Engineering. Al-
though this sort of approach to reviews is not novel in Software Engineering (see, for
instance, [Laitenberger 02]), it has been adopted in several recent reviews published in
major journals devoted to Software Engineering in general (e.g. [Sjøberg 05, Lau 07])

35

2. COMPONENT-BASED SOFTWARE ENGINEERING 2.4. Component models

and Experimental Software Engineering, in particular (e.g. [Mohagheghi 07, Kitchen-
ham 08]).

We propose the following taxonomy for describing each entry of our survey:

• Origin. A brief note on the origin of the component model. For summary pur-
poses, we will classify each model as:

– academic, if the proposal was originated mainly in the academic commu-
nity,

– industry, if the proposal was originated mainly in an industrial environ-
ment, or

– both, if the proposal is the result of joint work from industry and academia.

• Component representation. Here, we will use the representation categories dis-
cussed in section 2.2:

– classes,

– objects, or

– architectural units.

• Component syntax. One of the distinguishing factors between component mod-
els is the language used in component specification. We use three major cate-
gories concerning component syntax:

– object-like programming languages, for components which are specified in
a given programming language (e.g. JavaBeans are specified as Java classes),

– programming languages with IDL (Interface Description Language) map-
pings, for components which are specified using an IDL and can then be
implemented using a specific programming language which supports that
IDL (e.g. .Net components can be implemented in languages such as C], or
Visual Basic), or

– ADL (Architecture Description Languages), for components defined using
an ADL (e.g. UML 2.0 components).

Unlike the first two categories, components defined using an ADL have then to
be implemented using some suitable programming language.

• Component integration. As we discussed in section 2.2.3, different component
models support different forms of component integration. We identified four
typical combinations of integration mechanisms in that section, and will use them
for our taxonomy:

– design without repository,

36

2. COMPONENT-BASED SOFTWARE ENGINEERING 2.4. Component models

– design with deposit-only repository,

– design with repository, or

– deployment with repository.

• Contract support. We use Beugnard’s classification of contract support [Beug-
nard 99] to characterize the surveyed component models. As noted in section
2.2.1, we will consider four levels of increasing contract support:

– syntactic contracts,

– behavior contracts,

– synchronization contracts, and

– quality of service contracts.

• Support for certification. The availability of a credentials mechanism, such as
the one described in section 2.2.2 will be discriminated in this classification item,
with a dichotomic scale:

– available, or

– not available

• Support for compositional reasoning. The availability of support for composi-
tional reasoning in the component model as discussed in section 2.2.3, will be
discriminated in this section. Again, we use a dichotomic scale:

– available, or

– not available

This taxonomy for component models borrows three of its classification dimen-
sions from [Lau 07]: component representation, component syntax, and component
integration. In its original form, Lau and Wang call our “component representation”
“component semantics” in the sense of what is meant by “software component”. We de-
cided to rename this category as we prefer to use the term “semantics” for expressing
the sort of contract that each component model supports.

2.4.2 Models summary

Rather than presenting in this chapter a thorough survey on component models, we
opted to present here only a summary of that survey. This summary is intended to give
readers a grasp of current component models, their main strengths and shortcomings.
Interested readers are invited to find further details on each of the surveyed component
models in Appendix A.

37

2. COMPONENT-BASED SOFTWARE ENGINEERING 2.4. Component models

Ja
va

Be
an

s

En
te

rp
ri

se
Ja

va
Be

an
s

C
O

M
+

.N
et

C
C

M

Fr
ac

ta
l

O
SG

I

W
eb

Se
rv

ic
es

A
cm

e

U
M

L

K
ob

rA

K
oa

la

SO
FA

PE
C

O
S

Fr
eq

ue
nc

y

O
ri

gi
n Industry x x x x x x x 7

Academy x x 2
Both x x x x x 5

R
ep

re
s. Classes x x 2

Objects x x x x x x 6
Arch. Units x x x x x x 6

Sy
nt

ax Object-like x x 2
IDL x x x x x x 6
ADL x x x x x x 6

In
te

gr
at

. DesNRep x x x 3
DesDORep x x x x x x x 7
DesRep x x x 3
DepRep x 1

St
ru

. Flat x x x x x 5
Hierarchical x x x x x x x x x 9

C
on

tr
ac

t Syntactic x x x x x x x x x x x x x x 14
Behavior x x x x x 5
Synch. x x 2
QoS x x x x 4

C
er

t. Supported 0
Not available x x x x x x x x x x x x x x 14

R
ea

s. Supported x x 2
Not available x x x x x x x x x x x x 12

Table 2.1: Component models.

Table 2.1 summarizes the component models presented in this review. The balanced
distribution of models by origin reflects our concern in discussing component models
originated by the software industry, academia, and consortia between both. In the
columns’ header, we have the surveyed component models. In the rows’ header, we
present the several categories identified in our taxonomy. The x matching a category
row with a component model column means that that component model fits into the
corresponding categories. For most of the criteria, each component model fits into
one of the categories in that criteria. The exception concerns the support for contracts.
Here, a model may support more than one contract type, and we opted to mark all the
supported types, rather than just the most sophisticated one. As we will see, it is not
always the case that a model supporting the most sophisticated of Beugnard’s contract
types supports all the remaining ones.

38

2. COMPONENT-BASED SOFTWARE ENGINEERING 2.4. Component models

With respect to the typical granularity of components, most models support the full
range, from fine-grained to coarse-grained components. That said, while some models
may be better suited for fine-grained components (e.g. JavaBeans), most models are
better suited for medium and coarse-grained components, although they also support
fine-grained components. One of the common characteristics for supporting coarse-
grained components is the ability to create composite components from finer-grained
components (see, for instance, Koala components), and we have classified the models
with this ability as hierarchical component models.

Depending on the component model, components may be classes, objects, or archi-
tectural units. In our sample of component models, this has a direct mapping on the
syntax of the component model. When components are represented through classes,
they typically have an object-like specification language syntax. When components
are run-time objects, they are usually specified through their interfaces, using an IDL.
When they are architectural units, they are specified through an ADL.

When analyzed in the scope of the component life cycle, the form of integration
of component models, ranging from design without repository to deployment with
repository, varies greatly. In one end of the spectrum, we have ADL-based component
models, which usually do not rely on a repository for retrieving their components. The
implication that this leads to focusing on designing components and component-based
systems from scratch, rather than by reusing existing components, is one of the main
shortcomings of these approaches.

On the other end of the spectrum, we have design with repository, where the units
of design can be stored and retrieved from the component model as units of design.
This is an approach common to software product line component models (Koala and
KobrA), and to SOFA (the exception, when it comes to academic-based models in this
review, for this particular categorization).

Between the previous two categories of integration, we have the most popular com-
ponent models within industry, which, in general, allow designing components and
storing them in binary form into a repository. A common shortcoming in these ap-
proaches is that they don’t allow depositing composite components in the repository,
which would make them available for further integration, for instance. Most compo-
nent models allow component integration during design. The exception is JavaBeans,
which only allows it in deployment.

As noted in [Lau 07], there is an opportunity for improvement of current compo-
nent models, as none of the component models (with the possible exception of SOFA
2.0) supports a “Design and deposit category”, which would allow composites created
during design to be further composed during deployment.

In [Bures 06], the SOFA proponents dispute this classification. They argue that no
composition should happen at deployment time. Their rationale is that rather than a
deployment phase, we should consider a runtime phase when systems can be dynam-

39

2. COMPONENT-BASED SOFTWARE ENGINEERING 2.5. Metrics for component-based development

ically reconfigured. With this adaptation, they claim to meet the “ideal” component life
cycle proposed in Lau’s taxonomy [Lau 07]. In turn, Lau’s taxonomy assumes that run-
time reconfiguration is achieved by stopping the system’s execution and going back to
the deployment phase for reconfiguring the system. It also assumes that the creation
of links to services at runtime should not be considered as composition, in terms of
semantics (as they are not considered, for example, with respect to web services).

Most component models support, by default, only a basic syntax-type contract. It is
no surprise that more sophisticated contract approaches are mostly available for com-
ponent models provided by academics, or consortia between academic and industry
partners. It should be noted that this state of practice seems to be shifting, in the sense
that, increasingly, industry driven solutions (e.g. UML 2.0) are providing more sophis-
ticated support to design by contract.

The quest for component certification remains, to all practical aspects, a dream.
None of the reviewed component models provides direct support for component cer-
tification, as described in section 2.2.2. Initiatives such as Predictable Assembly for
Certifiable Components (PACC) [Wallnau 03] are trying to mitigate this problem. In
[Chaki 07], the PACC team supports certification of software component binaries from
UML state chart specifications, combining Proof-Carrying Code with Certifying Model
Checking techniques5.

Most component models provide no support for compositional reasoning. The ex-
ceptions come from academic backgrounds, suggesting that, as with the certification of
components, the techniques for compositional reasoning are still in a maturing process.

The community needs more sophisticated abstractions than those provided by cur-
rent component models. Components represented by objects and classes are integrated
through message passage. Several of the architectural-based approaches discussed in
appendix A provide some level of compositional reasoning support, but are less dis-
seminated in the practitioner’s working environments, and typically lack professional
development tools, comparable to those of modern integrated development environ-
ments.

2.5 Metrics for component-based development

With an increasing number of component-based architectures relying on black-box
software components [Bass 01], the quality of such architectures depends, to a
large extent, on the quality of the integrated components and on the interactions
among them [Simão 03]. Therefore, components evaluation should be integrated
in CBD [Brownsword 00]. A component assembler takes application requirements,

5Proof-carrying code “constructs a proof that machine code respects a desired policy, packages the proof with
the code so that the validity of the proof and its relation to the code can be independently verified before the code is
deployed”, while certifying model checking “is an extension of model checking for generating proof certificates
for finite state models against a rich class of temporal logic policies” [Chaki 07].

40

2. COMPONENT-BASED SOFTWARE ENGINEERING 2.5. Metrics for component-based development

searches component repositories for selecting appropriate components and assembles
them, by providing the required glue [Szyperski 02]. His focus of attention is compo-
nent composition rather than component construction. For the component assembler,
it is important to assess the complexity of alternative component assemblies, integrat-
ing components that may be acquired from different providers. Deciding whether to
reuse components or to develop the corresponding functionality from scratch is also
part of his tasks.

In this context, it would be helpful for a component assembler to have an inte-
grated view of existing techniques that may assist him in this task. As pointed out
in [Kitchenham 04], Empirical Software Engineering research, in general, tends to be
fragmented and not properly integrated. This leads to the absence of a culture of repli-
cation of experiments and of systematic reviews of the existing approaches, like, for in-
stance, is common practice for medical research 6. Therefore, although metrics-based
approaches to component reusability assessment have been proposed, to the best of
our knowledge, there is a lack of comparative reviews of such proposals. In this sec-
tion, we provide a comparative study on component reusability evaluation proposals.

The notion of measurement cross-cuts the experimental process in several points.
When planning an experiment, we have to define clearly what we need to measure and
how we will perform it. The latter implies that our definition of desired measurements
is constrained not only by our information needs, but also by the feasibility of per-
forming those measurements, during the execution of the experiment. Furthermore,
our measurement approach should also be designed to facilitate the replication of the
experiment by our peers.

The sub-area of Software Engineering concerned with measurement has received
considerable attention in the last decades from the Software Engineering community
as can be ascertained from its inclusion in the IEEE Software Engineering Body of
Knowledge (SWEBOK) [Abran 04] or in the ACM Computing Classification System
7, under the term metrics. As stated on the SWEBOK, effective measurement has be-
come one of the cornerstones in organizational maturity. This is further acknowledged
by the inclusion of measurement as a key process in maturity models used in the
assessment of software development organizations, such as the CMMI [Chrissis 03],
SPICE [ISO15504 98], or OOSPICE [Henderson-Sellers 02].

In spite of the wide acknowledgment of the role of measurement in software pro-
cess and product improvement best practices, practitioners still face difficulties when
implementing a measurement program. There are several obstacles delaying a wider
adoption of measurement in Software Engineering current practice, including social
and technical difficulties [Tichy 98, Abreu 01a]. In this chapter, we are particularly in-
terested in the technical challenges concerning metrics definition. Those challenges
span from the specification to the collection and validation of metrics in a production

6For a discussion on systematic reviews in the scope of medical research see, for instance [Pai 04].
7http://www.acm.org/class/

41

http://www.acm.org/class/

2. COMPONENT-BASED SOFTWARE ENGINEERING 2.5. Metrics for component-based development

environment. In order to gain a insight on these challenges, we start by observing the
main characteristics of current metrics proposals for CBSE.

2.5.1 Metrics and their underlying context

The lack of a widely accepted quality model for CBD is the first challenge for a compo-
nent assembler in his component selection process. There are some proposals of quality
models for CBD, such as [Bertoa 02], where an adaptation of the ISO9126 [ISO9126 01]
for component software is proposed, but none of these proposals have achieved an
industry-wide acceptance, yet.

Often, metrics definition is not performed to meet the information requirements of
a particular quality model, but rather in an ad-hoc fashion. In the absence of such a
reference model, interpreting measurements is troublesome.

Consider the example of Lines of Code (LOC) measurement, which could be used
in the assessment of the effort required to build white box components. This would
be useful when comparing the cost of acquiring a component, vs. the cost of building
it from scratch. If we simply define how to count the LOC with no reference to how
we plan to use them, we are in fact only defining a measurement, but not a metric.
Defining the latter implies referring to a framework (the quality model) upon which
we plan to interpret the measurements. In other words, even if we are able to estimate
that a component will have 20000 LOC, is this good, or bad? How much effort does it
take to build such a component?

The LOC measurement has been used in several contexts. As a size (or complexity
measure), LOC has been used, among other things, to assess the effort required for
developing code [Albrecht 83]. One of the problems with this approach is that we can
only compute LOC after the code is complete. Factors such as the source code reuse
level, the particular kind of reuse, or the coding style, may have a significant impact on
the value of LOC. The expressiveness of the chosen programming language has also
an impact on the value of LOC. While defining function points to allow predicting the
final code size (in LOC) and effort (in work-hours) for developing such code, Albrecht
and Gaffney detected that the chosen programming language has a noticeable effect
on the size of the developed software, so they used a language calibration parameter
in their effort estimation model [Albrecht 83].

On the other hand, we might be interested in comparing the work of several prac-
titioners, to assess their productivity, and use LOC, or function points, as an indirect
measure for productivity, when combined with the corresponding effort in developing
code. The (naïf) rationale would be that someone who produces more LOC (or func-
tion points) than his peers, with a similar effort is more productive. Unless, of course,
his code has a significantly lower quality than that of his peers.

The experimental validation approaches for each of the situations described in this
section differ. So, a metric may prove to be useful for predicting effort, but useless in

42

2. COMPONENT-BASED SOFTWARE ENGINEERING 2.5. Metrics for component-based development

what concerns the quality of the outcome of that effort, for instance.

Our points are that:

• it is not possible to define and validate a metric, without clearly stating what is
its intended usage;

• as there is no widely accepted quality model for CBD, the validation of current
metrics for CBD is harder; we need, at least, to define a context that we can use as
reference for metrics validation efforts, so that we can state that metric X is valid
in context Y.

2.5.2 Metrics ill-definition

The metrics ill-definition problem occurs due to several reasons. Metrics definitions are
often presented without the corresponding context. By context we mean the underly-
ing ontology upon which the concepts of that context, and their interrelationships are
defined. Without such clarification, metrics definitions become subjective, as different
interpretations on which those concepts are and on how to perform the measurements
are possible. Finally, metrics definitions are performed without an underlying formal
approach that uses the previously mentioned metamodel as contextual input. The for-
mal specification of metrics should address not only how the underlying concepts are
accounted for and their interrelationships are traversed to collect the required metrics,
but also the pre-conditions that must be met to allow the collection of such metrics.

Informally defined metrics

Without clear and precise definitions of metrics, it may be impossible to consistently
develop tools to collect those metrics, or to discuss their properties in a mathematically
sound way. The usage of natural language is a typical metrics definition problem. One
of the first books on metrics for object-oriented design contained natural language def-
initions for all its metrics [Lorenz 94]. While this may be considered helpful as a first
glimpse on the metric’s objective, the absence of a formal definition may hamper its
systematic and repetitive collection and validation by different researchers or practi-
tioners. Consider the following natural language definitions, borrowed from [Gill 03]:

• “Component Interface Complexity Metric (CICM): Component interface complexity
metric should provide an estimate of the complexity of interfaces. Such a metric could
be helpful in improving the systems quality because complex interfaces complicate the
testing, debugging and maintenance.”

• “Component Resource Utilization Metric (CRUM): Resource utilization metric should
measure the utilization of target computer resources as a percentage of total capacity.”

43

2. COMPONENT-BASED SOFTWARE ENGINEERING 2.5. Metrics for component-based development

The first definition is a typical example of a “wish list” metric proposal. Although it
contains an intuition to the authors’ intentions when defining it, the description is too
vague with respect to how the interfaces complexity should be measured. The second
definition is more objective, in the sense that it implies that the metric is defined as
a ratio between used and available resources. It completely omits which resources
should be measured and how they could be measured. For the sake of argument,
assume that we wish to instantiate the second metric by computing CRUM considering
memory as the resource under scrutiny. Which would be the conditions for performing
the measurement? Should we consider the average memory used by the component
during its lifetime, its highest value during a particular period of usage, or any other
option? Should we consider the total physical memory of the target computer as a
baseline, or discount the memory used by other applications, namely the operating
system being run by that computer? There are too many points of uncertainty in this
kind of definition, leading to points of variation in the implementation of tools for
collecting them.

Note that even the apparently trivial LOC definition as a count of lines of code is
susceptible to different interpretations, in part due to its vulnerability to coding style
options. When analyzing a source code file, should we make a simple count of lines, or
should we omit, for instance, blank lines? Should comment lines be counted as well,
or omitted? How do we deal with text wrapping? Should we pre-process the source
code to ensure a uniform formatting style?

In principle, one can always detail all the counting rules down to their most intricate
details. Nevertheless, most natural language definitions of metrics are incomplete and
ambiguous. A consequence is that different tools collecting allegedly the same metric
may provide different values for that metric, while analyzing the same artifact. This
hampers the comparability of metrics collected by independent teams using different
tools. Results interpretation may also be flawed, due to these potentially different
interpretations of the natural language definitions.

Metrics defined with set theory and simple algebra

A common approach to increase the quality of metrics specifications is to use a com-
bination of set theory and simple algebra to define metrics. Consider the following
example, borrowed from Hoek et al. [Hoek 03], for the provided (PSUX) service utiliza-
tion metric.

PSUX =
PActual

PTotal
(2.1)

Hoek et al. define a service as follows: “Under the term service, we include such things
as public methods or functions, directly accessible data structures, and any other kind of pub-
licly accessible resource one may be able to express in an ADL.” Their intention is to define
these metrics in a generic way, so that they are not tied to any particular ADL (Archi-

44

2. COMPONENT-BASED SOFTWARE ENGINEERING 2.5. Metrics for component-based development

tecture Description Language), or service. The price to pay for this option is that dif-
ferent implementations will consider different kinds of services as relevant. Although
the metrics formulas are objective, the selection of the elements to be included in such
formulas is ambiguous, making these metrics ill-defined.

Formally defined metrics

An alternative is to use a formal approach to define metrics. Algebraic definitions can
be made elegant and sound. For instance, consider the definition of the countServices

metric, which counts the number of services offered by a component. First, we have
to define the basic operations so that a component can be created and a service can be
added to it. Then, we can define the countServices operation. Informally, we can define
these operations as:

• new - creates a new component

• add - adds a service to the component

• countServices - counts the number of services in the component

We can then define operation signatures for this simplistic model.

new : → component
add : service × component → component
countServices : component → nat

Finally we have to define the semantics of these operations. For instance, the se-
mantics of countServices could be defined like this:

s : service
c : component
...
countServices (new) = 0
countServices (add(s, c)) = 1 + countServices(c)

The idea of using algebraic approaches to software measurement has been used
by authors such as Shepperd [Shepperd 91], not only for defining the metrics, but
also to theoretically validate the metrics by defining axioms that characterize desired
properties of those metrics, and then demonstrating that the axioms are invariants of
the model defined by the algebraic definitions. For instance, one can define an axiom
that states that adding a service to a component will never decrease the countServices
metric, and then demonstrate that the axiom is an invariant of the model.

The main shortcoming of this approach is its “user-friendliness”. Although the us-
age of algebraic definitions is widespread among the scientific community (even if not

45

2. COMPONENT-BASED SOFTWARE ENGINEERING 2.5. Metrics for component-based development

in the context of software measurement), most practitioners feel uncomfortable with
them, as they are not used to dealing directly with algebras frequently. So, algebraic
definitions of metrics are likely to be dismissed by most practitioners, with the pretext
of being “too theoretical”. The ideal situation is to use a language with a sound algebraic
background, but similar to the languages used by practitioners in their routine work,
so that this knowledge gap can be bridged.

2.5.3 Insufficient validation

The validation of Software Engineering proposals published in the literature is often
insufficient. This is true for the general case, as well as in what concerns the validation
of software metrics proposals. We can identify two main threads of research concern-
ing the validation of software metrics: experimental and theoretical validation.

Metrics experimental validation

In what concerns the experimental validation of metrics proposals, the discussion in
chapter 3 is fully applicable to the research area commonly referred to as “software
metrics”. More often than not, metrics proposals are insufficiently validated, from an
experimental point of view. One of the main difficulties to experimental validation of
software metrics is the need for automatic tool support to metrics collection. This is
a barrier not only for the metrics proponents, but also for peers who want to repli-
cate metrics collection. The latter face an extra difficulty, concerned with the informal
definitions used in most metrics proposals, as we will discuss later.

Metrics theoretical validation

Metrics theoretical validation is also often missing from proposals, perhaps due to
the lack of a generally accepted framework for validation. Weyuker’s properties
[Weyuker 88] validation is the most widely used.

Weyuker proposed a set of properties for the assessment of software complexity
metrics [Weyuker 88]. Her approach is based on the definition of properties that com-
plexity metrics should exhibit. Consider P, Q, and R as programs. Let |P|, |Q|, and
|R| be their complexity, respectively, as measured by the metric under validation. Let
|P;Q| be the resulting complexity of P composed with Q. Weyuker’s properties, which
we now present both in natural language and formally, are as follows 8:

1. A metric that exhibits the same value for all programs is useless. It provides no
information on any of those programs. In other words, it is to be expected that
at least some different programs should exhibit a different values for the same

8Note that this formalization is an adaptation of the properties definitions presented by Weyuker
in [Weyuker 88]. While some of her properties were presented using mathematical expressions, others
were defined, either partly or completely, in natural language.

46

2. COMPONENT-BASED SOFTWARE ENGINEERING 2.5. Metrics for component-based development

complexity metric.
∃P,∃Q : P 6= Q∧|P| 6= |Q|

2. There is a finite number n of programs for which the complexity is c. To facilitate
the formalization of this property (which was not provided in Weyuker’s axioms
proposal), let c be a non-negative number. Let S be the set of programs with c

complexity, and n the cardinal of the set S.
∀c ∈ R+

0 ∀P : |P|= c⇒ P ∈ S,∃n ∈ N0 :]S = n

3. Different programs P and Q may have the same complexity.
∃P,∃Q : P 6= Q∧|P|= |Q|

4. Different programs which are functionally equivalent (in other words, perform
the same task, as perceived from the outside) may have different complexities.
∃P,∃Q : P≡ Q∧|P| 6= |Q|

5. Monotonicity is a fundamental property of all complexity measures. It follows
that a program in isolation is at most as complex as its composition with another
program.
∀P,∀Q : |P| ≤ |P;Q|∧ |Q| ≤ |P;Q|

6. The resulting complexities of composing the same program (R) with two different
programs of the same complexity (P and Q) are not necessarily equal. Conversely,
the complexities of composing two different programs (P and Q) of the same
complexity with a third program (R) are also not necessarily equal.
∃P, ∃Q, ∃R : P 6= Q∧|P|= |Q|∧ |P;R| 6= |Q;R|
∃P,∃Q,∃R : P 6= Q∧|P|= |Q|∧ |R;P| 6= |R;Q|

7. Program’s complexity should be responsive to the order of its statements, and
hence to their potential interaction. Let P be a program and Q another program
such that Q is formed by permuting the order of the statements in P. Assume we
name this permutation operation Perm().
∃P,∃Q : Q = Perm(P)∧|P| 6= |Q|

8. If a program is a renaming of another program, then their complexity should
be the same. Assume that the operation Rename() transforms program P in its
renamed version Q.
∀P,∀Q : Q = Rename(P)⇒ |P|= |Q|

9. The complexity of the composition of two programs P and Q may be greater than
the sum of the complexities of programs P and Q. The extra complexity may
result from the interaction between programs P and Q.
∃P,∃Q : |P|+ |Q|< |P;Q|

47

2. COMPONENT-BASED SOFTWARE ENGINEERING 2.5. Metrics for component-based development

Weyuker illustrated the applicability of her properties with a set of well-known
structural complexity metrics (statement count, cyclomatic number, effort measure,
and data flow complexity) and observed that none of them exhibited all the properties.
Since their publication, Weyuker’s properties have been used to support the theoretical
validation of several metrics proposals (e.g. [Chidamber 94]).

Before discussing these properties, we have to stress that Weyuker did not label her
properties has mandatory. She called them “desirable properties of complexity metrics”,
and even provided an example where it would make sense for a particular metric not
to adhere to one of the set of usually desirable properties: a metric that uses identi-
fier mnemonics as an input to compute its value does not exhibit property 8, but can
nevertheless be acceptable.

However, these properties are frequently referred to as “Weyuker’s axioms”, and this
has been a source for a long controversy, since their publication until today. Cherni-
avsky and Smith, who referred to the properties as axioms, recognized that the proper-
ties were proposed as “desirable”, rather than as “axioms”, but claimed that satisfying all
9 properties was a necessary, but insufficient, condition for a “good” complexity mea-
sure [Cherniavsky 91]. Fenton also characterized Weyuker’s approach as axiomatic,
and identified serious flaws in it, due to the usage of several incompatible views of
complexity [Fenton 94]. Kitchenham and Pfleeger joined Fenton in a critical review of
Weyuker’s properties [Kitchenham 95]. They assume complexity to be related to struc-
tural rather than psychological complexity and challenge properties 2, 5, 6, 7, 8, and
9:

• Property 2 concerns the finite number of programs for which a metric has the
same value. By analogy to the Euclidean distance between two points, where an
infinite number of pairs of points can have the same distance, this property is
deemed unnecessary.

• Properties 5, 6, and 9 imply a numeric scale type, so, in practice, they are too
restrictive because they exclude other scale types, namely nominal scales.

• Property 7 was criticized for contradicting the standard measurement practice, in
the sense that each unit of an attribute contributing to a valid measure is equiv-
alent. Therefore, although a reordering of a program would not necessarily be
correct, or of the same psychological complexity as the original one, this should
not reflect on the structural complexity of that program.

• Property 8 is considered unnecessary, given the structural complexity assump-
tion. We would add that the psychological complexity assumed by Weyuker in
property 7 is dismissed in property 8, because the impact of a renaming in the
psychological complexity is difficult to quantify.

Another line of criticism to these properties concerns the applicability of property
9 to object-oriented systems, particularly for metrics that somehow take into account

48

2. COMPONENT-BASED SOFTWARE ENGINEERING 2.5. Metrics for component-based development

the mechanism of inheritance. Gursaran and Roy noted that none of the inheritance
metrics in two of the most influential metrics sets for Object-Oriented design [Chi-
damber 94, Abreu 94a] exhibited property 9 and argued for the rejection of that prop-
erty as applicable for this kind of metrics [Gursaran 01]. The formal proof presented
by Gursaran and Roy to support their claim was then challenged by Zhang and Xie,
who presented a counter-example contradicting the proof, but agreed that this prop-
erty should be ignored for this kind of metrics [Zhang 02]. The controversy goes on, as
Sharma et al. presented two new metrics that aim at capturing complexity in the pres-
ence of inheritance, and argued that one of Chidamber and Kemerer’s metrics (LCOM
- Lack of COhesion in Methods) does satisfy property 9, after all [Sharma 06].

The lack of a widely accepted “theoretical validation” framework of metrics and the
controversy raised by the most well-known set of properties typically used in that val-
idation motivates our choice for considering “experimental validation” as our criterion,
when analyzing metrics proposals, in the remainder of this dissertation.

2.5.4 A taxonomy for metrics proposals classification

In our survey of metrics for CBD proposals, originally presented in [Goulão 04d], and
later refined in [Goulão 07b], we start by proposing a taxonomy for classifying the sur-
veyed works, and then use it to guide our assessment. This taxonomy includes a set
of qualitative characteristics plus a quantitative assessment scheme, based on ordinal
scales. The quantitative assessment enforces the required comparability of propos-
als. Together, the qualitative and quantitative parts provide a basis for identifying the
strengths and shortcomings of each proposal. The first four items of this taxonomy aim
to provide a very brief overview of the proposals, while the last one aims to character-
ize each proposal according to its maturity level. The taxonomy’s characteristics are as
follows:

• Scope. This refers to the granularity level and type of artifacts that are the target
of the metrics-based assessment proposal. A typical contrast is between coarse
and fine-grained components. Another one is that while some components are
white-box, others are black-box. The scope definition constrains the assessments
that can be performed on components.

• Intent. A description of the main objectives of the proposal, to help the reader
assessing the extent to which each approach may help achieving those objectives.

• Technique. This refers to how the metrics were defined and validated. The met-
rics definition technique may range from a purely informal description to a for-
mal definition. Several forms of validation of the proposals may have been at-
tempted, both by the metrics proponents and other researchers or practitioners.

49

2. COMPONENT-BASED SOFTWARE ENGINEERING 2.5. Metrics for component-based development

In metrics proposals, validation efforts range from case-studies that use toy ex-
amples and aim at illustrating the metrics definition and collection, to series of
controlled experiments performed with real-world examples.

• Critique. Here, we provide a qualitative assessment of the most noticeable fea-
tures of the proposal, including its most interesting aspects, as well as its main
shortcomings.

• Maturity. The maturity level of the proposal provides a comparison framework
based on the usage of ordinal scales to characterize the metrics proposals accord-
ing to four different dimensions: the underlying quality model, the mapping
between metrics and the quality model, the formality of the metrics definition,
and the extent to which the proposal was validated.

To assess the maturity of the proposals, we start by identifying a set of rating scales
concerning different aspects of metrics-based quality evaluation. For each of those
rating scales, we then identify several levels of maturity that will aid us in the graphical
depiction of proposals maturity. Table 2.2 presents a condensed view of our maturity
comparison taxonomy.

Maturity level Quality
Model (QM)

Mapping
Quality (MQ)

Metrics Defi-
nition (MD)

Metrics Vali-
dation (LV)

0 N/A N/A N/A N/A
1 Ad-hoc Ad-hoc Wish list Anecdotal
2 Structured Rationale Informal Small experi-

ment
3 Uncorrelated Goal-driven Semi-formal Large experi-

ment
4 Validated Validated Formal Independent

Table 2.2: A metrics proposal comparison taxonomy

The maturity level is of an ordinal nature, ranging from 0, where the dimension is
not available in the proposal (N/A in all rating scales), to 4, where the proposal has
reached a high maturity level. It should be noted that a proposal’s maturity does not
necessarily reflect its potential interest. For instance, a radical proposal in an emerging
field may be promising, while not yet evidencing high values across all the aspects of
our comparison framework. On the other hand, we will expect that within a reasonable
period of time, the same proposal will mature. In the next section, we will present
several proposals for metrics-based assessment of reusability in CBD. For presentation
purposes, we will use the following maturity mask, where level is replaced by the
appropriate value for each proposal:

QM[level]; MQ[level]; MD[level]; LV[level]

50

2. COMPONENT-BASED SOFTWARE ENGINEERING 2.5. Metrics for component-based development

The Quality Model (QM) represents the extent to which the metrics proposals fit
into a quality model. For the Quality Model, the identified categories, by increasing
level of maturity, represent:

1. N/A. The proposal is not related to any specific quality model.

2. Ad-hoc. A set of quality characteristics are identified.

3. Structured. Quality characteristics are organized, typically in a hierarchy.

4. Unassociated. Quality characteristics are shown to be independent, to avoid as-
sessing the same quality aspect repeatedly.

5. Validated. The quality model is conveniently validated through experiments.

The Mapping Quality (MQ) represents the level of integration between the model
and the metrics which are chosen to assess quality based on that model. The repre-
sented categories are:

1. N/A. Metrics are not related to a quality model.

2. Ad-hoc. Metrics are mapped to quality attributes in an ad-hoc fashion.

3. Rationale. A discussion on the rationale of the mapping is provided.

4. Goal-driven. Metrics are defined to answer specific evaluation needs, following
an approach such as the Goal Question Metric [Basili 94].

5. Validated. Building on the previous level, metrics are shown to effectively fulfill
the specific evaluation needs raised by the quality model.

Concerning Metrics Definition (MD), we use the following categories:

1. N/A. The proposal is only qualitative.

2. Wish list. The authors informally identify the need for a certain kind of metrics,
without actually proposing any.

3. Informal. A natural language description of the metrics is provided by the au-
thors.

4. Semi-formal. Some degree of formalism is used in the metrics definitions. Typi-
cally, the metrics themselves are defined through mathematical expressions, but
the underlying concepts being measured are only informally specified.

5. Formal. A formal definition of the metrics based upon the underlying concepts
is provided.

51

2. COMPONENT-BASED SOFTWARE ENGINEERING 2.5. Metrics for component-based development

Finally, the Level of Validation (LV) is classified according to the following cate-
gories:

1. N/A. The proposal does not include any example of metrics collection.

2. Anecdotal. Anecdotal examples are provided to motivate the usefulness of the
proposed metric. Sometimes, they are complemented with some descriptive
statistics.

3. Small experiment. An experiment is carried out to assess the metrics, with some
statistical approach to analyze the collected data, but the sample of analyzed ar-
tifacts does not allow inference (conclusions generalization beyond the sample
used in the experiment).

4. Large experiment. An experiment with a significant sample of artifacts is carried
out, with real-world artifacts and adequate statistical analysis.

5. Independently validated. Experiments conducted by independent research
teams confirm the original proponent’s claims.

Our overview focuses on metrics-based approaches that aim at helping component
assemblers to choose adequate components. The selected proposals share a concern for
assessing, somehow, the reusability of components. For easier reference, the proposals
will be identified by the name of their first author, both in their textual description and
in the chart with the overall comparison, presented in figure 2.10. A reference to the
corresponding papers is provided on the top of each of the proposals review.

We have divided these proposals into two groups. The first one considers the com-
ponents in isolation. The second relates to proposals that attempt to help assessing
components in a given context, which is typically either a component assembly or a
component library.

2.5.5 Environment-free component metrics

We start by discussing component metrics proposals that assess components in isola-
tion. In other words, the metrics values are intrinsic to the components, rather than
dependent on the context in which the components are used.

Bertoa’s quality model and metrics [Bertoa 02, Bertoa 04, Bertoa 06]

Scope.
COTS software.

52

2. COMPONENT-BASED SOFTWARE ENGINEERING 2.5. Metrics for component-based development

Intent.
To introduce a quality model as an adaptation of the ISO9126 for component-based
development [ISO9126 01]. The adaptation of the ISO quality model consists on
assuming that the software will include black-box components and change the quality
model accordingly, so that any assessment of reused software takes into account
this restriction. A set of metrics to assess the attributes of that quality model is also
proposed. Its rationale is that the metrics collection has to be defined considering
the information made available by component brokers. While the first attempt at
metrics definition covers transversally the quality model, more recent work by the
same authors focuses on the usability of components, as perceived by component
assemblers [Bertoa 04].

Technique.
Although some of the metrics definitions included mathematical formulas, most
definitions were informal [Bertoa 02, Bertoa 04]. In [Bertoa 06], where a validation
effort for metrics concerning the usability of components is presented, all metrics
definitions are presented in natural language. This presentation is complemented by
a metamodel describing the information available from COTS vendors that concerns
usability. The metrics set includes metrics on the COTS components and their
documentation. The metrics collection requires a strong manual intervention, as
several of the metrics are collected from the analysis of the available documentation
of COTS components. The validation was conducted in a series of 5 experiments (one
of them was a replica conducted by peers) with a total of 68 subjects that were asked
to evaluate a sample of 12 COTS components. The first three experiments concerned
a subjective analysis performed by the participants on each of the components in the
sample. The remaining two experiments consisted on an assessment of component
reusability through the analysis of the performance of users on answering objective
questions concerning the availability of specific tasks and services in the components
that made up the sample. Subject’s performance was measured as a combination of
correctness of responses and time required for providing such responses, and was
used as an indirect measure of component reusability.

Critique.
By using the information made available by vendors, there are limitations concerning
the ability to automate metrics collection, due to the noticeable lack of standards
in data presentation by COTS producers and brokers. To overcome this problem, a
UML model for the classification of COTS usability is proposed, but populating that
model in an automated fashion remains an open challenge. From the original set
of metrics [Bertoa 02], some were dropped out due to difficulties in their collection.
With respect to the validation efforts, the proponents’ attempt to build up a set of

53

2. COMPONENT-BASED SOFTWARE ENGINEERING 2.5. Metrics for component-based development

experiments was successful in what concerns the replication of the experiment by an
independent team, but the small component sample is probably the most noticeable
threat to validity of the experiment series.

Maturity.
QM [Structured]; MQ[Rationale]; MD[Informal]; LV[Small experiment].

Gill’s quality attributes [Gill 03]

Scope.
Black-box components.

Intent.
To propose a set of guidelines on how to select metrics for black-box components.

Technique.
No actual metrics are defined. Instead, the authors informally present a set of quality
attributes that should be evaluated through metrics.

Critique.
The proposal includes an interesting discussion on the focus shift caused by the
specificity of black-box components evaluation, as opposed to the evaluation of
OO design, or software developed with structured programming, and provides an
interesting road map for research in metrics-based component evaluation.

Maturity.
QM[Ad-hoc]; MQ[Rationale]; MD[Wish list]; LV[N/A].

Dumke’s metrics for reusability of JavaBeans [Dumke 00]

Scope.
White-box Java Beans.

Intent.
To present a metrics set for reusability of JavaBeans.

Technique.
Informal definition of metrics, relying on access to the source code. The metrics in
this set are adapted from other contexts, such as OO design (e.g. percentage of public

54

2. COMPONENT-BASED SOFTWARE ENGINEERING 2.5. Metrics for component-based development

methods) and structured programming (e.g. maximal McCabe complexity number,
for a method in the JavaBean class).

Critique.
The white-box view of components renders this approach inadequate for evaluation
by independent component assemblers. The internal complexity of a component
method should not be relevant for the understandability of its interface and the
component’s reusability.

Maturity.
QM[N/A]; MQ[Ad-hoc]; MD[Informal]; LV[Anecdotal].

Boxall’s interface textual complexity metrics [Boxall 04]

Scope.
Interfaces of components developed with C, C++, Java or Eiffel.

Intent.
To define a set of metrics to assess interface complexity, measuring aspects of
components’ interfaces, such as the interface size, number of distinct arguments in
operations, level of repetition of such arguments, the commonality in identifiers,
identifier’s length and the density of reference arguments.

Technique.
Metrics are defined through a set of mathematical expressions, but the elements of
such expressions are informally described.

Critique.
The level of detail in the analysis of arguments in the interface is richer than in other
approaches, in what concerns the relevance of naming conventions for component
interfaces’ understandability. However, this approach does not address other poten-
tially interesting aspects in the interface, such as arguments’ complexity.

Maturity.
QM[Informal]; MQ[Rationale]; MD[Semi-formal]; LV[Small experiment].

Washizaki’s reusability metrics for black-box components [Washizaki 03]

Intent.
To propose a metrics set for assessing the reusability of JavaBeans. The metrics set is

55

2. COMPONENT-BASED SOFTWARE ENGINEERING 2.5. Metrics for component-based development

defined in the scope of a quality model for black-box component reusability, consid-
ering understandability, adaptability and portability as relevant sub-characteristics.
More refined criteria are then defined for each of these sub-characteristics, as well as
metrics to assess JavaBeans in the light of such criteria.

Technique.
Metrics are defined as ratios of the effective use of a given sort of interface feature (e.g.
BeanInfo class, readable properties, writable properties, methods with parameters and
methods with no return value) when compared to its potential use.

Critique.
It can be argued that the analysis of the interface complexity is over-simplistic since at
least two aspects are not considered: (i) the complexity of arguments, and (ii) the rep-
etition of argument types. In both cases no distinction is made. Intuitively, increased
complexity and variety of argument types would decrease the understandability of
the component’s interface. Washizaki’s metrics set was validated with a case study
where the reusability of over 120 components was assessed, both with this metrics set
and by a panel of experts. Results show a high correlation between both assessments,
indicating that the metrics defined in this set can indeed be used to assess component’s
reusability. However, our independent assessment, presented in section 4.4 indicates
that the metrics are unreliable for components with a small number of features on
their interface. Further independent analysis is still required.

Maturity.
QM[Structured]; MQ[Rationale]; MD[Semi-formal]; LV[Industrial experiment].

Gill’s interface complexity metrics [Gill 04]

Scope.
Black-box components’ interface.

Intent.
Besides the complexity aspects of interfaces’ signature, this proposal also considers
constraints upon those interfaces, as well as their packaging, to account for different
configurations that the interface may present, depending on the context of use.

Technique.
The overall complexity is defined as the weighted sum of the complexities related
to signature, constraints and packaging of the interfaces. For each of these aspects
of interface complexity, a definition is also proposed, again using weighted sums of

56

2. COMPONENT-BASED SOFTWARE ENGINEERING 2.5. Metrics for component-based development

features (e.g. events and operations count, for signature’s complexity).

Critique.
Although Gill’s proposal has the merit of including constraints and packaging
complexities on the assessment, it still lacks any sort of empirical assessment. This
hampers the ability of the authors to assign values to the coefficients on their defini-
tions, and, more significantly, our ability to assess the extent to which this approach
helps common practitioners to choose among alternative components.

Maturity.
QM[N/A]; MQ[N/A]; MD[Informal]; LV[N/A].

2.5.6 Environment-dependent component metrics

The approaches described in the previous section are mostly targeted at the assessment
of components in isolation. They rely on the assumption that the quality of software
components influences in some way the quality of the assembled system. The apparent
conclusion of this would be that a component assembler should always try to choose
the best components in order to optimize the quality of the assembled system. This
may reveal to be naïf, since we should also consider the context in which the compo-
nent will operate. Determining how well a component integrates with other compo-
nents in an assembly may lead to an evaluation that is more worthy to the component
assembler, than the one made in isolation [Wallnau 02]. This change of scope allows
the component assembler to focus on the quality for his target product: the component
assembly.

Sedigh-Ali’s quality characteristics [Sedigh-Ali 01]

Scope.
COTS.

Intent.
To discuss the requirements for metrics for CB-architectures based on relevant quality
aspects. The authors also present a taxonomy on the categories of costs related to soft-
ware quality, with cost drivers such as quality improvement, low quality prevention,
software failures and external costs related to those failures.

57

2. COMPONENT-BASED SOFTWARE ENGINEERING 2.5. Metrics for component-based development

Technique.
High level discussion, rather than a concrete proposal.

Critique.
The main contribution of this paper is an interesting discussion on requirements for
metrics for CB architectures, measured at a system level, including insights on how
to choose relevant metrics. However, this is an exploratory work based on expert
opinions alone, rather than on some sort of quantitative evidence to back up the
presented arguments.

Maturity.
QM[Ad-hoc]; MQ[Ad-hoc]; MD[Wish list]; LV[N/A].

Seker’s coupling and cohesion for CBD [Seker 04]

Scope.
Black-box components and component assemblies.

Intent.
To define coupling and cohesion metrics for CBD.

Technique.
The metrics are defined using an information theory based approach where compo-
nents and component infrastructures are represented as graphs.

Critique.
This approach adapts the well-known concepts of coupling and cohesion to the scope
of CBD. Except for the nodes in the graph being black-box components rather than
classes, the proposal is similar to coupling and cohesion for OO design.

Maturity.
QM[N/A]; MQ[N/A]; MD[Semi-formal]; LV[N/A].

Hoek’s service utilization metrics [Hoek 03]

Scope.
Software product lines.

58

2. COMPONENT-BASED SOFTWARE ENGINEERING 2.5. Metrics for component-based development

Intent.
To propose a metrics set that allows assessing software product lines based on service
utilization. The rationale for their need is that service utilization in product lines
implies a degree of optionality among the components that get used in a given
configuration. While some services and components will be part of all configurations
of that product line, others are optional. Structural variability is also an issue, as
the component assembler has to choose among a range of alternative configurations.
Product lines are also typically hierarchical, composed of a set of components, each
of which with its own internal structure. As noted in [Hoek 03], the combination of
the above mentioned constraints violates the assumptions of most structural metrics
that the system structure under evaluation is: (i) single - no optionality considered,
snapshots of the system are usually evaluated); (ii) fixed - no structural variability,
the system structure is assumed to be kept constant throughout the evaluation; and
(iii) flat - the implications of the hierarchical decomposition of the system are not
considered in the metrics definition.

Technique.
The metrics are defined around the concept of service utilization (the rate of usage of
provided and required services of a component). For individual components, metrics
are simply ratios of used services (both for required and provided ones), whereas for
component architectures which are fixed and flat (assemblies) these ratios are obtained
using the sum of used services against the total of available services.

Critique.
Of all the proposals presented in this overview, Hoek’s is the one that best fits the
notions of architectural components and assemblies’ evaluation rather than individual
components’ evaluation.

Maturity.
QM[N/A]; MQ[N/A]; MD[Semi-formal]; LV[Anecdotal].

Inoue’s ranking significance [Inoue 05]

Scope.
Software component libraries. Although the proposal is instantiated to Java class
libraries, it is generic and could be used with other sorts of components, from fine to
coarse-grained, both white and black-box.

Intent.
To enable the implementation of a Java class retrieval system (SPARS-J) that aids

59

2. COMPONENT-BASED SOFTWARE ENGINEERING 2.5. Metrics for component-based development

developers finding out relevant classes for reuse through natural language queries.
As the results of those queries tend to be too broad, a ranking system is required
to sort the search results in a convenient fashion. The approach is inspired by the
computation of impact factors of scientific publications (research papers, books, etc.)
and the ranking mechanisms used by modern web search engines. Components are
ranked with respect to their reuse in an existing software baseline. The most reused
components have a higher rank and are thus presented at the top of query results, as
they are more likely to be of interest for the practitioner performing the query.

Technique.
The component rank model uses a weighted directed graph representation for
components, where nodes represent the components and edges represent the use
relationships among them. The weight of each node is computed as a function of
the weight of its incoming edges. In turn, the weight of each edge is computed as a
function of the weight of its origin node and the number of outgoing edges that node
contains. The computation of all these weights corresponds to obtaining a stationary
distribution of the Markov chain [Stewart 95] that the underlying graph models.

Critique.
One of the most noticeable features of this approach is that reuse is assessed in terms
of the effective reuse of software components, rather than in terms of expected reuse
(e.g. predicted from the component interface’s characteristics). This means that the
metrics are useless from the point of view of a component developer. In turn, they may
be very useful for component assemblers, as they help locating the most frequently
reused components. From all the presented proposals, this was clearly the most
thoroughly validated one. The ranking system is in use in two different companies,
where a small case study concerning user satisfaction with the ranking system was
conducted. The results were very encouraging, although a larger sample of users
would be required to confirm them. More important, the ranking system was tested
with a set of about 6100 components, from the JDK 1.4.2, on a first observational study,
and 180000 components from publicly available Java component libraries, collected
from SourceForge 9, on a second one. In both cases, the ranking system obtained
significantly better results than those of non-specialized search engines. The authors
do not specifically present the underlying quality model, although the proposal
assumes that leveraging software component reusability is a promising approach to
the development of high-quality software.

Maturity.
QM[N/A]; MQ[N/A]; MD[Semi-formal]; LV[Industrial experiment].

9http://sourceforge.net/

60

http://sourceforge.net/

2. COMPONENT-BASED SOFTWARE ENGINEERING 2.5. Metrics for component-based development

2.5.7 Discussion on metrics proposals

Overview

The overall assessment of the maturity of the reviewed metrics sets proposals for CBSE
is summarized in figure 2.10. In this chart, from left to right, we present each proposal,
identified by their first author. From the front to the back we present each of the ana-
lyzed rating scales. On the vertical axis we have the maturity level, as defined in table
2.2.

The overall low level of maturity throughout the several rating scales supports the
claim that research in the area of software components quantitative evaluation is still
on a very early stage. We can revisit now the three aspects highlighted earlier (lack of
an underlying quality model, metrics ill-definition, and the insufficient validation of
proposals).

Figure 2.10: Metrics proposals maturity profile

Lack of an underlying context

This shortcoming is related to the generally weak relationship among metrics pro-
posals and quality attributes. In the best-case scenario we found proposals where a
structured quality model was included, along with a discussion associating the met-
rics with the quality attributes defined in the model, including the expected effect that
variations in those attributes may have on metrics. Washizaki and Bertoa’s works were
the ones dedicating more attention to this problem, while several other proposals do
not explicitly address it in the reviewed publications. This shortcoming of metrics pro-
posals follows a more general tendency observed in other Software Engineering areas,

61

2. COMPONENT-BASED SOFTWARE ENGINEERING 2.6. Quantitative vs. Qualitative research

such as that of OO development, where metrics proposals often lack an adequate con-
text [Abreu 01b].

Metrics ill-definition

None of the reviewed proposals includes a formal definition of metrics. In some cases,
the author’s intentions were clearly to leave the metrics definitions abstract enough for
readers to adapt those definitions to their own context (e.g. Hoek’s metrics). There is
a fairly balanced distribution between wish-lists (3), informal definitions (3) and semi-
formal definitions (4) of metrics. Since the majority of definitions are too informal,
replicated experiments aimed at validating these proposals are bound to have difficul-
ties related to the tacit knowledge problem: insufficient information provided by the
original authors of an experiment causes difficulties in its replication. In this case, the
tacit knowledge concerns the definition of the metrics, where non-stated assumptions
may lead to different interpretations of the original metrics definitions. While the tacit
knowledge problem, as described by Shull et al. [Shull 02] is wider, it could be miti-
gated, in what concerns metrics definition, by providing a formal definition of all the
defined metrics. According to Shull et al., the tacit knowledge problem refers to all
relevant information for replicating an experiment, from its requirements statement to
the results packaging. If this information is not clearly specified in the experiment re-
porting, those who attempt to replicate the experiment may make wrong assumptions
with respect to what was really done in the original experiment.

Insufficient validation

Insufficient validation occurs when independent cross validation is not performed,
mainly due to difficulties in experiment replication. Independent metrics validation
(not performed by their authors) is fundamental for their proof of usefulness before
widespread acceptance is sought.

It is worth noticing that only Washizaki’s and Inoue’s proposals were validated
with industry-level observational studies. Inoue’s validation efforts included two case
studies carried out in different companies and used significantly larger samples than
any other proposal. It is fair to recognize their validation efforts level are well above the
usual state of practice with software metrics. The validation efforts on Bertoa’s propos-
als were also noteworthy for their emphasis on replication, but their main shortcoming
seems to be that their metrics collection is partly manual. To the best of our knowledge,
the majority of the proposals discussed here were not validated at all.

2.6 Quantitative vs. Qualitative research

Kitchenham classified Software Engineering evaluation types into two main types:
evaluations aimed at establishing measurable effects of using a tool, or method, and

62

2. COMPONENT-BASED SOFTWARE ENGINEERING 2.7. Conclusions

evaluations aimed at establishing the appropriateness of a tool, or method, to the needs
of an organization. [Kitchenham 96a]. The former has a quantitative nature, while the
latter is qualitative.

Throughout the experimental work described in this dissertation, there is a deliber-
ate choice to follow a quantitative approach to research. A possible alternative would
be to use qualitative research. As noted by Creswell, this would have severe implica-
tions in what concerns the whole research design 10.

For instance, in qualitative research, theory and hypotheses are not established a
priori, in contrast with the practice in quantitative research. So, while qualitative re-
search may help uncovering new research hypotheses, it is not suitable for verifying
them. The data emerging from qualitative analysis is mostly descriptive, rather than
numerical. While this may be suitable to explain a phenomenon in a given time and
location, it is not generalizable. Furthermore, rather than using traditional validation
and reliability measures to evaluate qualitative research, it is the believability (based
on the coherence, insight, and instrumental utility), allied with a trustworthiness as-
sessment (based on verification) that drive our judgment in qualitative research.

As argued in [Kitchenham 96b], qualitative studies have a generally higher risk
of delivering incorrect information, due to their subjective nature. When striving for
characteristics such as the generalizability of results and the experimental verification
of theoretical claims, a quantitative approach to research is more adequate than a qual-
itative one.

2.7 Conclusions

This chapter provided the background for the remainder of the dissertation, focusing
on two main subjects: the basic notions involved in CBD, and the existing approaches
to the quantitative assessment of CBD artifacts (in particular, software components
and component assemblies). In other words, we introduced the subject of our research
(software components), and one of the fundamental tools we will use throughout the
dissertation to support CBSE (software metrics).

We introduced the basic concepts of CBD and CBSE. We discussed several alterna-
tive definitions for the term “software component”, as well as their specification, certi-
fication, integration, and composition. This initial discussion on terminology showed
a wide variety of interpretations for what a software component is. Part of the prob-
lem is that the community has not reached a wide consensus with respect to how we
should enact CBD. While discussing the software process in CBD, we noted, again,
that depending on the particular approach to software reuse, a different variation of
the software process would emerge.

10See [Creswell 03] for an extensive list of key differences between qualitative and quantitative ap-
proaches, as well as for an in-depth discussion on qualitative, quantitative, and mixed analysis tech-
niques.

63

2. COMPONENT-BASED SOFTWARE ENGINEERING 2.7. Conclusions

All this variability has lead to a plethora of component models and technologies,
each favoring its own view of what a component is, and how they should be integrated
to build applications. In order to facilitate the comparison between component models,
we used a taxonomy to guide our review of such models. The number of existing com-
ponent models would make it unpractical to analyze all of them in this dissertation,
so we chose a balanced sample of the most widely known models, both from industry
and academia. Our review of these models concluded the first part of this chapter.

The second part of the chapter is generally devoted to the quantitative assessment
of components and component assemblies with the usage of software metrics. We
started by introducing the typical problems involved in metrics definitions, and the
main shortcomings of current approaches: the lack of an adequate context for met-
rics definitions, the metrics ill-definition, and the general lack of validation of current
metrics proposals. We discussed in some detail the most widely used framework for
theoretical metrics validation, and concluded that it has too many limitations to make
it suitable for our purposes, thus leading to the alternative of experimental validation
of such metrics.

As we had done for component models, we used a taxonomy to guide our review
of existing metrics for software components. This review helped us to confirm the
previously discussed shortcomings of existing metrics proposals to support CBSE.

Finally, we discussed the main differences between qualitative and quantitative ap-
proaches to experimental Software Engineering, in order to motivate our option for
following a quantitative approach to support CBSE.

64

Chapter 3

Experimental Software Engineering

Contents
3.1 The scientific method . 66

3.2 Evidence-Based Software Engineering 68

3.3 An Experimental Software Engineering process 72

3.4 The experimental process case study 98

3.5 Related work . 112

3.6 Conclusions . 116

Background: Experimental Software Engineering (ESE) is concerned with designing
and performing experiments to support the validation of Software Engineering claims.
The main challenges of ESE include facilitating the replicability of such experiments
and the meta-analysis of the obtained results.
Objective: Our goal is to motivate and present a process model for ESE, which we will
use throughout the remainder of this dissertation, aimed at solving the above men-
tioned challenges.
Method: We use UML diagrams for describing the process model. The dynamic part
of the model is specified through activity diagrams, while a taxonomy of relevant con-
cepts is modeled with class diagrams.
Results: The process model conforms to current attempts at experimental reporting
guidelines. These results are confirmed not only through our own experience in fol-
lowing the model, but also with a case study conducted with graduate students.
Limitations: The case study in this chapter assesses the outcome of the work of grad-
uate students who followed the process. Further validation with seasoned experi-
menters is desirable, to confirm the merits of this process model.
Conclusion: The process model presented in this chapter, and used in the remainder of
this dissertation can be successfully used, both by seasoned and novice experimenters.

65

3. EXPERIMENTAL SOFTWARE ENGINEERING 3.1. The scientific method

3.1 The scientific method

In many research areas, the scientific method is used as a cornerstone set of techniques
to collect observable, measurable information that can be used as evidence in the pro-
cess of understanding a given phenomenon. Based on their perception of the phe-
nomenon under scrutiny, researchers propose hypotheses that attempt to explain the
phenomenon and create experiments to test those hypotheses. The results of those
experiments are used to test the hypotheses, and, often, to feed back the process,
thus leading to more refined hypotheses formulation. A possible description of the
method1, from the formulation of the research question to the publication of research
results is outlined in figure 3.1.

Figure 3.1: The scientific method

The scientific method is designed to reduce as much as possible any potential bias
that might be otherwise introduced by the researcher. The whole experimental process
is expected to be extensively and unambiguously documented, to facilitate its scrutiny
and replication by peers. The level of confidence of the scientific community in the
results obtained in this process depends on the level of independent validation the re-
sults go through. Knowledge acquired through the scientific method is intrinsically
subject to further independent validation, based on experiment replication. Hypothe-
ses and theories are always subject to refinements and even disproof, if new validation
efforts point to alternative explanations of the observed phenomena.

This generic description of the scientific method can be easily mapped to the state
of practice in most mature sciences, such as physics, biology, or chemistry. Consider
the example of clinical trials for the introduction of new drugs in the pharmaceutical
market [Vogelson 01]: new drugs have to undergo 4 phases of trials, starting from 2

1There are several alternative descriptions of the scientific method available in the literature (e.g.
[Koning 94, Wolfs 96, Wudka 98]). They all involve observing a phenomenon, creating hypotheses for
explaining it, conducting experiments for assessing those hypothesis, and using the results of those
experiments to either support or refute the hypotheses. Experimental results are also fed back to the
hypotheses formulation step, so that more refined hypotheses can be formulated.

66

3. EXPERIMENTAL SOFTWARE ENGINEERING 3.1. The scientific method

single-site phases, and ending with 2 phases where between 30 and 40 sites are in-
volved in the trials. The new drugs are often tested against placebos, or other existing
drugs, during these trials (particularly on the 3rd phase), and can only be introduced
in the market after the first 3 phases. The 4th phase tests the efficacy of the drug for
different medical conditions. To remove potential biases, these trials are double- or
sometimes triple-blinded. The term blinding refers to how much information the pa-
tients, researchers, and study monitors have about which particular treatment course
a patient is going through. In a single-blind trial, the subjects are not aware of infor-
mation that could bias the results of the trial. In practice, this means subjects do not
know whether or not they are part of the control group. In a double-blind trial, the ex-
perimenters are also unaware of information that could bias the results, so, neither the
subjects nor the experimenters know who belongs to the control group and who does
not. A triple-blind trial is similar to a double-blind trial, but the statistician interpret-
ing the results is also unaware of the treatments administered in the trial. Naturally,
the process includes safeguards, so that the blinding can be broken by the researchers
in case of an emergency.

We can contrast this state of practice with that of computer science, and Software
Engineering. A recent survey by Sjøberg et al. on controlled experiments in Software
Engineering reported that, out of 5453 scientific articles published in 12 leading Soft-
ware Engineering journals and conferences from 1993 to 2002, only 103 (1.9%) of them
reported controlled experiments where individuals performed Software Engineering
tasks [Sjøberg 05]. The authors of the survey define a controlled experiment in soft-
ware engineering as “a randomized experiment or quasi-experiment in which individuals or
teams (the experimental units) conduct one or more Software Engineering tasks for the sake of
comparing different populations, processes, methods, techniques, languages or tools (the treat-
ments).” 2

Sjøberg et al. counted 14 series of experiment replications. Only 6 of these series
included replications performed independently (not by the original authors). 5 out of
the 14 series included replications that, at least partially, rejected the findings of the
original experiment. Only one of the replications rejecting the findings in the original
experiment was conducted by the original team.

The low percentage of experiment-based validation in papers (less than 10 %) 3,
when compared to other research methods is noticeable, both in the context of Soft-
ware Engineering [Glass 02] and Computer Science [Ramesh 04]. These observations
are more compelling, when this state of practice is compared with that of other sci-
ences. According to [Tichy 95], the percentage of published papers in computer sci-
ence that make claims that should require experimental validation support, but pro-

2Note that other types of empirical studies, such as studies that are based on observations on existing
data, are excluded by this definition. Nevertheless, the insufficient empirical validation of claims is
consistently observed in other surveys (e.g. [Zelkowitz 97, Glass 02]).

3Unlike in Sjøberg et al.’s survey, this 10 % value includes not only controlled experiments, but also
other forms of experiment-based validation.

67

3. EXPERIMENTAL SOFTWARE ENGINEERING 3.2. Evidence-Based Software Engineering

vide none (around 40 % for computer science papers, 50 % for papers on Software
Engineering), when compared to papers in other scientific areas, such as Optical Engi-
neering, Physics, Psychology or Anthropology (in these areas, only around 15 % of the
papers present no experimental validation), is significantly higher. These results are
consistent with the findings of [Zelkowitz 97].

This does not necessarily imply that the Computer Science and Software Engineer-
ing communities are producing bad solutions. In some cases, a theoretical validation
may be more adequate than an empirical one. But it does limit our ability to assess new
solutions, when compared to previous ones. These findings point to an opportunity
for significantly improving the state of practice when some sort of empirical evidence
is desirable.

Tichy has argued against what he considers the most typical justifications not to
perform experimentation, including, among several others, costs, uselessness, and dif-
ficulty to conduct experiments [Tichy 98]. In many situations, neglecting experimental
evidence on claims leaves other researchers and practitioners with expert’s qualitative
opinion on those claims. Valuable as such opinions may be, they are based on personal
experience and intuition, and thus potentially biased by the expert’s background. Ei-
ther both researchers and practitioners are convinced by the arguments presented by
experts, or they are not. But this is a subjective decision to be made, rather than a more
rational one, based on verifiable evidence. It is more vulnerable to hype, or fads. When
it comes to selecting appropriate tools, languages, processes and techniques, it is de-
sirable to have reliable quantitative facts to support decisions, rather than qualitative
opinions alone.

3.2 Evidence-Based Software Engineering

Evidence-Based Software Engineering (EBSE) is a paradigm that supports arguments
concerning the suitability, limits, costs, and risks, inherent to Software Engineering
tools and techniques, with experimental evidence. The goal of EBSE is to provide the
means by which current best practices from research can be integrated with practical experience
and human values in the decision making process regarding the development and maintenance
of software [Kitchenham 04].

3.2.1 The benefits of evidence

Although EBSE is receiving considerable attention from the Experimental Software En-
gineering (ESE) community, as can be assessed from the calls for contributions of con-
ferences and journals steered by the ESE community, its benefits are yet to be assessed
on a wide scale. Nevertheless, the example from other, more mature, sciences, where
evidence-based theory validation is a de facto standard, can be used as an analogy to
the potential benefits of EBSE. The obvious threat to the validity of this argument is

68

3. EXPERIMENTAL SOFTWARE ENGINEERING 3.2. Evidence-Based Software Engineering

that Software Engineering may be significantly different from other sciences, in this
aspect, thus making EBSE inadequate. Kitchenham conducted a detailed comparison
between evidence-based medicine and EBSE and concluded that, while the path to
EBSE is complex and requires a strong commitment from the research and practitioner
communities, it is nevertheless feasible [Kitchenham 04].

There are several successful examples of using evidence in the context of software
engineering. Fagan inspections [Fagan 76, Fagan 86] provide some of the most no-
table examples: for about two decades, Fagan inspections included meetings where
potential defects were identified and recorded. However, experimental assessment
has shown that there is no significant difference on the number and kind of defects
found with meetingless Fagan inspections [Porter 97a]. This lead to the identification
of an opportunity to make the code inspections process more effective, considering the
cost for detecting a similar number and kind of defects. According to [Tichy 98], Votta
reported on significant improvements in the effectiveness of software inspections at a
company (Lucent Technologies) as a result of a series of in-house experiments. Other
examples include establishing correlations between OO design metrics and software
maintainability [Abreu 96] and CASE tools benchmarking [Budgen 03]. Encouraging
as these examples may be, they should not be regarded as definitive evidence of the
EBSE’s benefits. Dybå et al. discuss the usability of EBSE for practitioners and report
that EBSE is both possible and potentially useful for them, according to early experi-
ences with it [Dybå 05].

If we regard the evolution of the Software Engineering body of knowledge as a
quality driven process, the evidence-based approach fits well into it. Both Deming’s
plan-do-check-act cycle [Deming 00] in management, and Basili’s Quality Improve-
ment Paradigm [Basili 85], for software production, rely on the objective analysis of
data collected in projects to detect opportunities for improving the processes under
analysis. Following this perspective, Software Engineering proposals should be as-
sessed for soundness. Experimental assessment would be an adequate technique to
measure the extent to which new proposals improve existing practices. Note that this is
in line with the requirements of the highest levels of maturity in software development,
according to maturity models such as CMMI [Chrissis 03] and OOSPICE [Henderson-
Sellers 02].

Our point is we have good reason to think that software engineers can achieve ben-
efits by borrowing the know-how accumulated in other, more mature, sciences, that
regard experimentation as a fundamental tool for validation of hypotheses and theo-
ries. These potential benefits include objective arguments in favor or against current
practices, as well as hints that can help driving further research. We have observed
such benefits with some Software Engineering practices and, as advocates of experi-
mentation, would like to see this hypothesis further assessed. Note that we are not
ruling out the value of expert opinion. We are arguing for the usage of an effective

69

3. EXPERIMENTAL SOFTWARE ENGINEERING 3.2. Evidence-Based Software Engineering

framework upon which expert’s insights can be supported and verified through the
collection and analysis of evidence, thus adding to their credibility and contributing to
a wider acceptance by practitioners.

3.2.2 The pitfalls of evidence

In general, a single experiment cannot be expected to provide definitive evidence on
a phenomenon. Even carefully planned single experiments are subject to threats to
validity that may bias their conclusions. Experiments replication can mitigate such
threats, particularly by introducing variations to the experimental design. While these
replications, also known as differentiated replications, may have weaknesses of their
own, the evidence collected in several replications can be used to confirm, or refute, the
conclusions of the original experiment. In contrast, close replications try to maintain
as much as possible the conditions of the replicated experiment. They are useful both
as confirmatory studies and as a means of uncovering previously unnoticed sources
of variation in an experiment. In summary, a combination of differentiated and close
replications is desirable.

A large enough set of replications can lead to the building of a body of knowledge
on a particular subject. However, the aggregation of a body of knowledge from the
collection of the lessons learned in disperse independent research efforts remains an
unsolved challenge within the Software Engineering community. When confronting
the possibly conflicting results of independent studies on the same subject, one needs
to be able to weight those results, somehow. A narrative review of studies is helpful
to understand those results, but not adequate to draw conclusions on the most con-
troversial aspects of those studies. It is potentially biased by the reviewer’s beliefs.
Some form of vote counting can be made, but this approach disregards the different
strengths and weaknesses of the studies under scrutiny, such as their sample size, or
the type of statistical tests applied.

Nearly a decade ago, Brooks advocated that meta-analysis should be used to com-
bine the results of replicated studies, thus solving these problems [Brooks 97]. He also
noted the lack of replications to allow for meta-analysis. Miller attempted to perform a
meta-analysis on a set of independent defect detection experiments, but found serious
difficulties concerning the diversity of the experiments and heterogeneity of their data
sets, therefore being unable to derive a consistent view on the overall results [Miller 00].
He presented several suggestions, borrowed from other disciplines, to mitigate the het-
erogeneity problem. Among those, the development of collaborative efforts for the cre-
ation of common repositories for experimental software engineering studies, inspired
by examples such as that of the Cochrane Collaboration 4 is a long-term goal with a
growing number of supporters within the Software Engineering community.

4www.cochrane.org - An international not-for-profit organization which maintains information con-
cerning the effects of health care, based on systematic reviews of existing reports of such effects.

70

3. EXPERIMENTAL SOFTWARE ENGINEERING 3.2. Evidence-Based Software Engineering

An attempt to bootstrap such a repository was made within the ESERNET 5 Eu-
ropean initiative, where several research efforts were coordinated with the intent of
gathering a large number of comparable studies The ESERNET repository had, among
others, a noticeable feature: experiments could (and should) be registered before their
realization, with the introduction of the whole experiment plan, and research hypothe-
ses. The rationale was that this pre-registration would mitigate the publication bias
problem. In a nutshell, this bias results from the fact that more often than not, only
“successful” experiments that confirm the hypothesis one is trying to support get to be
published. By pre-registering the experiment, it would be possible to assess whether
or not the experiment was completed. An experiment is not considered complete until
its final report is made available on the repository. Ideally, the results of the experi-
ment should always be made available, even when they did not confirm the expected
(“desired”?) hypothesis. The rationale is that there is a lot to learn from these “failures”,
and such information could become very useful for other members of the community.
Consider, for example, the cost savings associated with not repeating an experiment
someone else has shown to provide an outcome different from the “desired” one.

Jedlitschka and Ciolkowski presented an overview of the results obtained in the
ESERNET initiative, and concluded that, although there was an attempt to coordinate
research efforts, thus fostering synergies that would lead to a large number of com-
parable studies, this effort was insufficient [Jedlitschka 04]. Along with a fairly high
mortality of experiments, typically justified by funding problems, the studies were too
scattered and too diverse to allow meaningful comparison. Difficulties in aggregating
results included:

• the lack of active coordination among the independent experiment teams;

• the non-existence of a roadmap of required evidence, which, added to the previ-
ous point, lead to a high variety of studies;

• the lack of a suitable method for aggregating the collected evidence, which
made it harder to detect which studies would be required to complement existing
knowledge;

• the lack of guidance for conducting experimentation lead to a reduced compa-
rability among related studies;

• the cost of conducting studies was perceived by the members of ESERNET as an
inhibitor for successfully conducting them.

One of the main conclusions of Jedlitschka and Ciolkowski’s overview, was that
less expensive studies, such as post-mortems on existing data, could be useful, even if
they have a lower validity than controlled experiments and quasi-experiments [Jedl-
itschka 04].

5www.esernet.org - A network of excellence in the field of Experimental Software Engineering.

71

3. EXPERIMENTAL SOFTWARE ENGINEERING 3.3. An Experimental Software Engineering process

3.2.3 Experiment replication and tacit knowledge

If, as stated in the previous section, independent replication of experiments can signif-
icantly contribute to the development of a body of knowledge on a particular Software
Engineering subject, why are so few independent replications carried out? A (perhaps
not that) naïf answer would be that researchers are not so keen to perform replications
due to their apparent lack of novelty6. However, the Experimental Software Engineer-
ing community regards replications as essential, and explicitly encourages them in
conference series such as METRICS, or journals such as Empirical Software Engineering.
Other, broader-scoped, Software Engineering fora such as the International Conference
on Software Engineering (ICSE) are also supporting this effort. The ICSE’2008 call for
papers7 explicitly requests that “incremental improvements over previously published work
should have been evaluated through systematic empirical or experimental evaluation.” This
rules out the possibility of the lack of an audience for such studies.

A deeper obstacle to replication may be its inherent difficulty. A research effort lead
by the Software Engineering Lab, in the University of Maryland, provides some insight
into this problem. A set of replications of experiments was set up in cooperation with
several Brazilian universities. Special laboratory packages aimed at facilitating the
replications were built and reused in the different experimental sites, by the different
research teams. Shull et al. reported that while there was explicit knowledge conveyed
by the laboratory packages, there was also significant tacit knowledge that was not cap-
tured by those packages and was therefore difficult to transfer from one experimental
site and team to the next [Shull 02, Shull 04]. They further argue that this problem is
noticeable even with veteran experimenters and well documented experiments.

The obvious approaches to mitigate this problem are to further detail the lab pack-
age, as well as to interact with the conductors of the original experiment to fill in the
knowledge gaps. Other less obvious improvements may be achieved by including
counter-examples, to stress what was not done in the experiment. Shull et al. argue
that a replication process should be added to laboratory packages, and that special
care should be devoted to the experiment process conformance.

The existence of a model for experimentation would make the information needs
in experiment packages more visible, facilitating replication activities.

3.3 An Experimental Software Engineering process

Solving the problems identified in sections 3.2.2 and 3.2.3 is one of the current pri-
orities within the experimental software engineering community. The publication

6In our opinion, this is mostly a problem of perception which results from the lack of a stronger
culture with respect to the experimental validation of claims. This status quo seems to be changing, as
the emphasis on the validation of claims becomes an increasing concern within the Software Engineering
community.

7http://icse08.upb.de/calls/research.html

72

http://icse08.upb.de/calls/research.html

3. EXPERIMENTAL SOFTWARE ENGINEERING 3.3. An Experimental Software Engineering process

of guidelines for Empirical Software Engineering research in general [Singer 99,
Wohlin 99, Kitchenham 02], systematic reviews [Kitchenham 04], and controlled ex-
periments [Basili 96a, Juristo 01, Jedlitschka 05b] has received some attention over the
last few years. While none of these proposals has yet emerged as a community-wide
standard, they do convey a tendency toward the comparability among different ex-
periments, through the harmonization of the experimental reports. In this section, we
present an extension to these proposals. Our extension adds a process model to the ex-
perimental process description. The deliverables of the process model described here
are mapped into an underlying logical model of experiment-related concepts that cov-
ers the information required by the experiments reporting standard currently being
proposed by Jedlitschka and Pfahl [Jedlitschka 05b].

In our model, the deliverables and their relationships are represented with UML 2.0
class diagrams. The activities carried out during the process are described using UML
2.0 activity diagrams. Some of these activities have a direct impact on deliverables
of the process, or are fed by deliverables produced earlier in the process. We will use
three different stereotypes to decorate the relations between activities and deliverables:
<<read>> (used when the contents of the deliverable are fed into an activity), <<write>>
(used when an activity generates a deliverable), and <<update>> (used when an activ-
ity updates an already existing deliverable, or generates it, if it does not already exist).
Note that these stereotypes are not part of the standard UML 2.0 metamodel, but were
added using the standard extension mechanisms to increase the expressiveness of our
model.

Figure 3.2 presents an overview of a generic experimental process, in the context
of software engineering. We will discuss each of the involved activities in the next
sub-sections.

Figure 3.2: Overview of the experimental process

3.3.1 Experiment’s requirements definition

From a process point of view, the first step is to clearly state the research problem one is
trying to address. The context of the experiment should be defined, as it will constrain,
along with the research problem, the definition of the objectives of the experiment. On
the other hand, the objectives of the experiment also influence the options made by ex-
perimenters, in what concerns the context, hence the feedback loop between these two

73

3. EXPERIMENTAL SOFTWARE ENGINEERING 3.3. An Experimental Software Engineering process

activities (figure 3.3). One might expect the experiment’s objectives to come first, fol-
lowed by a context definition to support those objectives. As experiments are typically
carried in a resource-constrained environment, more often than not, the objectives of
the experiments have to be adjusted to the contexts available to experimenters.

Figure 3.3: Experiment’s requirements definition

Problem statement

Software Engineering is a problem-solving discipline. Before conducting experimental
work, one should start by clearly defining the problem that the experiment will ad-
dress, as well as identifying where this problem can be observed (its context), and by
whom (the stakeholder who is affected by the problem). Last, but not the least, it is
important to state how solving the identified problem is expected to impact on those
who observe it (figure 3.4).

Figure 3.4: Problem statement

Context definition

The context of an experiment determines our ability to generalize from the experimen-
tal results to a wider context. Experiments can be conducted in different contexts, each
with its own benefits, costs, and risks. These constraints have to be made explicit, in or-
der to ensure the comparability among different studies, and to allow practitioners to

74

3. EXPERIMENTAL SOFTWARE ENGINEERING 3.3. An Experimental Software Engineering process

evaluate the extent to which the results obtained in a study, or set of studies, are appli-
cable to his own particular needs. At this phase in the process, an informal assessment
of the context is sufficient. This topic is revisited during the experiment design phase,
where a more systematic characterization of the context should be performed.

Objectives definition

When conducting experiments, one should clearly define the experiments’ goals.
Building upon Basili’s earlier work [Basili 96a], Wohlin et al. proposed a framework
to guide the experiment definition [Wohlin 99]. The framework is to be mapped into a
template with the following elements: the object of study under analysis, the purpose
of the experiment, its quality focus, the perspective from which the experiment re-
sults are being interpreted, and the context under which the experiment is run (figure
3.5).

Wohlin’s template for goal description [Wohlin 99] is as follows:

Analyze <Object(s) of study>,
for the purpose of <Purpose>,
with respect to <Quality focus>,
from the point of view of <Perspective>,
in the context of <Context>.

By providing these informations, the researchers or practitioners conducting the
experiment can clearly state why they are conducting the experiment. This is inter-
esting both from the point of view of someone performing the experiment and that of
someone using the experiment’s results (e.g. in the course of selecting among alterna-
tive Software Engineering solutions to a similar problem). The former makes explicit
a goal-driven approach to his experimental work. This exercise helps delimiting the
experiment’s boundaries and focusing on its essential goals. The latter benefits from
the availability of a systematic description of experiment goals, which facilitates the
assessment of the experiment’s relevance to his own context.

Figure 3.5: Statement of experimental objectives and its context

75

3. EXPERIMENTAL SOFTWARE ENGINEERING 3.3. An Experimental Software Engineering process

3.3.2 Experiment planning

While the experiment definition was about why a particular experiment is performed,
the experiment planning is about how it will be performed. Before starting the exper-
iment, decisions have to be made concerning the context of the experiment (revisited
here, with more details), the hypotheses under study, the set of independent and de-
pendent variables that will be used to evaluate the hypotheses, the selection of sub-
jects participating in the experiment, the experiment design and instrumentation, and
an evaluation of the experiment’s validity. Only after all these details are sorted out
should the experiment be performed. The outcome of planning is the experimental de-
sign, which should encompass enough details in order to be replicable by independent
teams. Figure 3.6 describes the activities related to the definition of the experiment
design.

Figure 3.6: Experiment design planning

Context parameters’ definition

Throughout the experiment, there are a number of context parameters that remain
stable (see figure 3.7). Their value is the same for all the subjects in the experiment
during the whole process. Therefore, we can safely assume that differences observed
in the results can not be attributed to these parameters. While the actual parameters
to be reported may vary, Wohlin et al. have identified a core set of context parameters
[Wohlin 99].

Concerning their integration within the development process, experiments can be
conducted either on line, or off line. The former, carried as part of the software process

76

3. EXPERIMENTAL SOFTWARE ENGINEERING 3.3. An Experimental Software Engineering process

Figure 3.7: Detailed experiment context parameters

in a professional environment, involves an element of risk, since experiments may
become intrusive in the underlying development activity. This intrusiveness may even
manifest itself through resources and time overheads on a real project. A common
alternative is to carry out the experiment off line.

An orthogonal classification of context concerns the people involved in the exper-
iment. One may choose among performing the experiment with professional practi-
tioners, or with surrogates for those practitioners (typically, students). The first option
leads to results that are more easily comparable to others obtained in a professional
context, but care must be taken to reduce potential overheads to practitioners’ activi-
ties (see [Benestad 05] for a detailed discussion on strategies to mitigate some of these
risks and thus recruit professional practitioners for participating in experiments).

Using students as surrogates for professional practitioners is less expensive, but
makes the experimental results harder to extrapolate for a professional community. To
reduce the gap to practitioners the researcher should prefer using graduate students,
whose expertise is closer to novice practitioners. A discussion by Höst et al. on the
using students vs. practitioners as subjects and on the circumstances under which
students may be used instead of professionals may be found in [Höst 00]. Höst et
al. carried out an experiment where they assessed the differences between the per-
formance of students and practitioners while performing a non-trivial Software Engi-
neering task. Their overall conclusion was that the differences between students and
professionals were only minor and that that students could be used as surrogates for
practitioners.

The comparability of results obtained by students and professionals is far from be-
ing a thoroughly studied issue. Sjøberg et al.’s review [Sjøberg 05] found only 3 papers
that compared the performance of students vs. that of practitioners. In some of the
tasks the results were similar, while on others practitioners did have a better perfor-
mance. Regardless of the problems that still need to be addressed concerning the com-
parability between these two groups, performing experiments with students is a valid
option for a low cost testing of hypotheses and for educational purposes.

Yet another dimension constraining the experiment is the usage of toy vs. real prob-

77

3. EXPERIMENTAL SOFTWARE ENGINEERING 3.3. An Experimental Software Engineering process

Figure 3.8: Sample characteristics

lems. There are at least two issues that motivate the usage of toy problems: the re-
sources available for the experiment and the risks concerned with the outcome of the
experiment. The former results from the, often, very limited time subjects can devote
to the experiment. The latter relates to the potential harm caused by the outcome of the
experiment (e.g. while experimenting with different testing techniques on a real prob-
lem, a less effective technique being tested could lead to a lower final product quality
being delivered to a customer). The question, here, is whether the results obtained
with a toy problem will scale up to real problems, or not. Toy problems are often used
in early experiments, as their usage is less expensive. If the results of experiments con-
ducted with toy examples are satisfactory, the risk of scaling up the problem to a real
one may be mitigated to a certain extent, although it will not be completely eradicated.

Experiments can also range from specific to general, in the sense that their results
are applicable to a niche or to a wider population. For instance, when experimenting
with the maintainability of object-oriented software, one can design experiments that
are language-specific, or experiments that yield results applicable to object-oriented
software in general.

Other relevant parameters can be added to this core set. Kitchenham et al. ar-
gue that context information such as the domain of the software being developed, or
organizational constraints such as the development process used by the subjects per-
forming the experiment should also be made clear [Kitchenham 02].

78

3. EXPERIMENTAL SOFTWARE ENGINEERING 3.3. An Experimental Software Engineering process

Hypothesis formulation

The hypothesis formulation should be stated as clearly as possible, and presented in
the context of the theoretical background it is derived from. This theoretical context
makes the hypothesis’ implications more apparent, and is important to facilitate the
inclusion of the experiment’s outcome in the body of knowledge of Software Engi-
neering [Kitchenham 02].

Two hypotheses are formulated: a null hypothesis, denoted by H0i j, and its al-
ternative hypothesis H1i j. In both cases, i stands for the experiment goal identifier,
whereas j corresponds to a hypothesis counter and should be used when more than
one hypothesis is being tested for the same goal.

The null hypothesis states that there is no observable pattern in the experiment
setting, so any variations found are coincidental. This is the hypothesis the researcher
is trying to reject. The alternative is that the variations observed are not coincidental.
When the null hypothesis is rejected, we can conclude that the null hypothesis is false.
However, if we can not reject the null hypothesis, we can only say that there is no
statistical evidence to reject it. Conversely, if we reject the null hypothesis we can
accept its alternative. If we can not reject the null hypothesis, we can not accept the
alternative.

Hypothesis testing always assumes a given level of significance denoted by α. α

represents the a fixed probability of wrongly rejecting the null hypothesis H0i j, if it
is in fact true. The probability value (p-value) of a statistical hypothesis test is the
probability of getting a value of the test statistic as extreme as or more extreme than
that observed by chance alone, if the null hypothesis H0i j, is true.

This leads to two types of error that can be made when testing the hypotheses. One
can reject the null hypothesis although it was in fact true (type I error). The probability
for making that error is, as we have seen before, α. One can also fail to reject the
alternative hypothesis, although it was in fact false (type II error). The probability for
making this error, β, is often unknown. Type II errors are frequently associated with
samples that are too small.

The power of the test is the probability of not committing a type II error, and should
be as close as possible to 1.

Figure 3.9 presents the relationships between the main concepts involved in hy-
potheses definitions, starting from the overall objectives of the research, through
the specific goals of the experiment, and the questions that will allow assessing the
achievement of the goals. The hypotheses are then assessed using metrics. The basic
concepts concerning variables selection are also included in figure 3.9, and discussed
in the next section.

79

3. EXPERIMENTAL SOFTWARE ENGINEERING 3.3. An Experimental Software Engineering process

Figure 3.9: Hypothesis specification and variables selection

Variables selection

The process of selecting appropriate variables should be guided by a goal-driven ap-
proach, that ties collected information to the research goals that information is in-
tended to help achieving. This way, it is possible to prevent the collection of data
that, for the sake of the experiment, is useless, thus saving the resources that would
otherwise be employed in such data collection.

In the context of experimental software engineering, the Goal-Question-Metric ap-
proach (GQM) [Basili 94] is generally accepted as the standard approach to achieve this
objective 8.

The Software Engineering experimenter selects both dependent and independent
variables. Dependent variables should be explicitly tied to the research goals of the
experiment. They should be chosen for their relevance with respect to those goals.
When it is not feasible to collect direct measures of the level of achievement of the
research goals, surrogates can be used, although such replacement is to be avoided,
when possible, and clearly justified, when not. Similarly, independent variables are

8The GQM approach starts with the definition of a goal, including the purpose of measurement, the
object to be measured, the issue to be measured and the point of view from which the measure is taken.
The goal is refined into questions which, in turn, are refined into metrics that attempt to help answering
them.

80

3. EXPERIMENTAL SOFTWARE ENGINEERING 3.3. An Experimental Software Engineering process

chosen for their relevance to the research goals.

Kitchenham et al. recommend that, for observational studies and experiments, it
may be useful to record additional performance measures that are not directly related
with the main research goals of the study, but may nevertheless be affected by the treat-
ments under scrutiny. These extra variables may provide insights concerning possible
side effects of the treatments that can be assessed later and motivate further research
work [Kitchenham 02].

To facilitate the replicability of experimental and observational work, the variables
should be measurable, and, if possible, defined using standard measures. Each mea-
sure should be defined as clearly and unambiguously as possible, to prevent different
interpretations of its definition. This includes specifying the entity from which the
measurement is taken from, the attribute being measured, the counting rule that is ap-
plied, and the unit of measurement. We will revisit this subject in detail in chapter 4,
when discussing metrics definition techniques.

Subjects selection

The target population has to be defined as clearly as possible. Selecting subjects is not
necessarily a trivial task, but it is essential so that:

• the applicability of the results obtained in the experiment is well understood;

• a suitable strategy for selecting subjects can be devised;

• the representativity of the subjects that are selected to represent the population
can be assessed (inference ability).

Note that these subjects need not be people. Artifacts, such as software compo-
nents, can also be used as subjects.

The process of clearly defining the population, in itself, sheds some light with re-
spect to the definition of the applicability boundaries of the knowledge that will be
collected with the experiment, with respect to the theoretical framework the exper-
iment is trying to address. Therefore, the population’s characteristics, including its
invariants, have to be clearly stated.

It is common to use a frame of the population, if it is not feasible to identify all the
population’s members. In contrast, all members of the chosen population frame are
identified. For example, rather than considering all the software components available
from any repository for reuse, one can use a frame that considers only the software
components available in a known set of components repositories as the population.

Often, it is not possible to perform the experiment using all the relevant framed
population as experiment subjects. Instead, a sample of that framed population is cho-
sen, with the objective of being as representative of the framed population as possible,

81

3. EXPERIMENTAL SOFTWARE ENGINEERING 3.3. An Experimental Software Engineering process

considering the resources available to the experimenter. So, while planning an exper-
iment, the sampling technique has to be chosen. Figure 3.10 presents a taxonomy of
sampling techniques that are applicable to the scope of Experimental Software Engi-
neering.

Figure 3.10: Classification of sampling techniques

With respect to the organization, sampling can be:

• simple - all elements are treated equally;

• stratified - the elements are separated into different categories in such a way that
the variations within each categories are minimized, while the variations among
different categories are maximized;

• clustered - the elements are grouped into clusters;

• quota - the elements are grouped into different categories, as in the stratified sam-
ple, but then chosen in a non-random way, to ensure a pre-specified proportion
among the different quotas.

With respect to the sampling method, it can be:

• random - equal probability of choosing any element;

• systematic - a rule, such as selecting every ith element in the sample is chosen;

• convenience - elements are chosen based on their easier availability.

In the context of Experimental Software Engineering, the most common sampling is
a combination of the simple organization with convenience sampling. The experiments
reported in this dissertation use this kind of sampling. The implications of this choice
will be discussed, in each of the experiment’s reports (chapters 6, 7, and 8) included in
this dissertation.

82

3. EXPERIMENTAL SOFTWARE ENGINEERING 3.3. An Experimental Software Engineering process

Experiment design

The previous choices on hypotheses and variables restrict the available experiment
designs. The choice of experiment design is crucial, in that it conditions the valid sta-
tistical approaches that can be followed to analyze the data collected in the experiment.
Wohlin et al. refer 3 general design principles that are used when choosing an experi-
ment design: randomization, blocking, and balancing [Wohlin 99]. Randomization is
about averaging out a factor that might otherwise influence the outcome of the test, by
ensuring that observations are being made on independent random variables. When
the experimenter is aware of a particular factor that may have an influence on the test
but is not the factor under test, he may choose to block that effect, by creating several
groups within the sample. Within each group, that factor is approximately constant,
so that it has no influence on the test being performed. Balancing is about ensuring
that each treatment is administered to a similar number of subjects, to ensure a fair
test. This is desirable for improving the soundness of the statistical analysis performed
during the experiment.

There is no shortage of available experimental design lists, both in the context of
Software Engineering (e.g. [Basili 96a, Zelkowitz 96, Juristo 98, Wohlin 99, Juristo 01]),
and that of other sciences (e.g. [Cook 76, Creswell 03, Trochim 06]. The recommenda-
tions on experimental software practices point to the preferential usage of simple, well-
known experiment designs, as they are well documented and can be more easily repli-
cated and understood. In contrast, the usage of custom designs may require the help
of a statistician, so that so that the design’s implications are well understood [Kitchen-
ham 02].

The criteria for describing taxonomies of designs varies significantly depending on
the concerns of the earlier mentioned experimental design lists’s proponents. Further-
more, the plethora of available experimental designs is too vast for its inclusion in this
dissertation. Rather than providing yet another list of experimental designs, we focus
on the basic experimental design building blocks. An experiment design prescribes the
division of our sample into a set of groups, according to some strategy. Each of those
groups receives a set of interventions, that may be either observations, or treatments.
The sequencing and synchronization of such interventions, their nature, and the group
definition policy, define the experimental design (figure 3.11).

In experimentation references such as [Cook 76, Creswell 03, Trochim 06], each ex-
periment design is presented as a sequence, or set of parallel sequences of symbols
that represent the main constructs of the design: observations (O) and treatments (X),
following a notation proposed by Campbell and Stanley [Campbell 05]. These symbols
are decorated with indexes, when different variables, or different treatments are used,
respectively. Random assignment of subjects to groups is represented by the symbol R.
Trochim [Trochim 06] uses two extra symbols for representing non-equivalent groups
(N) and cut-off groups (C), while the original notation used a dashed line to represent

83

3. EXPERIMENTAL SOFTWARE ENGINEERING 3.3. An Experimental Software Engineering process

Figure 3.11: Experimental design concepts overview

non-equivalent groups (including cut-offs).
For example, consider an experimental design with two groups, where one group

will receive a treatment and the other a placebo (no treatment). Suppose that subjects
are randomly assigned to groups. Group A is observed before and after receiving the
treatment (these observations are often referred to as pre and post-tests. Group B is
observed in the same moments as group A, but does not receive the treatment. This
design can be described as:

Group A R O X O

Group B R O O

Note that timing and synchronization issues are represented in this notation by the
vertical alignment of the symbols. We can integrate these notions in our process model,
by refining the action Experimental Design Selection, referred in figure 3.6. Figure 3.12
presents a first overview of the experimental design selection, where a decision is made
concerning the number of groups of subjects participating in the design. With single-
group designs, which would correspond to designs with a single line in Campbell and
Stanley’s notation, the group assignment activity can be skipped as subjects are all as-
signed to the same group. There are a number of threats to internal validity associated
to single-group designs, as we shall discuss in section 3.3.4.

Figure 3.12: Experiment design selection overview

The group assignment is detailed in figure 3.13, where the researcher can decide
which of the group division strategies best fits the goals of the experiment.

84

3. EXPERIMENTAL SOFTWARE ENGINEERING 3.3. An Experimental Software Engineering process

Random assignment implies that every subject has an equal probability of being
assigned to each of the experimental groups. Random assignment is strong against
single group internal validity threats, as well as to most multiple group internal va-
lidity threats. The latter characteristic stems from the probabilistic equivalence of the
groups.

Non-equivalent groups are used very often, in quasi-experiments. A common ex-
ample is when an experiment is carried out in an academic context and the groups
correspond to different classrooms. This implies that the probabilistic equivalence of
the groups is lost. It is still often possible to consider the groups to be comparable, and
desirable to form groups as similar as possible. Because the groups are non-equivalent,
researchers must consider the additional internal validity threat of selection. If the
groups are different in a way that affects the outcome of the experiment, this may be-
come a confounding effect to the analysis of the results.

Cut-off groups are used in situations where the experimenter wishes to use a quan-
tifiable property of the subjects as a discriminator of those subjects. The cut-off point
between two groups is used as a limit between those groups, so that subjects with
a property value below the cut-off are assigned to one group, while subjects with a
property value above the cut-off are assigned to another group. This approach is par-
ticularly useful if discontinuities are expected between the different groups.

Figure 3.13: Group assignment

Each group is then subject to a sequence of observations and, possibly, treatments,
as described in figure 3.14. Note that the sequences always end with an observation,
as we assume there would be no point in assigning a treatment to a group and then
failing to observe how the group reacts to the treatment, in a well formed experimental
design.

A thorough discussion on well-known experimental designs, their strengths and
weaknesses (including the inherent threats to their validity) is beyond the scope of this
dissertation. Such a discussion can be found in [Cook 76], where Cook and Campbell
systematically discuss, providing examples, several designs. Other useful designs can
also be found in [Creswell 03]

85

3. EXPERIMENTAL SOFTWARE ENGINEERING 3.3. An Experimental Software Engineering process

Figure 3.14: The sequence of observations and treatments

Collection process definition

The collection process definition involves planning who will collect the experimental
data, as well as when the data collection will take place, and how. In short, a data
collection protocol has to be defined. While in some situations the team conducting the
experiment will be able to collect the data, in others that process has to be dealt with by
the experiment’s participants. Data collection activities have to be scheduled, so that
potential time constraints can be considered, including the availability of participants.
In order to foster the collected data quality, the instrumentation of the experiment will
also have to be planned, as we will see in the discussion on instrumentation, later
in this section. The driving force should be to minimize data collection effort while
ensuring data is collected in a consistent way throughout the process.

Analysis techniques

The analysis techniques chosen for the experiment depend on the adopted experiment
design, the variables defined earlier, and the research hypotheses being tested. More
than one technique may be assigned to each of the research hypotheses, if necessary,
so that the analysis results can be cross-checked later. Furthermore, each of the hy-
potheses may be analyzed with a different technique. This may be required if the set
of variables involved in that hypothesis differs from the set being used in other hy-
potheses being tested. Figure 3.15 presents a basic categorization of (i) data types, with
respect to their scale and level of measurement, and (ii) of statistical tests techniques.
While it is beyond the scope of this dissertation to discuss existing tests in detail, it
should be noted that the scale and level of measurement of the variables involved in
the statistics tests condition the suitable tests. Discussions relating statistical tests (in
particular, parametric vs. non-parametric ones) with variable types can be found in
statistics text books, such as [Maroco 03].

For example, consider an experiment involving two hypotheses. One of the hy-
pothesis only uses continuous variables, while the other uses categorical ones. Due
to the different nature of the used variables, the first hypothesis might use paramet-

86

3. EXPERIMENTAL SOFTWARE ENGINEERING 3.3. An Experimental Software Engineering process

Figure 3.15: Data types taxonomy and statistical tests categories

ric tests (as long as the variables fit a parameterized distribution, such as the normal
distribution), while the second one is constrained to using non-parametric tests.

Instrumentation

The instrumentation process involves defining the artifacts that will be used in the ex-
periment. For instance, in a code review techniques experiment, the source code that
will be reviewed is an example of an artifact that should be defined in the instrumen-
tation phase of the project. This would probably include not only the definition of the
source code artifact, but also that of a checklist of problems seeded in the source code
to be found by participants.

The instrumentation also concerns the production of guidelines, and tools (not nec-
essarily computer-based ones) that will support the measurements performed in the
experiment. The rationale is to foster the comparability of the collected data by stream-
lining data collection in a consistent way. Note that instrumentation may also include
any training material distributed to participants, before their participation in the ex-
periment.

3.3.3 Experiment execution

The experiment execution is the process where the plan discussed in the previous sec-
tion is instantiated. The same experiment plan can be instantiated in several different
ways, due to local constraints. For instance, both the number of subjects and their
exact background may differ, from experiment to experiment, despite sharing a com-
mon plan. It is important to document these peculiarities, as they help grasping the
“field” constraints of the experiment, in complement to those previously defined in
the experiment plan.

87

3. EXPERIMENTAL SOFTWARE ENGINEERING 3.3. An Experimental Software Engineering process

Figure 3.16: Experiment data collection

Collection clearance

When the data to be used in the experimental work belongs to individuals, or organiza-
tions, collection clearance must be obtained before starting the data collection process.
This is particularly important if the data being collected is considered sensitive by its
owners. Granting anonymity of participants and organizations is an alternative com-
monly used by researchers, with the agreement of data owners.

Motivation of participants

The difficulties of recruiting professional practitioners to participate in experiments
often lead to the usage of students as surrogates for those practitioners. Sjøberg et
al.’s systematic review of controlled experiments in Software Engineering [Sjøberg 05]
shows that out of 5488 participants in 113 experiments reported on the main software
engineering journals and conferences from 1993 to 2002, only 9.4% were professional
practitioners, while 86.8% of the participants were students. The remaining partici-
pants were either faculty members and post-docs, or of a background not disclosed in
the papers reporting the experiment. Although the about 1/3 of the students has an
unknown background, one can estimate from the remaining subjects that over 80% of
the students were undergraduates.

In general, experiments are framed within a wider context. With professionals,
experiments can be performed in the context of a real development project (e.g. a
project being used as a pilot for the introduction of a new development tool) or as part
of a training course. In most situations, professionals participate in the experiments as
part of their job.

In [Benestad 05] Benestad et al. discuss the problems concerning the recruitment of
professional participants for experiments, and conclude that:

• Practical constraints have to be taken into consideration when defining the target
populations of experiments. These include geographic constraints, the organiza-
tional profile, and the individual profile of participants.

• The participant organizations and individuals have to be offered flexibility and
added value, so that adequate samples of organizations and individuals can be
recruited. The flexibility is a facilitator characteristic to ensure that the experi-
ment is as non-intrusive as possible, so that it is not viewed as a burden by the
participants. The experiment should also guarantee some form of added value

88

3. EXPERIMENTAL SOFTWARE ENGINEERING 3.3. An Experimental Software Engineering process

for the participants. This can range from direct payment (unfeasible, in most
situations), to knowledge transfer from researchers to the practitioners, through
training sessions, and seminars to share the results of the experiment internally,
before making them publicly available. If the experiment shows an opportunity
for improving some part of the software process within the organization, this can
also be perceived as an added value.

• High professional and ethical standards must be achieved, if a continuing co-
operation is sought. In the long run, successful experimental work that is found
useful both for the researchers and the practitioners involved in it creates oppor-
tunities for a continuing collaboration. A typical ethical concern is to ensure the
anonymity of participants when some discrimination is to be made with respect
to their qualitative assessment.

In experiments with students, the experimental work is usually carried out within
a course being followed by the students. Students often have rewards of an academic
nature, such as part of the course grade, or extra credits for the student’s degree, be-
sides the didactic objectives that the participation on the experiment should have (e.g.
the experiment participation involves the practical usage of concepts acquired during
the course).

Data collection

The process of data collection corresponds to the actual enactment of the experiment.
Experimenters should record information such as the schedule and effort used in the
experiment by participants, so that this information can confronted with what was
previously planned. Any problems detected on the experiment package should also
be registered, so that it can be improved in further replications of the experiment.

Special events concerning the experiment, such as subject’s mortality (subjects that
are removed from the experiment - in the case of human participants, this happens
when a prospective participant ends up not participating) must be recorded for fur-
ther analysis. Subjects’ mortality is important, at least from two perspectives: on the
one hand, understanding the motives that lead to mortality of subjects may help im-
proving the experimental design in future replications of the experiment; on the other
hand, the potential impact of mortality on the experiments results should also be as-
sessed. Patterns on the mortality of subjects may help uncovering factors which are
important to the experiment but are not addressed by the followed experimental de-
sign. These factors should be considered, when analyzing the threats to the validity of
the experiment.

89

3. EXPERIMENTAL SOFTWARE ENGINEERING 3.3. An Experimental Software Engineering process

Data validation

This process aims at ensuring that the experiment data has been collected correctly.
Problems with data collection can result from, for instance, erroneous performance (or
usage) of collection tools, misinterpretation of data collection forms by the participants
in the experiment, or deviations from the planned experimental protocol. The data
quality is essential so that adequate inferences can be made from data. This validation
process may involve not only the researchers conducting the experiment, but also the
participants. The latter can help clarifying data that is found likely to be incomplete,
or incorrect.

Problem reporting

All deviations from the original plan should be recorded. Detailed as an experiment
plan may be, there are details that may not have been considered while planning, or
were insufficiently dealt with at that phase. Identifying those problems and how they
were dealt with by the experimenters is an enabling condition for experimental repli-
cability, as well as an important step toward identifying potential threats to the validity
of the experiment.

3.3.4 Data analysis

Once the data has been collected, its analysis can begin. This process involves, in
essence, three steps: the description of the data set, its reduction, and the testing of
the hypotheses defined during the experiment plan (figure 3.17).

Figure 3.17: Experiment data analysis

Data description

The data collected in the experiment should be analyzed by using, in a first moment,
adequate descriptive statistics. The set of adequate statistics varies with respect to the
target variables under scrutiny. For continuous variables, the count of observations,
mean value, median, mode, minimum, maximum, and standard deviation are often
collected. For discrete variables, a frequency analysis is adequate. Data description
helps in understanding its central tendency and dispersion. If the sample is split into
several groups, to accommodate the chosen experimental design, the data description
should be performed for each of those groups individually.

90

3. EXPERIMENTAL SOFTWARE ENGINEERING 3.3. An Experimental Software Engineering process

Data set reduction

The data description allows detecting atypical cases, such as incorrect, outlier, or ex-
treme values. The cause for atypical cases should be identified and investigated fur-
ther, since this may help improving the collection process, in the case of incorrect data,
or provide more insight into the variables, in the case of outliers and extreme values.
A single case that is significantly different from the other cases can bias the subse-
quent analysis performed on the data set. To avoid biasing the subsequent analysis
performed on the data set, the removal of atypical cases should be considered before
hypotheses testing.

The most well-known kind of unusual case in a sample is the outlier. In a normal
distribution, 95% of the cases are less than one standard deviation away from the mean
of the sample. A value is said to be a mild outlier if is more than 1.5×standarddeviation

away from the mean, and an extreme outlier if it is more than 3× standarddeviation

away from the mean.

To understand how outliers and extremes can bias analysis, consider the example
of regression analysis. In the context of regression analysis, we can compute the lever-
age of an independent variable as a measure of how far it deviates from the variable’s
mean. The leverage can be expressed in terms of standard deviations. We can think of
leverage analysis as the “outlier detection” for the explanatory variables of the regres-
sion model.

The influence of a case is a measure of the effect of removing that case from the
sample, with respect to the the model being computed in the data analysis. In a re-
gression analysis, it measures the extent to which that case influences the regression
coefficients. Influence detection can be viewed as a combination of outlier detection
with leverage analysis.

In regression analysis, the most commonly used method is the least squares
method, which is vulnerable to the presence of outliers, as well as to heteroskedas-
ticity. A sample is said to be heteroskedastic if the variance the independent variable
is not constant for all values of the dependent variable9. The least-squares method’s
vulnerability leads to the need for considering removing the most influential cases be-
fore proceeding with the analysis. An alternative would be to use a robust regression
model, such as MM-estimation [Yohai 87], which addresses these problems, but is not
currently supported by some of the most popular statistics packages.

Hypothesis testing

This activity consists in performing the statistical tests that will assess the hypotheses
defined in the experiment plan. This involves checking that the pre-conditions for the

9A compelling example from social sciences is a regression model using income as the independent
variable and expenditure as the dependent variable: the variance of expenditure is typically higher for
people with a high income and lower for people with a low income

91

3. EXPERIMENTAL SOFTWARE ENGINEERING 3.3. An Experimental Software Engineering process

tests that will be performed are met. Sometimes, restrictions imposed by the data ob-
tained during the experiment may induce adjustments in the hypotheses being tested.
If so, such changes should be clearly documented.

Interesting discussions on hypotheses evaluation in the context of software engi-
neering can be found in [Wohlin 99, Singer 99, Kitchenham 02]. They all convey the
notion that the soundness of the hypothesis test has to be as verifiable as possible by
external observers reading the experiment’s report. This is only possible if a detailed
description of the tests results, their probability, degrees of freedom, direction, and
test power is reported. When trying to combine results from tests performed in in-
dependent experiments, this level of detail is essential so that such comparisons are
meaningful. A detailed presentation of results is also cornerstone for supporting the
results interpretation.

3.3.5 Results packaging

Once the experimental work per se is finished, it is essential to package the results so
that they can be used either within the context of the organization that sponsors the
experiment, or by the community. This involves documenting the whole experimental
process, as discussed in the previous sections, and including a discussion on the results
achieved with the experiment. This discussion should focus on aspects such as the
interpretation of the results, the limitations of the study, the inferencing that can be
made with respect to the extent to which the study’s results are expected to hold in the
population, and the identification of the learned lessons (figure 3.18).

Figure 3.18: Experiment results packaging activity

Results intepretation

This activity concerns the analysis of the outcome of the tests, anchored on the theory
that is being assessed through them. When the tests do not confirm the theoretical
assumptions, identifying the causes that lead to that failure can be used as a stepping
stone to allow the refinement of the theory, or even the construction of a new theoretical
framework to explain the object or process under test.

92

3. EXPERIMENTAL SOFTWARE ENGINEERING 3.3. An Experimental Software Engineering process

Threats identification

Throughout the experimental process description, we briefly outlined the impact that
decisions concerning activities such as sampling, or experimental design selection have
on the validity of the results obtained in the experimental process. While packaging the
experimental results, one should look back to the whole process and clearly identify
the potential threats to the validity of those results. Furthermore, one should discuss
the measures that were in place to address each of those threats.

The objective of threats identification is to document potential weak spots of the
experimental work being described. Rather than a depreciation of the value of the
experimental work, this analysis can be viewed as an active and systematic approach to
identifying opportunities for further complementary studies that, as a family of related
studies, can contribute to the Software Engineering body of knowledge.

In [Wohlin 99], Wohlin et al. identify four kinds of threats to validity and discuss
how these threats can be dealt with:

• Internal validity is concerned with the validity of the study itself, with respect to
the causal effect being studied.

• External validity refers to the experimenter’s ability to generalize the results
from the experiment to industrial practice.

• Construct validity concerns the generalization of the results of the experiment to
the theory behind it.

• Conclusion validity is related to our ability to draw the correct conclusion about
the relations between our treatment (in this case, student’s expertise) and the
experiment’s outcome.

In what concerns the internal validity of the study, we consider two sorts of valid-
ity threats: single group threats, multiple groups threats, and social threats. Single
group threats can occur from not having a control group in the experiment.

• History. This threat concerns uncontrolled events that are irrelevant for the the-
ory being tested, but may nevertheless introduce a confounding effect on the
outcome of tests performed after they occur. For instance, consider the bias that
can be introduced in an experiment concerning the productivity of code develop-
ers, following an event that might break their concentration on the coding task,
such as a very exciting sports event, or breaking news on a catastrophe.

• Maturation. Occurs when subjects react differently as time progresses. Depend-
ing on the type of maturation, the bias may be a positive or a negative one. A
positive bias may result of a learning process, for instance. A negative one may
result from the saturation of subjects.

93

3. EXPERIMENTAL SOFTWARE ENGINEERING 3.3. An Experimental Software Engineering process

• Testing. If a test is repeated several times, a non-intentional side-effect, such as
learning, can be introduced in the experiment.

• Instrumentation. If the measurement instruments are not working as precisely
as they should, errors in the measurements may occur, either systematically or
randomly. In both events, they may jeopardize the quality of the data collected in
the experiment, and, as a consequence, the interpretation of the results. Another
possible instrumentation threat comes from changing the measurement instru-
ments during the experiment (e.g. changing a the software metrics collection
tool).

• Statistical regression. This threat can occur when the subjects of a study are se-
lected for obtaining an extremely high, or an extremely low results in a previous
test. When tested again, both are likely to obtain a result closer to the population
mean than in the previous test.

• Selection. When sampling from a population, there is a risk that the subjects are
not representative of the whole population (see discussion on subjects’ selection,
in section 3.3.2).

• Mortality. When the subjects dropping out of an experiment are representative
of the population, or one of its subgroups, this has an effect on the overall con-
clusions that can be drawn from the experiment.

• Ambiguity about direction of causal influence. The fact that two variables are
highly correlated does not imply that one of them has a direct influence on the
other. They can be both influenced by a third variable. When planning an ex-
periment, effort must be put concerning the correct identification of causes and
effects.

Multiple groups threats are the result of the multiple groups being exposed differ-
ently to single group threats. This may reduce the comparability of results obtained in
different groups.

Social threats to internal validity can stem from the usage of differentiated treat-
ments within our sample, if that differentiation causes a change in the behavior of the
subjects:

• Diffusion or imitation of treatments. If the members of the control group imitate
the behavior of the group being tested, this can introduce a bias from the smaller
differentiation among groups, contrary to the expectations.

• Compensatory equalization of treatments When different groups receive differ-
ent treatments, the control group may receive some form of compensation from
not using the treatment being tested. If that compensation has an effect on the

94

3. EXPERIMENTAL SOFTWARE ENGINEERING 3.3. An Experimental Software Engineering process

performance of the control group in the experiment, this may jeopardize the con-
clusions of the overall test.

• Compensatory rivalry This can occur if subjects from a group not receiving a
new treatment feel they are being penalized and work harder than they normally
would to counter that effect.

• Resentful demoralization This can occur if subjects from a group not receiving
a new treatment feel they are being penalized by this situation and become less
involved in the experimental work than their counterparts. It is the opposite
situation of compensatory rivalry.

External validity refers to one’s ability of generalizing results beyond the scope of
the experiment. We consider three potential sources of threat:

• Selection. This problem occurs if the used sampling does not provide a repre-
sentative sample of the population. It may hamper the experimenter’s ability to
generalize the results of the experiment outside the used sample.

• Setting. An experiment can be jeopardized by using an unrealistic experimental
environment. For instance, if an outdated development environment is used in
an experiment concerning a particular aspect of software development, it may be
the case that the same experiment, carried out in a modern development environ-
ment would yield completely different results, assuming the tasks being tested
have a more sophisticated support in the modern development environment.

• History. Refer to the discussion on history threats as single operation threats,
earlier in this section. With respect to external validity, a special event biasing
the results may damage our ability to extrapolate from them to the most general
situation, where that event is irrelevant.

Construct validity threats can assume one of two forms: social and design threats.
Social threats result from problems related to the behavior of the subjects and experi-
menters, if they somehow act differently than they would otherwise, due to the exper-
iment. This behavioral change is a product of the subjects’ and experimenters’ aware-
ness to the experiment, although it may be unintentional:

• Hypothesis guessing. As subjects are aware of being observed in the context of
an experiment, they may behave differently to provide a specific impression on
the observers. This sometimes leads to hypothesis guessing, where subjects try
to figure out what is the hypothesis under study, so that they can perform in the
test according to their preferences concerning the hypothesis they think is being
assessed.

95

3. EXPERIMENTAL SOFTWARE ENGINEERING 3.3. An Experimental Software Engineering process

• Evaluation apprehension. If subjects are not comfortable with being assessed in
the context of an experiment, a frequent human trait, they may try to provoke a
good impression on the experimenters, thus changing their normal behavior.

• Experimenter’s expectancies. Conversely, the experimenter usually has an in-
terest in the outcome of an experiment. This may bias the conduction of the
experiment toward confirming the theory underlying the experiment, or refuting
it.

Construct validity design threats result from difficulties in the rigorous definition
of the causes and effects being tested. Such difficulties may lead to a poor choice of
measurements and treatments, as the theoretical concepts under test are poorly un-
derstood. For instance, a subjective concept such as design quality is open to several
conflicting definitions. Construct validity design threats include:

• Inadequate preoperational explication of constructs. This threat occurs when
the constructs involved in an experiment are poorly defined. If the theory un-
derpinning the experiment is not clear, analyzing experimental results becomes
more difficult.

• Mono-operation bias. Considering a single independent variable, cause, or treat-
ment in a study may introduce the mono-operation bias, because a single inde-
pendent variable (or cause, or treatment) is always flawed with respect to the
construct upon which it is based. The countermeasure is, of course, is to use
multiple independent variables (or causes, or treatments, respectively).

• Mono-method bias. Using a single kind of measure, or observation, is a threat,
in the sense that it may introduce a bias. Using several alternative measures
or observations, one can minimize the effect of such bias, by focusing on the
commonalities observed with the alternative measurements and observations of
the same concept.

• Confounding constructs and level of constructs. Sometimes, rather than assess-
ing a construct with respect to its presence, one should focus on its level. Con-
sider the example where the performance of the participants on a code inspec-
tion experiment are classified as having experience with a given programming
language, or not. Concerning the participants who do have experience with the
language, different levels of expertise with it may have a stronger relation with
the observed effect than a simple binary assessment of such previous experience.

• Interaction of different treatments. When subjects are administered different
treatments, it is possible that those treatments interact. That interaction may bias
the results of each treatment. It is useful to understand the combined effect of sev-
eral treatments, to avoid using combinations of treatments that cancel out their

96

3. EXPERIMENTAL SOFTWARE ENGINEERING 3.3. An Experimental Software Engineering process

benefits. Failing to consider their interaction may lead to erroneous conclusions
with respect to each treatment’s effect. In short, when several treatments are in-
volved, it may not be possible to distinguish which effects are attributable to each
of the treatments and which are a result of the combination of all treatments.

• Interaction of testing and treatment. A fundamental part of testing is the ap-
plication of treatments. Subjects undergoing testing activities may act differently
from how they normally would, thus biasing the outcome of the tests. In the
context of Software Engineering, this threat is stronger in experiments involv-
ing human participants, as we have seen while discussing the social threats to
construct validity, earlier in this section.

• Restricted generalizability across constructs. Although a treatment may have
the desired effect on a construct we are concerned with, it may also have unde-
sired side effects on other constructs that should also be relevant in the analysis
of the outcome of the treatment. If side effects on those other constructs are not
monitored, there is a risk of drawing conclusions that are not generalizable those
constructs. Consider, for example, the introduction of a new component technol-
ogy that helps improving development productivity (the monitored construct)
but also leads to a lower maintainability of the code (the other construct that
should have been monitored, but was not).

Conclusion validity threats are threats that are inherent to the usage of statistical
tests:

• Statistical power. When sample sizes are too small, the value of α is low, or an
inadequate statistical test is chosen, a type II error can occur, due to the lack of
statistical power. Conversely, a type I error can occur if α is set too high.

• Violated assumptions of statistical tests. Each statistical test prescribes a set of
pre-conditions that are to be verified before using the test. Failure to comply
with those assumptions can endanger the validity of conclusions drawn from
such tests.

• Fishing and the error rate. When too many tests are performed, there is a chance
that some of them will reveal spurious relations between variables, purely by
chance.

• Reliability of measures. If measures have a low reliability (e.g., they are not
stable), they can contribute to an inflation of the error terms, introducing noise in
the statistical test.

• Reliability of treatment implementation. A lack of standardization in the treat-
ment implementation may lead to a confounding factor, if the treatment is in-
consistently administered in different groups. These variations are more likely to

97

3. EXPERIMENTAL SOFTWARE ENGINEERING 3.4. The experimental process case study

happen when different people administer the treatment, although they can also
occur with the same person.

• Random irrelevances in experimental setting. The experimental setting may
contain features that interfere with the outcome of the tests being performed, by
providing sources of variation which are not relevant for the tests. These sources
of variation will increase the error variance.

• Random heterogeneity of subjects. Heterogeneity of subjects can increase the
error variance, as subjects may react differently to treatments.

Inferencing

Following the testing phase of the experimental work, conclusions should follow the
statistical tests results, through inference. Considering all the threats previously iden-
tified, the researchers have to estimate how the results obtained in the experiment are
expected to hold beyond the experiment’s sample (i.e. in the population).

Identification of learned lessons

During the whole experimental process, the practical details of conducting that pro-
cess, including potential gaps or impractical design decisions in the experimental pro-
tocol should be registered, along with the approach followed to circumvent these prob-
lems. These informations are particularly valuable to other researchers and practition-
ers who wish to replicate the experiment, as they mitigate to some extent the tacit
knowledge problem.

3.3.6 An overview of all the sub-processes

To wrap up our presentation of the ESE process, we now present an expanded version
of figure 3.2, in figure 3.19. The top-level activities (requirements definition, design
planning, data collection, data analysis, and results packaging) include the information
conveyed by the activity diagrams presented throughout section 3.3.

3.4 The experimental process case study

3.4.1 Motivation

One of the crosscutting concerns throughout this dissertation is the praise for the ben-
efits that the experimental validation of claims made in the context of Software Engi-
neering proposals. To provide a preliminary validation of the proposed process model,
we next report a case study conducted at Universidade Nova de Lisboa (UNL) with
graduate students pursuing a MSc degree in Informatics.

98

3. EXPERIMENTAL SOFTWARE ENGINEERING 3.4. The experimental process case study

Figure 3.19: Experimental Software Engineering process model

99

3. EXPERIMENTAL SOFTWARE ENGINEERING 3.4. The experimental process case study

Problem statement

The process model described in this chapter was designed to conform with the state
of the art practice in Experimental Software Engineering, while being accessible to
practitioners engaged in experimentation. Although we have been using this process
in our work, as will be illustrated throughout the whole dissertation, we would like to
assess how hard it is for new experimenters to follow this process.

Among several other desirable quality attributes in a process model such as the one
presented in this chapter (e.g. effectiveness, predictability) we would like it to have a
balanced learnability and understandability.

In this case study, we analyze the results on a series of experiments conducted by
graduate students, following the process model presented in this chapter, in order to
identify the sub-processes within our model which constitute a harder challenge for
practitioners. This information can be used to improve the presented process model,
in the future.

Research objectives

In this case study, our goal (G1) is to:

analyze software engineering experiments,
for the purpose of their evaluation,
with respect to the quality of their outcome,
from the viewpoint of a course instructor,
in the context of experimental work carried out during a course for graduate
students on the quality of software products and processes.

Context

This case study was conducted in the context of the Product and Process Quality course10,
carried out in the Spring semester of 2008 in the context of the MSc program in Infor-
matics, at UNL. This is a 6 ECTS11 course where, students were asked to conduct an
ESE project, following the process presented in this chapter, as part of their evaluation
during the semester.

3.4.2 Related work

To the best of our knowledge, this was the first application of the process presented
in this chapter in experimental work which was performed by subjects who were

10The details concerning this course, including course materials are publicly available at http://
moodle.fct.unl.pt/course/view.php?id=1713

11European Credit Transfer System

100

http://moodle.fct.unl.pt/course/view.php?id=1713
http://moodle.fct.unl.pt/course/view.php?id=1713

3. EXPERIMENTAL SOFTWARE ENGINEERING 3.4. The experimental process case study

not members of the proponent’s research group. Other examples of the application
of the proposed experimental process can be found throughout this dissertation. A
more thorough discussion on related work concerning the model under scrutiny can
be found in section 3.5.

3.4.3 Experimental planning

In this case study, we will try to achieve goal G1, described earlier in this section, by
following the plan presented in this sub-section.

Experimental units, material and tasks

As stated in the previous section, this case study was carried out in the context of the
2008 Product and Process Quality course at UNL. The participants were graduate stu-
dents who chose to take this elective course. Typically, these students are in the second
semester of Bologna’s second cycle, that is, a year away from finishing their MSc de-
gree. The students were grouped in teams of two members. The students had access
to the course materials, publicly available on the course’s web site, which include not
only an earlier description [Goulão 07a] of the process presented here, but also the
course’s slides, as well as references to several relevant publications about Experimen-
tal Software Engineering. Furthermore, the students had access to the International
Software Benchmarking Standards Group (ISBSG)12 repository. A description of this
repository can be found in [ISBSG 07a, ISBSG 07b]. Each group was asked to perform
a particular observational study using data stored in ISBSG’s repository. This task was
performed as part of the evaluation process of the course, off-line.

Hypotheses

The available time schedule and resources conditioned the extent to which this form
of validation could be performed. In the best interest of the students taking the course,
it was not feasible, for instance, to create a control group that would, for instance, per-
form similar experiments in an ad-hoc way, so that we could compare the outcomes
and use them to assess the benefits of following this process, as opposed to not follow-
ing it. This constrains the kind of hypotheses we can validate here, as all students fol-
lowed the same process. We can only discuss qualitatively whether or not the process
helped students to successfully completing their tasks (and will do so, in the discussion
of this case study).

We can, however, test whether or not the process description made available to the
students [Goulão 07a], along with the course training and course materials, lead to a
well balanced outcome of the experimental processes. In other words, were students
able to follow the process with a consistent degree of success in each of the sub-tasks,

12http://www.isbsg.org/

101

http://www.isbsg.org/

3. EXPERIMENTAL SOFTWARE ENGINEERING 3.4. The experimental process case study

or were there sub-tasks that would clearly benefit from improvements in the documen-
tation and training made available to students?

More formally, we can express this concern as hypothesis H1, which will be
sub-divided into the null hypothesis (H10) and its alternative (H11):

H10: The process was followed with a relatively uniform success.
H11: The process was followed with significantly (and consistently) different levels of
success in different tasks.

Independent variables

The independent variable is nominal and represents group membership. It corre-
sponds to the group’s id (GroupID).

Dependent variables

The dependent variables of these study are the detailed classifications of each group.
The specific weight given by the course tutor to each of this partial classifications is not
relevant for our analysis. Therefore, we will represent the grades as a percentage of
the achieved success. The overall grade of the group in this project is a weighted sum
of these partial grades, but its value is not relevant for the hypothesis being tested.
The considered dependent variables are represented in the following list by a (code),
followed by a short description. All their values are represented as a percentage:

• (W1.1) Problem statement

• (W1.2) Context definition

• (W1.3) Objectives definition

• (W2.1) Context parameters

• (W2.2) Hypothesis formulation

• (W2.3) Variables selection

• (W2.4) Subjects selection

• (W2.5) Experiment design

• (W2.6) Collection process

• (W2.7) Analysis techniques

• (W2.8) Instrumentation

• (W3.1) Collection clearance

102

3. EXPERIMENTAL SOFTWARE ENGINEERING 3.4. The experimental process case study

• (W3.2) Motivation of participants

• (W3.3) Data collection

• (W3.4) Data validation

• (W3.5) Problem reporting

• (W4.1) Data description

• (W4.2) Data set reduction

• (W4.3) Hypothesis testing

• (W5.1) Results interpretation

• (W5.2) Validity threats identification

• (W5.3) Inference (generalization)

• (W5.4) Learned lessons

Design

This case study can be described as a within groups, post-test only design. In
Trochim’s notation [Trochim 06], this can be described as follows:

X O11

X O12

...

X O53

X O54

In other words, each subject in our group receives exactly the same treatment, and
its performance is then observed with each of the dependent variables (denoted as Oij;
for instance, O41 stands for Data description). The rationale is to look for significant
differences among the observations (which can be considered simultaneous) that are
consistently observed in our subjects.

Procedure

The groups carry out their project in two phases. First, they file in an early version
of their project report, after 4 weeks. This report is used for an early control with
respect to who is really following the course and acts as a milestone that students have
to overcome, in order to successfully complete the course. That said, the deliverable
presented at this point is not addressed in this observation. Then, 6 weeks after the
early version, they deliver their final project report. Only the latter is evaluated, by
granting grades corresponding to each of our dependent variables.

103

3. EXPERIMENTAL SOFTWARE ENGINEERING 3.4. The experimental process case study

Analysis procedure

The data analysis presented here follows the following steps:

• Descriptive statistics: the mean, standard deviation, minimum and maximum
values of all the variables are presented and discussed.

• Data set reduction: if necessary, outliers and extreme values are removed from
the analysis.

• Normality tests: these tests are crucial for deciding which are the adequate statis-
tics for our hypothesis, given the characteristics of the distribution in our sample.

• Hypothesis test: Depending on the sample’s distribution, a parametric (for nor-
mal distribution) or a non-parametric (for other distributions) test is performed
to check for statistically significant differences among our observations.

3.4.4 Execution

Sample

14 out of the 17 groups that signed up for the experiment finished the task. Therefore,
the mortality of subjects (considering the groups as subjects) is of 17,6%.

Preparation

Before and during the conduction of their experimental work, the participants received
training on the several tasks they were to perform in their project.

Data collection performed

The students performed their experiments as part of their normal work within the
course. This project accounted for 30% of their final grade, so the incentive to per-
form well in it was considerable. The validation effort of our proposal did not interfere
directly in the outcome of their projects, as this case study’s data is based on the eval-
uation of their reports. From the participant’s point of view, this was a normal project
in a course. The classification of the experiment reports was carried out by the course
instructor13. The data analysis that follows was based on the detailed classification
report we had access to.

13The course instructor was Prof. Fernando Brito e Abreu, the supervisor of this dissertation’s propo-
nent.

104

3. EXPERIMENTAL SOFTWARE ENGINEERING 3.4. The experimental process case study

3.4.5 Analysis

Descriptive statistics

Table 3.1 presents the descriptive statistics for the collected variables.

Mean Std. Deviation Minimum Maximum
W1.1 ,6250 ,16261 ,50 1,00
W1.2 ,6964 ,20045 ,25 1,00
W1.3 ,7500 ,24019 ,50 1,00
W2.1 ,7500 ,21926 ,50 1,00
W2.2 ,7857 ,21611 ,50 1,00
W2.3 ,6786 ,20636 ,25 1,00
W2.4 ,6250 ,27298 ,25 1,00
W2.5 ,6786 ,28468 ,00 1,00
W2.6 ,4821 ,22922 ,25 1,00
W2.7 ,6250 ,32150 ,00 1,00
W2.8 ,6250 ,25476 ,00 1,00
W3.1 ,7679 ,26790 ,00 1,00
W3.2 ,6250 ,33613 ,00 1,00
W3.3 ,5179 ,26790 ,00 ,75
W3.4 ,3750 ,25476 ,00 ,75
W3.5 ,3036 ,29708 ,00 1,00
W4.1 ,6964 ,24374 ,25 1,00
W4.2 ,6071 ,21291 ,25 1,00
W4.3 ,6964 ,24374 ,25 1,00
W5.1 ,6607 ,23220 ,25 1,00
W5.2 ,5000 ,24019 ,00 ,75
W5.3 ,6071 ,30562 ,00 1,00
W5.4 ,6250 ,25476 ,00 1,00

Table 3.1: Descriptive statistics

Table 3.2 presents the normality tests for our dependent variables. The null hy-
pothesis for the normality tests (the Kolmogorov-Smirnov and the Shapiro-Wilk tests)
is that there is no statistically significant difference between the observed accumulated
distribution and the one of the theoretical distribution being tested (the normal one).
Several of the variables have a non-normal distribution according to at least one of the
tests. Considering a confidence interval of 95% in both tests, the normality hypothe-
sis should be rejected if the significance of the test is less than 0,05. In other words, if
the variable’s normality test has a significance level (p-value) greater than 0,05, we can
assume the variables’ distribution to be normal, with a confidence level of 95%. The
non-normal variables (according to at least one of the normality tests) are highlighted
in bold, in table 3.2, as is the test significance that points to the data’s non-normality.

Data set reduction

No data reduction was performed, at this point.

105

3. EXPERIMENTAL SOFTWARE ENGINEERING 3.4. The experimental process case study

Kolmogorov-Smirnov(a) Shapiro-Wilk
Statistic df Sig. Statistic df Sig.

W1.1 ,350 14 ,000 ,731 14 ,001
W1.2 ,320 14 ,000 ,850 14 ,022
W1.3 ,280 14 ,004 ,730 14 ,001
W2.1 ,230 14 ,043 ,792 14 ,004
W2.2 ,268 14 ,007 ,786 14 ,003
W2.3 ,421 14 ,000 ,697 14 ,000
W2.4 ,176 14 ,200(*) ,888 14 ,075
W2.5 ,313 14 ,001 ,842 14 ,017
W2.6 ,255 14 ,014 ,843 14 ,018
W2.7 ,164 14 ,200(*) ,906 14 ,140
W2.8 ,331 14 ,000 ,814 14 ,007
W3.1 ,331 14 ,000 ,736 14 ,001
W3.2 ,225 14 ,053 ,867 14 ,038
W3.3 ,259 14 ,012 ,792 14 ,004
W3.4 ,260 14 ,011 ,876 14 ,052
W3.5 ,204 14 ,119 ,844 14 ,019
W4.1 ,218 14 ,069 ,875 14 ,049
W4.2 ,249 14 ,019 ,883 14 ,065
W4.3 ,218 14 ,069 ,875 14 ,049
W5.1 ,256 14 ,014 ,874 14 ,049
W5.2 ,214 14 ,081 ,861 14 ,032
W5.3 ,180 14 ,200(*) ,923 14 ,241
W5.4 ,331 14 ,000 ,814 14 ,007

Table 3.2: Normality tests for the dependent variables. The values marked with (*)
are lower bounds for the true significance of the Kolmogorov-Smirnov test. (a) stands
for Lilliefors significance correction. We cannot assume a normal distribution of the
variables in bold. The significance of tests is highlighted in bold for tests with p < 0,05
and italic bold for tests with p < 0,01.

Hypotheses testing

As we have seen, the data does not have a normal distribution. As such, we have to
use non-parametric tests. The non-parametric tests that we will perform to validate
hypothesis H1 rely on the ranks of the values in the sample, rather than on the values
themselves. The rationale for using ranks is to avoid the assumption of normality in
analysis of variance. All the grades (ranging from W1.1 to W5.4) are put into a large
sample, and ranked, for each group, from the lowest to the highest value. Table 3.3
presents the mean rank, for each of the variables, considering all groups.

Sub-process W1.1 W1.2 W1.3
Mean Rank 11,6 13,6 15,2
Sub-process W2.1 W2.2 W2.3 W2.4 W2.5 W2.6 W2.7 W2.8
Mean Rank 15,4 15,8 13,4 12,0 13,8 8,0 12,3 12,4
Sub-process W3.1 W3.2 W3.3 W3.4 W3.5
Mean Rank 16,2 12,3 9,9 6,0 4,6
Sub-process W4.1 W4.2 W4.3
Mean Rank 13,5 11,4 13,1
Sub-process W5.1 W5.2 W5.3 W5.4
Mean Rank 12,5 8,9 12,2 12,0

Table 3.3: Ranks of the grades, for testing hypothesis H1.

106

3. EXPERIMENTAL SOFTWARE ENGINEERING 3.4. The experimental process case study

The problem, then, is to find out whether or not any of these mean ranks differs
significantly from the remaining ones. We will use two non-parametric tests to do so.

Table 3.4 presents the results of the Friedman test, a non-parametric test designed
to detect differences in treatments across multiple tests attempts [Friedman 37]. This
test is commonly used as a non-parametric alternative to the Analysis of Variance test.
Recall that our null hypotheses states that “the process was followed with a relatively
uniform success”. There is a significant difference among the results of the treatments,
with a chi-square of 63,980,(22, N=14), and p=,000<,01. Therefore, we can reject the
null hypothesis14. In other words, at least one of the sub-processes lead to an outcome
significantly different from the remaining ones.

N 14
Chi-Square 63,980
df 22
Asymp. Sig. ,000

Table 3.4: Friedman test for hypothesis H1.

We can further explore this by using Kendall’s W test, which is a normalization
of Friedman’s test and is used to assess the level of concordance between raters. A
strong agreement is signaled by a Kendall statistic value close to one, while a strong
disagreement presents a value close to 0. The 0,208 value in table 3.5 indicates a low
but significant agreement level with a chi-square of 63,980,(22, N=14), and p=,000<,01.

N 14
Kendall’s W(a) ,208
Chi-Square 63,980
df 22
Asymp. Sig. ,000

Table 3.5: Kendall’s W test for hypothesis H1. (a) stands for Kendall’s Coefficient of
Concordance.

The most likely candidates for the existing agreement and, likewise, for the signif-
icant differences found while evaluating the reports, can be identified using a boxplot
representation of the distribution of the average grades for each of the sub-processes
(left side of figure 3.20). Sub-processes W3.5 and W3.4 have an extreme and an out-
lier mean classification. If we remove these sub-processes, and remake Friedman and
Kendall’s tests, the statistics are still significant (p = 0,034 < 0,05) (left side of table 3.6).
The new boxplot reveals that, in the absence of W3.5 and W3.4, three sub-processes
emerge as outliers (W2.6, W5.2, and W3.3). If we remove W2.6 from the sample (the
one which is further away from the mean value), both Friedman’s and Kendall’s tests

14The “traditional” way of interpreting a chi-square test is to use the chi-square table. If the calculated
chi-square value is greater than the critical value in the table, for a given significance and number of
degrees of freedom, we can reject the null hypothesis. However, modern statistics tools, such as SPSS,
compute the significance level directly, to save users the burden of consulting those tables. The asymp-
totic significance presented by the used statistics tool has a value lower than 0,01 (in fact, lower than
0,0005), we can reject the null hypothesis.

107

3. EXPERIMENTAL SOFTWARE ENGINEERING 3.4. The experimental process case study

no longer report statistically significant differences between the different assessments
of the sub-processes under scrutiny (right side of table 3.6).

Figure 3.20: The boxplot on the left presents the distribution of the classifications, in-
cluding all the sub-processes. Sub-process W3.5 is marked as an extreme. Sub-process
W3.4 is marked as an outlier. The boxplot on the right side presents the distribution of
the classifications, if we exclude the extreme W3.5 and outlier W3.4. Note that, in the
absence of these two sub-processes, three other sub-processes (W2.6, W5.2, and W3.3)
are now considered outliers in the remaining sample.

3.4.6 Interpretation

In an ideal process, practitioners should be able to carry out all the sub-processes with
a consistently high proficiency. The Friedman test, complemented by Kendall’s coeffi-
cient of concordance lead us to think that there are some parts of the process that were
handled with a significantly different success by the participants in this case study,
when compared to the others. The fairly low concordance coefficient also points to the
fact that students roughly achieved the same success level in the majority of the sub-
processes. In an ideal process, Kendall’s coefficient of concordance should be close
to 0. This would mean that we were not able to significantly rank the success of the
different sub-processes. Of course, the evaluations should also be high, as there is not
much point in having practitioners performing consistently bad in all sub-processes.

While for most of the process the results are quite encouraging and balanced, con-
sidering the lack of experience of the subjects in conducting experimental work, we
should check what happened with the sub-processes where the success was signifi-
cantly different (and, in this case, lower).

108

3. EXPERIMENTAL SOFTWARE ENGINEERING 3.4. The experimental process case study

Sample, without W3.5 and W3.4 Sample without W3.5, W3.4 and W2.6
Friedman Test Statistics Friedman Test Statistics

N 14 N 14
Chi-Square 32,972 Chi-Square 24,288
df 20 df 19
Asymp. Sig. ,034 Asymp. Sig. ,185

Kendall’s Coefficient of Concordance Kendall’s Coefficient of Concordance
N 14 N 14
Kendall’s W(a) ,118 Kendall’s W(a) ,091
Chi-Square 32,972 Chi-Square 24,288
df 20 df 19
Asymp. Sig. ,034 Asymp. Sig. ,185

Table 3.6: Friedman test statistics and Kendall’s Coefficient of Concordance, when re-
moving the extreme and outliers that caused the statistically significant differences in
the classification of the sub-processes.

By using the extremes and outliers detection, we were able to single out the pro-
cesses responsible for the concordance that does exist. The three identified sub-
processes are the ones with the lowest mean classifications. W3.5, W3.4, and W2.6,
correspond, respectively, to problem reporting, data validation, and collection process. Why
did our subjects perform poorly in these tasks?

There are at least two plausible explanations for this. A plausible one is that they
may have found these sub-processes’ descriptions less clear. But it may also be the case
that the experimental tasks they were performing had a role to play in these difficulties.
Unlike what usually happens in experimental work, the data used in these projects
was collected a priori in the ISBSG repository. The three sub-processes relate to data
collection, to some extent, something that our subjects did not perform, in practice.

Problem reporting focuses on deviations from the experiment execution plan. In
this case, the data to be used was readily available from a repository, and the partici-
pants showed difficulties in critically assessing, based on the existing information, the
problems that may have occurred.

Likewise, the data validation was also one of the weakest sub-processes, again due
to the challenges detecting, from the information available in the repository, poten-
tial problems concerning data validity. We believe these difficulties may have been
increased by the fact that our subjects were novice experimenters.

Finally, providing a detailed description of the data collection process was also chal-
lenging for our subjects. Again this may result from difficulties in extracting the rel-
evant information from the repository, on the one hand, and in acknowledging those
difficulties, on the other. This is also a typical problem with novice experimenters that
we have observed in other fora, namely while serving as reviewers for program com-
mittees in conferences and workshops.

109

3. EXPERIMENTAL SOFTWARE ENGINEERING 3.4. The experimental process case study

Evaluation of results and implications

The significant differences found in the sample point us to the parts of the process in
which the case study participants performed significantly worse. This information can
be used for guiding improvements in the process model, as well as in future editions
of the course. With respect to the process model, these improvements can be achieved
through a clarification of the description of the process. To a certain extent, we have
already done so while writing this chapter of the dissertation. The degree of detail
provided here is greater than the one used in [Goulão 07a], not only due to less con-
strained size, which lead to the inclusion of more details in any of these topics, but also
as a result of the feedback collected since the publication of the process, both from our
peers and the students participating in this case study.

Threats to validity

It was not feasible to create a control group of students who would conduct their
projects using some other process than the one described here. As such, it is not possi-
ble to directly and soundly compare the outcome of these projects with a control group
of other projects following some other approach to their experimental work. From
the course’s instructor qualitative point of view, the overall quality of the projects was
considered a good improvement, compared to projects conducted in earlier instances
of the course, leading to a better structured and overall more mature outcome. How-
ever, none of these improvements can be directly assessed from the data provided by
this case study alone.

The time constraints imposed by the course’s schedule lead to the option of using
a repository of software projects as the data source for the experimental work used in
this case study. Although this has a clear benefit for students, since they were working
on real data, rather than toy examples, the price to be paid is that they did not go
through the time-consuming task of collecting data themselves. As discussed earlier,
that task provides experimenters with a greater sensibility to the challenges created by
some of the sub-processes described in this chapter, and this may have played a role in
the outcome of this case study.

Another possible threat is the usage of graduate students as subjects in this assess-
ment. We do not regard this as a major threat, because, as we discussed in the begin-
ning of this chapter, the software industry in general is yet to achieve a mature status
when it comes to experimentation. We believe the problems faced by our students do
not significantly differ from those that would be felt by more senior practitioners, with
the possible exception of practitioners from the ESE community. On the other hand, it
is possible that the latter’s performances would be biased by their own background.

The size of the sample may also be considered a threat, which we expect to mitigate
in future replications of this study.

110

3. EXPERIMENTAL SOFTWARE ENGINEERING 3.4. The experimental process case study

Inferences

In general, the ESE process followed by the subjects in our case study lead to satisfac-
tory results. The overall quality of experimental reports gives us confidence concerning
the suitability of the process described in this chapter for training new professionals in
the empirical validation of Software Engineering claims. With the exception of a few
sub-processes that we have identified and discussed here, subjects were able to fol-
low the process and produce experimental reports packaged in such a way that their
comparison and the replicability of the experiments they describe are facilitated.

The fact that our subjects collected the information from a repository of software
process data may have been a confounding effect. This is a deviation from a frequent
scenario where the experimenters also have to work on the data collection part of the
process. However, using data from a repository is also frequent, particularly when
assessing legacy systems. Therefore, while we expect this process to be accessible to
practitioners who also handle the data collection part of the process, further experi-
mentation would be required to assess data collection more thoroughly.

These results were obtained with graduate students, who are, in our opinion, com-
parable to novice experimenters. Extrapolating the observed behavior for more sea-
soned experimenters is risky. However, we were encouraged by the results obtained
by our subjects, and it seems likely that those results will also apply to seasoned exper-
imenters, with a positive nuance: seasoned experimenters are likely to have developed
the skills that may help them mitigating the possible shortcomings of a process model.
So, while we would expect an overall performance improvement with seasoned ex-
perimenters, this improvement would probably be more noticeable precisely in the
sub-processes were novices had their worst performances.

Lessons learned

This case study provided us with valuable information for two different contexts. For
our research work, the feedback provided by students while learning and applying
the experimental process presented in this chapter helped improving its description
for this dissertation. On the other hand the differentiated difficulties that may have
been created by the data collection performed on a repository, rather than directly by
the subjects, seem to be an extra challenge for course instructors, as they may need to
compensate the absence of that experience from the students. If students consistently
perform worse in a delimited set of sub-processes, care should be put in improving the
way these sub-processes are addressed in future editions of the course.

3.4.7 Case study’s conclusions and further work

The first impressions on this process model are encouraging, in the sense that we found
it useful not only in our research, but also as a tool that we can provide to other exper-

111

3. EXPERIMENTAL SOFTWARE ENGINEERING 3.5. Related work

imenters to facilitate their work. Although this case study has pointed out some diffi-
culties in the adoption of this process by novice experimenters, the overall outcome of
the process’s usage was satisfactory.

In the future, we would like to expand and diversify this assessment, through repli-
cations of this case study. As discussed in this chapter (section 3.2.2), this could be
achieved through a series of close and differentiated experiment replications.

An example of a close replication would be to reuse the ISBSG repository in future
editions of this course and propose a similar set of projects to new sets of graduate
students. This would mitigate the threat concerning the sample size.

To deal with the other identified threats, differentiated replications of the assess-
ment would be required. Examples include:

• Repeating the experiment in a similar context, but using different process models
would allow assessing the relative merit of our process, using the other processes
as a baseline.

• Following the process proposed in this chapter, modified with enhancements to
mitigate the difficulties shown by students in this first case study would clarify
whether the difficulties felt by the students were inherent to the process or to
some other factor, such as practitioner’s background, or to the usage of previ-
ously collected data.

• In contrast with the previous replica suggestion, we can change the experimen-
tal work proposed to our subjects, so that the subjects have to collect the data
themselves, as the usage of previously collected data collection was identified as
a potentially confounding effect.

• Changing the characteristics of the sample of subjects used in the experiment
would alleviate any concerns with respect to the usage of students in this first
validation.

3.5 Related work

3.5.1 Experimental Software Engineering process models

The major novelty of our proposal stems from the integration of dynamics modeling to
support the discussion of the several activities, and respective deliverables, involved in
Experimental Software Engineering practice. By doing so, we merge three basic views
into a unified one:

• experiment reporting guidelines (e.g. [Jedlitschka 05b]);

• experiment conduction guidelines (e.g. [Wohlin 99, Kitchenham 02]), which also
encompass reporting guidelines;

112

3. EXPERIMENTAL SOFTWARE ENGINEERING 3.5. Related work

• models for representing experimental and quality data (e.g. [Kitchenham 01,Gar-
cia 04, Jeusfeld 98]).

Experiment reporting guidelines

Our dynamic process description captures the main activities that are required so that
Jedlitschka and Pfahl’s reporting guidelines for controlled experiments in Software En-
gineering [Jedlitschka 05a] can be followed. While the deliverables of each activity
can be mapped to their proposal, we adapted our model so that other (weaker, but
often more feasible) forms of empirical work, such as observational studies, and quasi-
experiments, can also be supported by a process adhering to our model.

Experiment conduction guidelines

Our process specification, and the data model behind it support the concepts conveyed
in empirical research guidelines, such as [Wohlin 99, Kitchenham 02]. While more de-
tailed discussions on each of the process steps can be found in those documents, here
we favored the integration of all these concepts into a single model, with the added
value of also defining a metamodel structure to support data collection throughout the
whole process.

Models for representing experimental data

Kitchenham and Hughes proposed a method for specifying models of software data
sets that capture the definitions and relationships among software measures [Kitchen-
ham 01]. The rationale is that without proper safeguards, it is very difficult to ensure
that data from different sources can be safely combined and analyzed. Software mea-
surements have to be fully defined, rather than just named, to allow for the repeata-
bility of their collection. Kitchenham and Hughes’s work, is focused on the storage
of the information concerning the metrics’s definitions and values (including collected
values, both current and collected in the past, estimates and targets), at different levels
of granularity. Our ontology-based representation of collected metrics complements
this idea with our approach to automate metrics specification and collection, which we
will discuss in chapter 4.

Garcia et al. defined an ontology for software measurement that represents con-
cepts including the measurement activities, measures definitions, and metrics defini-
tions [Garcia 04]. Our work shares the concern of having such an ontology description
upon which we can describe experimental work, but covers a wider spectrum of ex-
perimental concepts and adds the element of dynamics description.

Jeusfeld et al. proposed a metamodel for modeling quality management issues in
the context of data warehouses [Jeusfeld 98]. Their metamodel is inspired by the GQM
approach [Basili 94], and covers goal specification, the construction of queries for as-

113

3. EXPERIMENTAL SOFTWARE ENGINEERING 3.5. Related work

sessing the goals, and the definition of metrics to support those queries. Again, this
work is focused on metrics definition, starting from goal specification, but the empha-
sis is on collected information alone.

3.5.2 Alternatives to experimental results evaluation

Our experimental process model description focuses on the most typical case with Ex-
perimental Software Engineering analysis practices, referred as classical, or frequentist
in [Kitchenham 02]. Other quantitative approaches to analysis can be used.

Fenton, has been deeply engaged in the research of the usage of a Bayesian ap-
proach to the analysis of ESE data. A Bayesian network is a directed graph combined
with an associated set of probability tables. In the graph, nodes represent variables that
may be either continuous, or discrete. The arcs represent possible causal or influential
relationships between the nodes. Bayesian networks allow modeling and reasoning
about uncertainty, as they represent the assumptions about the impact of the different
forms of evidence represented by the nodes into each other (through the arcs). The
graph representation also provides traceability, a feature which is useful when using
Bayesian networks to assess complex cause-effect relationships.

Bayesian networks have not been used often within the scope of ESE [Kitchen-
ham 02]. A possible explanation for this was the lack of adequate tool support for
them, until the mid 90’s, according to [Fenton 02].

Nevertheless, some examples of their usage have been put forward recently, partic-
ularly concerning software fault proneness. Fenton et al. claim that Bayesian networks
can replace with advantage simple regression models for estimating software defect
proneness, not only for their traceability property, that facilitates model understand-
ing, but also for their improved accuracy [Fenton 06].

Other authors, such as Sahraoui et al. have also been engaged in software qual-
ity modeling using Bayesian-based techniques [Sahraoui 01]. More generally, other
data mining techniques can be applied to Software Engineering repositories although
exploring this avenue of research is beyond the scope of this dissertation.

3.5.3 Qualitative approaches to evaluation in Software Engineering

Although this dissertation is focused on quantitative approaches to evaluation in the
context of Software Engineering, there are other evaluation approaches which are in-
herently qualitative. Feature analysis [Kitchenham 96a] is a technique where the eval-
uator identifies the requirements that stakeholders have for a given software product,
or process, and compares them to the features offered by candidate products or pro-
cesses. This is an essentially qualitative technique in the sense that it requires a subjec-
tive assessment of the relative importance of different features and of how well they
are implemented in the scrutinized products, or processes. There are several variations

114

3. EXPERIMENTAL SOFTWARE ENGINEERING 3.5. Related work

on qualitative approaches that can be used. These include [Kitchenham 96a]:

• qualitative screenings - a single individual chooses the features, rating scales,
and performs the analysis

• qualitative case study - an evaluation performed by an individual who has used
a tool, or followed a process, in a real-world environment.

• qualitative experiment - a group of individuals make the evaluations, typically
after performing a set of typical tasks with the product under scrutiny (or follow-
ing the process, in a process assessment)

• qualitative survey - similar to the qualitative experiment, but the participation in
the survey is at the discretion of the potential participant, unlike what happens
in the experiment.

• qualitative effects analysis - a subjective assessment of the quantitative effect of
using a tool, or following a process, based on expert opinion.

In chapter two, we have seen two examples of qualitative screenings: the survey
on component models, and the survey on metrics for software components. In both
surveys, we identified a fixed set of features to characterize the subjects of our samples
(component models and metrics, respectively), and then discussed, for each of those
features, the extent to which each of the subjects supported them.

A thorough discussion on the strengths and weaknesses of each of these variations
of qualitative approaches is beyond the scope of this dissertation. Nevertheless, we
can highlight a few similarities with their quantitative counterparts, with respect to
the concerns on their validity.

For instance, while some of these methods rely on the judgment of a single indi-
vidual (qualitative screenings and case studies) the others can mitigate personal biases
that individuals might bring into their assessments.

Another interesting similarity to quantitative studies occurs when we contrast a
qualitative experiment and a qualitative survey. The latter has an extra threat to its
validity due to the ability of potential participants to choose whether or not they will
participate in the survey. It may be the case that people refusing to participate have
a common characteristic that is relevant for the assessment they would provide and
is therefore biasing the results of the survey. Of course, the same concern applies to
people choosing to cooperate in the survey. An extreme example of this threat would
be a survey conducted by software company X, comparing two competing components
produced by rival companies X and Y, which could be biased by including a large
number of respondents from company X, and few from company Y, who could be
reluctant to participate in the survey.

115

3. EXPERIMENTAL SOFTWARE ENGINEERING 3.6. Conclusions

3.5.4 Benchmarking

Benchmarking consists in running a predefined set of tests on several competing prod-
ucts, or processes, in order to provide a comparison of their relative performance. This
technique lies somewhere between a quantitative and a qualitative approach because,
although the data collection carried out during benchmarking has a quantitative na-
ture, the process of developing or selecting the adequate benchmark tools is subjective
in nature, and in that sense closer to feature analysis.

Typical examples include the benchmarking of tools for assessing their relative per-
formance with respect to some well-defined criteria (e.g. time and physical memory
required to perform a pre-established set of operations). For instance, one can compare
different compilers by compiling the same source code and then logging compilation
times and detected errors. Benchmarking can also be used in process comparison. For
instance, benchmarking has been used for software inspections in [Wohlin 02], where
both qualitative benchmarking (e.g. upon the characterization of the various inspec-
tion techniques) and quantitative benchmarking (e.g. upon measurable aspects of in-
spections, such as the percentage of defects found in each inspection) were used.

One of the challenges with benchmarking is how to keep the benchmarking fair,
in the sense that, depending on the chosen set of tests, different products may be re-
garded as the best. It is common for communities to develop benchmarks for their
domain-specific targets, therefore creating a common tool for comparative evaluation
of products and processes. Another challenge is that benchmarking implies the usage
of multiple points of comparison, so that we have a representative sample of products,
or processes [Wohlin 02].

3.6 Conclusions

In this chapter we proposed a model for the ESE process that supports the definition
of the activities and corresponding deliverables, involved in ESE practice. The process
model description of experimental work builds on related work described in section
3.5. The main novelty of this model is the integration, in a homogeneous framework,
of the contributions of other researchers, along three threads: (i) experiment conduc-
tion guidelines, (ii) experiment reporting guidelines, and (iii) models for representing
experimental data.

The proposed process model captures the best practices (in some cases), or state of
the art (in others) in ESE and is aligned with a recent proposal for experimental data
dissemination (Jedlitschka and Pfahl’s reporting guidelines [Jedlitschka 05a]). It can be
used as a guideline for practitioners involved in leveraging data collection activities to
improve the software process in their organizations, both in industrial and in academic
contexts. It may also be used as a framework for supporting experiments’ comparison,
which was identified as a major need for future Software Engineering research.

116

Chapter 4

Ontology-driven Measurement

Contents
4.1 Revisiting metrics proposals limitations 118

4.2 Defining Ontology-Driven Measurement 120

4.3 Defining and collecting metrics with OCL 126

4.4 The FukaBeans case study . 129

4.5 Related work . 149

4.6 Conclusions . 150

Background: Experimental replicability and comparability depend not only on a pro-
cess such as the one defined in the previous chapter, but also on successfully dealing
with the metrics ill-definition problem presented in chapter 2.
Objectives: We will present an approach, called Ontolgy-Driven Measurement (ODM)
to deal with the metrics ill-definition problem.
Methods: ODM combines a domain ontology with metrics defined upon that ontol-
ogy, using the Object Constraint Language. We illustrate ODM through a case study to
independently validate a metrics set for JavaBeans.
Results: ODM allows the formal definition of metrics, solving the metrics definition
problem, while using a language that is familiar to UML practitioners. The approach
also allows defining heuristics.
Limitations: ODM requires a suitable metamodel. Such metamodel may not always
be available. In those situations, we have to design that metamodel, so that we can use
this approach.
Conclusions: We successfully formalize and collect metrics using the ODM approach.
ODM facilitates the external validation of metrics proposals. Our results with the Jav-
aBeans metrics set point to problems in the external validity of the heuristics for those
metrics.

117

4. ONTOLOGY-DRIVEN MEASUREMENT 4.1. Revisiting metrics proposals limitations

4.1 Revisiting metrics proposals limitations

In our overview of metrics proposals for CBD, presented in section 2.5, we identified
three recurrent problems:

• lack of an underlying context

• metrics ill-definition

• insufficient metrics validation

In this chapter, we will outline our strategy for mitigating these shortcomings and
frame it in the context of the Experimental Software Engineering process presented in
chapter 3.

4.1.1 Providing adequate context for metrics proposals

As discussed in section 2.5, the lack of an underlying context is a common problem in
most metrics definition and makes the interpretation of metrics values troublesome. If
we are unable to interpret the values of collected metrics, they become irrelevant for
the CBD process.

There is a well-known and widely accepted approach named Goal-Question-Metric
[Basili 94] that aims at guiding the definition of software metrics, but the results of our
survey, presented in section 2.5 showed that the CBD community is still not using this
approach as much as it would be desirable. A quality model for CBD would provide
a context for the establishment of goals for which research questions can be made,
leading to the definition of objective metrics to support the answer to those questions.

There is no generally accepted quality model for CBD. We can adapt or create a
model (or at least identify quality attributes) for providing context to the metrics def-
initions. The two basic options for a quality model would be to aim for a general
purpose quality model for CBD, or to use very specific (and, in that sense, limited in
their scope) quality models for some niches within CBD. Our observation of existing
CBD quality model proposals (e.g. [Bertoa 02,Simão 03,Bertoa 06]) lead us to prefer the
latter option (specific quality models, or small sets of quality characteristics), because
it is more feasible to validate such models than to validate general purpose ones.

4.1.2 Toward a sound and usable approach to metrics definition

The metrics ill-definition problem results from either using an at least partially infor-
mal approach to metrics definition, making those definitions subjective, or using a
formal approach to metrics definition that, although sound, is based on formalisms
which are difficult to grasp by common practitioners, making their adoption difficult.

118

4. ONTOLOGY-DRIVEN MEASUREMENT 4.1. Revisiting metrics proposals limitations

The effort required for large scale manual metrics extraction is prohibitive. Au-
tomating metrics collection based on informal definitions is troublesome, because dif-
ferent implementations may be based in different assumptions on the subjective de-
tails of those informal definitions. The automation of metrics collection is also a prob-
lem when using formal notations. It is often the case that the tools required for us-
ing the formal definitions are not supported by major software vendors, but rather by
researchers who lack the resources for ensuring a professional tool maintenance and
support.

In our opinion, the key for obtaining a metrics specification that is simultaneously
formal, understandable, and executable, is to use a formal language which is widely
adopted by the software development community, and for which there is tool support
available from major integrated development environment (IDE) developers. Ideally,
metrics collection should be integrated in such IDEs, so that it can be part of the devel-
opment process.

4.1.3 Facilitating metrics validation

The Experimental Software Engineering process, described in the previous chapter,
is useful in this context, since it was built to frame the set of activities leading to the
conduction of experimental work in a sound, comparable, and replicable way. The pro-
cess was designed to adhere to a common set of research reporting guidelines for pre-
senting the results of experimental work in Software Engineering, proposed in [Jedl-
itschka 05a].

The support for automated metrics collection is fundamental to foster independent
validation efforts. Manual collection of metrics has been shown to be error prone and
vulnerable, for instance, to the lack of adherence to sound, widely accepted, coding
principles1 [Counsell 07].

Unfortunately, to the best of our knowledge, most of the proposed metrics referred
to in the survey presented in section 2.5 were only tested by their authors, using pro-
prietary or experimental, non-publicly available, tool support, therefore limiting ex-
periments replication. This limits knowledge sharing, both in the research and practi-
tioner’s communities, hampering results comparison.

The approach for metrics definition presented in this chapter is aimed at facilitat-
ing metrics definition and collection, so that metrics collection is fully replicable, even
when performed by different people, using their own tool support for automating the
metrics collection process.

1Counsell’s paper [Counsell 07] refers to metrics collected on the source code, but it is fair to admit
that similar problems may occur when manually collecting metrics from other artifacts. Consider, for
instance, the difficulty in manually collecting metrics from design documents, where it is common to
show only partial views of the design elements that allow focusing on a particular design goal. The
information required for computing a particular metric may be scattered throughout several different
diagrams with possible overlaps among them.

119

4. ONTOLOGY-DRIVEN MEASUREMENT 4.2. Defining Ontology-Driven Measurement

4.2 Defining Ontology-Driven Measurement

The metrics ill-definition problem can be solved by using a technique proposed by
Abreu [Abreu 01b] that we will refer to as Metamodel-Driven Measurement (M2DM).
M2DM combines the usage of a metamodel of the domain upon which the measure-
ments will be made, with the usage of a formal specification language. The metamodel
provides the context information, which is missing (at least in a non-ambiguous way)
in metrics specifications where a combination of natural language - to describe the
context - and mathematical formulas is used. The formal language allows the specifi-
cation of the metrics, again in a non-ambiguous way, as the counting rules and their
relationship with the underlying domain are hard-coded in the metrics definitions.

M2DM has a limitation: the metrics have to be defined at the metamodel level.
Throughout this dissertation, we will use an evolution of M2DM and call it Ontology-
Driven Measurement (ODM). This evolution extends the M2DM technique to models
which may not necessarily be metamodels. Note that a metamodel is a model of a
model. In this sense, we can think of ODM as a generalization of the M2DM approach
that removes the constraint that metrics can only be defined at the metamodel level.
In ODM, metrics can also be defined at the model level. The ontology is a model of
a domain, but the domain is not necessarily a model. This distinction will become
more clear in chapter 6, where we will use metrics defined upon a model that is not a
metamodel.

4.2.1 Aligning the approach with a standard

The concept of ODM is generic, both in what concerns its mapping to the chosen on-
tology specification technology and the formal language that is used to express the
specification of the metrics. When defining ontologies (metamodels and models), we
will follow an approach aligned with the OMG’s current specification technologies.
So, we will specify the metamodels and models in UML, and use OCL for defining
and collecting metrics.

A layered architecture

The Meta-Object Facility (MOF) is a platform-independent metadata framework used
by OMG and considered a cornerstone of OMG’s Model-Driven Architecture initiative.
It provides the basic building blocks for the specification of metamodels, regardless of
these metamodels being object-oriented, or not. MOF 2.0 shares a common core pack-
age with the UML 2.0 infrastructure library [OMG 06b], represented as Core, in figure
4.1. This Core package acts as an architectural kernel for other OMG metamodels, such
as the Comon Warehouse Metamodel (CWM) [OMG 03a], the UML 2.0 metamodel
[OMG 06b, OMG 05b], the Corba Component Model (CCM) metamodel [OMG 02a]

120

4. ONTOLOGY-DRIVEN MEASUREMENT 4.2. Defining Ontology-Driven Measurement

and the Object Constraint Language (OCL) metamodel [OMG 03b]. The Core itself is a
complete metamodel.

Figure 4.1: OMG’s common Core package and its relation to other metamodels

When focusing our attention on the UML 2.0 metamodel, we note the existence of
two main parts: the infrastructure and the superstructure. The UML 2.0 infrastructure
library [OMG 06b] uses fine-grained packages to bootstrap the the rest of UML 2.0.
These packages are useful so that we can build on them to specify other metamodels,
using the basic UML 2.0 notation. The main packages in the UML 2.0 infrastructure are
the Core package, discussed above, and the Profiles package, where the constructs
used for defining UML extensions are defined (figure 4.2).

Figure 4.2: UML infrastructure library

Three key concepts to understand metamodeling are those of classifier, instance,
and the ability to navigate from the instance to its classifier. A classifier is a classifi-
cation of instances: it describes a set of instances that have features in common. Each
instance has exactly one classifier which describes it. Building on these concepts, it is
possible to create a layered architecture where the instances at level n have their corre-
sponding classifiers at level n + 1. In turn, the classifiers at level n + 1 can be regarded
as instances of the classifiers defined at level n + 2, and so on. Several of the OMG’s
metamodel specifications rely on 4 levels [OMG 06b]:

121

4. ONTOLOGY-DRIVEN MEASUREMENT 4.2. Defining Ontology-Driven Measurement

• M3. Meta-metamodeling layer, where the language for specifying metamodels
is defined. MOF is an example of a meta-metamodel.

• M2. Metamodeling layer, where metamodels, the languages for specifying
models, are defined. Examples of metamodels include the UML metamodel,
the OCL metamodel, CWM, and the CCM. Metamodels are instances of meta-
metamodels.

• M1. Modeling layer, where models are defined. User defined models in UML
are among the most typical examples of a model. In general, models are used
to define languages that specify the semantics of a domain. The models defined
at M1 are instances of metamodels defined at M2. Note that these models also
include illustrations, also referred to as snapshots, of instances of model elements
(e.g. in UML, the object diagrams represent such illustrations).

• M0. Run-time instances layer, where instances of model elements are repre-
sented. These should not be confused with the illustrations of instances defined
in level M1. The latter are constrained versions of the M0 run-time instances.

Figure 4.3 illustrates the distinctions among the 4 levels, using an example in UML.
At the run-time instances layer (M0), we have a run-time instance of a thermometer.
This thermometer is modeled at the user model level (M1) both as a class (Thermometer)
and as a snapshot of the class (:Thermometer). In turn, the Thermometer class is an in-
stance of the meta-class Class, of the UML metamodel (M2). The temperature attribute
of the Thermometer class is an instance of the meta-class Attribute. The instance snap-
shot is modeled with the Instance meta-class.

Although the typical number of meta-levels ranges from 2 to 4, MOF-based meta-
models can have at least 2 meta-levels, and as many meta-levels as one chooses to
define. As we have seen, UML is an example of the usage of 4 meta-levels. The MOF
specification [OMG 04] provides other examples of configurations, such as 2 meta-
levels, for a generic reflective system, with classes and objects, and 3 meta-levels, for
relational database systems, with SysTables, tables and rows.

The Object Constraint Language

MOF-based metamodels may include not only meta-elements, but also constraints ap-
plied to those meta-elements and to the meta-associations among them. These con-
straints are referred to as well-formedness rules, and can be formally specified using
the Object Constraint Language (OCL) [OMG 03b]. OCL is a formal language designed
to specify expressions on UML models that are typically used either as constraints on
the model, queries on its state, or specifications of operations or actions, always in
a programming language independent way. OCL expressions are side-effect free, so

122

4. ONTOLOGY-DRIVEN MEASUREMENT 4.2. Defining Ontology-Driven Measurement

Figure 4.3: An example of the layered metamodel hierarchy

their evaluation does not alter the state of the system upon which they are defined,
even if they specify operations that, when executed, would change the system state.

As MOF-based metamodels are defined using a subset of the UML language, OCL
can be used on these metamodels. So, OCL is not only programming language inde-
pendent, but also “MOF-based metamodel” independent.

To illustrate the usage of OCL as a constraint language, consider an extract of the
UML 2.0 metamodel concerning the provided and required interfaces of a component.
Figure 4.4 presents the associations, provided and required, between the meta-class
BasicComponent and the meta-class Interface.

The provided and required associations are derived associations. The well-
formedness rules of both derived associations are expressed in the UML metamodel
both in natural language and with OCL. For illustration purposes, consider the spec-
ification of the derived provided interfaces association. Provided interfaces are “the
interfaces that the component exposes to its environment. These interfaces may be Realized by
the Component or any of its realizingClassifiers, or they may be the Interfaces that are provided
by its public Ports. The provided interfaces association is a derived association” [OMG 05b].
In OCL, these constraints are expressed as in listing 4.12.

2This listing is extracted, from the UML 2.0 metamodel specification [OMG 05b]. Understanding all
its details would require analyzing a larger extract of the UML 2.0 metamodel than the one presented in
figure 4.4. Here, our purpose is only to illustrate some of the features of OCL

123

4. ONTOLOGY-DRIVEN MEASUREMENT 4.2. Defining Ontology-Driven Measurement

Figure 4.4: Extract of the UML 2.0 metamodel

Listing 4.1: An example of UML 2.0 well-formedness rules in OCL.

context Component::provided derive:

let implementedInterfaces = self.implementation

->collect(impl|impl.contract) and

let realizedInterfaces = RealizedInterfaces(self) and

let realizingClassifierInterfaces =

RealizedInterfaces(self.realizingClassifier) and

let typesOfRequiredPorts = self.ownedPort.provided in

(((implementedInterfaces ->union(realizedInterfaces)

->union(realizingClassifierInterfaces))

->union(typesOfRequiredPorts))->asSet()

def: RealizedInterfaces(classifier : Classifier) : Interface =

(classifier.clientDependency ->

select(dependency|dependency.oclIsKindOf(Realization) and

dependency.supplier.oclIsKindOf(Interface)))

->collect(dependency|dependency.client)

This well-formedness rule illustrates some features of the OCL which are relevant
for our work. OCL expressions provide a side-effect free mechanism of extracting in-
formation from a model. OCL allows collecting information about the model (in this
case, the UML 2.0 metamodel), while navigating through it. In this perspective, OCL
can be viewed and used as a model query language. This property is useful for the
collection of model elements according to any constraints we may specify with OCL.
For instance, in the Component::provided well-formedness rule:

124

4. ONTOLOGY-DRIVEN MEASUREMENT 4.2. Defining Ontology-Driven Measurement

• implementedInterfaces is defined by selecting the collection of implementation
associations and, for each of those, collecting all the corresponding contracts.

• realizedInterfaces is defined through an extra function,
RealizedInterfaces(), also presented in listing 4.1.

• realizingClassifierInterfaces is also defined through the function
RealizedInterfaces().

• typesOfRequiredPorts is the union of the interfaces provided by the ports owned
(ownedPort by the component.

Depending on the collection process, the resulting collection can be of different
types, such as bags, or sets. OCL includes several utility operators on collections that
allow, among other things, to make transformations between different kinds of collec-
tions. For instance, given a bag of integers, where integer values may be repeated, one
can obtain the corresponding set of integers, where no duplicate values exist, using the
function asSet(). We can see an example of this transformation in the derived rule
provide. We can also flatten (i.e. recursively add elements of nested collections to a
single collection) a collection, with the operation flatten(), or compute the number
of elements in the collection, with the operation size().

Besides being usable as a query language, the syntax of OCL is similar to that of
programming languages, making it accessible for practitioners. Furthermore, OCL
was designed to complement UML with a constraint specification language. Practi-
tioners familiar with UML may also be familiar at least with some basic usage of the
OCL language, e.g., through the definition of guard conditions in activity diagrams.
Although historically the support provided by UML tools has been insufficient, UML
2.0 tools (e.g. Together Architect 3) are progressively including support for the usage
of OCL in their models.

In summary, OCL can be used as a query language for UML models, has a syntax
that is accessible for practitioners and is increasingly being supported by UML tools.
In our opinion, this combination of features makes OCL a well-suited candidate lan-
guage for dealing with the metrics ill-definition problem. Practitioners can use a UML
tool to specify the metamodel of the concepts which are relevant for their metrics col-
lection, load that metamodel with the model instances representing the artifacts they
aim to measure, and use OCL not only to specify, but also to collect metrics on those
models. The necessary context for defining metrics is provided by the specified meta-
model. The metrics definitions are not ambiguous, as they are specified through OCL
constraints. We can also specify the conditions under which the metrics can be com-
puted, through pre-conditions expressed in OCL. Finally, the usage of standardized
languages for defining the measurement context (a metamodel defined with UML)

3http://www.borland.com/us/products/together/index.html

125

http://www.borland.com/us/products/together/index.html

4. ONTOLOGY-DRIVEN MEASUREMENT 4.3. Defining and collecting metrics with OCL

and the metrics (through OCL functions) facilitates the replication of metric collection
initiatives, thus fostering the independent validation of metrics.

4.3 Defining and collecting metrics with OCL

In this section we will define two simple metrics for counting the number of attributes
and operations of a software component. We will use the UML 2.0 metamodel as our
ontology. In other words, the metrics formalization described in this section will allow
counting the number of attributes and operations of a UML 2.0 component.

Before defining the metrics, we have to study how UML 2.0 represents compo-
nents. Consider the extract of the UML 2.0 metamodel presented in figure 4.5. As
discussed before, this diagram represents part of a specification at the M2 level. For
the sake of readability, to avoid cluttering this class diagram in excess, most of the
attributes of the meta-classes presented in this diagram are omitted. In this meta-
model extract we can observe that a Component is a specialization of Class, as defined
in the StructuredClasses package. The UML 2.0 metamodel includes several meta-
classes called Class (this extract only shows 5 of them), each defined in a different
package, which incrementally add specific details to the abstract notion of Classifier.
In the UML 2.0 metamodel, Classifier is used as a basis to one of the three major
categories of elements (the remaining two categories are events and behaviors). Each
Component has a set of properties (ownedProperty) and provides a set of operations
(ownedOperation). Operations may contain parameters (ownedParameter).

Consider the SQL_Select component, in figure 4.6, defined in a user model (M1
level). This fine grained component contains 9 attributes and 21 operations. Out of
those 21 operations, 1 is a constructor, 5 are getter operations, 5 are setter operations,
and the remaining 10 are business operations (all the operations with no stereotype, in
the example) 4.

This component can be represented by instantiating the UML 2.0 metamodel with
appropriate meta-objects and meta-links. Figure 4.7 presents a small extract of the
meta-objects diagram that results from that instantiation. Again, for the sake of read-
ability, several meta-objects and meta-links are omitted. This snapshot is at the M1
level.

4.3.1 Using OCL expressions to collect information

The following OCL expressions compute the set of owned properties, its size, the set
of owned operations, and its size, respectively. The two size expressions, in particular,

4We use the term “business operations” to conform to Washizaki et al.’s classification [Washizaki 03]
for all the available operations that implement the functionality of components other than constructors,
“getters” and “setters”. For the time being this distinction is not relevant, but we will refer to it in the
case study in section 4.4.

126

4. ONTOLOGY-DRIVEN MEASUREMENT 4.3. Defining and collecting metrics with OCL

Figure 4.5: UML 2.0 metamodel extract

show how simple measurements can be computed for a given component. The results
of the evaluation of each of the expressions are also presented. In the OCL listing
4.2, the lines started by ’?’ represent OCL queries. The corresponding answers are
presented in italic. For the sake of simplicity, we assume the objects that populate the
metamodel have the same name as the model elements they represent, in these OCL
queries.

Listing 4.2: Making queries in OCL.
?SQL_Select.ownedAttribute

{NO_WORK, ..., maxRows}

?SQL_Select.ownedAttribute ->size()

9

?SQL_Select.ownedOperation

{SQL_Select, ..., writeObject}

?SQL_Select.ownedOperation ->size()

21

In OCL it is possible to define clauses within a given context. The set of clauses in
listing 4.3 is defined for elements of the meta-class Component. They allow computing
the number of owned attributes A() and the number of owned operations O(). The
self keyword denotes the object receiving a method call. The size() operations counts
the elements in the collection.

127

4. ONTOLOGY-DRIVEN MEASUREMENT 4.3. Defining and collecting metrics with OCL

Figure 4.6: The SQLSelect component

Figure 4.7: The SQLSelect component instantiation

128

4. ONTOLOGY-DRIVEN MEASUREMENT 4.4. The FukaBeans case study

Listing 4.3: Defining how to count owned attributes and operations.

context Component

A(): Integer = self.ownedAttribute ->size()

O(): Integer = self.ownedOperation ->size()

Using these OCL expressions, we can now obtain, for the SQL_Select component,
the number of properties, respectively (listing 4.4).

Listing 4.4: Counting owned attributes and operations.

?SQL_Select.A()

9

?SQL_Select.O()

21

4.4 The FukaBeans case study

4.4.1 Motivation

To illustrate the ODM approach, we present here a formalization of a metrics set pro-
posed by Washizaki et al. in [Washizaki 03]. Our formalization is used in a case study
where we collect metrics from JavaBeans components and use those metrics to assess
the components against a component quality model. As a quality model, we will use
the component quality model defined by Washizaki et al., when proposing and vali-
dating their metrics set [Washizaki 03]. The components analyzed in our case study
were not included in the components set used in the validation experiment conducted
by Washizaki et al.

Note that the main purpose of this case study is to illustrate how ODM can be
used in practice, rather than thoroughly validating Washizaki et al.’s quality model.
So, our emphasis will be more focused on the metrics definition technique than on the
independent validation itself. Nevertheless, we will follow the experimental process
described in chapter 3.

Problem statement

Washizaki et al. proposed a quality model for reusability of JavaBeans components,
and a metrics set for helping to assess whether or not a given JavaBean is reusable.
In this case study we will perform an independent validation for their model, and the
metrics. We can briefly state our main hypothesis as follows:

H1 Washizaki et al.’s quality model and metrics are valid, as suggested in the paper
where they were proposed.

129

4. ONTOLOGY-DRIVEN MEASUREMENT 4.4. The FukaBeans case study

Research objectives

In this case study our goal is to:

analyze JavaBean components,
for the purpose of their evaluation
with respect to their reusability, as defined in [Washizaki 03]
from the viewpoint of the quality auditor,
in the context of a JavaBeans component library called FukaBeans [Fukazawa 03].

Context

As this is an independent validation effort, our main objective is to check the extent to
which the quality model holds, when using a different set of components. While the
original validation effort used a sample of COTS components, we will use a sample of
components developed for educational purposes. In both cases, the assumption is that
the components in both sets were designed to be highly reusable. The rationale for
this assumption is different: in the original experiment, expert opinion was used for
assessing the reusability of components. In our replica, the sample is made of compo-
nents developed for educational purposes, in a context where high reusability is one
of the main quality concerns. So, we can think of this as a differentiated replica of the
original validation effort.

This case study is conducted off-line, using artifacts which can be considered to be
toy components, when compared to those used in the original validation effort. The
generalizability of the results in the case study is restricted to the set of components
under scrutiny.

4.4.2 Related work

The quality model

The quality model used by Washizaki et al. is presented in figure 4.8. This quality
model breaks component reusability down into three quality attributes: understand-
ability, adaptability, and portability. The three quality attributes are broken into four
assessment criteria, which are then mapped into five metrics for JavaBeans component
reusability assessment.

The metrics set

The metrics set includes 5 reusability metrics, as depicted in figure 4.8: EMI, RCO, RCC,
SCCr, and SCCp. We will discuss each of these metrics definition in detail, while pre-
senting their formalization. For each of the metrics, Washizaki et al. describe:

130

4. ONTOLOGY-DRIVEN MEASUREMENT 4.4. The FukaBeans case study

Figure 4.8: The quality model used by Washizaki et al.

• their intent;

• their definitions, combining mathematical formulas with informal descriptions
of the elements used in those formulas;

• a confidence interval [Lower Limit; Upper Limit] for each metric; it is assumed
that components that have metrics values outside of this confidence interval
are flagged as a potentially less reusable than those components which are not
flagged;

• a set of heuristics to facilitate the interpretation of the measurement values (thus
making this a metrics set), based on the earlier mentioned confidence intervals.

We will frame each of the metrics description in the context of the GQM approach,
while presenting their formalization.

Validation efforts for this quality model

To the best of our knowledge, the work described here (previously published in
[Goulão 04a, Goulão 05c]) is the only independent validation for this quality model
and metrics. Both validations are framed by the same quality model (the one used in
Washizaki et al.’s paper).

Our validation effort differs from the one followed by Washizaki et al. in the fol-
lowing aspects:

• The sample of components used in both validation efforts differs in:

– the size of the sample;

– the typical complexity of components;

– the origin of components;

– the rationale for the assumption of high reusability, as observed externally
without using the quality model.

131

4. ONTOLOGY-DRIVEN MEASUREMENT 4.4. The FukaBeans case study

• The metrics definition technique used in Washizaki et al.’s work was a combi-
nation of an informal description of JavaBeans with mathematical formulas. We
formalize their metrics in OCL using the UML 2.0 as a metamodel for represent-
ing the JavaBeans components. As we will discuss, this has some implications
with respect to the accuracy of our metrics definitions, as some decisions were
made to solve ambiguities in the original metrics definition.

4.4.3 Experimental planning

We can break down our original goal into three sub-goals, where the variation lies on
the quality factor under scrutiny in each sub-goal. For each of these sub-goals, we will
also present the research question we would ask to assess them, as well as the used
quality criteria and metrics.

Goal 1(G1):
Analyze JavaBean components
(...)
with respect to their understandability
(...)

Goal 2(G2):
Analyze JavaBean components
(...)
with respect to their adaptability
(...)

Goal 3(G3):
Analyze JavaBean components
(...)
with respect to their portability
(...)

Experimental units, material and tasks

In this case study we are just collecting data from already existing components, rather
than asking subjects to perform a given set of tasks, upon some sort of material. So, we
have no experimental units, material, or tasks.

132

4. ONTOLOGY-DRIVEN MEASUREMENT 4.4. The FukaBeans case study

Hypotheses

We can break down the goals of this case study into questions, and, for each of the
later, define a corresponding hypothesis. The notation, for easier reference, is that
Goal 1 (G1) corresponds to Question(s) 1.*. Question Q1.1 corresponds to hypothesis
H1.1, which will then be assessed with the support of metric M1.1.

Question 1.1 (Q1.1):
Is meta-information available for the component?

Hypothesis 1.1 (H1.1):
Components adhering to the understandability standards of the quality model provide
meta-information for their users.

Question 1.2 (Q1.2):
Is the level of component observability adequate?

Hypothesis 1.2 (H1.2):
Components adhering to the understandability standards of the quality model have an
observability within the boundaries established by it.

Question 2.1 (Q2.1):
Is the level of component customizability adequate?

Hypothesis 2.1 (H2.1):
Components adhering to the adaptability standards of the quality model have a
customizability within the boundaries established in the quality model.

Question 3.1 (Q3.1):
Is the level of external dependency of a component with respect to other components
acceptable?

Hypothesis 3.1 (H3.1):
Components adhering to the portability standards of the quality model have a relative
number of external dependencies within the boundaries established in the quality
model.

Question 3.2 (Q3.2):
Is the number of dependencies to external components which stem from the return
types of the component’s operations acceptable?

133

4. ONTOLOGY-DRIVEN MEASUREMENT 4.4. The FukaBeans case study

Hypothesis 3.2 (H3.2):
Components adhering to the portability standards of the quality model have a relative
number of business operations with parameters within the quality model’s thresholds.

Independent variables

The independent variables used in this case study will be Washizaki et al.’s metrics.
There is a direct correspondence between each hypothesis and its corresponding
metric (e.g. H1.1 corresponds to Metric 1.1 (M1.1)). For each of these metrics, we
will start by an informal description, followed by the corresponding mathematical
formula, before providing the metric formalization.

Metric 1.1 (M1.1): Existence of Meta-Information (EMI).
The JavaBeans component model relies on the existence of a special BeanInfo class
to provide access to meta-information about the JavaBean component. The corre-
spondence between a JavaBean and its BeanInfo is established by using a naming
convention that appends the BeanInfo string to the name of the class. For exam-
ple, a component named Car would have a CarBeanInfo class for representing its
meta-information. EMI of a component c is defined as:

EMI(c) =

{
1 , if the BeanInfo class exists
0 , otherwise

Metric formalization: The notion of a BeanInfo class is not conveniently represented in
the UML metamodel, as it is specific to the JavaBeans component model. The presence
of such a BeanInfo is detected through a naming convention by JavaBeans. The usage
of a naming convention, not captured by the UML 2.0 metamodel, creates a dilemma
for the formalization of this metric’s definition: neither the UML 2.0 metamodel in-
cludes structural information on the implicit relationship between a class and its meta-
information, nor OCL has primitives for handling the contents of a string (therefore,
encoding the naming convention detection in standard OCL is not practical).

Two alternatives for enabling the formalization of this metric would be to:

• Extend the UML 2.0 metamodel, to support the concept of the BeanInfo class, and
its relations to other classes in the metamodel.

• Extend the OCL with primitives for handling strings. Such an extension is avail-
able, for instance, in the Together Architect tool, with a set of convenient String
handling functions that can be used seamlessly in the OCL expressions.

For illustration purposes, we include the definition of the EMI metric, using To-
gether Architect’s extended OCL, although the reader should note that this definition

134

4. ONTOLOGY-DRIVEN MEASUREMENT 4.4. The FukaBeans case study

does not adhere to the standard OCL. The OCL extension in Together Architect allows
using string handling functions such as append(...) to collect information about a
string (listing 4.5).

Listing 4.5: EMI formalization in OCL, using Together Architect’s OCL extension.
context Component

-- Existence of Meta -Information

EMI(): Real =

if (Component ->allInstances ->

includes(self.name.append(’BeanInfo ’))) then

1.0

else

0.0

endif

Metric 1.2 (M1.2): Rate of Component Observability (RCO).
The observability of a component depends on the percentage of component proper-
ties that are accessible for reading from outside of the component. There is a tension
between the need to make relevant information available, while keeping a good en-
capsulation level for the component. Providing unnecessary access to properties in-
creases the complexity of the component interface, decreasing its understandability.
Conversely, providing insufficient access to component properties may also decrease
its understandability. RCO of a component c is defined as:

RCO(c) =

{
Pr(c)
A(c) , if A(c)>0

0 , otherwise

where:
Pr(c): number of properties that are accessible for reading in c.
A(c): number of properties in c.

To facilitate the formalization of RCO, we start by defining two auxiliary functions.
A() is the number of accessible properties in a component. Pr() is the number of
properties accessible for reading in the component. Note that Washizaki et al. use
the number of owned operations stereotyped with <<getter>> as a surrogate for the
number of properties. Finally, we define RCO() as a ratio between Pr() and A().

Listing 4.6: RCO formalization in OCL.
context Component

-- Number of Readable Properties

Pr(): Integer =

self.ownedOperation ->select(o: Operation|

o.stereotype = ’getter ’)->size()

-- Number of Properties in the component

A(): Integer =

135

4. ONTOLOGY-DRIVEN MEASUREMENT 4.4. The FukaBeans case study

self.ownedAttribute ->size()

-- Rate of Component Observability

RCO(): Real = if self.A() = 0 then

0.0

else

self.Pr()/self.A()

endif

Metric 2.1 (M2.1): Rate of Component Customizability (RCC).

The percentage of the properties of a component that are available for writing is re-
lated to the customizability of a component. As it happens with the access to readable
properties, it is desirable to achieve a balance between the flexibility offered by the
component in its customization and the effort required from the component user to
parameterize the component. RCC can be defined as follows:

RCC(c) =

{
Pw(c)
A(c) , if A(c)>0

1 , otherwise

where:
Pw(c): number of properties that are accessible for writing in c.
A(c): number of properties in c.

The formalization of this metric uses an auxiliary function, Pw(), that computes the
number of writable properties in the component. These are defined by Washizaki et
al. as the number of setter operations. Of the operations owned by a component, we
select those which are stereotyped with <<setter>> (listing 4.7).

Listing 4.7: RCC formalization in OCL.
context Component

-- Number of Writable Properties

Pw(): Integer =

self.ownedOperation ->select(o: Operation|

o.stereotype = ’setter ’)->size()

-- Rate of Component Customizability

RCC(): Real = if self.A() = 0 then

0.0

else

self.Pw()/self.A()

endif

Metric 3.1 (M3.1): Self-Completeness of Component’s parameters(SCCp).

Portability of components is related to the level of their external dependencies that
result from the parameters available in their business operations. The percentage of

136

4. ONTOLOGY-DRIVEN MEASUREMENT 4.4. The FukaBeans case study

parameters that are used in the component’s business operations that are external to
the component specification provides an indirect measure of the dependency of that
component to other components. Components with too many dependencies may be
less portable than components with fewer dependencies, because they require the in-
direct reuse of more components.

SCCp(c) =

{ Bp(c)
B(c) , if B(c)>0

1 , otherwise

where:
Bp(c): number of business operations with parameters in c.
B(c): number of business operations in c.

In OCL, this can be formalized as in listing 4.8:

Listing 4.8: RCC formalization in OCL.

context Component

-- Set of business methods provided by the component

BusinessMethods(): Set (Operation)=

self.ownedOperation ->select(o: Operation|

(not (o.stereotype = ’constructor ’)) and

(not (o.stereotype = ’getter ’)) and

(not (o.stereotype = ’setter ’)))

-- Number of business methods

B() : Integer =

self.BusinessMethods ->size()

Metric 3.2 (M3.2): Self-Completeness of Component’s return values(SCCr).

Portability of components is related to the level of their external dependencies that
result from the return values of the business operations of the components. The per-
centage of return value types that are used in the component’s business operations
that are external to the component specification provides an indirect measure of the
dependency of that component to other components. Again, components with too
many dependencies may be less portable than components with fewer dependencies,
because they require the indirect reuse of more components.

SCCr(c) =

{
Bv(c)
B(c) , if B(c)>0

1 , otherwise

where:
Bv(c): number of business operations with parameters in c.
B(c): number of business operations in c.

The formalization in OCL is performed in two different classes: Component and

137

4. ONTOLOGY-DRIVEN MEASUREMENT 4.4. The FukaBeans case study

Operation (see listing 4.9).

Listing 4.9: Business methods counting formalization in OCL.
context Component

-- Number of business methods with no return value

Bv(): Integer =

self.BusinessMethods()->select(b: Operation|

b.ReturnTypeName()= ’void ’)->size()

-- Number of business methods with no parameters

Bp(): Integer =

self.BusinessMethods()->select(b: Operation|

b.OwnedParameter()->size() = 0)->size()

The set of operations in listing 4.10 is defined for elements of the type Operation.

Listing 4.10: Auxiliary functions formalization in OCL.
context Operation

-- Set of formal parameters(except return parameter)

Params(): Set(Parameter) =

self.formalParameter ->select(fp: Parameter |

fp.direction <> #return)

-- Set of return parameters of an Operation

ReturnParams(): Set(Parameter) =

self.formalParameter ->select(fp: Parameter |

fp.direction = #return)

-- Return type name of an Operation

ReturnTypeName (): String =

if (self.formalParameter ->

exists(direction = #return))

then if (self.ReturnParams()->asSequence()->

first.type.isDefined)

then

self.ReturnParams()->asSequence()->

first.type.name

else

’void ’

endif

else

’void ’

endif

Dependent variable

The dependent variable in this case study is reusability. It is assumed that all the ele-
ments of our sample exhibit the property of being highly reusable.

138

4. ONTOLOGY-DRIVEN MEASUREMENT 4.4. The FukaBeans case study

So, as the assumption is that all elements in the sample are highly reusable, we will
now formalize the definition of heuristics in OCL, which is used to assess whether or
not a component is highly reusable.

Washizaki et al.’s proposal includes a set of component design heuristics based
on these metrics. Three of the heuristics, from here on referred to as WarningRCO,
WarningRCC, and WarningSCCp, based on the RCO, RCC, and SCCp metrics, respectively,
can be regarded as band-pass filters. They establish low and high thresholds for the
corresponding metrics values. If the metrics values go beyond those thresholds, a de-
sign warning will be triggered.

The WarningSCCr and WarningEMI heuristics are high-pass filters: they define a low
threshold for the metric (SCCr, or EMI, respectively). If the metric value is below this
threshold, a design warning will be triggered, in this case warning of a potential lack
of adaptability (WarningSCCr) or of meta-information (WarningEMI).

To formalize these heuristics, we start by defining the three different heuristics
kinds: low-pass filter (AboveRange), high-pass filter (BelowRange), and band-pass fil-
ter (OutOfRange). We define these functions at the class meta-class, so that we can
reuse them with any model element. In this example, the heuristics that will reuse
these functions are defined upon the Component meta-class (listing 4.11).

Listing 4.11: Heuristics rules formalization in OCL.
context Class

-- High -pass filter

AboveRange (limit: Real , value: Real): Boolean =

value > limit

-- Low-pass filter

BelowRange (limit: Real , value: Real): Boolean =

value < limit

-- Band -pass filter

OutOfRange (lowerLimit: Real , upperLimit: Real ,

value: Real): Boolean =

(self.BelowRange (lowerLimit , value))

or (self.AboveRange (upperLimit , value))

pre: lowerLimit < upperLimit

context Component

-- RCO-based heuristic.

WarningRCO(lowerThreshold: Real ,

upperThreshold: Real): Boolean =

self.OutOfRange (lowerThreshold , upperThreshold ,

self.RCO())

pre: lowerThreshold < upperThreshold

-- RCC-based heuristic.

WarningRCC(lowerThreshold: Real ,

139

4. ONTOLOGY-DRIVEN MEASUREMENT 4.4. The FukaBeans case study

upperThreshold: Real): Boolean =

self.OutOfRange (lowerThreshold , upperThreshold , self.RCC())

pre: lowerThreshold < upperThreshold

-- SCCr -based heuristic.

WarningSCCr(lowerThreshold: Real): Boolean =

self.BelowRange(threshold , self.SCCr())

-- SCCp -based heuristic.

WarningSCCp(lowerThreshold: Real ,

upperThreshold: Real): Boolean =

self.OutOfRange (lowerThreshold , upperThreshold , self.SCCp())

pre: lowerThreshold < upperThreshold

We can now define a DesignWarning heuristic that combines all the others, using
the disjunction operation.

Listing 4.12: Heuristics rules formalization in OCL.

context Component

DesignWarning(

RCO_LL: Real , RCO_UL: Real ,

RCC_LL: Real , RCC_UL: Real ,

SCCp_LL: Real ,

SCCr_LL: Real , SCCp_UL: Real ,

EMI_LL: Real , EMI_UL: Real): Boolean =

(self.WarningRCO(RCO_LL , RCO_UL))

or (self.WarningRCC(RCC_LL , RCC_UL))

or (self.WarningSCCr(SCCr_LL))

or (self.WarningSCCp(SCCp_LL , SCCp_UL))

or (self.WarningEMI(EMI_LL , EMI_UL))

In order to use this heuristic, we have to establish the heuristic’s parameters. These
correspond to the low and high limits of each of the individual heuristics. Table 4.1
presents the thresholds for each of the metrics, taken from the results of the validation
experiment conducted by Washizaki et al. [Washizaki 03]. From left to right, we can
observe the name of the metric, the mean value found in the sample, the lower thresh-
old for each metric, the upper threshold, and the number of components within the
sample that were inside the interval between the lower and upper thresholds. Note
that two of the metrics have 1.00 as their upper threshold. As the metrics on this set
have values in the interval [0.00,1.00], an upper threshold of 1.00 means, in practice,
that the heuristic for the corresponding metric has only a lower threshold (so, we can
think of this as a high-pass filter). The remaining three heuristics use both a low and a
high threshold for their respective metrics (we can think of these metrics as band-pass
filters).

Washizaki et al. computed these limits using a sample of 125 JavaBeans available

140

4. ONTOLOGY-DRIVEN MEASUREMENT 4.4. The FukaBeans case study

Metric Mean Lower limit Upper limit #components
RCO 0.40 0.17 0.42 36
RCC 0.35 0.17 0.34 35
SCCr 0.85 0.61 1.00 108
SCCp 0.74 0.42 0.77 28
EMI 0.84 0.50 1.00 105

Table 4.1: Metrics heuristics thresholds.

from a commercial broker 5. In the component broker web site, components were as-
sessed by a panel of experts that rated the components according to evaluation criteria
such as presentation, functionality and originality. The resulting ranking in the bro-
ker web site was a classification between 0 and 1000 points. Washizaki et al. stipulated
that components with more than 875 points would be classified as "highly reusable"
and then used those components to establish the thresholds presented in table 4.1,
with a degree of confidence of 95%. Concerning the WarningEMI thresholds, note that
EMI can only assume the values 1 or 0. Therefore, the lower limit value could have
been set at any arbitrary value in the interval 0 < threshold < 1. The chosen value was
the middle of that interval (0.50).

When using statistics-based heuristics to assess components, we must stress that
the heuristics only aim to help detecting, with a high probability, the presence of a
problem. We can not ignore that there is a low probability of the problem existing,
even if the metrics values are within the allowed limits of the confidence intervals.
Conversely, there is also a low probability of a high quality component presenting
metrics values that suggest it has a poor quality. This concern is typical from statistics-
based approaches to assessment, and is usually referred to type I errors (also known
as false positives) and type II errors (false negatives), respectively.

Design

In this case study, we will use a single group of subjects (the components) and a single
observation. The assumption is that all the subjects of the sample share a property
(high reusability)6.

Procedure

As discussed earlier, it is important to have an automated collection of metrics. The
tool requirements for the application of ODM with UML 2.0 are as follows:

• the tool should provide full UML 2.0 modeling capabilities;

5http://www.jars.com/
6Note that, for a more thorough cross-validation effort, a more sophisticated experiment design

should be used. However, in this chapter, we are mostly concerned with putting ODM in the context of
the experimental process described in chapter 3, so we decided to keep the case study very simple.

141

http://www.jars.com/

4. ONTOLOGY-DRIVEN MEASUREMENT 4.4. The FukaBeans case study

• the tool should use the complete UML 2.0 metamodel as its underlying model.
In other words, the tool’s repository should be UML 2.0 compliant. This implies
that models (M1) would be stored as metamodel (M2) instances;

• The tool should provide the ability of computing the values of OCL expressions
at the metamodel level (M2), as well as at lower levels.

To the best of our knowledge, no current tool completely supports all these features.
Some of the tools that support OCL expressions specification and computation allow
writing those expressions upon a specific model, rather than at the metamodel level
(e.g. OCLE7). Others allow using those expressions on its metamodel, as well (e.g.
Together Architect), but use a non-standard metamodel. It is common for tools to
use a simplified version of the UML metamodel, rather than its full specification, as
the tool’s repository model. The implication of the usage of these specifications is that
even if OCL expressions can be written and evaluated at the metamodel level, the
metamodel itself is non-standard, making the OCL expressions invalid for the specific
metamodels used by other tools.

In this case study, we opted for the usage of a collection of tools that mixes off-
the-shelf tools with custom made ones. The architecture is depicted in figure 4.9. The
XMI front-end is a custom-made tool that transforms UML models in XMI in USE
models (providing the meta-classes) and USE instantiation scripts (providing the meta-
objects). The UML metamodel may be obtained from the OMG web site 8, while the
XMI for the component assembly specification (which, in this case, contains the speci-
fication of the JavaBeans components) can be generated with a UML 2.0 tool with Jav-
aBeans reverse engineering to UML, and XMI generation from a loaded model. The
USE tool 9 [Richters 01] is loaded with the metamodel, the metrics definitions, the OCL
heuristics specification, and the meta-objects representing the JavaBeans. OCL queries
performed upon these meta-objects produce the metrics and heuristics results, which
can be stored in text files, for further analysis by the researcher. In particular, these text
files can be generated as Comma Separated Values (CSV) files, which are convenient if
we want to import them and perform further analysis using a spreadsheet, or a more
sophisticated statistics tool.

Analysis procedure

As the main purpose of this case study is to illustrate ODM, and how it can fit into the
experimental process described in chapter 3, rather than the independent validation of
the quality model and metrics, we used a fairly small sample of components and will
only make a relatively simple analysis on some descriptive statistics collected from
this sample. Although more powerful statistics could be used, the characteristics of

7http://lci.cs.ubbcluj.ro/ocle/index.htm
8http://omg.org/cgi-bin/doc?ptc/04-10-05.zip
9http://www.db.informatik.uni-bremen.de/projects/USE/

142

http://lci.cs.ubbcluj.ro/ocle/index.htm
http://omg.org/cgi-bin/doc?ptc/04-10-05.zip
http://www.db.informatik.uni-bremen.de/projects/USE/

4. ONTOLOGY-DRIVEN MEASUREMENT 4.4. The FukaBeans case study

Figure 4.9: Data collection and analysis

the sample would create several threats to the validity of the results. We will make an
analysis concerning how well the scrutinized components behave, with respect to the
heuristics specified earlier in this chapter.

4.4.4 Execution

Sample

We used the metrics set with the FukaBeans component library [Fukazawa 03], a pub-
lic domain JavaBeans library developed, with educational purposes, by members of
Washizaki’s research team. Each component is distributed as a separate jar archive.
The sample includes 12 components.

Preparation

No special preparations were required, other than downloading the JavaBeans. The jar
archives were analyzed as they were, without transformations.

Data collection performed

The data collection followed the plan outlined in the previous sub-section (more specif-
ically, in the Procedure sub-sub-section).

143

4. ONTOLOGY-DRIVEN MEASUREMENT 4.4. The FukaBeans case study

4.4.5 Analysis

Descriptive statistics

Table 4.2 presents the metrics results, excluding the EMI metric10 The values in bold
represent violations to the previously defined thresholds. The table also includes the
mean value and standard deviation for each of the metrics, in the bottom.

JavaBean RCO RCC SCCr SCCp
CellBean 0,037 0,111 0,909 0,818
FileUtil 1,000 0,667 1,000 1,000
FilterBean 0,267 0,133 0,933 0,200
FukaCalendarBean 0,444 0,444 0,857 0,571
FukaGraphBean 1,000 1,000 1,000 0,733
FukaStopWatchBean 0,667 0,667 1,000 0,200
FukaTextBean 0,000 0,000 1,000 1,000
GameBean 0,250 0,250 1,000 0,556
GraphBean 0,182 0,273 1,000 0,714
StatementBean 0,667 0,667 0,500 0,500
DocumentBean2 0,000 0,000 1,000 1,000
WordBean2 0,000 0,000 1,000 1,000
Mean 0,376 0,351 0,933 0,691
Std.Dev. 0,376 0,333 0,145 0,294

Table 4.2: Metrics collected on the FukaBeans component library.

Although the average values for the metrics are within the quality intervals estab-
lished by Washizaki et al., only two of the components (GameBean and GraphBean) com-
ply with all the quality heuristics. 7 out of the 12 assessed components were signaled
by 3 out of the 4 used heuristics.

In table 4.1 we presented the heuristics thresholds. Then, in table 4.2 we presented
the metrics values, collected from the FukaBeans components.

An alternative form of presenting this data is to have a graphical representation
of the heuristics, using a Kiviat diagram, such as the one presented in figure 4.10. To
avoid cluttering the diagram, we only present two of the components (CellBean and
FukaCalendarBean), along with the low and high thresholds.

This kind of visualization provides a faster (and simpler) way to convey the in-
formation to practitioners developing components, by highlighting potential areas for
improving their components (through the values which are out of the recommended
boundaries).

10EMI was not collected, because we decided to use just the standard OCL in this metrics collection,
rather than any custom-made extension, such as the one available in Together Architect, and discussed
earlier in this chapter, while introducing the EMI metric.

144

4. ONTOLOGY-DRIVEN MEASUREMENT 4.4. The FukaBeans case study

Figure 4.10: Quality model thresholds Kiviat diagram

Data set reduction

No components were removed from the sample.

Hypothesis testing

As discussed in the beginning of sub-section 4.4.5, we did not carry out a statistical
test of hypotheses in this case study, as the sample is too small for the results to be
meaningful.

4.4.6 Interpretation

Evaluation of results and implications

It may seem surprising that most of the components in a library developed by the
metrics proponents fail to meet the thresholds included in the metrics set proposal.
The thresholds used in this case study were derived from a sample of a population
frame which consisted of COTS components. The sample used here includes com-
ponents developed for educational purposes, with a typically low complexity (their
implementation has less than 10 methods). The apparent lack of reusability of most
of the components, according to the heuristics, clashes with the expectation that com-
ponents developed with educational purposes would be well designed, to foster the
utilization of component development best practices by students.

Threats to validity

Perhaps the major threat to the validity of this case study concerns the characteristics
of the used sample, and their implications on the kind of statistical analysis that would

145

4. ONTOLOGY-DRIVEN MEASUREMENT 4.4. The FukaBeans case study

make sense to perform. With only 12 components to be analyzed, it is dangerous to
extrapolate definitive conclusions from this case study.

Another issue concerns the single group, single observation design of this replica-
tion. All subjects are assumed to be of a high reusability, which makes it impossible
to test whether or not components with a low reusability would also meet the quality
thresholds of Washizaki et al.’s quality model.

Inferences

The identified threats to the validity of the case study do not imply that the effort of
conducting exploratory case studies such as this one is fruitless. It is beyond the scope
of this dissertation to conduct a comprehensive effort for the validation of this quality
model and metrics set. With all the care that must be taken when inferencing based on
an exploratory case study, the one described in this chapter does point to a potential
problem in this metrics set and its underlying quality model, concerning the thresholds
proposed by Washizaki et al..

When experimentally validating statistical models, one should cover, not necessar-
ily on a single experiment, both the internal and the external consistency of those
models.

Internal consistency relates to the mathematical correctness of the statements in the
model being validated. A set of inputs are collected from the system represented by
the model, along with relevant information on the assumptions made about the system
elements. The model allows computing a set of outputs representing the predicted
behavior of the system being modeled. In an internally consistent model, the outputs
are valid if the inputs are also valid.

A model exhibits external consistency if information collected from it is not contra-
dicted by other information observed in practice. This relates to the applicability of the
model, as it focuses on the extent to which the assumptions made in the model apply
beyond the scope of from which the model was delivered.

In our exploratory case study, we noted that the number of methods defined in each
of the components is fairly low. It is common to develop toy examples to illustrate
techniques, in an academic context. The analyzed metrics are defined as ratios. The
small number of elements in their computation may be regarded as a fragility of this
heuristics-based quality model. Indeed, the standard deviation of the values for some
of the metrics (most noticeably RCO) was very high. In contrast, the heuristics were
computed with a larger sample of commercial components. Those COTS components
were likely to have a higher complexity.

This observation suggests that if the FukaBeans are reusable, in spite of violating
some of the reusability heuristics, this may indicate a lack of external consistency of
the reusability model proposed by Washizaki et al. Of course, further validation of this
observation is sought.

146

4. ONTOLOGY-DRIVEN MEASUREMENT 4.4. The FukaBeans case study

Lessons learned

We can organize the discussion of lessons learned in this case study around two main
subjects: the formalization of the metrics set, and the limitations of scope of this metrics
set which were identified while conducting this case study.

The original metrics definition is ambiguous in what concerns inheritance. It is un-
clear how inherited features (methods and attributes) should be accounted for. Our
formalization only uses the directly defined features. While for this particular sam-
ple of components this is not a problematic issue, it is possible to define hierarchies
of object-oriented components where this option would have an influence on the met-
rics values. The shortcoming of the original definition is that we were left with the
decision of whether or not we should include inherited methods. Different external
validation efforts lead by different research teams could have chosen to use also the
indirectly available features. This would severely damage the comparability of results,
particularly if their option was not made clear in the experiment report.

The original definitions of the metrics raise another, more subtle issue. Whenever
defining the ratio metrics, Washizaki et al. specified, in an arbitrary fashion, the metrics
results for those components with no accessible properties (in RCO and RCC) or no busi-
ness operations (in SCCp and SCCr). For instance, in the absence of accessible properties,
RCC equals 1. In other words, the rate of component customizability is maximum. All
the 0 (zero) accessible properties are writable. Conversely, one could also say that none
of the 0 accessible properties were writable. A similar argument can be made for each
of the ratios, although the chosen value in each case varies. This issue could have
been better dealt with by clearly specifying that the metrics RCO and RCC would only be
applicable when the pre-condition A > 0 holds. Similarly, the metrics SCCp and SCCr

would only be applicable when B > 0 holds. The improved definitions in OCL would
be as presented in listing 4.13.

Listing 4.13: Defining pre-conditions for metrics definitions, in OCL.
context Component

RCO(): Real = self.Pr()/self.A()

pre: self.A() > 0

RCC(): Real = self.Pw()/self.A()

pre: self.A() > 0

SCCp(): Real = self.Bv()/self.B()

pre: self.B() > 0

SCCr(): Real = self.Bp()/self.B()

pre: self.B() > 0

Concerning the limitations of scope of Washizaki et al.’s metrics set, the metrics
were designed to assess reusability of fine grained components (JavaBeans) through

147

4. ONTOLOGY-DRIVEN MEASUREMENT 4.4. The FukaBeans case study

the analysis of their interface complexity. This limits somewhat the scope of model ele-
ments being analyzed. UML architectural components have a much richer expressive-
ness than the one used in these metrics, which leaves out important model elements
such as the provided and required interfaces, as well as the events the component may
produce or consume.

Another possible concern relates to the complexity associated with parameter types
in the evaluation of the complexity of method interfaces. The metrics just count the
number of parameters, thus being blind to parameter type repetition and parameter
type complexity. For instance, a method with N parameters of distinct types is intu-
itively more complex than another method with N parameters of the same type. Also,
arguments of atomic types (e.g. Integer, Real or Boolean) are intuitively less complex
than those of a composed type.

4.4.7 Case study’s conclusions and further work

The cross validation of software metrics and quality models is an essential step toward
their promotion and subsequent adoption by practitioners. As we have seen in chapter
2, the current state of the art concerning metrics for CBD clearly shows a lack of vali-
dation of metrics proposals, not only by their authors, but also, and more importantly,
by their peers.

Although it can be argued that most of the proposals are fairly recent, our experi-
ence in the area of experimental software engineering lead us to think that there are a
few shortcomings hampering the independent collection and cross-validation of most
software metrics: either the ambiguity in their definition, when an informal metrics
definition technique is used, or the usage of formal definitions using a formalism that
is not easy to grasp by practitioners. Furthermore, the lack of availability of adequate
tool support for metrics collection is also a common problem.

ODM has helped us overcoming these problems in an elegant and sound way. Us-
ing OCL upon the UML 2.0 metamodel, we have metrics definitions which are formally
defined, and can be directly used to support the metrics collection, as long as a UML
tool with OCL support is used.

Our concern in using standard notations and technologies with a wide adoption
by practitioners aims at bridging the traditional gap between research and industry.
ODM can be fully integrated in the normal software development process. We regard
this as an enabling condition for its widespread adoption.

By facilitating the independent replication of metrics validation efforts, we are pro-
viding an essential support for the adoption of the experimental approach advocated
in chapter 3. This replication is essential so that independent teams can conduct their
own validation efforts, each mitigating its own set of threats to validity. Hopefully, the
independent validation efforts will cover, as a whole, the most important threats. In
contrast, a validation performed by a single team, even if with replications, is more

148

4. ONTOLOGY-DRIVEN MEASUREMENT 4.5. Related work

prone to repeat validity threats that may result from that team’s own biases.

With respect to the results of this independent validation effort, we identified a po-
tential model calibration problem. Our results suggest that the model is not accurate
for very fine-grained components. Further differentiated replications should be per-
formed to confirm, or deny, this observation. In particular, it would be interesting to
contrast highly reusable components with components that are of a lower quality, so
that the heuristics-based quality model proposed by Washizaki et al. can be fine tuned,
if necessary.

4.5 Related work

4.5.1 ODM applications to other domains

Object oriented design metrics

These metrics fall in the category of metrics covered by M2DM. M2DM was origi-
nally proposed to support the specification and collection of metrics for object-oriented
design [Abreu 01b, Abreu 01a] and was used in the formalization of several object-
oriented design metrics suites [Baroni 02b, Baroni 03, Baroni 02a]. Although the first
metrics formalizations used a metamodel that was based on a research object-oriented
design language called GOODLY [Abreu 99], the approach was subsequently ported
with success to the UML 1.* metamodel.

M2DM was recently adopted in industry by a UML tool producer11 to add the
capability of metrics collection to a UML tool. The tool uses a simplified version of a
subset of the UML 2.0 metamodel as a base metamodel upon which OCL expressions
are used to support metrics collection.

Object-relational database metrics

The usage of different metamodels for the collection of object-oriented design metrics
is an instance of a more general property of M2DM (and, consequently, of ODM). The
approach is generic in what concerns the domain of application. It has been used to
define, collect, and use metrics on other domains, such as that of relational databases
[Baroni 05b, Baroni 05a, Calero 05].

Component-based development metrics

In the scope of the work described this dissertation, we use ODM in essentially two
different contexts: for process metrics, collected during the development of software

11Borland, (http://www.borland.com/), with its Together Architect 2006. The tool uses OCL de-
fined metrics to support heuristic assessment on models. The base metrics set is open, so that users may
add new metrics and their corresponding heuristics.

149

http://www.borland.com/

4. ONTOLOGY-DRIVEN MEASUREMENT 4.6. Conclusions

components, and for metrics collected on existing component-based systems. The for-
mer usage will be presented in detail on chapter 6.

The latter was used in metrics formalization and collection for different types of
component technologies (each corresponding to a specific metamodel). We collected
metrics on JavaBeans, using the UML 2.0 metamodel, as shown in this chapter, and also
on [Goulão 04b, Goulão 04c, Goulão 04a, Goulão 05c]. Corba Components, using the
CCM metamodel [Goulão 05b] and component assemblies, using an extended version
of the CCM metamodel [Goulão 05a], were also used to explore the versatility of the
ODM approach, as we will discuss in chapter 5. Finally, we will use ODM on Eclipse
plug-ins, using a metamodel developed for this purpose as the ontology, in chapter 7.

4.6 Conclusions

In this chapter, we presented a metrics formalization and collection technique called
Ontology-Driven Measurement (ODM). We exemplified how metrics can be formally
defined upon an ontology (in this case, a metamodel), and how they can be computed.
Then, we presented an exploratory case study concerning the independent validation
of a metrics set and its underlying quality model, proposed by Washizaki et al. for
assessing the reusability of JavaBeans. We tested a set of components developed by
Washizaki’s team, for educational purposes, against the set of heuristics proposed in
their quality model. The results suggest that the heuristics-based quality model may
require some calibration, when used with fine-grained components. Perhaps more
importantly, at least for the purposes of this dissertation, this exploratory case study
was used as a pretext for exercising ODM in the context of software component design
analysis. The techniques introduced in this chapter will be further explored in the
following chapters.

150

Chapter 5

ODM expressiveness assessment

Contents
5.1 Introduction . 152

5.2 A component assembly toy example . 152

5.3 Informal description of structural metrics 157

5.4 Metrics definition formalization . 168

5.5 Comments on the metrics’ definitions 185

5.6 On the complexity of metamodels . 190

5.7 Conclusions . 191

Background: If we are to adopt ODM as a metrics definition technique for CBD, it is
important to explore the expressiveness of this approach in the context of CBD.
Objective: Our goal is to assess the expressiveness of component metamodels in met-
rics formalization, illustrating both the flexibility of ODM and how some common
difficulties relating to that expressiveness can be circumvented.
Method: We present the definitions of metrics sets, proposed by several authors, to
cover different aspects of component interaction. We formalize those metrics using the
UML 2.0 and CCM 3.0 metamodels. We assess the formalization exercise.
Results: Metrics formalization facilitates the identification of shortcomings of the orig-
inal metrics definitions. We also identify some limitations in the UML 2.0 and CCM 3.0
metamodels, and propose metamodel extensions to solve them.
Limitations: There are other component models, each with its own constructs, which
could have been used in this formalization exercise. A possible extension to this work
would be to repeat this formalization with such models.
Conclusions: The formal definition of metrics exposes several shortcomings of their
“traditional” definitions, and illustrates the expressiveness and flexibility of the ODM
approach using different metamodels.

151

5. ODM EXPRESSIVENESS ASSESSMENT 5.1. Introduction

5.1 Introduction

In the previous chapter we introduced ODM as a rigorous approach to the specification
and computation of software metrics. We illustrated the ODM approach by specifying
and collecting metrics defined on the interfaces of JavaBeans. The metrics were for-
malized using OCL expressions upon the UML 2.0 metamodel. The metrics set used
in chapter 4 is a typical example of a set of product metrics defined upon software ar-
tifacts (in chapter 4’s case, class diagrams obtained by reverse-engineering the source
code of the JavaBeans).

In this chapter we will explore the expressiveness of the ODM approach in the
context of CBD. While on the previous chapter the UML 2.0 was used as a metamodel
for metrics definition, in this chapter we will show how different metamodels can be
used to specify and collect the same metrics.

The focus of this chapter is on the expressiveness of the ODM approach and its suit-
ability to metrics definition in different contexts, rather than on the the usefulness of
each of the defined metrics. Such usefulness can only be assessed through experimen-
tation. Experimentation in CBD will be the focus of chapters 6 and 7.

This chapter is organized as follows: we start by introducing a toy example using
both the UML 2.0 and the CCM 3.0 as the specification notations. Then, we informally
describe a set of metrics for software components, which includes metrics proposed
by several authors. Our presentation of these metrics uses their original specification
notations, and highlights the shortcomings of such notations. We use the toy model
to illustrate the computation of the presented metrics. The metrics are then formal-
ized using the ODM approach, both upon the UML 2.0 metamodel and the CCM 3.0
metamodel. The limitations of these metamodels for the purposes of our formalization
effort are discussed, as well as proposals to solve the identified problems. The chap-
ter ends with a discussion on the evolution of the complexity of metamodels and its
impact on the usability of the ODM approach.

5.2 A component assembly toy example

Consider a car company that is specifying the information display system for several
car models. The company plans to use a wide range of features from the basic speed,
engine rotation, and temperature indicators to parking cameras, a GPS system, and
so on. Our example will cover three different models, from the low to the high end
version of a information display system.

5.2.1 Structural model in UML 2.0

Our example will be presented in UML using component diagrams, one for each of the
three component assemblies that correspond to the three car models. Before describing

152

5. ODM EXPRESSIVENESS ASSESSMENT 5.2. A component assembly toy example

in some detail the different component assemblies, we start by a quick remark on nota-
tion. In these component diagrams, some interfaces are decorated with the <<event>>

stereotype, to represent produced and consumed events. So, for example, in compo-
nent assembly A (5.1), Clock produces a TimerTick event which is then consumed by
the LED_Display and the Engine components. Other specification formalisms, such as
the CCM have specific model elements for expressing this concept, but that is not the
case with UML 2.0.

Figures 5.1 through 5.3 present the configurations used, from the lower-end car
model, to the higher-end one.

Assembly A (figure 5.1) uses a LED (Light-Emitting Diode) display, with the typical
instruments of a car: a velocimeter, a fuel gauge, a coolant temperature gauge, engine
warning lights, and a clock. To keep our example small and simple we will assume
that:

• there is a Clock component providing all the time information required by the
assembly;

• the Engine component wraps all the car engine diagnosis instruments;

• these components neither provide, nor require, any additional interfaces, other
than those presented here.

Figure 5.1: Low-end car model configuration (assembly A)

Assembly B (figure 5.2) is similar to assembly A, except for the display component.
Rather than a LED-based instrument panel, assembly B uses a colored TFT LCD(Thin
Film Transistor Liquid Crystal Display) video display. All the information made avail-
able to the LED-based instrument panel can also be displayed with the video display.
However, the video display has a higher flexibility with respect to the information it
can present. It can be connected to a GPS (Global Positioning System) device, through
its required Location interface, to an external device, such as a DVD (Digital Versatile
Disc) player, through the ExternalDevice interface, to a Terra Trip device (a device
often used in vehicles to allow a detailed registration of distances traveled by the vehi-
cle during all-terrain competitions), through the TerraTrip interface, and to a parking
camera (used to help parking the car, through the Camera interface. In assembly B,

153

5. ODM EXPRESSIVENESS ASSESSMENT 5.2. A component assembly toy example

although the video display supports all the above mentioned interfaces, it keeps on
using only the same sources of information as in assembly A.

Figure 5.2: Middle-range car model configuration (assembly B)

Assembly C (figure 5.3) keeps the characteristics of assembly B, and adds to them
the usage of some of the devices which can be plugged in the Video_Display compo-
nent. In particular, it integrates a GPS device, as well as a parking camera.

Figure 5.3: High-end car model configuration (assembly C)

Figure 5.4 presents the interfaces used in our car model examples. The details of
these interfaces, concerning how adequate they would be in reality, are not particularly
relevant for our discussion, as we are only interested in measuring some properties of
those interfaces.

The TimerTick interface only has one method, and is used for the sake of the Clock

component firing a timing event to be consumed by other components. The Time in-
terface has a set of typical operations on a data type representing time in terms of

154

5. ODM EXPRESSIVENESS ASSESSMENT 5.2. A component assembly toy example

year, month, day, hours, minutes and seconds. The Diagnostics interface condenses
the information made available by the car engine, such as current speed, engine ro-
tations, oil level, temperature and remaining fuel. The Location interface is used for
geo-referential information. The Camera interface is used for video streaming, so that a
parking camera can be connected to the vehicle and the images captured by the camera
can be displayed to the driver. The ExternalDevice interface extends the basic Camera
interface with the operations required for video playback. Finally, the TerraTrip inter-
face allows the connection of a Terra Trip device.

Figure 5.4: Interfaces used in our car example

5.2.2 Structural model, in CCM

Figures 5.5 through 5.7 present the component assemblies of our three different car
models. With the exception of a few notation details, when compared to their UML 2.0
counterparts, they are essentially similar. Note that, unlike what happens with UML
2.0, the CCM has a specific notation for representing events in these diagrams.

Figure 5.5: Low-end car model assembly, in CCM

155

5. ODM EXPRESSIVENESS ASSESSMENT 5.2. A component assembly toy example

Figure 5.6: Middle-end car model assembly, in CCM

Figure 5.7: High-end car model assembly, in CCM

In this component model, the interfaces are defined using a Common Interface
Description Language (CIDL). Listing 5.1 presents the definition of the ICamera in-
terface, for illustration purposes. All these interfaces are essentially similar, in what
concerns their signature, to those presented earlier for this example in UML 2.0 (see
figure 5.4). As with the UML 2.0 assembly description, the existence of an Image type
is assumed, rather than modeled here.

Listing 5.1: ICamera interface, in CIDL.
interface ICamera {

void setFrameRate(in int fr);

void setHRes(in int res);

void setVRes(in int res);

int getFrameRate();

int getHRes();

int getFrameRate();

Image getCurrentFrame();

}

5.2.3 Concerns addressed in our example

In this example, we address two concerns:

156

5. ODM EXPRESSIVENESS ASSESSMENT 5.3. Informal description of structural metrics

• In component-based development, available components often do not exactly
match the requirements they are to fulfill, either because they lack functionality,
or because they have functionalities that are not used by the assembly they are
put into. The question we will try to answer is how well do the components fit
into the component assembly, with respect to the actual usage of their interfaces.

• The complexity of interfaces, either provided or required, varies significantly.
This may have an impact in the usability of components, from the component in-
tegrator’s point of view. An over-simplistic interface may be easy to understand
and use, but lacks the flexibility for allowing a high level of customizability of
the component. Conversely, a complex interface may provide that flexibility at
the expense of the interface’s understandability.

The architectural mismatches between available and required resources may result
in two kinds of problems:

• The functionalities required by the components will not be fully available. In
our example, this is mostly noticeable in assembly B, where the video display
supports several other devices, which are not present in this assembly.

• Some functionalities provided by the components in this assembly are not used.
If these components were not to be reused in other assemblies, this would imply
that effort would have been spent in the developed of unused functionalities. In
our examples, all provided interfaces are required by at least one component.

With respect to the complexity of the interfaces, we deliberately kept them fairly
simple, to facilitate comparison. We used an inconsistent naming policy in one of
the interfaces (Time) by using different names for, essentially, the same arguments.
As such, day, month, and year, in the setCurrentDate method correspond to newDay,
newMonth, and newYear, in setDay, setMonth, and setYear, respectively. This will allow
us to explore how one of the metrics used in this chapter can help developers to detect
such inconsistencies.

5.3 Informal description of structural metrics

In this section, we briefly present the product metrics to be formalized using different
component metamodels. For the sake of uniformity, we follow a similar pattern for
each metric, or group of related metrics. We start by presenting their name and orig-
inal specification, keeping the notation used by their proponents, thus illustrating the
variability of notations commonly used in metrics definitions. Then, we present the
metric’s rationale, in their proponents’ view. These are followed by considerations and
assumptions that will be made during the formalization process of the metric in OCL,

157

5. ODM EXPRESSIVENESS ASSESSMENT 5.3. Informal description of structural metrics

whenever there is information which is missing, or unclear, in the metrics’ informal
specifications.

We start by presenting component metrics which are collected on individual com-
ponents, regardless of their usage in any given component assembly. These in-
clude proposals by Boxall and Araban [Boxall 04], Narasimhan and Hendradjaya
[Narasimhan 04], and Goulão and Brito e Abreu [Goulão 05b].

We also present proposals to assess the fitness of components in a specific archi-
tecture, by Hoek et al. [Hoek 03], and Narasimhan and Hendradjaya [Narasimhan 04].
These metrics are context specific, in the sense that the same component will have a
different metric value depending on the assembly where it is being integrated. While
some of the context specific metrics are aimed at individual components, with respect
to their integration in the assembly, others are measured for the whole component as-
sembly.

5.3.1 Component metrics

Component interface complexity assessment [Boxall 04]

The metrics presented in this section aim to assess the understandability of a com-
ponent interface. Boxall and Araban assume that understandability has a positive
influence on the reusability of software components. As such, a higher understand-
ability leads to a higher reusability of the components.

Original specification:

Arguments Per Procedure (APP) represents the average number of arguments in
publicly declared procedures (within the interface), and is defined in Eq. 5.1.

APP =
na

np
(5.1)

where:
na = number of arguments on the publicly declared procedures
np = number of publicly declared procedures

The Distinct Argument Count(DAC) represents the number of distinct arguments
in publicly declared procedures and is defined in Eq. 5.2. The Distinct Arguments
Ratio (DAR) represents DAC’s percentage on the component interface and is defined
in (Eq. 5.3).

DAC = |A| (5.2)

158

5. ODM EXPRESSIVENESS ASSESSMENT 5.3. Informal description of structural metrics

where:
A = set of the < name, type > pairs representing arguments in the publicly declared
procedures
|A| = cardinality of the A set.

DAR =
DAC
na

(5.3)

The Arguments Repetitiveness Scale (ARS) aims to account for the repetitiveness
of arguments in a component’s interface (Eq. 5.4). In other words, it is used for mea-
suring the consistency of the naming and typing of arguments within the publicly de-
clared procedures of an operation.

ARS = ∑ a∈A |a|2

na
(5.4)

where:
|a| = count of procedures in which argument name-type a is used in the interface

Rationale:

The rationale for the DAC metric is that humans have a limited capacity of receiv-
ing, processing, and remembering information [Miller 56]. The number of information
chunks in the procedure definition (in this case, its arguments) should be limited. Box-
all and Araban suggest that an increased number of arguments reduces the interface’s
understandability and, therefore, its reusability.

The rationale for the DAR metric is that the repetitiveness of arguments increases
the interface’s understandability, and, therefore, the component’s reusability. Accord-
ing to Boxall and Araban, |a| is squared in this definition to create a bias that favors
consistent arguments definitions in the interface. Boxall and Araban also claim that
interfaces with a higher ARS “will tend to be dominated by fewer distinct arguments which
are repeated more often”.

DAC is influenced by the adoption of a consistent naming convention for argu-
ments in the operations provided by a component. If the same argument is passed
over and over to the component’s operations, the effort required for understanding it
for the first time is saved in that argument’s repetitions throughout the interface. The
smaller the number of distinct arguments a component user has to understand, the
better. Likewise, a lower DAR leads to a higher understandability. However, unlike
DAC, DAR is immune to the size of the interface, because its value corresponds to
DAC, when normalized by na.

159

5. ODM EXPRESSIVENESS ASSESSMENT 5.3. Informal description of structural metrics

Comments:
The original proposal of the APP metric uses C/C++ component interfaces to illus-

trate the metric definition. Overloaded and overridden operations are referred to in
the definition, but not inherited ones. We assume them to be outside the scope of this
metric. If the component is implemented in an OO language, all public and protected
OO methods should be counted, but not the private ones, as these will be invisible to
component users. APP’s definition assumes a single, or at least unified, interface for
the component. As seen in our example, components may provide or require more
than one interface. As each interface has a set of operations, we can consider the “uni-
fied interface” as the result of the union of the interfaces. We will also assume that
the operation names will be qualified by the interfaces they belong to, so that opera-
tions with a similar signature owned by different interfaces are counted as different
operations, rather than the same.

In the DAC metric definition, Boxall and Araban consider a parameter as a dupli-
cate of another if the pair < name, type > is repeated in different operation signatures.
The same holds for the definitions of DAR and ARS.

Component internal complexity [Narasimhan 04]

Original specification:
The Component Packing Density (CPD) was proposed by Narasimhan and Hen-

dradjaya and aims at assessing the complexity of a component, with respect to the
usage of a given mechanism. CPD represents the average number of constituents of a
given type (e.g. lines of code, interfaces, classes, modules) in a component (Eq. 5.5).

CPDconstituent_type =
] < constituent_type >

]components
(5.5)

where:
constituent_type = type of the constituents whose density is being assessed
] < constituent_type > = number of elements of constituent_type in the assembly
]components = number of components in the assembly

Rationale:
A higher density indicates a higher complexity of the component, thus requiring,

as Narasimhan and Hendradjaya suggested, a more thorough impact analysis and
risk assessment.

Comments:
CPD can be defined for a multitude of different constituents, but most of those

suggested by Narasimhan and Hendradjaya are not available for users of black-box
components. For illustration purposes only, we will assume the operations in all pro-

160

5. ODM EXPRESSIVENESS ASSESSMENT 5.3. Informal description of structural metrics

vided interfaces as the constituents of a component, in our formalization.

Component communication [Goulão 05b]

The metrics presented so far in this chapter focus mainly on the provided interfaces
of components, and the operations defined there. In what concerns their definition,
adapting these metrics to the required interfaces of components would be straightfor-
ward. The ODM can also be used on other items of a component interface, such as
events. Although there is no direct support for representing produced and consumed
events in the UML 2.0, these can be suitably represented in other notations, such as
the CCM. Furthermore, the UML lightweight extension mechanism (stereotypes) can
be used to circumvent this limitation of the standard metamodel.

Original specification:

We can define Event Fan-In (EFI) to measure the number of provided events. In
some metamodels, such as the CCM metamodel, these events are either emitted or
published by a component 1. Event Fan-Out (EFO) represents the number of events
consumed by the component.

The paper in which we proposed both metrics [Goulão 05b] was dedi-
cated to metrics defined upon CCM. EFI and EFO are defined as operations
of the ComponentDef meta-class. The definitions rely on auxiliary operations
PublishesCount(), EmitsCount(), and ConsumesCount(), also defined upon the same
meta-class. For this initial presentation of the metrics, we will omit the auxiliary op-
erations, and just leave the metrics definitions. Later, when presenting the formal def-
initions for all the metrics presented in this chapter, we will revisit these definitions
and complete them with all the necessary auxiliary operations. Listing 5.2 presents the
defintions of EFI() and EFO().

Listing 5.2: The EFI and EFO metrics.

context ComponentDef

EFI(): Integer = self.PublishesCount() + self.EmitsCount()

EFO(): Integer = self.ConsumesCount()

Rationale:

For EFI and EFO, the understandability of the component interaction with other com-
ponents gets lower as the number of events gets higher. In other words, a higher com-
plexity leads to a lower understandability.

1The distinction between emitted and published events is not present in all component models. This
distinction is used in the CCM, for instance, but not in our extension of the UML 2.0 metamodel, where
we will simply consider events as either provided or required (just like interfaces). A publisher com-
ponent is an exclusive provider of an event, while an emitter shares an event channel with other event
sources. In any case, components may subscribe to that event channel, to receive the events notifications.

161

5. ODM EXPRESSIVENESS ASSESSMENT 5.3. Informal description of structural metrics

Comments:
Events are not supported by all the component models currently available. There-

fore, these metrics will not be available for component models that do not support their
underlying model elements, either directly (as it happens with the CCM), or indirectly
(as in UML 2.0, through the usage of stereotypes).

5.3.2 Assembly-dependent component metrics

Component service utilization metrics [Hoek 03]

Original specification:
The Provided Services Utilization (PSU) represents the ratio of services provided by
the component which are actually used (Eq. 5.6).

PSUX =
Pactual

Ptotal
(5.6)

where:
Pactual = number of services provided by component X that are actually used by other
components
Ptotal = number of services provided by component X

The Required Services Utilization (RSU) is similar, but for required services (5.7).

RSUX =
Ractual

Rtotal
(5.7)

where:
Ractual = number of services required by component X that are actually provided by
the assembly
Rtotal = number of services required by component X

Both PSU and RSU are measured for each component. The Compound Provided
Service Utilization (CPSU) and the Compound Required Service Utilization (CSRU)
metrics can be informally defined as the ratio of services provided by components
that are actually used by the component assembly (Eq. 5.8), and the ratio of services
required by the components that are actually provided by the component assembly
(Eq. 5.9), respectively.

CPSU =
∑

n
i=1 Pi

actual

∑
n
i=1 Pi

total
(5.8)

162

5. ODM EXPRESSIVENESS ASSESSMENT 5.3. Informal description of structural metrics

where:
Pi

actual = number of services provided by component i that are actually used by other
components
Pi

total = number of services provided by component i

CRSU =
∑

n
i=1 Ri

actual

∑
n
i=1 Ri

total
(5.9)

where:
Ri

actual = number of services required by component i that are actually provided by the
assembly
Ri

total = number of services required by component i

Rationale:

PSU denotes the extent to which the assembly uses the services provided by the
component. A low value of PSU may occur if a component was built for reuse in
several contexts, thus providing several services for component reusers to choose from.
The downside is that this also means that the component carries a large amount of extra
functionality that is not required by the assembly.

RSU denotes the extent to which a component requires services that are available
in the component assembly. Ideally, RSU’s value should be 1, meaning that all the
required services are available, but this is not always the case. The unavailability of
required services may impact the component in different ways, from partial loss of
functionality, or performance, to rendering the component useless in this assembly.
This impact may also have repercussions in the rest of the assembly: the loss of func-
tionality on the directly impacted component may affect the components that have
dependencies on those functionalities, and so on.

As noted by Wallnau and Stafford [Wallnau 02], component assemblers are usually
more interested in the overall properties of the component assembly than on the
individual properties of each of the used components. CPSU and CPRU can be used
to help assessing the properties of the component assemblies.

Comments:

Hoek et al.’s definitions are generic, in the sense that they deliberately do not pre-
scribe how to instantiate the notion of service. The notion of service, as presented by
Hoek et al., covers any kind of publicly accessible resource of the component, such as
operations and data structures. The granularity of what is considered a service may
also be fine tuned, according to which is more suitable for the assessor’s purpose and
the expressiveness of the Architecture Description Language used in the component
specification.

163

5. ODM EXPRESSIVENESS ASSESSMENT 5.3. Informal description of structural metrics

In this chapter, we assume that the services correspond to the interfaces provided
and required through the component’s communication ports. This is a plausible as-
sumption, as we are considering interfaces as the “reuse plugs” of components.

Note that we could also assume that each service corresponds to an operation spec-
ified in those interfaces, rather than to the interfaces. We would still be implementing
Hoek et al.’s metrics, but the results would not be comparable to the ones obtained
here.

Interaction density of a component [Narasimhan 04]

Original specification:

The Interaction Density of a Component (IDC) is defined as a ratio of actual in-
teractions over potential ones (Eq. 5.10). The Incoming and Outgoing Interaction
Density of a Component (IIDC and OIDC, respectively) are similar, but consider only
incoming interactions (Eq. 5.11) or outgoing ones (Eq. 5.12).

IDC =
]I

]Imax
(5.10)

where:
]I = Actual Interactions
]Imax = Maximum available interactions

IIDC =
]IIN

]ImaxIN

(5.11)

where:
]IIN = Actual incoming interactions
]ImaxIN = Maximum available incoming interactions

OIDC =
]IOUT

]ImaxOUT

(5.12)

where:
]IOUT = Actual outgoing interactions
]ImaxOUT = Maximum available outgoing interactions

The Average Interaction Density of Software Components (AIDC) represents the
sum of IDC for each component divided by the number of components (Eq. 5.13).

164

5. ODM EXPRESSIVENESS ASSESSMENT 5.3. Informal description of structural metrics

AIDC =
IDC1 + IDC2 + . . .+ IDCN

]components
(5.13)

where:
IDCi = IDC of component i

]components = N = number of components in the system

Rationale:
A higher interaction density causes a higher complexity in the interaction.

Narashiman and Hendrajaya regard this complexity as a source of risk that should be
taken into account when assigning professionals to component design. The rationale
would be to assign the most experienced developers to denser interactions.

Comment:
IDC is somewhat similar to a combination of PSU with RSU but Narasimhan and

Hendradjaya consider the usage of both interfaces and events as interactions. The
parallel can also be made for IIDC with RSU, and OIDC with PSU.

5.3.3 Collected metrics

The metrics described in the previous sub-section can be collected upon our toy ex-
ample. We start by presenting in table 5.1 the metrics which are collected upon com-
ponents, and are defined in such a way that their value depends on the component’s
characteristics, regardless of the component integration into component assemblies.
The first column presents the component assembly - A, B, or C - to identify the con-
text under which each component is being measured. NA represents the values which
could not be computed (e.g. divisions by 0).

Assembly Component APP DAC DAR ARS CPD EFI EFO
A Clock 0,69 11 1,00 1,00 16 1 0

LEDDisplay NA 0 NA NA 0 0 1
Engine 0,00 0 NA NA 6 0 1

B Clock 0,69 11 1,00 1,00 16 1 0
VideoDisplay NA 0 NA NA 0 0 1
Engine 0,00 0 NA NA 6 0 1

C Clock 0,69 11 1,00 1,00 16 1 0
VideoDisplay NA 0 NA NA 0 0 1
Engine 0,00 0 NA NA 6 0 1
GPS 0,00 0 NA NA 3 0 1
ParkingCamera 0,43 2 0,67 1,67 7 0 1

Table 5.1: Component metrics

Table 5.2 presents the metrics collected on each component instance, for each of the

165

5. ODM EXPRESSIVENESS ASSESSMENT 5.3. Informal description of structural metrics

assemblies. The metrics presented in this table are defined so that their value depends
on the component assembly in which the component is integrated.

Assembly Component PSU RSU IDC IIDC OIDC
A Clock 1,00 NA 1,00 NA 1,00

LEDDisplay NA 1,00 1,00 1,00 NA
Engine 1,00 NA 1,00 1,00 1,00

B Clock 1,00 NA 1,00 NA 1,00
VideoDisplay NA 0,33 0,43 0,43 NA
Engine 1,00 NA 1,00 1,00 1,00

C Clock 1,00 NA 1,00 NA 1,00
VideoDisplay NA 0,67 0,71 0,71 NA
Engine 1,00 NA 1,00 1,00 1,00
GPS 1,00 NA 1,00 1,00 1,00
ParkingCamera 1,00 NA 1,00 1,00 1,00

Table 5.2: Component metrics

Finally, table 5.3 presents the metrics collected on each of the component assem-
blies.

Assembly CPD CPSU CRSU AIDC
A 7,33 1,00 1,00 1,00
B 7,33 1,00 0,33 0,81
C 6,40 1,00 0,67 0,94

Table 5.3: Component assembly metrics

5.3.4 Comments on metrics values

The values presented in the previous section illustrate some of the ideas that lead to
the proposal of the corresponding metrics. An observation that crosscuts both tables
5.1 and 5.2 is that there are several metrics which could not be computed for some
of the components. This highlights a common shortcoming of most informal metrics
definitions. It is unclear what to do in the presence of the cases where it is not possible
to compute the metric value using the available definition.

While some of the metrics are, essentially, the size of a collection of model elements
that share some common property, and therefore are represented by integer values,
others are average values, or percentages, and are represented by real values.

Environment free component metrics (Table 5.1)

For each component, the metrics’ values in table 5.1 remain the same, regardless of
how that component is used in each of the component assemblies. In other words,
these metrics are only dependent on the component upon which they are measured,
regardless of the context in which this component is used. So, they are examples of the
environment-free component metrics referred to in section 2.5.5.

166

5. ODM EXPRESSIVENESS ASSESSMENT 5.3. Informal description of structural metrics

Concerning the metrics values, clearly the Clock component has a higher APP than
the remaining components, which is an indication of a potentially more complex inter-
face, according to this metric.

Only two of the components (Clock, and ParkingCamera) have arguments in their
interfaces. However, as denoted by the values of DAR and ARS, there is a more fre-
quent repetition of arguments in the ParkingCamera component provided interface,
which is expected to make it easier to understand, when compared to Clock’s provided
interfaces. In both components, only one argument gets to be repeated in different
operations (t: Time, for the Clock component, and res: int, for the ParkingCamera

component). However, its relative weight on the overall count of distinct arguments in
the component (DAC) is heavier in the ParkingCamera component.

With respect to CPD, the most noticeable components are the LEDDisplay and
VideoDisplay. Neither of them provides any interfaces. As such, because we have
instantiated the concept of CPD with operations in the provided interfaces, these com-
ponents have a CPD of 0.

The EFI and EFO metrics in the assembly are related to the TimerTick event. As this
is the only modeled event, in these assemblies, the components producing it have an
EFI of 1, while the components consuming it have an EFO of 1, respectively. Conversely,
the producers of this event have an EFO of 0, and the consumers have an EFI of 0.

Context dependent component metrics (Table 5.2)

In model A there is a perfect match among the interacting components. All the pro-
vided services and emitted events are used or consumed by components within the
assembly. In the component assembly of model B, the VideoDisplay component has
several required interfaces which are not available within the assembly. In this case, we
can suppose that this “waste” of resources occurs mainly because this component was
built for reuse. Without additional information, we would prefer model A to model
B, if our priority is to have a simpler component that is still able to fulfill our require-
ments. On the other hand, if we plan to reuse the assembly by adding other compo-
nents, model B could be a good option, when compared to model A. In terms of effec-
tiveness of reuse, model C is better than B. The comparison of the RSU values for the
display components can be used to help choosing among different alternatives. These
metrics fall into the category of context-dependent component metrics, as discussed in
section 2.5.6.

Component assembly metrics (Table 5.3)

Component assembly metrics use the whole component assembly as context, rather
than a component. While CPD is an average value, the remaining metrics are ratios,
varying from 0,00 to 1,00. On the average, the CPD is lower in assembly C than in
assemblies A and B, which means that the average complexity of the components in

167

5. ODM EXPRESSIVENESS ASSESSMENT 5.4. Metrics definition formalization

assembly C is lower, according to this metric. The CPSU has the same value in all
assemblies, which means that, for these examples it has no discriminatory power. This
would not be the case in assemblies where some of the provided services are not used
by any of the components. In contrast, the values of CRSU and AIDC highlight the
fact that, in assemblies B (to a greater extent) and C (to a lower one), we are not using
some components to their full potential. Some resources, which would be required
so that the whole functionality of components could be used, are not available in the
component assembly. For instance, although the VideoDisplay component requires a
TerraTrip device, that device is not available in any of the assemblies. The perfect
match between provided and required resources in assembly A is also noticeable, in
metrics CRSU and AIDC.

5.4 Metrics definition formalization

Each of the metrics informally defined in the previous sections will now be formalized,
using the ODM approach upon two different component models: UML 2.0 and CCM
3.0.

The structure of the presentation will be as follows: For each component model,
we will briefly discuss its underlying metamodel and present the most relevant meta-
classes for our formalization. Then, we will present the metrics formalization in OCL.

5.4.1 UML 2.0

Context specification

The context used in the specification of the metrics is provided by the UML 2.0 meta-
model, where all the entities which are relevant for the measurement collection, as well
as the relationships among those entities are expressed. We will focus on a portion of
the UML 2.0 metamodel that includes the metaclasses and meta-associations which are
relevant for the specification and collection of the metrics defined in section 5.3. Fig-
ure 5.8 represents a filtered view on the UML 2.0 metamodel, where the metamodel
elements which are not relevant for this metrics formalization are omitted.

In this portion of the UML 2.0 metamodel we can observe how a compo-
nent is represented through the metaclass Component. Since the Component is an
EncapsulatedClassifier, it may own ports. Each Port may contain an arbitrary num-
ber of provided and required interfaces (Interface). Provided and required interfaces
are wired through assembly connectors (Connector, defined in the BasicComponents

package). These connectors allow specifying the involved ports in their connector
ends.

Each Interface has a set of owned operations (Operation). An operation has a set
of parameters. Parameter is a sub-class of TypedElement, which, in turn, is a subclass

168

5. ODM EXPRESSIVENESS ASSESSMENT 5.4. Metrics definition formalization

Figure 5.8: A filtered view of the UML 2.0 metamodel, adapted from [OMG 05b].

of NamedElement, so each parameter has a name and a type.

Metamodel extension

The UML 2.0 metamodel has no standard way of representing events such as
TimerTick in a differentiated way, with respect to other interfaces. However, we can
model events using UML’s lightweight extension mechanisms, by stereotyping the ap-
propriate metaclass. Therefore, we extend the UML metamodel with a new stereotype
<<Event>>, which is applied to the metaclass Interface. The stereotyped interface is
represented in the metamodel as a specialization of the meta-class Interface, called
Event 5.8.

Metrics definition

We will start by discussing the formalization of component interface complexity assess-
ment metrics, presented earlier, in section 5.3.1. The original specification of the APP
metric relies on the existence of a single interface for the component being measured.
In contrast, in UML 2.0 it is possible for a component to provide several interfaces. So,
in order to capture the intention of Boxall and Araban’s definition of APP, we need to
use the union of the provided interfaces, as a surrogate for the “unique interface” used
in the original APP metric definition.

169

5. ODM EXPRESSIVENESS ASSESSMENT 5.4. Metrics definition formalization

First, we formalize a few auxiliary functions, for collecting and counting inter-
faces (ProvidedInterfaces and ProvidedInterfacesCount, respectively) and opera-
tions (ProvidedOperations and ProvidedOperationsCount, respectively). Note that in
this metamodel, events are represented as a stereotyped interface (i.e., as instances of
the meta-class Event). As such, we need to filter out the instances of Event so that we
only keep the remaining interfaces, as expected in the metrics we are about to formal-
ize. Then, we define NA (representing na) and NP (representing np) as the numerator and
denominator of the APP fraction, so that the formalized definition has a fairly straight-
forward mapping to the definition of APP presented in equation 5.1.

Listing 5.3: APP metric in UML 2.0.
context Component

ProvidedInterfaces (): Set(Interface) = self.ownedPort.provided ->select(i |

not i.oclIsKindOf(Event))->asSet()

ProvidedInterfacesCount (): Integer = self.ProvidedInterfaces()->size()

ProvidedOperations (): Set(Operation) =

self.ProvidedInterfaces ().ProvidedOperations()->asSet()

ProvidedOperationsCount (): Integer = self.ProvidedOperations()->size()

NA(): Integer = self.ProvidedOperations ().NA()->sum()

NP(): Integer = self.ProvidedOperationsCount()

APP(): Real = self.NA()/self.NP()

The ProvidedOperations function defined in the Component metaclass (listing 5.3)
uses the ProvidedOperations function, defined in the Interface metaclass (listing 5.4).

Listing 5.4: Interface provided operations in UML 2.0.
context Interface

ProvidedOperations (): Set(Operation) = self.ownedOperation

ProvidedOperationsCount (): Integer = ProvidedOperations()->size()

The NA function definition for the Component metaclass (listing 5.3) relies on the
counting attributes with the same identifier, defined in the scope of the Operation

metaclass (listing 5.4).

Listing 5.5: Parameters of operations in UML 2.0.
context Operation

Parameters(): Set(Parameter) = self.ownedParameter

NA(): Integer = self.Parameters()->size()

In order to formalize the definition of the DAC, DAR, and ARS metrics, we start
by defining an auxiliary function in the scope of the Parameter metaclass that receives
a collection of operations and returns true if any of those operations contains a param-
eter with the same name and type of the parameter under scrutiny (listing 5.6).

170

5. ODM EXPRESSIVENESS ASSESSMENT 5.4. Metrics definition formalization

Listing 5.6: Detecting similar parameters in a set, in UML 2.0.
context Parameter

ExistsNameType(s: Set(Parameter)): Boolean =

s.exists((self.name=name) and (self.type.name=type.name))

We can now formalize DAC, DAR, and ARS in the Component metaclass. Again, we
will also define a few auxiliary functions so that the final definition of each of these
metrics is more easily traceable to those provided in equations 5.2 through 5.4. The
DistinctArguments function returns the set of parameters used in the operations, de-
fined in such a way that there are no repetitions of parameters with the same name

and type. This function makes the definition of the DAC function trivial. The ACount

function returns the number of operations provided by the component which include
a parameter with the same name and type of its argument. It corresponds to a in equa-
tion 5.4. Sum_A builds on this definition to represent the sum of the squared a terms,
in the same equation, thus facilitating the mapping between the ARS function and the
definition in equation 5.4.

Listing 5.7: DAC, DAR and ARS, in UML 2.0.
context Component

DistinctArguments(): Set(Parameter) =

self.ProvidedOperations().Parameters()->iterate(

p: Parameter; noDups: Set(Parameter) = oclEmpty(Set(Parameter)) |

if (not p.ExistsNameType(noDups))

then noDups ->including(p)

else noDups

endif)

DAC(): Integer = self.DistinctArguments()->size()

DAR(): Real = self.DAC()/self.NA()

ACount(a: Parameter): Integer = self.ProvidedOperations()->

select(o | a.ExistsNameType(o.Parameters()))->size()

Sum_A(): Integer = self.DistinctArguments()->collect(p |

ACount(p)*ACount(p))->sum()

ARS(): Real = self.Sum_A()/self.NA()

The CPD metric can be defined using several alternative constituents, for which
we aim to measure the density. Although Narasimhan and Hendradjaya defined this
metric for the whole component assembly, we will start by providing a definition for
a single component, which we will then reuse when computing CPD for the whole
component assembly. As discussed in section 5.3.1, we will use the operations made
available through the component’s provided interfaces as the example of packageable
element, in our definition of the CPD function. This makes the definition quite simple,
as we can reuse the function ProvidedOperationsCount.

171

5. ODM EXPRESSIVENESS ASSESSMENT 5.4. Metrics definition formalization

Listing 5.8: CPD in UML 2.0.
context Component

CPD(): Integer = self.ProvidedOperationsCount()

The CPD metric is also targeted for the whole component assembly, so that we can
detect deviations to typical component packing density. As there is no model element
representing the model itself, we have to use OCL’s allInstances function to gain ac-
cess to the collection of all components, and then compute the average CPD for the
whole component assembly. Therefore, unlike in previous specifications, we omit a
context expression in listing 5.9. Note that, in OCL, we have to define all the expres-
sions within a context. By omitting the context, we are just emphasizing that, in this
particular case, any choice of context would be arbitrary.

Listing 5.9: CPD in UML 2.0.
CPD(): Real = Component.allInstances.CPD()->sum()/

Component.allInstances ->size()

The EFI and EFO metrics have a fairly straightforward definition in OCL. The EFI

function returns the number of events originated by the component. In practice, this
corresponds to the provided interfaces which are stereotyped as an event, in the meta-
model presented in figure 5.8. Conversely, the EFO function returns the number of
events that are consumed by the component.

Listing 5.10: EFI and EFO, in UML 2.0.
context Component

ProducedEvents(): Set(Event) = self.ownedPort.provided ->iterate(

e: Interface; result: Set(Event)=oclEmpty(Set(Event)) |

if (e.oclIsKindOf(Event))

then result ->including(e.oclAsType(Event))

else result

endif)

ConsumedEvents(): Set(Event) = self.ownedPort.required ->iterate(

e: Interface; result: Set(Event)=oclEmpty(Set(Event)) |

if (e.oclIsKindOf(Event))

then result ->including(e.oclAsType(Event))

else result

endif)

EFI(): Integer = self.ProducedEvents()->size()

EFO(): Integer = self.ConsumedEvents()->size()

This concludes the formalization of the component metrics that support the assess-
ment of components, independently of the component assembly in which the compo-
nent is integrated.

In order to define component service utilization metrics (discussed in section 5.3.2),
we will follow a similar strategy, by defining auxiliary OCL functions that will make

172

5. ODM EXPRESSIVENESS ASSESSMENT 5.4. Metrics definition formalization

the final metrics definitions as close as possible to their original specification, to allow
for an easier mapping between both. As noted in the respective comments section, we
map the concept of service to that of interface. In other words, each interface provided,
or required, by a component corresponds to a service, in this formalization.

We start by addressing the PSU metric. We can define the set of provided services
as the set of interfaces provided by the component (ProvidedServices function).

The PTotal function matches Ptotal in equation 5.6. Defining PActual is slightly
more complex, as we need to filter out from the available services those which are not
being used by any of the components within the assembly. As the associations between
components and interfaces are unidirectional (from components to interfaces), we need
to query all instances of components, to select which of those components are using a
given interface.

A similar approach can be followed in the definition of the RSU metric, using the
RequiredServices function, along with RTotal and RActual, which stand for Rtotal and
Ractual , in the original metric’s definition provided in equation 5.7. Listing 5.11 con-
denses the definitions required for computing both PSU and RSU.

Since we stipulated that a service corresponds to an interface, for the purposes of
our formalization of this metric, we could use the ProvidedInterfaces (as defined in
listing 5.3) and the RequiredInterfaces (defined in listing 5.11) functions directly in
the definitions of PSU and RSU. However, as this is just one of the possible mappings of
the concept of service in the context of software components, we prefer to create two
extra functions, ProvidedServices and RequiredServices, so that the metrics defini-
tion could be easily adjusted to other mappings, by changing only these two functions.
In listing 5.11 we start by defining the RequiredInterfaces similarly to our earlier def-
inition for ProvidedInterfaces. Then, we define the remaining functions used in the
specification of PSU and RSU.

Listing 5.11: PSU and RSU, in UML 2.0.
context Component

RequiredInterfaces(): Set(Interface) = self.ownedPort.required ->select(i|

not i.oclIsKindOf(Event))->asSet()

ProvidedServices(): Set(Interface) = self.ProvidedInterfaces()

RequiredServices(): Set(Interface) = self.RequiredInterfaces()

PActual(): Integer = self.ProvidedServices()->select(s |

Component.allInstances.RequiredServices()->includes(s))->size()

PTotal(): Integer = self.ProvidedServices()->size()

RActual(): Integer = self.RequiredServices()->select(s |

Component.allInstances.ProvidedServices()->includes(s))->size()

RTotal(): Integer = self.RequiredServices()->size()

PSU(): Real = self.PActual()/self.PTotal()

173

5. ODM EXPRESSIVENESS ASSESSMENT 5.4. Metrics definition formalization

RSU(): Real = self.RActual()/self.RTotal()

We can now define, for the whole component assembly, both CPSU and CRSU (listing
5.12). These functions correspond to equations 5.8 and 5.9, respectively. In both defini-
tions, all the component metaclass instances in the model are assumed to be part of the
same component assembly. The UML metamodel does not include a model element
representing “a model” (in this case, a component assembly) that would contain all the
model elements, so this is a fair assumption.

Listing 5.12: CPSU and CRSU in UML 2.0.
CPSU(): Real = Component.allInstances.PActual()->sum() /

Component.allInstances.PTotal()->sum()

CRSU(): Real = Component.allInstances.RActual()->sum() /

Component.allInstances.RTotal()->sum()

Finally, we will discuss the formalization of component interaction density metrics,
presented in section 5.3.2. As components interact among themselves through their in-
terfaces and the production, or consumption of events, the definitions are fairly similar
to those of service utilization metrics.

We start by defining what incoming and outgoing interactions are, both potential
and instantiated in the model, and then build on those functions for defining the inter-
action density metrics IIDC, OIDC, and IDC, in listing 5.13.

Listing 5.13: Component interaction density metrics in UML 2.0.
context Component

AvailableConsumedEvents (): Set(Event) = self.ConsumedEvents()->select(e |

Component.allInstances.ProducedEvents()->includes(e))

AvailableConsumedEventsCount (): Integer =

self.AvailableConsumedEvents()->size()

UsedProducedEvents (): Set(Event) = self.ProducedEvents()->select(e |

Component.allInstances.ConsumedEvents()->includes(e))

UsedProducedEventsCount (): Integer = self.UsedProducedEvents()->size()

IncomingInteractions (): Set(Interface) =

self.ProvidedInterfaces()->union(self.ConsumedEvents())->asSet()

IncomingInteractionsCount (): Integer = self.IncomingInteractions()->size()

OutgoingInteractions (): Set(Interface) =

self.RequiredInterfaces()->union(self.ProducedEvents())->asSet()

OutgoingInteractionsCount (): Integer = self.OutgoingInteractions()->size()

IIN(): Integer = self.AvailableConsumedEventsCount() + self.RActual()

IMaxIn(): Integer = self.ConsumedEventsCount() + self.RTotal()

IIDC(): Integer = self.IIN() / self.IMaxIn()

174

5. ODM EXPRESSIVENESS ASSESSMENT 5.4. Metrics definition formalization

IOUT(): Integer = self.UsedProducedEventsCount() + self.PActual()

IMaxOut(): Integer = self.ProducedEventsCount() + self.PTotal()

OIDC(): Real = self.IOUT() / self.IMaxOut()

I(): Integer = self.IIN() + self.IOUT()

IMax(): Integer = self.IMaxIn() + self.IMaxOUT()

IDC(): Real = self.I() / self.IMax()

We can formalize the AIDC metric using a similar strategy to the one followed for
CPSU and CRSU. Listing 5.14 presents the definition for the AIDC function.

Listing 5.14: AIDC in UML 2.0.
AIDC(): Real =

Component.allInstances.IDC()->sum() / Component.allInstances ->size()

Throughout these metrics definitions, it was often the case (e.g. in the AIDC metric
definition) that the used formula contains a ratio. In these situations, we can choose
one of two alternatives:

• We can keep the definition as it is, and leave it to the OCL analyzer to deal with
the situations where the denominator equals 0, in its standard way. For example,
the OCL tool used in the preparation of dissertation (USE2) returns undefined in
these situations. undefined acts as the neutral element in further functions where
that result is required. For instance, when computing the sum of a number of
variables, if one of those variables is undefined, the tool substitutes the value
undefined by 0.

• We can define pre-conditions for the functions, to prevent computations to be
performed when they do not make sense.

The definitions presented so far followed the first option. We will now explore
how they can be complemented to conform to the second alternative. Consider, for
instance, the IDC function definition. If we add a pre-condition, as in listing 5.15, we
are explicitly preventing the IDC() function to be computed when self.IMax() > 0.
Note also that the specification of context includes the function name qualified by the
owner metaclass.

Listing 5.15: Adding metrics pre-conditions in UML 2.0.
context Component::IDC(): Real

pre: self.IMax() > 0

post: result = self.I() / self.IMax()

2http://www.db.informatik.uni-bremen.de/projects/USE/

175

http://www.db.informatik.uni-bremen.de/projects/USE/

5. ODM EXPRESSIVENESS ASSESSMENT 5.4. Metrics definition formalization

In listing 5.16, we add the pre-conditions to each of the functions, but omit the
post-conditions, to avoid their repetition from the previous listings. All the presented
pre-conditions relate to avoiding divisions by 0, but the same principle can be applied
to other restrictions we might want to impose concerning metrics definitions.

Listing 5.16: Metrics pre-conditions in UML 2.0.
context Component::APP(): Real

pre: self.NP() > 0

context Component::DAR(): Real

pre: self.NA() > 0

context Component::ARS(): Real

pre: self.NA() > 0

context Component::PSU(): Real

pre: self.PTotal() > 0

context Component::RSU(): Real

pre: self.RTotal() > 0

context Component::IIDC(): Real

pre: self.IMaxIn() > 0

context Component::OIDC(): Real

pre: self.IMaxOut() > 0

context Component::IDC(): Real

pre: self.IMax() > 0

context ::CPSU(): Real

pre: Component.allInstances.PTotal()->sum() > 0

context ::CRSU(): Real

pre: Component.allInstances.RTotal()->sum() > 0

context ::AIDC(): Real

pre: Component.allInstances ->size() > 0

5.4.2 CORBA Component Metamodel

Context specification

The Corba Component Metamodel (CCM) [OMG 02a, Wang 01, Estublier 02] is the
OMG standard for the specification of software components. As such, it is inde-
pendent from a specific vendor, both in what concerns the component’s program-
ming languages and platforms. The CCM specification includes a Meta Object

176

5. ODM EXPRESSIVENESS ASSESSMENT 5.4. Metrics definition formalization

Facility-compliant metamodel [OMG 02b]3, where the CCM modeling elements are
precisely defined. The metamodel includes three packages (figure 5.9). The Ba-
seIDL package contains the modeling elements concerning the CORBA Interface
Description Language (IDL). BaseIDL is extended by ComponentIDL, to add the
component specific constructs. Finally, ComponentIDL is extended by the Component
Implementation Framework (CIF) package, which includes the definitions relating to
the component lifecycle.

Figure 5.9: CCM packages (adapted from [OMG 02a])

The CCM metamodel has some characteristics that are relevant for the formaliza-
tion presented in this paper, namely the synchronous and asynchronous interaction
mechanisms among components, presented in figure 5.10.

The synchronous interaction mechanism is specified as follows: each CORBA com-
ponent may have several provided (facets) and required (receptacles) interfaces, rep-
resented in the metamodel through the ProvidesDef and UsesDef metaclasses, respec-
tively. Both use the InterfaceDef metaclass to support the specification of the inter-
faces being provided or required.

The asynchronous mechanism uses events, represented in the metamodel as
EventDef, to support interactions among components. Components may specify
the events they produce and consume through ports, specified in the metamodel
as EventPortDef. There are two alternatives that can be used while producing an
event: the event may be emitted (EmitsDef) for a single consumer, or published
(PublishesDef) for a set of potential consumers. Components may consume events
(both emitted and published) by subscribing to the event sources (ConsumesDef).

Metamodel Extension

Similarly to the UML 2.0 metamodel, the CCM metamodel includes abstractions for
representing CORBA components, but not for the representation of component assem-
blies. For instance, it is possible to express that component A has facets X and Y,
and that component B has facet Z and receptacle Y, but there is no way of express-
ing that A’s facet Y is wired to B’s receptacle Y, with the standard metamodel. This
wiring is specified through a Component Assembly Descriptor file. A Document
Type Definition (DTD) for such files can be found in [Merle 03].

3Note that although the referenced CCM 3.0 ([OMG 02a]) uses an older version of MOF, MOF has
evolved since then. A more recent version of MOF is available in [OMG 04]. Our discussion in this
section refers to the MOF version used in CCM 3.0.

177

5. ODM EXPRESSIVENESS ASSESSMENT 5.4. Metrics definition formalization

Figure 5.10: Excerpt of the CCM (adapted from [OMG 02a]).

In [Goulão 05a] we extended the CCM metamodel to overcome this shortcom-
ing, by adding a new package called Component Assembly Metamodel Extension
(CAME), as shown in figure 5.11.

Figure 5.11: Extended CCM model

In figures 5.12 through 5.14, we represent the origin of all meta-classes, except for
those defined in the CAME package. Figure 5.12 represents the extensions required
for wiring components through their provided and used interfaces. These include
ComponentInstanceDef and InterfaceConnectorDef for representing component in-
stances in a component assembly, and a connector between provided and used inter-
faces ports (ProvidesPortDef and UsesPortDef).

With these new meta-classes, and the associations among them, we have at our dis-
posal the required abstractions for representing component assemblies, including the
ports and connectors used for component instances wiring. Figure 5.13 includes the
meta-classes required for wiring an event emitter with an event consumer. The mod-
eling approach is similar to what was described for provided and required interfaces.

178

5. ODM EXPRESSIVENESS ASSESSMENT 5.4. Metrics definition formalization

Figure 5.12: Metamodel extensions for component wiring through provided and used
interfaces

Figure 5.13: Metamodel extensions for component wiring through emitted events

179

5. ODM EXPRESSIVENESS ASSESSMENT 5.4. Metrics definition formalization

Figure 5.14 includes the meta-classes for representing the wiring between an event
broadcaster and the event’s consumers.

Figure 5.14: Metamodel extensions for component wiring through published events

Finally, we need an abstraction to represent the component assembly. A component
assembly may have an arbitrary number of component instances (Figure 5.15).

Figure 5.15: The component assembly metaclass

Metrics definition

The definition of the APP metric relies on the existence of a single interface for the
component. There is no directly equivalent modeling element in the CCM metamodel.
The component equivalent interface is broader, as it includes all implicit operations (a
set of operations defined by component homes), operations and attributes which are
inherited by the component (also through supported interfaces) and attributes defined
inside the component. On the other hand, considering just a single interface as the
context would lead to a metric different than the one proposed by Boxall and Araban.
To be precise in our formalization, we will consider all the procedures from all the
provided interfaces of the component, when computing Boxall and Araban’s metrics.

The context for Boxall and Araban’s metric definition is ComponentDef. We start
by defining ProvidedOperations, the set of operations used in the metrics definition,

180

5. ODM EXPRESSIVENESS ASSESSMENT 5.4. Metrics definition formalization

and ProvidedOperationsCount, the cardinality of this set. The formalization of the APP

metric becomes straightforward, with these auxiliary functions.

Listing 5.17: The APP metric in CCM.
context ComponentDef

ProvidedInterfaces(): Set(InterfaceDef) = self.facet.provides ->asSet()

ProvidedInterfacesCount (): Integer = self.ProvidedInterfaces()->size()

ProvidedOperations(): Set(OperationDef) =

self.ProvidedInterfaces().Operations()->flatten()->asSet()

ProvidedOperationsCount (): Integer = self.ProvidedOperations()->size()

NA(): Integer = self.ProvidedOperations ().NA()->sum()

NP(): Integer = self.ProvidedOperationsCount()

APP(): Real = self.NA()/self.NP()

As in the UML metrics formalization, we are using a ProvidedOperations function
in the InterfaceDef class (listing 5.18).

Listing 5.18: Interface provided operations in CCM.
context InterfaceDef

Operations(): Set(OperationDef) = self.contents ->select(o |

o.oclIsKindOf(OperationDef))->collect(oclAsType(OperationDef))->asSet()

OperationsCount(): Integer = self.Operations()->size()

We can obtain the parameters of each operation (listing 5.19), to support the defini-
tion used in the Operations function specification in the context of the OperationDef

metaclass (listing 5.18).

Listing 5.19: Parameters of operations in CCM.
context OperationDef

Parameters(): Set(ParameterDef) = self.parameters ->asSet()

NA(): Integer = self.Parameters()->size()

In order to facilitate the detection of similar parameters in a component’s interface,
we will start by defining the ExistsNameType in the context of the ParameterDef meta-
class, following, again, the same strategy as in the UML metrics formalization (listing
5.20). This function returns true if a duplicate of the parameter is found in a set of
parameters.

Listing 5.20: Detecting similar parameters in a set, in CCM.
context ParameterDef

ExistsNameType(s:Set(ParameterDef)): Boolean =

s->exists((self.identifier=identifier) and (self.idlType = idlType))

In the context of ComponentDef we can now define DistinctArguments to return
the list of arguments used in the provided interfaces operation signatures, without
duplicates. DAC computes the distinct arguments count and DAR their percentage in the

181

5. ODM EXPRESSIVENESS ASSESSMENT 5.4. Metrics definition formalization

component interface. Finally, we define two auxiliary functions, ACount and Sum_A,
which compute the count of procedures in which the argument is used, and the sum
of the squares of ACount. These functions are defined in listing 5.21.

Listing 5.21: Component interface metrics.
context ComponentDef

DistinctArguments(): Set(ParameterDef) =

self.ProvidedOperations ().Parameters()->iterate(

p: ParameterDef; noDups: Set(ParameterDef) =

oclEmpty(Set(ParameterDef)) |

if (not (p.ExistsNameType(noDups)))

then noDups ->including(p)

else noDups

endif)

DAC(): Integer = self.DistinctArguments()->size()

DAR(): Real = self.DAC()/self.NA()

ACount(a: ParameterDef): Integer = self.ProvidedOperations()->

select(o: OperationDef | a.ExistsNameType(o.Parameters()))->size()

Sum_A (): Integer = self.DistinctArguments()->collect(p|

ACount(p)*ACount(p))->sum()

ARS(): Real = self.Sum_A()/self.NA()

The rationale for the formalization of the CPD metric is the same as the one used
in the UML formalization, and so is the option concerning the chosen constituents, to
facilitate the comparison between both definitions. We will start by defining CPD in the
context of a single component, in listing 5.22.

Listing 5.22: The CPD metric in CCM.
context ComponentDef

CPD(): Integer = self.ProvidedOperationsCount()

The formalization of CPD for the component assembly is performed using a different
context than the previous ones. We will use a CCM module (represented by ModuleDef

in the metamodel), rather than an individual component, as the context for this defini-
tion (listing 5.23).

Listing 5.23: The CPD metric in CCM.
context ModuleDef

Components(): Set(ComponentDef) =

self.contents ->select(oclIsKindOf(ComponentDef))->

collect(oclAsType(ComponentDef))->asSet()

ComponentsCount(): Integer = self.Components()->size()

182

5. ODM EXPRESSIVENESS ASSESSMENT 5.4. Metrics definition formalization

ConstituentsCount(): Integer =

self.Components(). ProvidedOperationsCount()->sum()

CPD(): Real = self.ConstituentsCount()/self.ComponentsCount()

The CCM metamodel distinguishes between published and emitted events. The
former are made available to several event consumers, while the latter are made avail-
able to a single listener. For the purposes of the EFI function, this distinction is not
relevant. Therefore, when counting the events made available by a component, we
will simply add the published and the emitted events. No distinction is made concern-
ing the consumer of the events. Listing 5.24 formalizes these definitions.

Listing 5.24: The EFI and EFO metrics in CCM.
context ComponentDef

Emits(): Set(EmitsDef) = self.emits

EmitsCount(): Integer = self.Emits()->size()

Publishes(): Set(PublishesDef) = self.publishes

PublishesCount(): Integer = self.Publishes()->size()

Consumes(): Set(ConsumesDef) = self.consumes

ConsumesCount(): Integer = self.Consumes()->size()

EFI(): Integer = self.PublishesCount() + self.EmitsCount()

EFO(): Integer = self.ConsumesCount()

Concerning the metrics which depend on the component assembly in which the
components are integrated, we will need to use the CCM metamodel extension, dis-
cussed in section 5.4.2.

A CCM assembly can be represented as an instance of the extended CCM meta-
model. This instance can be seen as a directed graph of meta-objects (nodes) repre-
senting the modeling elements used in the assembly, and the appropriate meta-links
(edges) among them.

Listing 5.25: PSU and RSU metrics in CCM.
context ComponentInstanceDef

ProvidedServices(): Set(InterfaceDef) =

self.facetConnector.facetPort.providesDef.provides ->asSet()

RequiredServices(): Set(InterfaceDef) =

self.receptacleConnector.receptaclePort.usesDef.uses ->asSet()

PActual(): Integer = self.ProvidedServices()->size()->select(s |

ComponentInstanceDef.allInstances.RequiredServices()->includes(s))->

size()

PTotal(): Integer = self.ProvidedInterfaces()->size()

RActual(): Integer = self.RequiredServices()->size()

ComponentInstanceDef.allInstances.ProvidedServices()->includes(s))->

183

5. ODM EXPRESSIVENESS ASSESSMENT 5.4. Metrics definition formalization

size()

RTotal(): Integer = self.RequiredInterfaces()->size()

PSU(): Real = self.PActual()/self.PTotal()

RSU(): Real = self.RActual()/self.RTotal()

The formalization for the metrics on the component assembly is defined in the con-
text of the Assembly metaclass as in listing 5.26.

Listing 5.26: Assembly metrics in CCM.
context Assembly

Components(): Set(ComponentInstanceDef) = self.contents ->select(c |

c.oclIsKindOf(ComponentInstanceDef))->asSet()

CPSU(): Real = self.Components().PActual()->sum() /

self.Components().PTotal()->sum()

CRSU(): Real = self.Components().RActual()->sum() /

self.Components.RTotal()

The next listing contains the formalization of the IDC, IIDC, and OIDC metrics, all
in the context of the metaclass ComponentInstanceDef.

Listing 5.27: The IDC, IIDC, and OIDC metrics in CCM.
context ComponentInstanceDef

EmittedEventsConsumed (): Set(EmitsDef) =

self.emitterConnector.emitsPort.emitsDef ->asSet()

EmittedEventsConsumedCount (): Integer =

self.EmittedEventsConsumed()->size()

EmittedEvents(): Set (EmitsDef)= self.componentDef.emits

EmittedEventsCount (): Integer = self.EmittedEvents()->size()

PublishedEventsConsumed (): Set (PublishesDef)=

self.publisherConnector.publishesPort.publishesDef ->asSet()

PublishedEventsConsumedCount (): Integer =

self.PublishedEventsConsumed()->size()

PublishedEvents(): Set (PublishesDef)= self.componentDef.publishes

PublishedEventsCount (): Integer = self.PublishedEvents()->size()

ProducedEventsCount (): Integer = self.EmittedEventsCount() +

self.PublishedEventsCount()

184

5. ODM EXPRESSIVENESS ASSESSMENT 5.5. Comments on the metrics’ definitions

UsedProducedEventsCount (): Integer =

self.PublishedEventsConsumedCount() + self.EmittedEventsConsumedCount()

AvailableConsumedEvents (): Set(ConsumesDef) =

self.emitConsumerConnector.consumesPort.consumesDef ->union(

self.publishConsumerConnector.consumesPort.consumesDef)->asSet()

AvailableConsumedEventsCount (): Integer =

self.AvailableConsumedEvents()->size()

ConsumedEvents(): Set(ConsumesDef) = self.componentDef.consumes

ConsumedEventsCount(): Integer = self.ConsumedEvents()->size()

IIn(): Integer = self.AvailableConsumedEventsCount() + self.RActual()

IMaxIn(): Integer = self.ConsumedEventsCount() + self.RTotal()

IIDC(): Real = self.IIn()/self.IMaxIn()

IOut(): Integer = self.PublishedEventsConsumedCount() +

self.EmittedEventsConsumedCount() + self.PActual()

IMaxOut(): Integer = self.ProducedEventsCount() + self.PTotal()

OIDC(): Real = self.IOut()/self.IMaxOut()

I(): Integer = self.AvailableConsumedEventsCount()

+ self.PublishedEventsConsumedCount()

+ self.EmittedEventsConsumedCount()

+ self.PActual() + self.RActual()

IMax(): Integer = self.ConsumedEventsCount() + self.PublishedEventsCount()

+ self.EmittedEventsCount() + self.PTotal() + self.RTotal()

IDC(): Real = self.I()/self.IMax()

Finally, the AIDC metric can be formalized as represented in listing 5.28.

Listing 5.28: The AIDC metric in CCM.
context Assembly

AIDC(): Real = self.Components().IDC()->sum()/self.Components()->size()

5.5 Comments on the metrics’ definitions

5.5.1 Uncovering shortcomings in the original metrics definitions

We deliberately kept the original formulas to demonstrate the variability of notations
that are commonly used in metrics definitions. A “side-effect” of these informal ap-
proaches is that the metrics formula is often not specified in extreme cases. The origi-

185

5. ODM EXPRESSIVENESS ASSESSMENT 5.5. Comments on the metrics’ definitions

nal definitions are not clear, regarding how the situations marked as NA in tables 5.1
and 5.2 are treated. A plausible explanation is that these situations may be consid-
ered as either (i) having an “obvious” solution that can be left out in the definition and
postponed as an “implementation detail”, or (ii) completely forgotten. The problem
with (i) is that the mapping of “obvious” to a concrete solution may vary according to
the background of the practitioner implementing the metrics collection tool, thus lead-
ing to inconsistent metrics collection performed by different tools. The obliviousness
resulting from (ii) leads to a similar situation.

The ODM approach mitigates these problems not only due to its increased formal-
ity, but also because the metrics are executable. As such, they can be tested as soon as
they are specified. It is more natural for a practitioner to be concerned about defining
how to handle those extreme cases, as neglecting to do so is likely to expose the limi-
tations of the definition earlier (when compared to defining something and not being
able to automatically test that definition).

5.5.2 Reusing formalizations

By using auxiliary functions for performing the most basic counts, the formalized def-
initions of each of these metrics becomes almost independent from the underlying
metamodel, which is a benefit in terms of the portability of the definitions for other
metamodels. For instance, although the counting rules for model elements such as
provided and required interfaces differ from UML to CCM, due to metamodel differ-
ences, functions built upon those auxiliary counting functions are very similar, except
for the metaclass they are defined upon.

To make the metrics completely independent from the specific metamodel, we
would have to use an independent metamodel that could be mapped to the more spe-
cific ones. In the realm of CBD, this would mean having a component model independent
metamodel. To the best of our knowledge, there is no currently widely accepted meta-
model that can be used. In the realm of ADL-based component models, a metamodel
for Acme [Goulão 03] could be used. UML 2.0, extended with profiles, is another pos-
sible candidate.

As we have seen, depending on what one is trying to measure, a metamodel may,
or may not, be suitable. Rather than trying to have an all-purpose metamodel, an alter-
native is to define a smaller metamodel, focused in modeling a specific concern. One
such example is the PIMETA [Bryton 07, Bryton 08], a paradigm independent meta-
model designed to represent modularity information required to support modularity
assessment metrics. The price to pay for this generality is that it may be the case that
the information loss resulting from the mapping between the specific metamodels and
the generic one is a threat to the validity of comparisons performed with different
models.

186

5. ODM EXPRESSIVENESS ASSESSMENT 5.5. Comments on the metrics’ definitions

5.5.3 Uncovering hidden relationships between metrics sets

While formalizing metrics definitions, some of the formalized metrics sets turned out
to be a lot closer than what one may infer from their presented rationales. This is
particularly noticeable with service utilization metrics, when compared to interaction
density metrics. The service utilization metrics concern the level of usage (when com-
pared to the maximum possible level) of interaction mechanisms among components,
while the interaction density among components is concerned with the number of in-
teractions. Both sets are based on essentially the same information, although each of
them has its own quality concern: architectural mismatch, in the case of service utiliza-
tion metrics, or interaction complexity, in the case of interaction density metrics. This
suggests a potential (even if partial) overlap between both concerns.

More generally, the fact that we have to express a metric definition in terms of the
metamodel induces a uniformity in terms of the basic counting elements that is often
missing in more informal metrics definitions.

5.5.4 Metrics definition patterns

Several of the formalized metrics for the whole component assembly (CPSU, CRSU,
and AIDC) are defined as ratios where the numerator corresponds to the effective us-
age of a given mechanism, while the denominator has the maximum possible utiliza-
tion of the mechanism within the component assembly. This indicates a concern from
the metrics proponents to make them dimensionless. This prevents the metrics values
from being correlated to the size of the assembly, or the number of times a particular
mechanism is used, and conforms to Abreu’s criteria on software metrics, according to
which, non-size metrics should be size independent [Abreu 94b].

In contrast, other metrics are defined as basic counts, or average values of those
counts. They are typically related to complexity metrics, and often correlated with
size. Size metrics have no practical value, per se. They can be made useful, however,
either by correlating their values to another property of the element under scrutiny
(e.g. the number of defects found in it), or by comparing that value with typical values
for that metric in other components and further investigating those elements which
present atypical metric values.

5.5.5 Quality framework

Without a clear notion of the quality attributes we wish to assess and the criteria we
will use to interpret the metrics values, it is not possible to analyze the results. Al-
though the authors of the proposed metrics provide a rationale for them, the lack of a
well-defined quality framework is noticeable.

When analyzing the values presented in tables 5.1 through 5.3, based on the ratio-
nale presented during their formalization, one can only make relative judgments on

187

5. ODM EXPRESSIVENESS ASSESSMENT 5.5. Comments on the metrics’ definitions

their values. For instance, from the point of view of these metrics, the understandabil-
ity of the component Clock is lower than that of ParkingCamera in what concerns APP
and DAC. However, this higher complexity is mitigated by the tendency for repeating
more arguments (ARS), in the ParkingCamera component. With respect to the CPD
metric, Clock is, again, regarded as a more complex component than ParkingCamera.

It is impossible to make judgments concerning the absolute complexity of these
components (e.g. is a component with a CPD excessively complex?), in the absence of
a quality framework.

5.5.6 Metrics definition context

The lack of an adequate metamodel in the original metrics definitions justifies our need
to include several comments on the assumptions made before formalizing each met-
ric (see the Comments section of all metrics descriptions). A metamodel clarifies the
used concepts and their interrelationships, providing a backbone upon which we can
formalize the metrics definitions with OCL. The combination of the metamodel with
the OCL expressions removes the subjectivity from the metrics definitions. The meta-
model is also useful for the automation of metrics collection.

5.5.7 Specification formalism

We deliberately used the original formalisms in metrics definitions (see the
Original specification section of all metrics formalization) to illustrate their diversity.
For instance, the concept of collection size is conveyed with three different notations
in equations 5.1 through 5.13: a plain identifier (e.g. na), an identifier between a pair
of ’|’ characters (e.g. |A|), and the # notation (e.g. #<constituents>). Equation 5.4 uses
simultaneously two of these notations. This may lead to misinterpretations of the for-
mulae.

Ambiguity resulting from the usage of natural language is also a problem. Suppose
that rather than counting provided operations as constituents for the CPD metric, we
would like to count provided interfaces. It is possible for different components to
provide the same interface. In that case, should we count it once, or several times? If
we use the informal version of the definition, we might just write constituent_type =
provided inter f ace and be left with an ambiguous definition.

Now, consider the two alternative ConstituentsCount function definitions in listing
5.29:

Listing 5.29: The ConstituentsCount function in CCM.
context ModuleDef

-- Constituents as Interfaces with duplicates

ConstituentsCount(): Integer =

self.Components()->collect(ProvidesCount())->sum()

188

5. ODM EXPRESSIVENESS ASSESSMENT 5.5. Comments on the metrics’ definitions

-- Constituents as interfaces without duplicates

ConstituentsCount(): Integer =

self.Components()->collect(ProvidesNoDupsCount())->sum()

From the formal definition, it is clear that what we mean is several times in the first
version and once on the second one, thus removing the ambiguity. A similar argument
can be made for several of the metrics formalized in this chapter.

5.5.8 Computational support

Most of the computational support required for collecting metrics defined in OCL is
either publicly available, or can be built with relatively low effort. The core of the com-
putational support consists of an OCL-enabled UML tool (e.g. the USE tool), with the
ability to load a metamodel (as a class model) and create instances of those models
(e.g., using object diagrams). In the first formalization, we need to load the UML 2.0
metamodel and populate it with the appropriate instances, representing the UML com-
ponents. In the second formalization, we load the CCM metamodel and then populate
it to represent the CORBA components.

The instantiation of the metamodel can be done manually in a UML tool by creating
a meta-object diagram. However, it is more practical and scaleable to develop a com-
ponent that generates the instantiation from the original component’s specifications.
In our case, as we are are using the USE tool, the component generates a USE script
which, in turn, creates the appropriate instantiation of the metamodel.

5.5.9 Flexibility

By specifying the metrics definitions with OCL we have completely removed the code
tangling between the metrics definitions and the tool computing the metrics. The met-
rics definitions are loaded in the UML tool just as any other OCL expression. Tailoring
the metrics set to one’s specific needs is, then, a matter of writing new OCL functions,
similar to those presented in this chapter.

5.5.10 Validation

To the best of our knowledge, none of the metrics presented in this chapter has un-
dergone a thorough validation, so far. Due to the challenges presented in sections 5.5.5
through 5.5.9, it should become clear that the ideal conditions for independent scrutiny
of these metrics were not present in their original definitions. Several plausible inter-
pretations could be provided for each definition, and no tool support was available
to collect them. These conditions hampered experimental replicability. The ODM ap-
proach facilitates independent validation efforts, thus supporting the comparability of
results.

189

5. ODM EXPRESSIVENESS ASSESSMENT 5.6. On the complexity of metamodels

5.6 On the complexity of metamodels

As noted by Ma et al. [Ma 04], the UML metamodel has been growing, from each ver-
sion to the next, and has 260 meta-classes in version 2.0. Table 5.4 presents, for several
versions of the UML metamodel, a set of architectural complexity metrics, borrowed
from Ma et al.’s paper. These include:

• DSC - Number of meta-classes

• MNL - Maximum number of the level of inheritance

• NMI - Number of multiple inheritance meta-classes

• ADI - Average depth of the meta-classes inheritance structure

• AWI - Average width of the meta-classes inheritance structure

Metric UML 1.1 UML 1.3 UML 1.4 UML 1.5 UML 2.0
DSC 120 133 192 194 260
MNL 6 6 7 7 9
NMI 5 7 7 7 18
ADI 2.46 2.45 2.92 2.93 3.87
AWI 0.77 0.81 0.89 0.89 0.95

Table 5.4: Evolution of the UML 2.0 metamodel.

The complexity metrics presented in table 5.4 show an increase not only in the sheer
number of meta-classes, but also on the complexity of their hierarchy. This complex-
ity growth has a positive and a negative impact in ODM. On the one hand, UML 2.0
has now a more detailed metamodel, which includes several new features (e.g. the
representation of software component architectures was significantly improved). This
improves the metamodel’s coverage with respect to potential metrics definitions re-
quirements. On the other hand, the added complexity makes the metamodel more
difficult to master, with a specification of over 900 pages [OMG 05b, OMG 06b].

Now, consider the metamodel extract in figure 5.8. This extract of the metamodel
only represents 21 metaclasses and (including the 3 enumerations). This represents
about 8% of the classes in the metamodel, which correspond to the classes we had to
explore to build this metrics set formalization. This raises a methodical question, with
respect to the usability of ODM. Should we use a complex metamodel, such as the
UML 2.0, or is it better to use a small, focused, metamodel?

To solve this dilemma one should consider at least the following factors:

• Is there tool support for the candidate metamodels? If not, what is the effort
required to build such tool support?

• What is the effort required for understanding the metamodel in order to be able
to adequately define the metrics?

190

5. ODM EXPRESSIVENESS ASSESSMENT 5.7. Conclusions

• Can we focus on a relatively small subset of the candidate metamodel, to decrease
the effort required for mastering it?

As we have seen, only a limited portion of the UML 2.0 metamodel (or a fairly simi-
lar number of metaclasses, when formalizing metrics upon the CCM) was required for
our metrics definition. This somewhat mitigates the learning curve of the metamodel
required for the metrics definition. The tool support for the UML metamodel and OCL
is available, although it is often the case that tools only support a simplified version
of the UML metamodel (e.g. Together Architect 4 and USE , and may not necessarily
allow using OCL to query its own metamodel.

An alternative is to create smaller metamodels, and develop tools to populate those
metamodels with meta-objects, obtained from the components. This was the alterna-
tive taken in this dissertation.

5.7 Conclusions

In this chapter, we explored the expressiveness of the UML 2.0 and CCM 3.0 metamod-
els with respect to the formal definition of metrics for CBD, using OCL expressions. We
formally defined several metrics found in the literature, so that the resulting set covers
most of the composition mechanisms used in current component models.

The metrics formalized here were proposed by several authors and include (i) met-
rics applicable to components in isolation, (ii) metrics applicable to components in the
context of specific component assemblies, and (iii) metrics applicable to the component
assemblies themselves.

While metrics of the first kind may somehow help component integrators in their
selection process, the current components marketplace has not yet achieved the point
where quasi-equivalent parts are available from multi-vendor parties as it is common
in other engineering fields. Therefore, we believe that metrics for components within
assemblies and for component assemblies will be much more useful in the short term,
by facilitating the evaluation of the resulting software architectures. They can help in
the evaluation and comparison of alternative design approaches, on the identification
of cost effective improvements and on long term financial planning (total cost of own-
ership), allowing the computation of estimates on deployment and evolution costs.

We discussed our technique with respect to the mitigation of recurrent problems
with metrics definitions (lack of a quality framework, lack of an ontology, inade-
quate specification formalism, computational support, flexibility, and insufficient vali-
dation).

Having a formal and executable definition of metrics for component assemblies
is an enabling precondition to allow for independent scrutiny of such metrics, when

4http://www.borland.com/us/products/together/index.html

191

http://www.borland.com/us/products/together/index.html

5. ODM EXPRESSIVENESS ASSESSMENT 5.7. Conclusions

combined with an adequate quality framework. While the provided metrics formal-
ization is in itself a contribution to such an independent scrutiny, the formalization
technique is amenable to the definition of new metrics, not only for UML 2.0 and CCM
assemblies, but also for other component models.

192

Chapter 6

Process assessment in CBD

Contents
6.1 Motivation . 194

6.2 Related work . 197

6.3 Experimental planning . 201

6.4 Execution . 214

6.5 Analysis . 216

6.6 Interpretation . 230

6.7 Conclusions and future work . 238

Background: Although developing reusable components has its own specific concerns
when compared to other approaches to software development, some processes, such
as code inspections, are generic to software development. Understanding the drivers
for inspection success can help improving code inspection activities.
Objective: To assess the influence of practitioners’ expertise in code inspection of soft-
ware components.
Method: Subjects expertise is determined based on their independently assessed aca-
demic record. Inspection outcome is represented by the diversity of defects found, us-
ing two alternative metrics. Correlation and tests for detecting significant differences
in several populations are used to verify our hypotheses.
Results: We found statistically significant relationships among expertise and inspec-
tion outcomes. The usage of peer reviewers with a higher expertise than that of the
inspected artifact’s developers lead to a higher diversity of defects found.
Limitations: In an industrial context, an alternative expertise assessment technique
should be used, such as the professional experience of the inspection participants.
Conclusion: The effect of expertise is observable in the inspection outcome.

193

6. PROCESS ASSESSMENT IN CBD 6.1. Motivation

6.1 Motivation

The competence of the members of a software development team is often regarded
as a critical success factor for a software project. This observation is not specific to
software development, of course. It crosscuts our view on success factors in the society,
in general. We expect skilled developers to produce better software than less skilled
ones. From requirements definition to the maintenance process of software, the skills of
practitioners are a fundamental asset to be considered when planning human resources
assignment to projects.

If a typical distribution of competence of the practitioners in an organization is
assumed, the distribution of tasks among practitioners will imply that both the most
skilled and the less skilled practitioners will have their roles to play in the development
process. The challenge, then, is to leverage the expected positive effect of the most
skilled practitioners, while limiting the possibly negative effects of less skilled ones.

In this chapter, we will focus on code inspections, a software process activity that
is expected to have a strong impact on the final product’s quality. We will assess the
impact of practitioner’s skills on the success of this activity. A code inspection is a
peer review of source code intended to detect defects before the testing phase begins,
thus improving overall code quality. There are a number of code inspection processes
being used in industry. Fagan inspections [Fagan 76, Fagan 86] are considered seminal
in this area. Fagan defined inspections as a “formal, efficient, and economical method
for finding errors in design and code”.

Several factors drive code inspection success. Identifying the most influential fac-
tors is key to improving inspection effectiveness. Ultimately, the Software Engineering
community needs to identify opportunities to improve the return on investment in
inspection activities. This motivated the proposal of alternative inspection processes,
most of which are evolutions of Fagan inspections. These alternative code inspection
techniques try to lower the costs involved in code inspections without sacrificing their
benefits. Examples include conducting inspections off-line, thus skipping the inspec-
tion meeting [Parnas 87], or performing phased inspections, where the inspectors focus
on a specific class of defects [Knight 93], although the latter technique has been criti-
cized for being more costly than conventional inspections [Porter 97b].

In this chapter we assess the impact of practitioners’ skills in the context of code
inspections performed within a component-based software development process. The
code inspections are performed on components developed in-house, thus making their
source code available to the code inspections participants. This is a typical scenario in
an organization engaged in the development of reusable components that includes
code inspections in its development process. Understanding how different combina-
tions of expertise levels influence the outcome of code inspections can help improving
the process of selecting effective code inspection teams.

194

6. PROCESS ASSESSMENT IN CBD 6.1. Motivation

6.1.1 Problem statement

We are concerned with the impact of practitioners’ expertise in the outcome of code
inspections performed during the development of software components. We are seek-
ing evidence on possible causal relationships between the expertise of practitioners
involved in the code inspections and the diversity of defects reported during those in-
spections, as outlined in figure 6.1. In this scenario, all inspections are carried out by
a review team (RT) which includes the development team (DT) and a peer team (PT).
This scenario is in line with industry inspections, where the review team includes both
the authors of the artifact under scrutiny and other reviewers who act as external au-
ditors for the sake of identifying problems in the artifact. Both the authors and their
peers can be (and often are) members of the same organization. The peers are typically
other developers who are not involved in the development of the component under
scrutiny.

Figure 6.1: Expected expertise impact on the review process

The team dynamics of inspections are likely to play an important role on the in-
spections’ outcome. We consider four potential causal relationships:

• H1 The expertise of the developer team may have a negative effect on the diver-
sity of defects found. The rationale is that expert developers tend to introduce
fewer and less varied defects on their code than other developers.

• H2 Conversely, the expertise of the peer team may have a positive effect on the
defects diversity, as expert peer teams are expected to be better at detecting de-
fects.

• H3 A similar rationale leads to the possible causal effect between the expertise of
the review teams, as a whole, and defect diversity.

• H4 Finally, we consider the difference of expertise between the developer team
and the peer team as a negative effect on defect diversity. If the expertise of the

195

6. PROCESS ASSESSMENT IN CBD 6.1. Motivation

developers is higher than that of their peers, defect diversity is expected to be
smaller than when the opposite occurs.

Understanding how the expertise level of reviewers impacts the diversity of prob-
lems found in those inspections, may help improving the review team selection pro-
cess, by providing information concerning which combinations of reviewers are more
effective.

6.1.2 Research objectives

Our goal is to
analyze the outcome of software components source code inspections,
for the purpose of their evaluation,
with respect to the impact of practitioner’s expertise on defect introduction and
detection,
from the point of view of a project manager (in this case, the research team),
in the context of an academic simulation of a component marketplace.

6.1.3 Context

To better understand the synergies between participants of an inspection we devised
an experiment to be run, in this instance, in an academic context, using a toy exam-
ple. With minor adjustments concerning the expertise assessment of participants (the
independent assessment of participants expertise would be replaced by an expertise
evaluation scheme in place in the organization), the experimental design is completely
reusable in a professional context, with real projects.

The experiment was carried out in the context of a Software Engineering course
for 4th year students of the Informatics degree of Universidade Nova de Lisboa, in
the Spring semester of 2005. The tasks under scrutiny in this experiment were part of
the normal activities within the course, where the students performed the construc-
tion of software components, from their requirements’ definition to their integration
in a component-based system made of components developed by several independent
teams.

The participants were novices with respect to performing Code inspections, but al-
ready had several years of practice with developing software using the Java program-
ming language. Although the software under inspection was part of a toy example in
component-based development, this is not, in itself, a threat to the generalizability of
the results. Fagan inspections are usually performed on fairly small portions of source
code, with a complexity comparable to that of the source code used in the inspections
performed in this experiment. In the design planning section (6.3) we will detail these

196

6. PROCESS ASSESSMENT IN CBD 6.2. Related work

issues. Their impact on the potential threats to the validity of the experiment is dis-
cussed in sub-section 6.6.2.

6.2 Related work

6.2.1 Inspection techniques

In this section, we provide a brief overview of software inspections techniques, which
condenses the observations reported in Laitenberger’s survey on inspections [Laiten-
berger 02].

When discussing inspections from a technical point of view, one should consider at
least four dimensions: the inspection process, the inspection teams roles, the inspec-
tion products, and the used reading techniques.

The inspection process includes several sub-processes, as shown in figure 6.2. De-
pending on the chosen inspection process, some of these activities may be skipped, as
noted by the optional paths presented in figure 6.2.

Figure 6.2: Inspection process

The planning activity concerns deciding which artifacts should be inspected, when,
how and by whom. The overview activity is also known as a kick-off meeting and is
used by the author of the artifact to be inspected to make a brief presentation of that
artifact. The objective of this meeting is to provide a quicker familiarization of the in-
spection team with the artifact to be inspected, thus saving time during the next phases
of the inspection. This activity is often skipped so that organizations can save the costs
involved in the meeting, but is useful in situations where the briefing to be made at the
kick-off is considered to be cost-effective, when compared to not holding that meeting.
This can be the case when inspecting complex artifacts, or artifacts that are integrated
in a complex context that the review team members are not familiar with, prior to the
inspection. The defect detection activity is the process phase where inspectors are ex-
pected to study the inspection artifact and detect potential defects in it. Depending on
the particular inspection technique being used, this can be made individually or by the
inspection team, as a group. In the former alternative, the defects detected individually

197

6. PROCESS ASSESSMENT IN CBD 6.2. Related work

have to be merged, so that the list of defects collected by all inspectors can be consid-
ered. The defect collection activity that follows defect detection provides the chance
for reconciling the defects detected by all the inspectors into a single list, while decid-
ing which of those alleged defects are real defects. The artifact’s authors can then use
the identified defects list as a checklist for the artifact’s correction. Furthermore, the
list of collected defects can be analyzed to decide whether or not it is necessary to per-
form a follow-up process to verify that the changes that resulted from the inspection
adequately solve the identified problems.

Inspection teams have well-defined roles, which may vary from one inspection
technique to another. Laitenberger’s survey lists the following roles:

• the organizer, who is responsible for the planning sub-process;

• the moderator, who is responsible for leading the inspection team, particularly
during meetings;

• the inspector, who inspects the artifact;

• the reader, who presents the artifact being inspected during inspection meetings;

• the author, who produced the artifact under scrutiny;

• the recorder, who keeps a log of all the defects found during an inspection meet-
ing;

• the collector, who merges the defects found by all inspectors into a list, if no
meeting occurs.

Note that some of these roles can be accumulated (e.g. all members participating in
an inspection can act as inspectors). While some roles, such as the reader and recorder,
only make sense in inspections with meetings, the role of collector is only considered
when no meeting occurs. The remaining roles are usually filled regardless of the par-
ticular kind of inspection technique.

The number of inspection team members may vary, but inspection teams often have
between 3 and 5 members. If the team is too small, the defect detection ratio (the
percentage of defects in the artifact that are detected) may decrease. If the team is too
large, the extra members will not collect a significant number of defects not detected
by the other members of the team, so the extra cost of using too many inspection team
members does not pay off.

There is some controversy with respect to ideal team size. Fagan recommended
4 participants as a good-sized team [Fagan 76]. Bisant and Lyle [Bisant 89] reported
on significant productivity gains of novice programmers as a result of 2 person in-
spections and suggest such inspections can be used both in contexts where access to
a larger team is not practical, and as a transition step toward using the method with

198

6. PROCESS ASSESSMENT IN CBD 6.2. Related work

a larger team. Porter et al. [Porter 97c] obtained experimental results that suggest that
the teams may have as little as two members, (the author and an inspector) without
a significant loss of effectiveness. The number of defects reported in teams of 2 and 4
members was not significantly different. In contrast, Madachy et al. [Madachy 93]1 and
Bourgeois [Bourgeois 96] presented data suggesting that the ideal size ranges from 3
to 5 participants.

The members of the inspection teams are usually either developers (from require-
ments’ engineers and designers to programmers) or testers. It is usually preferable
to leave managers out of the inspection process. There are at least two arguments to
support this preference. On the one hand, defect detection is a technical task, and that
rules out of the usefulness of involving managers, if they do not possess the adequate
technical skills for the task. On the other hand, there is an important human resources
management issue to consider: the artifacts, rather than their authors, are being as-
sessed. Leaving managers out of the inspection mitigates the effects of fear from the
inspection outcome. As noted by [Laitenberger 02] such fears can significantly dam-
age the effectiveness of inspections. To illustrate this, consider a scenario where the
number and severity of defects found during an inspection are used to evaluate the
performance of the artifact’s author. The knowledge of that evaluation criterion can
bias the defect detection effectiveness. Rather than being regarded as an opportunity
to, in a constructive context, increase the quality of the artifacts, inspections would
then be regarded as a threat to the author’s professional career.

Inspections can be conducted on several kinds of artifacts. According to Laiten-
berger’s survey on inspections, most of the inspections reported in literature are per-
formed on code documents. Others are performed, with a decreasing frequency, on de-
sign, requirements, and testing documents. There is no apparent relationship between
the benefits of inspections and their frequency in literature, with respect to the inspec-
tion product. In general, the return on investment of defect detection techniques is
considered higher when defects are detected earlier in the process [Boehm 81]. There-
fore, inspections carried out in artifacts produced earlier in the process yield higher
benefits, according to [Briand 98].

There are a number of reading techniques that can be used during inspections.
These include, among others:

• Ad-hoc reading. No specific guidelines are provided to the inspectors. The in-
spector is free to use any strategy to uncover defects.

• Checklist-based reading. The inspectors are given a set of questions they have
to answer, thus driving the inspector’s focus of attention. This is still a non-
systematic approach to defect detection, in the sense that no strategy is provided
for answering the questions on the checklist [Porter 95]

1This work is cited in [Laitenberger 02], but we were not able to access the original paper.

199

6. PROCESS ASSESSMENT IN CBD 6.2. Related work

• Active design reviews. These reviews are targeted for design artifacts and con-
sist in assembling a team of designers with varied expertise, so that each can
focus his attention in particular parts of a design. Inspectors actively review the
design under scrutiny by answering a set of questions created to foster a deep
understanding of the design, thus preventing reviewers from just skimming the
artifact [Parnas 85].

• Defect-based reading. In this technique, inspectors focus on different defect
classes, while inspecting the artifacts. Each defect class has its own set of ques-
tions that the inspector should answer [Miller 98].

• Perspective-based reading. In this reading technique, each reviewer focuses on
the point of view of one of the customers of the inspected artifact. These cus-
tomers may be testers, developers, and so on. The rationale is that different
perspectives will tend to drive the focus of attention of reviewers to different
aspects of the artifact, thus increasing the coverage of the inspection, while each
inspector is concerned with a narrower and deeper scrutiny of the inspected ar-
tifact [Basili 96b].

• Reading by stepwise abstraction [Dyer 92a] is an inspection technique applied
to code, where the inspector reads a set of instructions and abstracts these in-
structions compute, repeating this process until the artifact is abstracted to the
point where it can be compared with its specification. This technique is used in
conjunction with the cleanroom approach [Dyer 92b].

6.2.2 Inspection success drivers

Understanding what drives inspections’ success has been a long time concern in the
software community. Based on data collected from over 6000 inspections, Weller stud-
ied the impact of the inspection process on software quality [Weller 93]. Among sev-
eral other remarks, he pointed to the familiarity of the inspection team with the artifact
being inspected as a key factor in inspection success. We may regard this as kind of
domain expertise.

Siy observed that while structural changes were largely ineffective in improving
the results of inspections, the inputs for those inspections (the reviewers and code
being inspected) were far more influential in the inspection outcome [Siy 96]. These
findings were further explored in [Porter 98], to conclude that better inspection tech-
niques, rather than processes, were the key to improving inspection effectiveness. Biffl
and Halling combined reviewers’ expertise measures (software development skills,
experience and an inspection capability pre-test) with different code inspection tech-
niques [Biffl 02]. While they could not find significant relationships between devel-
opment skills and experience and inspectors’ performance, they found the inspection

200

6. PROCESS ASSESSMENT IN CBD 6.3. Experimental planning

capability pre-test useful to optimize the inspection outcome by selecting ideal inspec-
tion teams. They also identified performance differences related to alternative code
reading techniques, a result that is consistent with the findings of Laitenberger and
DeBaud, in their systematic review on code inspections reading techniques [Laiten-
berger 00]. Sauer et al. identified individual’s task expertise as the primary driver of
review performance [Sauer 00].

In a totally different context (social psychology), Kruger and Dunning observed
that the skill of a person in performing a task is closely related to the required skill to
assess his own performance in the same task [Kruger 99]. If we instantiate this insight
into code production and code reviewing, we would expect the best programmers to
also be the most effective code reviewers, although this intuition was not confirmed in
Biffl and Halling’s paper [Biffl 02].

6.3 Experimental planning

6.3.1 Goals

The goal presented in section 6.1.2 is too abstract for the purposes of our assessment.
To make it more concrete, we use the expected expertise impacts, as presented in figure
6.1, as a reference and break our abstract goal into more concrete sub-goals. In the
following sub-goals definition “(...)” is used to denote that we keep the corresponding
part of the more abstract goal definition. This allows us to highlight the differences
among the four sub-goals.
Goal 1(G1):
Analyze the outcome of software components source code inspections,
(...)
with respect to the impact of developer’s skill on defect detection,
(...)

Goal 2(G2):
Analyze the outcome of software components source code inspections,
(...)
with respect to the impact of peer’s skill on defect detection,
(...)

Goal 3(G3):
Analyze the outcome of software components source code inspections,
(...)
with respect to the impact of reviewer’s (developers and peers) skill on defect
detection,

201

6. PROCESS ASSESSMENT IN CBD 6.3. Experimental planning

(...)

Goal 4(G4):
Analyze the outcome of software components source code inspections,
(...)
with respect to the impact of the gap of skill between developers and peers on defect
detection,
(...)

6.3.2 Experimental units

This experiment occurred in the context of a Software Engineering course held at the
Universidade Nova de Lisboa, during the Spring semester of 2005. This course is of-
fered on the 8th semester of their 5-years informatics degree. For reference, the adopted
instantiation of the Bologna process at the informatics course reserved 3 years for the
first cycle, and 2 for the second one. The participants are comparable to MSc. students.

The participants were grouped into teams. As there was an odd number of partic-
ipants, one team had three participants. All the remaining teams had two members.
There were a total of four different development tasks. Each task consisted on develop-
ing a component, or set of components. The component-based system was built from
the assembly of the deliverables of these four development tasks.

Each development team was randomly assigned to one of these tasks. A set of four
development teams would then perform the final integration project (thus evolving
the test bed, if necessary, from an application prototype to the final project). The selec-
tion of the combinations of four teams that performed the final integration project was
performed after the code inspections carried out in the experiment described here. It
had no influence in the outcome of the inspections.

With respect to the selection of peer teams that, along with the developers, made
up the inspection teams, the peer teams were randomly selected from the set of teams
which were performing a different development task. In practice this means that the
peers were familiar with the requirements of the software they were to inspect, but
had not developed software with the same functionality themselves. So, for instance,
if the source code of component X was to be inspected, then the peer team would have
to be chosen from those who were not developing component X. This emulates the
situation in a professional environment, where peers are developers not involved in the
development of the artifact being inspected, but are otherwise familiar with both the
development techniques and the requirements of the artifact. The random assignment
of reviewers also rules out the possibility of participants choosing the teams whose
artifacts they would inspect.

202

6. PROCESS ASSESSMENT IN CBD 6.3. Experimental planning

6.3.3 Experimental material

The course’s project consisted in developing a component-based elevator system sim-
ulator from requirements definition to final product delivery. As explained in the pre-
vious sub-section, the project was divided into four sub-projects that were to be inte-
grated in the end. For illustration purposes, figure 6.3 presents the four development
tasks (Motor & Alarm, Elevator Controller, Request Manager, and Test Bed). Three
of the tasks consisted on developing the components to be used in the final system,
while the forth (Test Bed task) consisted on developing the component-based system,
by creating mock-up implementations of the four major components of the system.
The details of this particular component-based architecture are not relevant for the dis-
cussion in this dissertation.

Figure 6.3: Development tasks in the elevator project

The overall development process followed in the project is depicted in figure 6.4.
The activity under scrutiny in this experiment was the code inspection carried out
exactly once for each component, in step 5.

Figure 6.4: Development process in the elevator project

The specific combinations of integration teams were unknown to the participants
at the time this experiment was performed (they were only revealed to participants

203

6. PROCESS ASSESSMENT IN CBD 6.3. Experimental planning

when starting step 7, in the development process). The secrecy of the used combina-
tions of components for integration attempted to simulate the situation in a component
development environment where the set of clients of the components are at least par-
tially unknown to the component producers. This is often the case when developing
off-the-shelf components for the component marketplace.

The programming language used during development was Java, well-known to all
subjects in the experiment, who started programming in Java in the third semester of
the course. The inspections carried out during this experiment were performed on
the software components developed during the course’s project. Each component con-
sisted on a set of (frequently multi-threaded) classes that, as a whole, implemented a
well-defined interface, specified by the participants in the third activity of the devel-
opment process depicted in figure 6.4. Although the overall example of the elevator
system simulator can be considered a toy example, the dimension and complexity of
the inspected source code is comparable to the one that would be used in code inspec-
tions conducted in a professional environment. Note that time constraints limit the size
and complexity of artifacts that can be assessed, even in a professional environment,
in a code inspection.

6.3.4 Tasks

Among other activities, the development process included an inspection performed on
all the developed components. The planning of the inspection was performed by the
course’s tutors.

The entry criteria for components to be inspected was that their source code cor-
responded to an early version of the component which was expected to be fully func-
tional, by the time the component was inspected. Note that, while encouraged, the
full functionality of the component could not be verified a priori (this verification was
one of the expected outcomes of the inspection process). With respect to participants
selection, the selection was stipulated by the course’s tutors, in a process that joined a
development team with a peer teem, to build the full inspection team. The inspection
teams were built in such a way that although peer team members were knowledge-
able in the inspected code basic requirements, they were not developing an alternative
implementation of that same component, to avoid biasing their review with their own
experience in the project. Note that each participant was asked to contribute to two
different code inspections: one, where he was a member of the development team, and
another where he acted as a peer team member.

In any given inspection, the following inspection roles were assigned to the four
review team members: the development team members got the moderator and author
roles and the peer team members the remaining ones (reader and recorder). All acted
as inspectors. Assigning one of the authors as the moderator of the inspection meeting
is not common practice. However, as there were two developers rather than just one

204

6. PROCESS ASSESSMENT IN CBD 6.3. Experimental planning

we had to assign one of the developers to a role which is normally performed by a
peer. Considering the available alternatives (moderator, reader, and recorder) and the
context under which the experiment took place, we decided that the moderator’s role
was the most innocuous for this adaptation, as we wanted to ensure that neither the
reading of the artifact nor the recording of the review data would be performed by an
author. Having a peer paraphrasing the code can help uncovering portions of the code
that are unclear for someone other than the code’s author. It also denies the author
the possibility of skimming through parts of the code he is not particularly confident
about, fearing he is being indirectly assessed. With respect to the recorder, we wanted
to avoid an incomplete or less detailed recording of problems that could result both
from fear of poor evaluation and from knowledge which could be assumed to be tacit
by a recorder who was a developer of the artifact, as well.

The optional overview meeting was skipped because the requirements of each of
the inspected components were well-know to all participants, prior to the inspection,
as they were thoroughly discussed earlier in the course (development tasks 1 through
3).

All inspectors were instructed to make a solo review of the articles before the meet-
ing. This review had no strict time limits and participants were asked to record its
actual duration. As this solo review was conducted off-line, there is no way to vali-
date the accuracy of the recorded preparation time, so, we decided against using this
variable as a predictor in our models. The average preparation time for inspection
meetings was around 1 hour, as suggested to participants during training.

With respect to the used reading technique, an extensive checklist of common de-
fects in Java programs was distributed (and its contents explained) to all review teams
before code inspections (including the solo reviews) took place. Checklist-based read-
ing is one of the two reading techniques that do not require special training and have
been validated through industrial practice [Laitenberger 02]. When compared to the
other technique that fills these two criteria (ad-hoc reading), checklists offer some level
of support for defect detection, as opposed to none. The availability of a common
defects taxonomy facilitates the comparison of the outcomes of all inspections con-
ducted in this experiment. Other, more sophisticated, reading techniques could also
have been tried, but they would have at least three drawbacks for our purposes in this
experiment:

• In the context where this experiment took place, the need for special training in
a particular reading technique was not easily accommodated within the course’s
time constraints.

• Sophisticated reading techniques are not common industrial practice, unlike
checklist-based, or ad-hoc reading. This would be a threat to the validity of re-
sults in industrial settings.

205

6. PROCESS ASSESSMENT IN CBD 6.3. Experimental planning

• Sophisticated reading techniques try to, among other things, offer guidance to
inspectors that is expected to help them to detect defects more effectively, and, if
possible, in a repeatable way. A side effect, with respect to our experiment, is that
the more successful these techniques are at guiding inspectors, the less visible the
effect of individual expertise becomes.

Defect collection was performed during an inspection meeting, where the whole
inspection team followed the readers’ presentation of the inspected code and identified
the potential defects. The teams reached a consensus with respect to which of the
identified potential defects were really defects, and the recorder filled a special defect
detection report form prepared by the tutors to facilitate defect collection in a format
which would be also convenient to facilitate further analysis.

With respect to follow-up, the development teams were responsible not only for
fixing the identified problems, but also for filling a follow-up form.

6.3.5 Hypotheses and variables

Hypotheses

The observations on the problem statement section lead us to testing four different
basic hypotheses, to assess the effect of practitioners’ expertise on the outcome of the
code inspection, in terms of the inspected defects diversity. We identify the hypotheses
as H1, H2, H3, and H4. For each of them, we formulate both a null and an alternative
hypothesis (e.g. H10 and H11).

Our research hypotheses are as follows:
H10: Developer skill has no effect on the inspected defect diversity.
H11: Developer skill has an effect on the inspected defect diversity.
H20: Peer skill has no effect on the inspected defect diversity.
H21: Peer skill has an effect on the inspected defect diversity.
H30: Reviewer expertise has no effect on the inspected defect diversity.
H31: Reviewer expertise has an effect on the inspected defect diversity.
H40: The gap of expertise between developer and peer has no effect on the inspected
defect diversity.
H41: The gap of expertise between developer and peer has an effect on the inspected
defect diversity.

Independent variables

The basic independent variable of this experiment is the subjects’ expertise. We use two
measures of our subject’s expertise: their Average Grade (AG) throughout their academic
path, based on the independent evaluation our subjects received in over 30 different

206

6. PROCESS ASSESSMENT IN CBD 6.3. Experimental planning

courses, and the Number of Semesters (NSem) it took them to complete those courses.
We assume that there is a higher merit in obtaining a given AG in the Recommended
number of Semesters (RSem), than in a higher NSem. The Simple Weighted Average Grade
(SWAG) and the Complex Weighted Average Grade (CWAG) expertise metrics, defined
below, follow this rationale.

SWAG = AG× RSem
Max(RSem,NSem)

CWAG = AG×

√
RSem

Max(RSem,NSem)

Note that SWAG causes a bigger penalty than CWAG, as NSem increases. Figure
6.5 shows how the penalty for loosing semesters affects the mean classification of a
student, with our merit assessment scheme. For instance, a student who has lost a
year before enrolling to this course would have a penalty resulting from the two extra
semesters. The penalty factor would then be multiplied by the student’s average grade,
to obtain the student’s merit factor. So, for a student who enrolled in this course at
his 10th semester, rather than at his 8th, with an average grade of 15, we would have
AG = 15, SWAG = 12, and CWAG = 13,42.

Figure 6.5: Subjects expertise penalty factors, with respect to the number of extra
semesters taken before participating in this experiment.

Hypotheses H1 through H4 use the expertise of different teams. In hypotheses H1,
H2, and H3, we use the best subject, the worst subject, and the average within the team.
Finally, in hypothesis H4 we consider the difference between the expertise of the devel-
opment team and that of the peer team as an independent variable. The rationale for

207

6. PROCESS ASSESSMENT IN CBD 6.3. Experimental planning

using the mean, worst, and best expertise assessments for each team is that we do not
know a priori what the effect of different expertise levels, within each team will have on
our overall evaluation. In summary, we have 3 alternative rating schemes for grades,
and 3 ways of combining grades within teams. This implies that we have 9 different
ways for quantifying our independent variable (the expertise). These alternatives are
used for each hypothesis under test.

Table 6.1 presents a condensed view of the independent variables tested in this ex-
periment, as predictors of the diversity of errors found during code inspections. The
first row of labels indicates the hypothesis which the independent variable will be used
to test. The second row of labels represents the considered teams. The column labels
indicate if we are using the mean, worst, or best elements of the teams in our as in-
dependent variable. The inner table cells refer to the specific metric of expertise used.
For example, if we want to test H4 using the mean difference of expertise between the
development team and the peer team, with SWAG as the expertise metric, our indepen-
dent variable is A_Di f f _DT _PT _SWAG, presented in bold in the table.

H1 H2 H3 H4
DT PT RT RT_Diff

A AG SWAG CWAG AG SWAG CWAG AG SWAG CWAG AG SWAG CWAG
W AG SWAG CWAG AG SWAG CWAG AG SWAG CWAG AG SWAG CWAG
B AG SWAG CWAG AG SWAG CWAG AG SWAG CWAG AG SWAG CWAG

Table 6.1: Independent variables

Dependent variables

The dependent variables used in this experiment represent the diversity of defects
found during code inspection. A defect classification checklist was distributed to all
participants. The checklist contained 16 different defect classes, which were then sub-
divided into a total of 81 different defect codes. In summary, our dependent variables
are:

• NDSCode = the number of different specific defect codes reported in the inspec-
tion

• NDGClass = the number of different generic defect classes reported in the inspec-
tion

At first, NDGClass may seem unnecessary, given the usage of a finer grained mea-
sure (NDSCode). However, if two code inspections report a similar number of different
defect codes, but one of them uses a lot less defect classes than the other, it may be the
case that this reflects a lower coverage of the kinds of problems to be found during the
inspection. We used NDGClass to detect this kind of problem, should it occur.

208

6. PROCESS ASSESSMENT IN CBD 6.3. Experimental planning

6.3.6 Design

The design used in this experiment can be classified as a quantified multiple control
groups post-test only design, which can be presented as follows, using Trochim’s no-
tation [Trochim 06]2:

Group Q1 C1 X O

Group Q2 C2 X O

Group Q3 C3 X O

Group Q4 C4 X O

This design results in 4 groups, from Q1 through Q4 that are selected using a cut-
off method (denoted by C1 through C4). The cut-off criteria used in our experiment is
the division of the original sample into quartiles, using an expertise assessment metric
as the discriminant value to assign each inspection to the proper quartile. Groups Q1
through Q4 are ordered by the expertise assessment metric.

All groups receive a similar treatment X (the code inspection) followed by a similar
observation O (the inspection reports). Note that while performing the experiment,
subjects are completely unaware of their assignment to these groups. As far as they
are aware, all participants are treated equally. For the purposes of our assessment, we
can consider that the treatments were administered at the same moment in time, as the
time gap between all the inspections is insignificant in our context.

It should be noted that although the inspection on a given artifact is only conducted
once, as we have several alternative expertise metrics and two alternative inspection
outcome metrics, this design is replicated for each of the possible combinations, for the
purpose of subsequent data analysis.

6.3.7 Procedure

Regarding the experiment instrumentation, the calculation of subjects’ expertise was
done upon the data available from the university’s academic database. The informa-
tion concerning code inspections was collected from the standard inspection reports
submitted by subjects after they performed the code inspections. The information col-
lected through these procedures can be represented by instantiating the class diagram
presented in figure 6.6.

With respect to the definition of the metrics outlined in section 6.3.5 to support the
independent and dependent variables, this definition can be formalized in OCL, upon
the model presented in figure 6.6. This is a variation on the technique presented in
earlier chapters, in the sense that we are using a model for the definition of the met-

2In chapter 3 we presented a class diagram (figure 3.11) that could be instantiated here to represent
our experimental design. While storing the design information by instantiating those classes is practical
for further computer supported analysis, the resulting object diagram is cumbersome. For visualization
purposes, we will maintain Trochim’s notation.

209

6. PROCESS ASSESSMENT IN CBD 6.3. Experimental planning

Figure 6.6: Experiment data class diagram

rics, rather than a metamodel. So, rather than instantiating a metamodel on software
inspections with a model of our inspection, we are defining a model of the code in-
spection carried out in our experiment in UML, and then using OCL to specify metrics
upon the model. So, rather than Metamodel Driven Measurement, we are using Model
Driven Measurement in this chapter.

The class diagram in figure 6.6 includes the signatures of the operations added to
our model classes to support metrics definitions.

The operations defined for the class Practitioner are presented in listing 6.1. NSem,
RSem, and AG are trivial. In the definition of SWAG and CWAG, we use two auxiliary func-
tions, maxPair, minPair and sqrt, which are not part of the OCL standard. maxPair re-
turns the maximum value between its two arguments, minPair returns the minimum,
and sqrt returns the squared root of its argument.

Listing 6.1: Practitioner metrics in UML 2.0.
context Practitioner

NSem(): Integer = previousSemesters

RSem(): Integer = requiredSemesters

AG(): Real = averageGrade

SWAG(): Real = AG() * (RSem()/(maxPair(RSem(), NSem())))

CWAG(): Real = AG() * sqrt(RSem()/(maxPair(RSem(), NSem())))

The operations defined for the class Team are presented in listing 6.2. A Team has a
set of practitioners (subject), and its metrics are computed upon those practitioners.
The collection of practitioners is obtained through the Subjects() operation, which
returns the collection as a sequence of practitioners. Note that Team refers to either a

210

6. PROCESS ASSESSMENT IN CBD 6.3. Experimental planning

development team or to a peer team. For each of the metrics AG, SWAG, and CWAG,
the best, worst and average values are computed. In these formalizations, the existence
of two operations which are not part of the standard OCL is also assumed. The oper-
ation max() receives a sequence of real numbers and returns the maximum value in
that sequence. The operation min() is similar to the former, but returns the minimum
value.

Listing 6.2: Team metrics in UML 2.0.
context Team

BestAG(): Real = max(Subjects().AG())

WorstAG(): Real = min(Subjects().AG())

AverageAG(): Real = Subjects().AG()->sum()/Subjects()->size()

BestSWAG(): Real = max(Subjects().SWAG())

WorstSWAG(): Real = max(Subjects().SWAG())

AverageSWAG(): Real = Subjects().SWAG()->sum()/Subjects()->size()

BestCWAG(): Real = max(Subjects().CWAG())

WorstCWAG(): Real = min(Subjects().CWAG())

AverageCWAG(): Real = Subjects().CWAG()->sum()/Subjects()->size()

Subjects(): Sequence(Practitioner) = subject ->asSequence

Finally, the Inspection class has the links to the development team DT and peer
team PT that, as a whole, form the inspection team. As such, the Subjects() operation
performs the union of the subjects in the development and peer teams. The oper-
ations for computing the dependent variables NDGClass, NDSCode and NDefects count
the number of defect classes, codes, and defects, respectively, found in each inspection.
The independent variables are computed through operations that have definitions sim-
ilar to those of the class Team. However, these values are now computed for different
collections of practitioners (i.e. the whole inspection team).

Listing 6.3: Team metrics in UML 2.0.
context Inspection

-- Operations for computing the dependent variables

NDGClass(): Integer =

self.detect ->collect(defectCode)->asSet()->

collect(defectClass)->asSet()->size()

NDSCode(): Integer = self.detect ->collect(defectCode)->asSet()->size()

NDefects(): Integer = self.detect ->size()

-- Independent variables

BestAG(): Real = max(Subjects().AG())

WorstAG(): Real = min(Subjects().AG())

AverageAG(): Real = Subjects().AG()->sum()/Subjects()->size()

BestSWAG(): Real = max(Subjects().SWAG())

211

6. PROCESS ASSESSMENT IN CBD 6.3. Experimental planning

WorstSWAG(): Real = max(Subjects().SWAG())

AverageSWAG(): Real = Subjects().SWAG()->sum()/Subjects()->size()

BestCWAG(): Real = max(Subjects().CWAG())

WorstCWAG(): Real = min(Subjects().CWAG())

AverageCWAG(): Real = Subjects().CWAG()->sum()/Subjects()->size()

BestDiffAG(): Real = DT.BestAG() - PT.BestAG()

WorstDiffAG(): Real = DT.WorstAG() - PT.WorstAG()

AverageDiffAG(): Real = DT.AverageAG() - PT.AverageAG()

BestDiffSWAG(): Real = DT.BestSWAG() - PT.BestSWAG()

WorstDiffSWAG(): Real = DT.WorstSWAG() - PT.WorstSWAG()

AverageDiffSWAG(): Real = DT.AverageSWAG() - PT.AverageSWAG()

BestDiffCWAG(): Real = DT.BestCWAG() - PT.BestCWAG()

WorstDiffCWAG(): Real = DT.WorstCWAG() - PT.WorstCWAG()

AverageDiffCWAG(): Real = DT.AverageCWAG() - PT.AverageCWAG()

Subjects(): Sequence(Practitioner) = DT.Subjects()->union(PT.Subjects())

As mentioned earlier, in listings 6.1 through 6.3 we used several utility functions
that are not part of the OCL standard. One possible way of implementing those opera-
tions is to create a library class that we will call Utils, and then define these operations
as class operations. As this would clutter slightly the presented definitions, and is
not supported by the OCL tool used throughout the preparation of this dissertation,
another implementation alternative is to make Inspection, Team, and Practitioner

subclasses of our Utils class. A possible implementation of these operations would be
the one in listing 6.4.

sqrt() is implemented following the Newton’s iteration algorithm 3 Although the
default number of iterations set here is 5, for illustration purposes, this number could
be changed to adjust the desired precision of the algorithm. Although OCL provides
a convenient way of accessing the first element of a sequence, through the selector
first(), it does not provide an utility operation for the remaining ones. We define such
an operation (tail) in our utilities library. Both max and min have a pre-condition: the
sequence s of numbers cannot be empty (s->size()>0). These functions are specified
in listing 6.4.

Listing 6.4: Team metrics in UML 2.0.
context Utils

sqrtAux(r: Real , itCount: Integer): Real =

if (itCount > 0)

then (0.5 * (sqrtAux(r, itCount -1) + (r/sqrtAux(r, itCount -1))))

else 1.0

3For further details on the Newton’s iteration algorithm, see, for instance: http://mathworld.
wolfram.com/NewtonsIteration.html

212

http://mathworld.wolfram.com/NewtonsIteration.html
http://mathworld.wolfram.com/NewtonsIteration.html

6. PROCESS ASSESSMENT IN CBD 6.3. Experimental planning

endif

sqrt(r: Real): Real = sqrtAux(r, 5)

maxPair(a: Real , b: Real): Real = if (a >= b) then a else b endif

minPair(a: Real , b: Real): Real = if (a <= b) then a else b endif

tail(s: Sequence(Real)): Sequence(Real) =

if (s->isEmpty())

then s

else s->excluding(s->first)

endif

max(s: Sequence(Real)): Real =

if (s->size()>1)

then maxPair(s->first(), max(tail(s)))

else s->first()

endif

min(s: Sequence(Real)): Real =

if (s->size()>1)

then minPair(s->first(), min(tail(s)))

else s->first()

endif

6.3.8 Analysis procedure

Data analysis is to be carried out through the following steps:

• Descriptive statistics: For all our independent and dependent variables, we will
collect a set of descriptive statistics including the mean, standard deviation, the
minimum value of the variable in the sample, the maximum value, as well as the
skewness (a measure of the asymmetry of the distribution of the variable) and the
kurtosis (a measure of the “peakidness” of the distribution of the variable - higher
kurtosis occurs when the variance in the sample is due to infrequent extreme
deviations, while a lower one corresponds to smaller frequent deviations) of the
variable’s distribution. These descriptive statistics will provide us with a first
overview on our data, that we will further detail in subsequent analysis.

• Data set reduction: in a data distribution, the presence of outlier and extreme
values can change our view on the relations between dependent and independent
variables. Therefore, before proceeding with further tests, we need to determine
whether or not these values occur in our data.

• Normality tests: Before engaging into statistical tests to verify our hypotheses,
we first have to check our data’s distribution. This is important, so that we can

213

6. PROCESS ASSESSMENT IN CBD 6.4. Execution

select statistical tests that are adequate for our data. In particular, normality
tests will allow us to decide whether we should use parametric tests, or non-
parametric ones. The former are, in general, more powerful than the latter, but
require the data distribution to be known. The latter can be used if the normality
tests show that our data does not have a normal distribution. In any case, further
tests to the data may follow, to ensure the results of the statistical tests used are
meaningful.

• Correlation analysis: These tests will allow us to verify if there is a statistically
significant relation between our independent and dependent variable. If so, the
dependent variable can be regarded as a sign of the independent one, and we
will further explore the relationship. Otherwise, we will conclude that, as no
correlation exists, the hypothesis under scrutiny can be rejected at this point.

• Analysis of differences between groups: Finally, for the hypotheses that were
not eliminated in the previous step, we will perform a test to detect whether there
are significant differences between groups (when compared to differences within
those groups). In other words, we will find out whether any of the groups created
in our experimental design exhibits a significantly different behavior, when com-
pared to the others. If so, we will also determine if there are noticeable trends,
from one group to the next.

We will detail each of these steps in section 6.5 and provide some insight into the
specific statistics tests, with an emphasis on their interpretation, as we use them.

6.4 Execution

6.4.1 Sample

In the beginning of the semester, there were 93 students enrolled in the course. Five
of them dropped out before the experiment started, and one also gave up before turn-
ing in the first implementation of his group’s component. The remaining 87 students
completed the project and are the subjects of this experiment. They were paired into 44
development teams. 43 of those DTs produced components that were inspected. The
deliverables of these 43 inspections were used to collect the dependent variables.

As stated before, the participants in the experiment were students enrolled in the 8th

semester of the informatics degree at Universidade Nova de Lisboa. Our subjects had
a mean of 198,3 ECTS credits (with a standard deviation of 30,3) before participating
in this experiment. For reference, accomplishing the 1st cycle (BSc degree) requires 180
ECTS, while 300 ECTS are required for obtaining a MSc degree.

The 87 subjects participating in this experiment are a convenient, but also represen-
tative sample of the informatics students which annually graduate from Universidade

214

6. PROCESS ASSESSMENT IN CBD 6.4. Execution

Nova de Lisboa. At the time of the experiment, the numerus clausus for the informatics
degree was 160, and the number of students graduating each year was around 60.

6.4.2 Preparation

The subjects were not aware of the aspects being researched, at the time they partici-
pated in the experiment, as this could jeopardize the validity of the results. They were
only aware of our intention to use data collected during the project (from any project
phase, rather than from the code inspections, in particular).

Prior to the implementation of the components that were later inspected, subjects
received a Java coding style guide, along with a specification of the provided interfaces
of each component. The interfaces were specified as Java interfaces, that had to be
implemented by the corresponding components.

Subjects received training on how to perform code inspections, before actually start-
ing them. Then, a week before the inspection meeting, the review teams received the
code they would have to inspect and were instructed to study it, in order to prepare
the inspection meeting. Subjects also received a code defects checklist to support the
inspection. Although this was not enforced or verifiable, it was suggested that the
expected meeting preparation time should be about 1 hour. The inspection package
received for the preparation also included the inspection report template that would
be used to record all the defects found in a standardized way.

6.4.3 Data collection performed

The experimental process was not allowed to disturb in any way the subjects’ activi-
ties in the project. Subjects performed their normal tasks while developing this project,
from requirements specification down to project delivery. In this sense, code inspec-
tions were regarded as yet another one of the project’s activities, rather than receiving
a particular focus, from the participants point of view. Code inspection data was col-
lected from the project’s deliverables, which was checked-in in a contents management
system made available to participants. Inspection meetings typically lasted for about
one hour. Each team was involved in two inspections. In one of the inspections, they
acted as the developers within the review team. In the other inspection, they were the
peer members in the review team. With few exceptions, both inspections were carried
out consecutively (in a two-hours class). The total set of inspections was conducted in
two consecutive days.

215

6. PROCESS ASSESSMENT IN CBD 6.5. Analysis

6.5 Analysis

6.5.1 Descriptive statistics

The descriptive statistics for our independent and dependent variables are summa-
rized in table 6.2. We will not discuss in detail each of the variables, for the sake of
brevity. Instead, we discuss with some more detail, for illustration purposes, two of
these variables, NDSCode, and B_DT _AG. To help in this analysis, we also include
figures 6.7 and 6.8, where we can observe an histogram for the distribution of the
NDSCode variable and a boxplot of the distribution of B_DT _AG.

Figure 6.7: NDSCode histogram

The histogram in figure 6.7 graphically presents the distribution of the number of
defect classes found in the inspections. The most noteworthy case is the one where 28
different defect codes were registered, in a sample where the mean number of differ-
ent defect codes is around 7. Note also how, at a first glance, the distribution seems
to be right-skewed (as is confirmed by its positive skewness value, 2,025, in table 6.2.
This denotes a higher concentration of values on the right tail of the distribution than
would be expected in a normal distribution. The high kurtosis value (5,702) hints that
the distribution has a wider spread than what is to be expected from a normal distri-
bution. In other words, we have more observations at the extremes than what would
be expected in a normal distribution.

The boxplot in figure 6.8 presents a different view on the distribution of a variable,
in this case the B_DT _AG (developer team student’s mean grade), where the lower

216

6. PROCESS ASSESSMENT IN CBD 6.5. Analysis

Figure 6.8: B_DT_AG boxplot

whisker, lower, median, and upper quartiles, and upper whisker are represented as
horizontal lines. They represent, respectively, the lower value (excluding outliers), the
lower quartile (which corresponds to the value that cuts off lowest 25% of data), the
median (50%), upper quartile (75%), and the upper value (again, excluding outliers).
A value is considered an outlier if it is numerically distant from the rest of the data
by at least 1,5×StdDev, where StdDev is the standard deviation within the population.
An example of an outlier is denoted by the circle marked with the case id number
39. We can observe that this expertise assessment of the teams show that there is a
higher concentration of teams in the lower quartiles and their dispersion increases as
we move to higher ones. This not only hints a non normal distribution, as we will
confirm later, but is also helpful in the interpretation of the statistical tests we will
perform to assess our hypotheses. The mean value for this metric is 13,409 (in a scale
from 0,000 to 20,000), the minimum is 11,340 (about 2 points away from the mean)
and the maximum is 17,680 (more than 4 points away from the mean). In short, there
is a smaller difference between the worse and average students in our sample, than
between the average and the best students, with respect to this expertise metric. With
small variations, this pattern is repeated in most of the expertise assessments in our
sample, suggesting that we have a Paretto distribution of expertise that contrasts the
“vital few” best students with the “trivial many” remaining students. This tendency
is mostly noticeable when using the plain *_AG_* metrics. Both the *_SWAG_* and the
CWAG metrics mitigate this effect through the introduction of the element of the
number of semesters into their equations.

Note also that the *_Diff_* metrics on table 6.2 follow a different pattern, because

217

6. PROCESS ASSESSMENT IN CBD 6.5. Analysis

rather than expressing directly the expertise, they express the expertise gap between
developer teams and their peers in code inspections. So, unlike direct expertise assess-
ments, these metrics have a mean value centered on 0 and, as shown in table 6.3 have
a normal distribution.

Mean Std. Dev. Minimum Maximum Skewness Kurtosis
NDSCode 7,093 5,117 1,000 28,000 2,025 5,702
NDGClass 5,047 2,681 1,000 12,000 0,896 0,448
A_DT_AG 13,041 1,103 11,330 15,480 0,701 -0,629
W_DT_AG 12,673 0,997 11,320 14,750 0,667 -0,656
B_DT_AG 13,409 1,339 11,340 17,680 1,223 1,728
A_DT_SWAG 10,155 3,209 3,954 15,480 0,128 -1,144
W_DT_SWAG 9,272 3,450 2,937 14,750 0,119 -1,148
B_DT_SWAG 11,038 3,278 4,970 17,680 0,102 -1,135
A_DT_CWAG 11,386 2,218 7,224 15,480 0,266 -0,812
W_DT_CWAG 10,716 2,346 5,769 14,750 0,078 -0,626
B_DT_CWAG 12,045 2,323 8,157 17,680 0,443 -0,518
A_PT_AG 13,017 1,085 11,330 15,480 0,756 -0,459
W_PT_AG 12,671 0,973 11,320 14,750 0,660 -0,503
B_PT_AG 13,363 1,324 11,340 17,680 1,346 2,127
A_PT_SWAG 10,151 3,102 3,954 15,480 0,142 -1,022
W_PT_SWAG 9,287 3,293 2,937 14,750 0,133 -0,995
B_PT_SWAG 11,014 3,232 4,970 17,680 0,110 -1,071
A_PT_CWAG 11,384 2,145 7,224 15,480 0,280 -0,639
W_PT_CWAG 10,733 2,256 5,769 14,750 0,047 -0,398
B_PT_CWAG 12,023 2,277 8,157 17,680 0,479 -0,357
A_RT_AG 13,029 0,742 11,753 15,168 0,458 0,296
W_RT_AG 12,125 0,578 11,320 13,800 0,835 0,634
B_RT_AG 14,120 1,356 12,070 17,680 1,009 1,066
A_RT_SWAG 10,153 2,341 5,155 15,168 0,005 -0,414
W_RT_SWAG 7,432 2,688 2,937 13,280 0,507 -0,164
B_RT_SWAG 12,917 2,775 6,585 17,680 -0,513 -0,345
A_RT_CWAG 11,385 1,585 7,943 15,168 0,009 -0,135
W_RT_CWAG 9,453 1,778 5,769 13,280 -0,116 0,354
B_RT_CWAG 13,384 2,116 8,974 17,680 -0,017 -0,317
A_RT_Diff_AG 0,024 1,607 -3,525 3,135 -0,159 -0,206
W_RT_Diff_AG 0,002 1,455 -3,250 3,060 -0,130 -0,150
B_RT_Diff_AG 0,046 1,921 -4,890 5,020 -0,109 0,563
A_RT_Diff_SWAG 0,004 4,233 -9,783 8,013 -0,055 -0,510
W_RT_Diff_SWAG -0,016 4,436 -11,630 7,938 -0,327 -0,262
B_RT_Diff_SWAG 0,024 4,521 -7,936 9,151 0,128 -0,857
A_RT_Diff_CWAG 0,002 2,998 -7,453 5,394 -0,170 -0,391
W_RT_Diff_CWAG -0,017 3,098 -8,796 5,544 -0,479 0,124
B_RT_Diff_CWAG 0,021 3,235 -6,110 6,311 0,115 -0,854

Table 6.2: Descriptive statistics

In order to decide whether or not we can use parametric tests in our subsequent
analysis, we have to test these variable’s distributions with respect to their distribu-
tion. Parametric tests are more powerful than non-parametric ones, but require the
variable’s distribution to be known. The most commonly used distribution for this
purpose is the normal distribution.

There are several tests which can be used to test for normality. The Kolmogorov-
Smirnov with the Lilliefors correction test is the most widely used, according to

218

6. PROCESS ASSESSMENT IN CBD 6.5. Analysis

[Maroco 03], although for relatively small samples, the Shapiro-Wilk test is considered
preferable. The actual threshold of what is considered a “small sample” is not consis-
tently reported in the literature4, so we used a Kolmogorov-Smirnov with the Lilliefors
correction test, to determine whether our dependent and independent variables have a
normal distribution and confirmed this assessment with the Shapiro-Wilk test, as well.

Table 6.3 presents these normality tests, for all the identified variables. In both tests,
the normality hypothesis can not be rejected if the significance of the test is less than
0,05. In other words, if the variable’s normality test has a significance level (p-value)
greater than 0,05, we can assume the variables’ distribution to be normal, with an error
probability of 5%. The non-normal variables (according to at least one of the normality
tests) are highlighted in bold, in table 6.3, as is the test significance that points to the
data’s non-normality.

The table includes, for each normality test, its value, the number of degrees of free-
dom (df), and the significance of the test for each variable. Consider the examples of
the variables NDECode and NDSClass: the Kolmogorov-Smirnov test values are 0,182
and 0,140, at a significance of 0.001 and 0,033, respectively. For the same variables, the
Shapiro-Wilk test values are 0,821 and 0,923, with a significance of 0,000 and 0,007, re-
spectively. With both variables, for both tests, the significance is below 0,05. Therefore,
we cannot assume that our dependent variables come from a population with normal
distribution. An analysis of table 6.3 shows that several of our independent variables
cannot be assumed to come from a population with a normal distribution either. Oth-
ers, such as B_DT _CWAG, can be assumed to have a normal distribution.

In summary, the pre-conditions for the using parametric tests in our subsequent
analysis are not met. Therefore, we will proceed using non-parametric tests.

6.5.2 Data set reduction

Outlier and extreme values can change our view on the relations between dependent
and independent variables. For each dependent variable, we conducted a linear re-
gression analysis using the average, best and worst cases of the independent variables.
We repeated this analysis for each of our hypotheses and flagged as outliers those cases
where the standard residual is greater than 1.5×StdDev. This resulted in the removal
of four cases in our analysis, with each of the dependent variables. In particular, the
reviews of the components produced by the development teams 15, 19, and 38 were
flagged for DT , PT , RT , and Di f f _DT _PT , while the review of the component pro-
duced by development team 25 was flagged for PT , RT and Di f f _DT _PT , but not for
DT . The outlier removal is illustrated in figures 6.9(a) and 6.9(b), where cases 15, 19,
25, and 38 are removed from the latter. In both cases, the horizontal scale represents

4For instance, in [Maroco 03], the Shapiro-Wilk test is recommended for samples with less than 30
cases. However, the same author notes that the manuals for the statistics package we used in this dis-
sertation SPSS, http:\www.spss.com\, recommend using this test for samples with less than 50 cases.

219

http:\www.spss.com\

6. PROCESS ASSESSMENT IN CBD 6.5. Analysis

Kolmogorov-Smirnov(a) Shapiro-Wilk
Statistic df Sig. Statistic df Sig.

NDSCode ,182 43 ,001 ,821 43 ,000
NDGClass ,140 43 ,033 ,923 43 ,007
A_DT_AG ,188 43 ,001 ,914 43 ,003
W_DT_AG ,200 43 ,000 ,915 43 ,004
B_DT_AG ,158 43 ,009 ,894 43 ,001
A_DT_SWAG ,144 43 ,025 ,948 43 ,051
W_DT_SWAG ,166 43 ,005 ,937 43 ,020
B_DT_SWAG ,141 43 ,031 ,947 43 ,048
A_DT_CWAG ,133 43 ,053 ,957 43 ,108
W_DT_CWAG ,146 43 ,021 ,953 43 ,075
B_DT_CWAG ,111 43 ,200(*) ,959 43 ,128
A_PT_AG ,182 43 ,001 ,915 43 ,004
W_PT_AG ,180 43 ,001 ,928 43 ,010
B_PT_AG ,169 43 ,004 ,884 43 ,000
A_PT_SWAG ,134 43 ,052 ,954 43 ,084
W_PT_SWAG ,151 43 ,015 ,944 43 ,036
B_PT_SWAG ,142 43 ,029 ,953 43 ,074
A_PT_CWAG ,121 43 ,117 ,962 43 ,162
W_PT_CWAG ,131 43 ,061 ,955 43 ,088
B_PT_CWAG ,111 43 ,200(*) ,963 43 ,183
A_RT_AG ,081 43 ,200(*) ,969 43 ,292
W_RT_AG ,199 43 ,000 ,925 43 ,008
B_RT_AG ,153 43 ,013 ,911 43 ,003
A_RT_SWAG ,065 43 ,200(*) ,988 43 ,916
W_RT_SWAG ,175 43 ,002 ,920 43 ,005
B_RT_SWAG ,151 43 ,015 ,945 43 ,040
A_RT_CWAG ,069 43 ,200(*) ,991 43 ,978
W_RT_CWAG ,153 43 ,013 ,930 43 ,011
B_RT_CWAG ,126 43 ,085 ,971 43 ,337
A_RT_Diff_AG ,096 43 ,200(*) ,978 43 ,569
W_RT_Diff_AG ,120 43 ,132 ,974 43 ,430
B_RT_Diff_AG ,078 43 ,200(*) ,989 43 ,953
A_RT_Diff_SWAG ,096 43 ,200(*) ,974 43 ,426
W_RT_Diff_SWAG ,078 43 ,200(*) ,981 43 ,674
B_RT_Diff_SWAG ,088 43 ,200(*) ,974 43 ,418
A_RT_Diff_CWAG ,136 43 ,046 ,968 43 ,264
W_RT_Diff_CWAG ,098 43 ,200(*) ,975 43 ,468
B_RT_Diff_CWAG ,089 43 ,200(*) ,971 43 ,329

Table 6.3: Normality tests for the independent and dependent variables. The values
marked with (*) are lower bounds for the true significance of the Kolmogorov-Smirnov
test. (a) stands for Lilliefors significance correction. We cannot assume a normal distri-
bution of the variables in bold. The significance of tests is highlighted in bold for tests
with p < 0,05 and italic bold for tests with p < 0,01

.

the expertise of the peer team. In this case, expertise is measured by the average grade
of the best student in the peer team. The vertical scale represents the number of dif-
ferent bug codes found in the inspected code in the inspection in which that peer team
participated.

A similar outlier and extreme values detection and removal was carried out for
the error classes. We found that, again, the components developed by development
teams 15, 19, and 38 were flagged as outliers. The component developed by develop-

220

6. PROCESS ASSESSMENT IN CBD 6.5. Analysis

(a) Expertise vs. NDSCode, with outliers (b) Expertise vs. NDSCode, without outliers

Figure 6.9: Number of diverse specific defect codes, by peer team expertise

ment team 23 was also flagged with about 1/3 of the independent variables. As such,
for analysis concerning the error classes variability, we removed from the sample the
reviews concerning the components built by these four development teams.

In summary, for each of the independent values we excluded four cases from our
analysis. Note that three of these cases were excluded from both analysis.

6.5.3 Hypothesis testing

We started by performing a correlation analysis, using the both Kendall’s and Spear-
man’s correlation tests. Both tests are non-parametric and suited for correlation analy-
sis of our variables. For each of the hypotheses under scrutiny, we tested the correla-
tions of our dependent variables with respect to the independent variables. Note that,
due to the data set reduction discussed in the previous section, we only used the 39
cases for each of the correlation analysis.

In both correlation tests, the significance level presented here is the two-tailed
asymptotic significance. A significance level below 0,05 indicates a statistically sig-
nificant correlation, for which there is a probability of less than 5% that the appar-
ent correlation is only a coincidence. To facilitate the correlation tables analysis, we
will highlight such correlations in bold font. Correlations with a probability inferior
to 1% of being coincidencidental will be highlighted using the bold italic font. The
strength and sign of the correlations will also be presented here. Correlations with a
strength close to 1 (in absolute value) are considered very strong, while correlations
with a strength closer to 0 are considered weaker. The sign of the correlation indicates
whether the variables are expected to have a positive correlation (where an increase in
one variable corresponds to an increase on the other), or a negative one (where an in-

221

6. PROCESS ASSESSMENT IN CBD 6.5. Analysis

crease in one variable corresponds to a decrease in the other variable, and vice-versa).
For the hypotheses where the correlations were shown to exist and be of statistical

significance, we further explored the observed relationships. As we were trying to
assess the effect of expertise in the diversity of defects found during code inspections,
we divided our sample into quartiles, using the expertise metric in each hypothesis
as our criterion for assigning cases to each quartile. For each hypothesis, we ended up
with 4 groups of cases. We then tested whether or not these groups came from the same
underlying population distribution. The rationale is that, if they do not come from
the same underlying population distribution, there are significant differences among
those groups. As the groups were formed using the relative expertise of teams as
the discriminant factor, we can use those differences to better understand the effect of
expertise in the outcome of the code inspections.

H1

Hypothesis H1 is concerned whether or not developer skill has an effect on the in-
spected defect diversity. We assessed the correlation of each of our three candidate
predictors AG, SWAG, and CWAG, using, for each of them, the mean, best and worst
values found in the development team (DT). The correlation analysis for H1 is sum-
marized in table 6.4.

DT
AG SWAG CWAG

Kendall’s tau_b mean worst best mean worst best mean worst best
NDECode corr. -0,134 -0,096 -0,145 -0,155 -0,164 -0,158 -0,161 -0,178 -0,152

sig. 0,247 0,407 0,209 0,180 0,157 0,172 0,165 0,124 0,188
N 39 39 39 39 39 39 39 39 39

NDGClass corr. 0,012 0,063 -0,014 -0,068 -0,070 -0,036 -0,056 -0,070 -0,030
sig. 0,922 0,590 0,902 0,565 0,548 0,759 0,633 0,548 0,797
N 39 39 39 39 39 39 39 39 39

Spearman’s rho mean worst best mean worst best mean worst best
NDEClass corr. -0,191 -0,142 -0,201 -0,219 -0,204 -0,216 -0,216 -0,223 -0,217

sig. 0,245 0,388 0,219 0,180 0,213 0,186 0,186 0,172 0,185
N 39 39 39 39 39 39 39 39 39

NDGClass corr. 0,011 0,082 -0,024 -0,116 -0,105 -0,072 -0,094 -0,096 -0,067
sig. 0,947 0,621 0,884 0,481 0,525 0,664 0,569 0,560 0,687
N 39 39 39 39 39 39 39 39 39

Table 6.4: Correlation analysis for the variables of H1.

None of our candidate dependent variables was shown to be correlated with nei-
ther of the independent variables. We cannot reject H10. We can conclude that devel-
oper skill had no observable effect on the inspected defect diversity.

H2

Hypothesis H2 is concerned whether or not the peer team skill has an effect on the
inspected defect diversity. We assessed the correlation of each of our three candidate

222

6. PROCESS ASSESSMENT IN CBD 6.5. Analysis

predictors AG, SWAG, and CWAG, using, for each of them, the mean, best and worst
values found in the peer team (PT). The correlation analysis for H2 is summarized in
table 6.5.

PT
AG SWAG CWAG

Kendall’s tau_b mean worst best mean worst best mean worst best
NDECode corr. 0,254 0,225 0,248 0,241 0,241 0,247 0,241 0,255 0,244

sig. 0,028 0,053 0,032 0,037 0,037 0,033 0,037 0,027 0,035
N 39 39 39 39 39 39 39 39 39

NDGClass corr. 0,314 0,324 0,265 0,321 0,344 0,289 0,332 0,372 0,280
sig. 0,008 0,006 0,024 0,006 0,003 0,014 0,005 0,002 0,017
N 39 39 39 39 39 39 39 39 39

Spearman’s rho mean worst best mean worst best mean worst best
NDECode corr. 0,361 0,315 0,379 0,354 0,344 0,363 0,357 0,364 0,361

sig. 0,024 0,051 0,017 0,027 0,032 0,023 0,025 0,023 0,024
N 39 39 39 39 39 39 39 39 39

NDGClass corr. 0,413 0,429 0,360 0,440 0,476 0,402 0,459 0,505 0,399
sig. 0,009 0,006 0,024 0,005 0,002 0,011 0,003 0,001 0,012
N 39 39 39 39 39 39 39 39 39

Table 6.5: Correlation analysis for the variables of H2.

From Table 6.5 we can observe significant correlations between our independent
and dependent variables for hypothesis H2. The only exception is the correlation be-
tween NDSCode and W_PT_AG. Note that even these correlations have a significance
very close to 0,05 (0,053 and 0,051, for Kendall’s and Spearman’s correlations, respec-
tively). In general, the correlations are stronger and more significant with NDGClass
than with NDSCode. From all these correlations, the strongest and most significant is
between NDGClass and W_PT_CWAG. The expertise of the worst member of the peer
team has consistently the highest correlation with NDGClass, regardless of the particu-
lar expertise metric, for the different number of generic defect classes. There is no clear
superiority of any of the expertise metrics, with respect to their correlation with the
number of specific defect codes.

We divide our sample into quartiles, using each of the expertise metrics in turn, in
order to obtain, for each of the metrics, four groups of approximately the same car-
dinality, where quartile 1 includes the peer teams with the lowest expertise, and so
on, until the 4th quartile, which includes the peer teams with the highest expertise.
The quartile including a given peer team may vary according to the specific expertise
metric used.

Intuitively, we want to check whether or not there are significant differences be-
tween the members of each of the quartiles, with respect to the diversity of errors
found. As the diversity of errors found does not follow a normal distribution, we will
have to use a non-parametric test. The Kruskal-Wallis test [Kruskal 52] is adequate for
our purposes. It is the non-parametric alternative to using the one-way ANOVA, when
ANOVA’s pre-conditions (normality and homocedasticity) are not met. The Kruskal-
Wallis test is performed on ranked data. The measurement observations (NDSCode)

223

6. PROCESS ASSESSMENT IN CBD 6.5. Analysis

are converted to their ranks in the overall data set: the smallest value gets a rank of 1,
the next smallest gets a rank of 2, and so on. The null hypothesis for this test states that
the mean ranks of the samples (quartiles) are expected to be the same. The alternative
is that at least one of them is not.

If θi is the mean rank in quartile i, our null hypothesis is:
H0 : θ1 = θ2 = θ3 = θ4

The alternative hypothesis, H1 is:
H1 : ∃i, j : θi 6= θ j(i 6= j; i, j = 1, ...,4)
Table 6.6 summarizes the test statistics of the Kruskal-Wallis test for the diversity

of defect codes, using the peer team’s expertise quartile as grouping variable. With
3 degrees of freedom (number o f quartiles − 1), the significance of this test is p < α =
0,100, with any of our candidate expertise measurements. In other words, we reject the
null hypothesis, as at least one of the quartiles presents significant differences, when
compared to the others.

PT
AG SWAG CWAG

mean worst best mean worst best mean worst best
Chi-Square 6,412 8,589 9,111 6,767 8,715 11,077 10,234 12,021 11,077
df 3 3 3 3 3 3 3 3 3
Asymp. Sig. 0,093 0,035 0,028 0,080 0,033 0,011 0,017 0,007 0,011

Table 6.6: Kruskal-Wallis test for hypothesis H2, using NDDCode

The mean rank number of different defect codes found on the inspections follows
the same general pattern, regardless of the specific metric for assessing expertise: the
inspections with the peer team members of the forth quartile (the peers with the high-
est expertise) have, consistently, the highest mean of ranks. These differences are sta-
tistically significant, according to the results of the Kruskal-Wallis test.

To facilitate the interpretation of this test, consider the boxplots in figure This trend
is illustrated in figure 6.10.

When there is a natural a priori ordering for the different populations (as it hap-
pens with the quartiles), the Jonckheere-Terpstra (J-T) test is more powerful than the
Kruskal-Wallis5. In this test, the null hypothesis that the members of the different quar-
tiles will have the same defect code diversity is tested against the alternative that as the
quartile increases the defect code diversity will change. The results of the J-T test are
summarized in table 6.7, where we present the number of levels(i.e. number of differ-
ent groups), number of cases tested, the observed J-T statistic, the mean J-T statistic,
the standard deviation of the J-T statistic, the standardized (normalized) J-T statistic,
and the asymptotic two-tailed significance of the test.

All the J-T tests are significant with p < α = 0,05, and the tests using the expertise
of the worst member of the peer team were significant with p < α = 0,01. Note the

5See, for instance, http:www.morris.umn.edu sungureaintrostatnonparametriclearningtools.html, or
the SPSS 14 statistics guide

224

6. PROCESS ASSESSMENT IN CBD 6.5. Analysis

Figure 6.10: Reported NDScode distribution, grouped by W_PT_CWAG quartiles

PT
AG SWAG CWAG

mean worst best mean worst best mean worst best
N. Levels 4 4 4 4 4 4 4 4 4
N 39 39 39 39 39 39 39 39 39
Obs. J-T 383,500 394,000 368,000 375,000 396,000 371,000 379,000 408,000 371,000
Mean J-T 285,000 285,000 285,000 285,000 284,500 285,000 285,000 285,000 285,000
Stddev J-T 39,609 39,609 39,609 39,609 39,588 39,609 39,609 39,609 39,609
Std. J-T 2,487 2,752 2,095 2,272 2,817 2,171 2,373 3,105 2,171
Sig. (2-t) 0,013 0,006 0,036 0,023 0,005 0,030 0,018 0,002 0,030

Table 6.7: Jonckheere-Terpstra test for the number of specific defect codes.

normalized J-T statistic has a positive value with all metrics. In this experiment, a
positive value of the normalized J-T statistic denotes an increase of NDSCode, from
lower to higher quartiles. In summary, the J-T tests, confirmed the results obtained
previously with the Kruskal-Wallis tests.

Overall, although the correlations between the expertise metrics and NDSCode are
not very strong, the assignment of groups into quartiles and the comparison between
those groups shows a trend that favors the usage of peers with a high expertise, as
expected.

We will follow a similar process for our metric of the diversity of defects’ classes
found during inspections, NDGClass. Table 6.8 summarizes the Kruskal-Wallis tests
results.

Unlike what we have observed with respect to correlations between the indepen-
dent variables and NDGClass, there is no statistically significant difference between the
quartiles formed using four (A_PT_AG, W_PT_AG, A_PT_SWAG, and W_PT_SWAG)

225

6. PROCESS ASSESSMENT IN CBD 6.5. Analysis

PT
AG SWAG CWAG

mean worst best mean worst best mean worst best
Chi-Square 5,787 5,262 9,010 4,661 4,671 7,817 7,148 8,775 7,393
df 3 3 3 3 3 3 3 3 3
Asymp. Sig. 0,122 0,154 0,029 0,198 0,198 0,050 0,067 0,032 0,060

Table 6.8: Kruskal-Wallis test for defect classes.

of our nine independent variables. The remaining five variables can be used to divide
the sample into quartiles in such a way that at least one of those quartiles is signif-
icantly different than the others, with respect to the mean NDGClass. The J-T test,
summarized in table 6.9 does not confirm most of the results of the Kruskal-Wallis test.
Although, according to the J-T test, there are also five variables for which the test statis-
tic is significant, the interception between the sets of metrics we would select from each
tests has only two metrics: A_PT_CWAG and W_PT_CWAG.

PT
AG SWAG CWAG

mean worst best mean worst best mean worst best
N. Levels 4 4 4 4 4 4 4 4 4
N 39 39 39 39 39 39 39 39 39
Obs. J-T 352,500 363,500 337,500 358,500 369,500 351,000 365,000 394,000 355,500
Mean J-T 285,000 285,000 285,000 285,000 285,000 285,000 285,000 285,000 285,000
Stddev J-T 39,415 39,415 39,415 39,415 39,415 39,415 39,415 39,415 39,415
Std. J-T 1,713 1,992 1,332 1,865 2,144 1,674 2,030 2,765 1,789
Sig. (2-t) 0,087 0,046 0,183 0,062 0,032 0,094 0,042 0,006 0,074

Table 6.9: Jonckheere-Terpstra test for defect classes.

In summary, we can reject the null hypothesis H20. We were able to find several
measures of the expertise within the peer team which can be used as predictors of the
diversity of the reported defects. The overall tendency, more visible with NDSCode,
favors the benefits of using expert peers in the review teams, as expected. When using
a more coarse grained metric for the diversity of defects fount, this tendency is not
supported by all the statistic tests we conducted in this experiment, although it is par-
tially confirmed by some of them. Nevertheless, two of the expertise metrics did pass
all the tests we conducted, so we can consider them good candidates for predictors of
NDGClass.

H3

Hypothesis H3 concerns whether or not the review team skill has an effect on the in-
spected defect diversity. We assessed the correlation of each of our three candidate
predictors AG, SWAG, and CWAG, using, for each of them, the mean, best and worst
values found in the review team (RT). The correlation analysis for H3 is summarized
in table 6.10.

The expected influence of the overall review team skill in the outcome of the inspec-
tions, in terms of the diversity of the defect codes and classes, was not confirmed when

226

6. PROCESS ASSESSMENT IN CBD 6.5. Analysis

RT
AG SWAG CWAG

Kendall’s tau_b mean worst best mean worst best mean worst best
NDECode corr. 0,140 0,149 0,093 0,058 -0,024 0,081 0,063 -0,001 0,073

sig. 0,227 0,204 0,428 0,617 0,836 0,487 0,583 0,990 0,534
N 39 39 39 39 39 39 39 39 39

NDGClass corr. 0,280 0,210 0,240 0,165 0,085 0,200 0,194 0,123 0,197
sig 0,017 0,077 0,043 0,159 0,469 0,091 0,098 0,297 0,095
N 39 39 39 39 39 39 39 39 39

Spearman’s rho mean worst best mean worst best mean worst best
NDECode corr. 0,159 0,202 0,133 0,090 -0,013 0,114 0,100 0,008 0,102

sig. 0,334 0,218 0,420 0,584 0,938 0,490 0,545 0,963 0,538
N 39 39 39 39 39 39 39 39 39

NDGClass corr. 0,367 0,290 0,323 0,227 0,110 0,253 0,255 0,165 0,249
sig. 0,021 0,074 0,045 0,164 0,503 0,121 0,117 0,315 0,126
N 39 39 39 39 39 39 39 39 39

Table 6.10: Correlation analysis for the variables of H3.

using the SWAG and CWAG metrics of expertise, with any of their variants. There is no
correlation between their value and the diversity of defects found. There is, however,
a correlation between the AG of the review team, both when using the mean value and
the best value within the team. We will further explore these two correlations. Table
6.11 presents the Kruskal-Wallis test for the impact of each of the expertise metrics on
the diversity of detected defects.

RT_AG
mean best

Chi-Square 4,438 3,658
df 3 3
Asymp. Sig. 0,218 0,301

Table 6.11: Kruskal-Wallis test for H3 defect classes.

The Kruskal-Wallis tests provide us with no evidence of having at least a group
for which the the mean number of detected classes is significantly different from the
remaining ones. To confirm these results, we also conducted a J-T test on the same
variables. Table 6.12 summarizes the results of the J-T test.

RT_AG
mean best

N. Levels 4 4
N 39 39
Obs. J-T 362,500 345,500
Mean J-T 285,000 284,500
Stddev J-T 39,415 39,394
Std. J-T 1,966 1,548
Sig. (2-t) 0,049 0,122

Table 6.12: Jonkeera-Terpstra test for H3 defect classes

Unlike the results of the Kruskal-Wallis test, the Jonkeera-Terpstra test has shown a
significant trend in the data, when using the A_RT_AG metric. According to the results
of this test, one can observer a trend of a growing number of reported defects, as the

227

6. PROCESS ASSESSMENT IN CBD 6.5. Analysis

overall expertise of the review team increases. Figure 6.11 presents the boxplots for the
distribution of detected defect classes in the four quartiles.

Figure 6.11: Reported NDGClass distribution, grouped by A_RT_AG quartiles

The problem that made these distributions fail in the Kruskal-Wallis test for signif-
icant differences relates to the high variance within each of the groups. Although the
mean value of detected defect classes grows with the expertise of the review team, the
dispersion within each quartile makes the rank-based test loose significance. In con-
clusion, we were able to find one metric that supports H31, that is, the review team
expertise has an effect on the inspected defect diversity, when considering a coarse
grained assessment of defect diversity, although this conclusion does not hold for the
fine-grained metric of defect diversity. The dispersion of results in all quartiles sug-
gests that the inner dynamics of the review team should be better assessed. This is the
focus of hypothesis H4.

H4

Hypothesis H4 concerns whether or not the difference between the skill of the develop-
ers and the skill of the peers has an effect on the inspected defect diversity. We assessed
the correlation of each of our three candidate predictors AG, SWAG, and CWAG, using,
for each of them, the mean, best and worst values found in the differences within the
review team (RT_Diff). The correlation analysis for H4 is summarized in table 6.13.

With the exception of W_AG_RT_Diff, all the predictors for H4 have a significant
negative correlation with NDSCode. In general, these correlations are stronger with
SWAG and CWAG than with AG. We will use the Kruskal-Wallis test to detect signifi-

228

6. PROCESS ASSESSMENT IN CBD 6.5. Analysis

RT_Diff
AG SWAG CWAG

Kendall’s tau_b mean worst best mean worst best mean worst best
NDECode corr. -0,243 -0,195 -0,262 -0,292 -0,278 -0,233 -0,306 -0,269 -0,250

sig. 0,036 0,092 0,023 0,012 0,016 0,044 0,008 0,020 0,031
N 39 39 39 39 39 39 39 39 39

NDGClass corr. -0,209 -0,155 -0,214 -0,286 -0,303 -0,208 -0,289 -0,280 -0,240
sig. 0,076 0,186 0,068 0,015 0,010 0,076 0,014 0,017 0,041
N 39 39 39 39 39 39 39 39 39

Spearman’s rho mean worst best mean worst best mean worst best
NDECode corr. -0,353 -0,270 -0,376 -0,416 -0,384 -0,356 -0,444 -0,382 -0,383

sig. 0,028 0,097 0,018 0,008 0,016 0,026 0,005 0,017 0,016
N 39 39 39 39 39 39 39 39 39

NDGClass corr. -0,282 -0,216 -0,280 -0,398 -0,422 -0,298 -0,401 -0,397 -0,337
sig. 0,082 0,187 0,084 0,012 0,007 0,066 0,011 0,012 0,036
N 39 39 39 39 39 39 39 39 39

Table 6.13: Correlation analysis for the variables of H4.

cantly different groups with respect to the impact of the expertise gap between devel-
opers and peers in the detected defect code diversity (table 6.14).

RT_Diff
AG SWAG CWAG

mean worst best mean worst best mean worst best
Chi-Square 5,185 2,455 8,881 11,270 7,924 6,652 10,767 6,941 5,349
df 3 3 3 3 3 3 3 3 3
Asymp. Sig. 0,159 0,483 0,031 0,010 0,048 0,084 0,013 0,074 0,148

Table 6.14: Kruskal-Wallis test for H4 defect codes.

We will confirm these results with the J-T test (table 6.15).

RT_Diff
AG SWAG CWAG

mean worst best mean worst best mean worst best
N. Levels 4 4 4 4 4 4 4 4 4
N 39 39 39 39 39 39 39 39 39
Obs. J-T 226,000 225,000 211,500 177,500 191,000 197,500 171,000 181,000 202,000
Mean J-T 285,000 285,000 285,000 285,000 285,000 285,000 285,000 285,000 285,000
Stddev J-T 39,609 39,609 39,609 39,609 39,609 39,609 39,609 39,609 39,609
Std. J-T -1,490 -1,515 -1,856 -2,714 -2,373 -2,209 -2,878 -2,626 -2,095
Sig. (2-t) 0,136 0,130 0,064 0,007 0,018 0,027 0,004 0,009 0,036

Table 6.15: Jonckheere-Terpstra Test for H4 defect codes.

When using the coarse grained metric for defect diversity, NDGClass, only five of
the expertise metrics are significantly correlated to it. None of the AG metrics is cor-
related to NDGClass. As with the previous hypotheses, we will use the Kruskal-Wallis
test to check whether there are significantly different results between the quartile-based
groups. Table 6.16 summarizes the results for these tests.

Three out of the five metrics which were negatively correlated to NDGClass lead to
groups with significant differences in their mean NDGClass. Table 6.17 summarizes the
J-T test results, used to confirm our findings.

229

6. PROCESS ASSESSMENT IN CBD 6.6. Interpretation

RT_Diff
AG SWAG CWAG

mean worst best mean worst best mean worst best
Chi-Square 2,319 1,076 4,993 8,522 7,854 3,549 11,514 7,589 7,149
df 3 3 3 3 3 3 3 3 3
Asymp. Sig. 0,509 0,783 0,172 0,036 0,049 0,314 0,009 0,055 0,067

Table 6.16: Kruskal-Wallis test for H4 defect classes.

RT_Diff
AG SWAG CWAG

mean worst best mean worst best mean worst best
N. Levels 4 4 4 4 4 4 4 4 4
N 39 39 39 39 39 39 39 39 39
Obs. J-T 241,000 242,000 216,000 189,000 183,500 210,000 174,500 184,500 199,500
Mean J-T 285,000 284,000 285,000 285,000 285,000 285,000 285,000 285,000 284,000
Stddev J-T 39,415 39,374 39,415 39,415 39,415 39,415 39,415 39,415 39,374
Std. J-T -1,116 -1,067 -1,751 -2,436 -2,575 -1,903 -2,803 -2,550 -2,146
Sig. (2-t) 0,264 0,286 0,080 0,015 0,010 0,057 0,005 0,011 0,032

Table 6.17: Jonckheere-Terpstra Test for H4 defect classes.

In the J-T test, the quartiles based on five metrics, including the three we high-
lighted when discussing the Kruskal-Wallis test, had significantly different means of
NDGClass.

The average number of different reported bug codes and classes decreased, when
comparing the first with the last quartiles. In other words, the number of diverse defect
codes and classes decreases as we move from development teams with lower expertise
than their peer teams to the opposite case. As such, we can reject the null hypothesis
H40. Several metrics of the difference between the expertise of the members of the
development and peer teams can be used as predictors of the diversity of the reported
defects.

6.6 Interpretation

6.6.1 Evaluation of results and implications

H1

We expected the best developers to produce components with less variety of defects,
but this was not confirmed by our experiment. Assuming that, in general, the best
students produce code of a higher quality, there are a number of possible alternative
explanations for these results. Our experimental design does not use any information
concerning neither the relative severity of the defects found in inspections, nor their ex-
pected impact on maintenance. Moreover, we used defect code and class diversity, but
not the actual number of defects found during the code inspections, so it may be the
case that the quality difference manifests itself through the number of defects. Last, but
not the least, although all participants were implemeting components with the same

230

6. PROCESS ASSESSMENT IN CBD 6.6. Interpretation

interface specification, the internal sophistication of the implementation of the com-
ponents could vary. If the best developers chose more sophisticated implementations
and sophisticated implementations are more prone to defects than simpler ones (due
to their complexity), then the added complexity could cancel out the effect of the ex-
pertise of developers. In short, it may be the case that this assessment of the impact of
expertise of developers in the software artifact’s quality is too simplistic.

It may also be the case that, because developer teams were also part of the review
teams, their expertise countered the effect of a lower variety of problems with that of a
higher efficiency in finding them.

H2

As expected, we observed that the expertise of the peer team does have a positive
effect on the variety of problems uncovered during code inspections. This effect is
more noticeable (and statistically significant) when comparing the performance of the
review teams where the peer teams had the best experts. This suggests an effect of
leadership of expert peers in the inspection teams. The contrast of expertise is also
more noticeable when comparing the 4th quartile with the previous ones. This partially
results from the skewed distribution of expertise, discussed earlier in sub-section 6.5.1.

H3

The expertise of the whole review team did not show a significant relationship with
the outcome of the review. The considerations concerning a possible oversimplifica-
tion of our dependent variable, combined with the cancellation effect also described
with respect to H1 may be responsible for this discrepancy between the expected re-
sult and the outcome of this experiment. Nevertheless, it is worth noticing the relation-
ship observed between two of the expertise metrics of the review team (A_RT_AG and
B_RT_AG) and the diversity of defects found in the inspections. Although not very
strong this relationship was statistically significant.

H4

As expected, when peer teams of low expertise analyze the work of development teams
with a higher expertise, the outcome of the code review shows a lower variety of de-
fects found. Conversely, more defects are found in inspections where the peer teams
have a higher expertise than the one of the development teams. A potential leadership
effect of a reviewer over the others is not visible from the data analyzed while testing
this hypothesis.

With the experiment design of this last hypothesis, we have an alternative perspec-
tive on the inspection group dynamics, when compared to hypothesis H3. On H3 we
had no indication of how the expertise was distributed within the group, thus being

231

6. PROCESS ASSESSMENT IN CBD 6.6. Interpretation

vulnerable to the cancellation effect occurring when (i) having good experts examining
their own code and not finding many problems with it, because they were not there,
or (ii) weaker programmers examining their own code and not realizing the problems
in it.

Both situations lead to a cancellation effect that might explain the unexpected re-
sults with hypothesis H3.

There is a curious effect in the evolution of the variety of defects found between the
second and third quartiles of H4 (the second quartile has development teams with a
lower expertise than their peer teams, while the third inverts this relationship). One
could expect the variety of defects to be lower on the third quartile, following the
tendency found from the first to the forth quartiles. However, the expertise level is very
close, within groups 2 and 3. Therefore, it may be the case that it is the domain level
expertise that dominates the outcome of the inspection. With a better knowledge of
the deliverables being inspected, allied with a slightly better expertise than their peers,
the authors may be responsible for this locally increased benefit of the code review.
As the gap of expertise between development team and peer team members widens,
this effect would be mitigated by the dominating effect of the higher code quality and
lower external reviewer expertise.

6.6.2 Threats to validity

In what concerns the internal validity of the study, we consider two sorts of validity
threats: social threats and single group threats. Social threats to internal validity could
stem from the usage of differentiated treatments within our sample. As this was not
the case, we can dismiss their potential effect. Single group threats can occur from
not using a control group with this experiment. The potential threats to validity of this
experiment include:

• History. To the best of our knowledge, this potential threat had no effect in our
experiment. Each code artifact was only inspected once, and all inspections took
place in a very limited time span (two consecutive days).

• Maturation. Occurs when subjects react differently as time progresses, for in-
stance, as a result of a learning process. Concerning the development of the
components that were inspected, this risk was mitigated by the usage of a pro-
gramming language well-known by all subjects. With respect to the subjects’
performances in reviews, all subjects were inexperienced in the used technique
and participated in two consecutive reviews (inspections took place in two hours
sessions, with one hour dedicated to each of the inspections where subjects par-
ticipated). The potential learning effect between both reviews is mitigated both
by the lack of time between the reviews and by the change of roles between re-
views. Note that no inspection team was simultaneously in charge of two dif-

232

6. PROCESS ASSESSMENT IN CBD 6.6. Interpretation

ferent inspections. In other words, if development team A’s work was inspected
with the help of peer team B, then when team B acted as developer team B, their
work was inspected by peer team C, whose elements were not the same as the
ones of team A. So, no maturation effect resulting from a repetition of inspection
teams, even if with a switch of roles was allowed by this design.

• Testing. There was no repetition of activities during the experiment, thus avoid-
ing this validity threat.

• Instrumentation. All participants used the same defect reporting template, so
problems with instrumentation could only occur from mis usage of the template.
We observed that participants did not consistently register defects, with respect
to their frequency on the artifact. Consider the following example: suppose the
development team did not follow the naming conventions when declaring a vari-
able; while in some of the reviews this problem was reported only once, with the
comment “repeated throughout the code in all occurrences of variable variableI-
dentifier”, others reported each and every occurrence of this problem in the source
as a separate defect. So, if the variable was used ten times, the problem would
be reported ten times, as well, in the latter case, or just once, in the former. As a
result, the number of defects found was not collected consistently. We used the
number of different defect classes, rather than the total number of defects found,
thus avoiding this data collection problem.

• Statistical regression. This threat is not applicable to our experimental design.

• Selection. No selection was performed on the subjects of this experiment. All
students enrolled in the course who actively participated in the projects were
used as subjects, so the subjects are representative of the population.

• Mortality. 6 out of the 93 students enrolled in the course were excluded. 5 of
these were “ghost students” - although they were enrolled in the course, they
never showed up on a single class. The other subject dropped out the course dur-
ing the requirements specification phase, prior to the development and review
phases under evaluation in this experiment. With only one student dropping off
an optional course, we believe there is no cause for concern with mortality in this
experiment.

• Ambiguity about direction of causal influence. The assessment of subject’s ex-
pertise was independent from the assessment of their performance in the experi-
ment and based on information collected before the beginning of the experiment.
If any, causal relationships could only be established from expertise to perfor-
mance, and not otherwise.

233

6. PROCESS ASSESSMENT IN CBD 6.6. Interpretation

Multiple groups threats do not apply in this experiment. All subjects were under
the same conditions, in what concerns their participation in this experiment.

External validity refers to our ability of generalizing results beyond the scope of
this experiment. We consider three potential sources of threats:

• People. In this experiment, all subjects were informatics students at Universi-
dade Nova de Lisboa. The subjects were not professional developers. This limits
our ability to generalize the results of the experiment. Based on the work of Höst
et al. [Höst 00], already discussed in section 3.3.2, we have reasons to think stu-
dents can be used as surrogates for novice professional developers, in the context
of this experiment, without significantly changing its outcome. Another poten-
tial threat may be a lack of diversity of competences among subjects, in the code
reviews. Typically, reviewers would include people with different tasks in the
software process (e.g. programmers, system engineers, and testers). This short-
coming is somewhat mitigated by the informatics course large spectrum, on the
one hand, and the design of the inspection meetings, on the other. To introduce
diversity of roles, students were always assigned as reviewers of two different
projects. In one of them, their perspective would be that of the authors of the
artifact. In the other one, their perspective would be the perspective of a user of
the inspected artifact.

• Setting. This kind of experiment can be jeopardized by using an obsolete ex-
perimental environment. In this case, subjects used modern Java development
environments, during development. Concerning the code inspection, although
no specific code inspection tool was used, subjects were able to record the prob-
lems found during inspection in a special spreadsheet built for this purpose. Vi-
olations to some of the inspection guidelines described in the problem checklist
could be automatically detected with automated code inspection tools, but these
were not used. Another potential issue is the usage of toy examples in these ex-
periments, which may lead to conclusions that do not scale up. The components
developed in this course were comparable to fine-grained components. In what
concerns inspections, this was not an issue because inspections focus usually on
a limited portion of the software. In this case, we used the source code of one of
those fine-grained components as the inspection target.

• Time. We are not aware of any special events that might have conditioned the
component development and code inspection activities. They were performed
during the normal semester (roughly one month before the end of classes), with
no noticeable special conditions in the student’s workload.

With respect to construct validity threats, we consider two categories: social and
design threats. Typical social threats include:

234

6. PROCESS ASSESSMENT IN CBD 6.6. Interpretation

• Hypothesis guessing. The inspections were carried out as part of a wider devel-
opment project. Although the students were aware of our intention to use data
collected during the project for experimental purposes, they did not know which
parts of the project would be used in the experiment. As far as they were con-
cerned, the inspection was just another task they had to perform. This mitigates
the potential hypothesis guessing effect that could have occurred if they were
aware of the objectives of the experiment.

• Evaluation apprehension. Informatics students are very used to development
projects as part of their courses. The inspection reports were one out of about ten
deliverables they had to submit for their course evaluation, in this experiment,
so the specific weight of this task in their final evaluation was fairly small.

• Experimenter’s expectancies. We did expect to observe significant differences
in the results obtained by different combinations of skills within the inspection
teams, the training and directions provided to all participants were similar. That
said, the selection of inspection teams was blind with respect to the objectives of
the experiment, and no intervention on the conduction of the code reviews was
made, so that we would not interfere with the inspections outcome.

Construct validity design threats result include:

• Inadequate pre-operational explication of constructs. Terms like “practitioner’s
expertise” are frequently used, not necessarily following always the same defi-
nition. Our metrics definition approach mitigates this problem by supporting a
rigorous definition of all the metrics used in this experiment.

• Mono-operation bias. This threat is mitigated by the fact that our experiment
involves over 40 different inspection teams, with all possible combinations of
skills filling the different roles in the inspection meetings.

• Mono-method bias. Our experimental setting only mitigates this threat partially.
We use three different measures for assessing the expertise of team members, and
three different ways of assessing the general expertise of each team, to minimize
potential biases resulting from our expertise assessment. Nevertheless, they are
all based in the average grade of the subjects and this can be argued not to be a
perfect expertise assessment. We use two different measures of detected defects
diversity. Again, these are variations of the same concept.

• Confounding constructs and level of constructs. Ideally, a differentiating repli-
cation of this experiment could use another measure of defect detection success,
such as the percentage of detected errors. For practical reasons, using this com-
plementary measure of inspection success was not an option in our experimental
context. We had no way of measuring the extent to which the inspections were

235

6. PROCESS ASSESSMENT IN CBD 6.6. Interpretation

successful by having an independent detection of defects process that would be,
at the same time, complete. So, the lack of an account for the defects not detected
in inspections is a potential confounding factor for the interpretation of this ex-
periment’s results.

• Interaction of different treatments. As a single treatment is involved in our
experiment, this threat is dealt with by our experimental design.

• Interaction of testing and treatment. This threat was minimized as much as
possible, by the fact that subjects were not aware of the fact that the experiment
would focus on this particular part of the software development process they
were conducting.

• Restricted generalizability across constructs. To the best of our knowledge,
there were no undesired side-effects as an indirect outcome of this experiment
that could impact the remainder of the development process.

The potential threats to conclusion validity include:

• Statistical power Although our sample has more cases than the typical controlled
experiment in Software Engineering and our sample size was not, per se, an ob-
stacle to the usage of parametric tests, several of the variables used in this ex-
periment did not have a normal distribution in the collected data. This forced
the usage of non-parametric tests that, in general, have less statistic power than
parametric tests. Our confidence in the results increases through the usage of al-
ternative tests both for the correlation analysis and the comparison of the quartile
groups for detecting differences between them.

• Violated assumptions of statistical tests. To the best of our knowledge, all the
assumptions of the used statistical methods were met.

• Fishing and the error rate. We tested a fairly small number of hypotheses, and
the results obtained in our tests were consistent, in general, regardless of the
particular variation we were using in them, so we have no reason to believe the
relations found between variables are spurious.

• Reliability of measures. As mentioned earlier, we chose measures for which we
had a high confidence, with respect to their reliability, to mitigate this threat. We
can offer two examples of measures that would bring up this threat, if used in
our analysis: the total number of defects found in the inspection, and the indi-
vidual preparation time recorded by participants. We noted some instability with
respect to the first one, and had no way of verifying the accuracy of the second
one, particularly because it was too vulnerable to evaluation apprehension by
the subjects (participants who did not prepare for the meeting adequately could
easily lie about it, for instance).

236

6. PROCESS ASSESSMENT IN CBD 6.6. Interpretation

• Reliability of treatment implementation. All subjects had, to the best of our
knowledge, similar conditions for performing their inspection roles. The artifacts
were distributed to participants with a similar time advance so that they could
do their solo reviews, inspections took place during classes and took roughly one
our to complete, each.

• Random irrelevances in experimental setting. We did not identify any potential
sources of variation exogenous to our tests that might have had an influence in
their result, nevertheless.

• Random heterogeneity of subjects. This threat is mitigated by the number of
subjects participating in the experiment and the objectives of the experiment
itself. While heterogeneity among subjects certainly existed, it was partly ac-
counted for by the expertise assessment.

6.6.3 Inferences

The evidence collected throughout this experiment suggests that expertise assessments
can be used to guide the selection of review team members, to improve the outcome
of code reviews. The academic records of participants were used in this experiment
to provide the expertise assessment. The results obtained by our participants can be
extrapolated for graduate students from the informatics degree of Universidade Nova
de Lisboa. Assuming that the students of Universidade Nova de Lisboa are essentially
similar to those of other universities with a degree of a similar profile, the results could
also be extrapolated for those students, as well. This assumption should be tested, of
course, by replicating this experiment in such universities.

Evidence collected elsewhere [Runeson 03] also suggests that the results obtained
by students of a profile similar to our participants are close to those obtained by novice
professionals, so we can expect these results to hold in that population, as well. Again,
this inference could be supported by conducting replications in professional environ-
ments.

As practitioners gain experience in a professional environment, the usefulness of
the expertise metrics discussed in this experiment is less likely to hold. So, in a pro-
fessional environment, an alternative expertise assessment should be sought, in order
to reflect the performance of code reviewers in their professional context, rather than
in an academic one. An alternative and more accurate metric could be an expertise
assessment based on the performance of practitioners in previous code reviews. This
option was successfully used in [Biffl 02], as we have discussed in the related work
section of this chapter.

Last, but not the least, all these inferences assume a similar inspection model is in
place. Changes to the inspection model should reduce the probability of obtaining sim-
ilar results. In particular, introducing a more sophisticated reading technique designed

237

6. PROCESS ASSESSMENT IN CBD 6.7. Conclusions and future work

provide repeatability to the defect detection would render this approach useless. Read-
ing by stepwise abstraction [Dyer 92a], and perspective-based reading [Basili 96b] are
examples of reading techniques that, in principle, should ensure that the results of
inspections are independent from the practitioners performing them.

6.6.4 Lessons learned

While conducting the experiment, we noted some process issues that could be im-
proved, in future replications of this experiment. We would like to highlight the fol-
lowing:

• A clearer description of the defects collection procedure should be used, with
respect to the approach that should be followed when the same defect is found
in the software several times. A typical example of a repeated defect would be
using an identifier for a variable that does not follow the stipulated naming con-
vention. Without clear guidelines stating whether this defect should be reported
and located only once, in the variable’s declaration, or in all its occurrences, some
reviewers will go for the first option, while others will follow the latter. It follows
that such discrepancies are sufficient to hamper our ability to use the total num-
ber of defects found in a code artifact in a sound manner.

• Although we collected information concerning the preparation time before the
inspection meeting by each inspector, we found the collected information to be
unreliable and chose not to use that information in our data analysis. Rather than
an exact account of the time spent in the defects detection phase, we noted that a
roughly approximated figure was a lot more common. The mode value reported
was 1 hour, which was also the recommended preparation time, during the in-
spection training. With very few exceptions, the reported times were multiples
of 30 minutes which leads us not to trust the accuracy of this data. An alternative
would be to conduct this preparation phase in a controlled environment, rather
than leaving it for participants to do it on their spare time. However, as this con-
trolled environment would probably be a class environment, the duration of the
class would then be an external bias to the time spent in the individual defect
detection phase.

6.7 Conclusions and future work

6.7.1 Summary

We described an experiment carried out to help understanding the effect of practi-
tioner’s expertise in the deliverables produced in the context of CBD.

238

6. PROCESS ASSESSMENT IN CBD 6.7. Conclusions and future work

We focused our attention on the outcome of code inspections, and, in particular,
on the variety of problems reported during those inspections. We confirmed the ex-
pected positive effect of the expertise of the peer review teams in the outcome of the
inspections, observable through the increased variety of defects found when peer ex-
perts were available. We also confirmed that having expert peers collaborating in the
inspection of components developed by less skilled peers has a positive impact on the
outcome of the review.

Moreover, there is also a learning effect, not studied here but vastly commented
on the literature, when combining experts with non-experts. This is also expected for
the opposite case, where non-experts participate on the review of code developed by
experts. However, in this case, a lower variety of defects is found, both because the
code is likely to have a higher quality, and because the external reviewers have less
capacity to detect its problems. Given the main goal of inspections (maximizing defect
detection), the results are poorer.

When observed in isolation, the expertise of the development teams did not show a
significant relationship with the variety of problems found. The expertise of the review
teams, as a whole, was also not shown to be a good indicator of the outcome of the
inspection. Further research is required to determine whether these were the results
of cancellation effects of expertise, or if more sophisticated review outcome metrics
should have been used here.

6.7.2 Impact

A possible impact of this research is that by carefully selecting the inspection team,
ensuring that peers have a higher expertise than the authors, the effectiveness of the
inspection is likely to be higher. On the other hand, selecting peers with less or similar
expertise when compared to authors can lead to a poorer effectiveness of the inspec-
tion process. Naturally, these quality considerations should be balanced with others,
such as cost and schedule, as the usage of the best experts is likely to have a negative
impact on these items, at least directly. However, this shortcoming can be compen-
sated by decreased costs and schedule problems, as a result of the increased quality of
the inspected artifacts.

As noted during this chapter, the effects of different expertise can be mitigating by
using more sophisticated reading techniques during defect detection. So, the results of
this experiment would not yield with reading by stepwise abstraction, or perspective-
based reading.

6.7.3 Future work

As future work, we expect to expand on this experiment by exploring this interpreta-
tion of why two of our hypotheses were not confirmed. The deliverables of the project

239

6. PROCESS ASSESSMENT IN CBD 6.7. Conclusions and future work

that served as a basis for this experiment include some details that were not explored
in this experiment, such as code complexity metrics, and the practitioners’ assessment
of the potential impact of the problems reported. We plan to further explore these data
to strengthen the conclusions reported here and to explore other related hypotheses on
the effect of expertise throughout the development process.

240

Chapter 7

Component reusability assessment

Contents
7.1 Motivation . 242

7.2 Related work . 245

7.3 Experimental design . 248

7.4 Execution . 257

7.5 Analysis . 258

7.6 Interpretation . 264

7.7 Conclusions and future work . 272

Background: Eclipse Plug-ins development has achieved a considerable success, as
user communities contribute with their own plug-ins to enhance the original plat-
form’s functionality. However, the real benefits for plug-in developers that result from
providing extension points to their own plug-ins are unclear.
Objective: Our goal is to find out reuse patterns of Eclipse plug-ins to help deciding
when is it worth spending resources providing extension points.
Method: We adopt a quantified single control group post-test only design, to contrast
plug-ins from the basic Eclipse distribution with a set of other plug-ins, with respect to
the availability and actual reuse of extension points.
Results: The results show that the vast majority of the extension points are not reused
at all, except when those extension points are provided by the Eclipse platform.
Limitations: We validated the results for published Eclipse plug-ins. We should regard
with caution inferences to a population including non-published plug-ins, or plug-ins
for other platforms, and further validate such inferences.
Conclusion: The investment in providing extension points does not seem to have a di-
rect return. Users are uncomfortable with building their software upon other plug-ins,
unless those plug-ins are part of a major distribution (e.g. the Eclipse distribution).

241

7. COMPONENT REUSABILITY ASSESSMENT 7.1. Motivation

7.1 Motivation

7.1.1 Problem statement

As discussed in chapter 2, one of the main claims used to support the adoption of
CBD is the alleged high return on investment (ROI) that one can achieve by build-
ing software from reusable components. The rationale is that it is less expensive to
buy and adapt a reusable component than to develop its functionality from scratch.
Commercially sponsored reports such as [Brooke 02] include claims on cost reductions
attributable to the reuse of existing components to values of about 1/50 of the cost
of building the reused components from scratch. Furthermore, the CBD community
expects extensive reuse to lead to an increased quality of the component, because the
component users’ community feedback can be used as a driver for component’s quality
improvement efforts.

The account for the extent to which these benefits do occur, in practice, varies
significantly throughout the literature. Nevertheless, several publications, includ-
ing [Bass 01,Heineman 01,Szyperski 02,Crnkovic 02], refer to such benefits. A common
point, also found in these references, is that component reuse has a potential for much
greater benefits than those achieved so far.

In 1992, Nierstrasz et al. identified four main difficulties hampering the adoption of
CBD [Nierstrasz 92]:

i. present day object-oriented languages do not fully support a component-oriented
approach to software development;

ii. application development tools tend to emphasize programming and debugging
rather than composition and reuse;

iii. it is difficult to abstract from acquired domain knowledge in order to engineer
plug-compatible components for composing new applications;

iv. it is unclear how one can obtain a satisfactory return on the investment in
reusable software components (from the point of view of a component user).

These difficulties were certainly a problem in the early 1990’s. In spite of all the
progresses on software development since then, they remain challenges for the com-
munity. Consider the problems i. and ii., which have a predominantly technical na-
ture: present day languages do not fully support CBD, as discussed in chapter 2 (e.g.,
with respect to behavior modeling, at a higher level of abstraction than that of source
code). Reuse is becoming increasingly important but there is still a lot of emphasis
on programming and debugging (even if we can perform these activities on top of
more sophisticated programming languages, with extensive libraries of pre-fabricated
classes and components).

242

7. COMPONENT REUSABILITY ASSESSMENT 7.1. Motivation

In this chapter, we will explore problems iii. and iv.: the extent to which it remains
difficult to abstract acquired domain knowledge to build plug-compatible components,
and how difficult it remains to obtain a return on the investment in reusable software
components.

Concerning this last point, Nierstrasz et al. claimed that ‘existing software is reused
only if it is part of the basic environment, if it is free, or if it constitutes a complete subsystem
(such as a database). New approaches to software licensing and exchange of software infor-
mation are needed if developers of reusable software are to receive a return on their invest-
ments.’ [Nierstrasz 92]

Do problems iii. and iv. remain unsolved, 16 years later?
The diversity of variants in current technologies used in CBD, each with its own

strengths and shortcomings, may provide a blurred picture of the current patterns of
reuse in CBD. As the different technologies could have a confounding effect in our
study, we will narrow the study’s focus to a particular approach to CBD: plug-in based
development.

Plug-in based development has achieved a considerable success in the last decade.
It is possible to to plug new components (plug-ins) into existing ones, adding to their
functionalities. This form of incremental development through the integration of new
plug-ins has achieved a widespread usage in several application categories, such as
web browsers, or software development environments, ranging from open source free-
ware to commercial systems. The observational study presented in this chapter uses
the concrete example of the Eclipse1 plug-in architecture.

We examine a set of Eclipse plug-ins with respect to the effective usage of their
extensibility mechanisms, to analyze the extent to which their extension points are
used by other successful plug-ins. Which are the common characteristics of the plug-
ins which get to be reused more often? Who reuses those plug-ins? Are there good
incentives to provide extension points to plug-ins? How do Nierstrasz’s remarks relate
to the actual reuse profile of Eclipse plug-ins?

In order to address these concerns, it is useful to list a set of research questions (RQ),
along with a short description of their rationale:

• RQ1 It may be the case that, even if supported by component models, the
reusability of components is not one of the main concerns when developing those
components. If so, the likelihood of a plug-in providing extension points is fairly
low, particularly if the plug-in is not part of the base plug-in framework (in this
case, the standard Eclipse distribution). Both Szyperki’s definition of software
component as “a unit of composition with contractually specified interfaces and explicit
context dependencies only, which is subject to third party composition” [Szyper-
ski 02], and the plug-in based architecture, described in this chapter, emphasize
the support that components and their component models provide for reusing

1http://www.eclipse.org/

243

http://www.eclipse.org/

7. COMPONENT REUSABILITY ASSESSMENT 7.1. Motivation

components. However, Nierstrasz’s remarks convey a concern on the challenge
of making components reusable.

• RQ2 If we consider only the plug-ins that provide extension points for our anal-
ysis, it may still be the case that the origin of the plug-in has a significant impact
on the actual reuse of the plug-in. In other words, organizations may be willing
to reuse their own plug-ins and plug-ins in the standard distribution of Eclipse,
but not plug-ins provided by other sources. We break this hypothesis down into
three sub-hypotheses:

– RQ2a The extension points reuse ratio depends on the plug-ins origin.
In this sub-hypothesis, we contrast plug-ins that are part of the standard
Eclipse distribution with those which are not part of that distribution.

– RQ2b In contrast with RQ2a, we can consider only the extensions to plug-
ins extension points when the extender plug-ins are not part of the same
product as the extended plug-ins. Again, we can test the reuse ratio of plug-
ins from the basic distribution, vs. other plug-ins.

– RQ2c Even when part of different products, plug-ins may have a common
provider, and this may have an impact on their reuse profile. Therefore, it
may be the case that plug-ins from the basic distribution are likely to have
more external client products than other plug-ins.

The remainder of this chapter is dedicated to the pursuit of answers for these re-
search questions, which will be used to define the set of research hypotheses, later in
this chapter. We analyze Eclipse plug-ins available from a plug-in broker, in addition
to the plug-ins distributed with Eclipse 3.2. With respect to the presentation of our
study, we will follow the same structure of the previous chapter.

7.1.2 Research objectives

Our goal is to
analyze Eclipse plug-ins
for the purpose of characterizing the usage of the Eclipse plug-ins extension mecha-
nisms
with respect to plug-ins reusability,
from the point of view of developers who may use the Eclipse plug-ins extension
mechanism (in this case, the research team),
in the context of an observational study on Eclipse plug-ins available both from a
broker and in the standard Eclipse distribution.

244

7. COMPONENT REUSABILITY ASSESSMENT 7.2. Related work

7.1.3 Context

This study uses publicly available Eclipse plug-ins, both from the Eclipse community
and from the basic Eclipse distribution. We should consider the results of this study
valid only in the context of Eclipse plug-ins, rather than as generic for other compo-
nent models and technologies. We must conduct further research, with other compo-
nent models, to check which conclusions are specific to the Eclipse plug-ins component
model and which are generalizable to other models. The study includes a large sam-
ple of plug-ins with varied domains of application, complexity, state of development,
license type, and developers. In that sense, the study’s conclusions are generalizable
to Eclipse plug-ins in general.

7.2 Related work

7.2.1 The Eclipse plug-ins architecture

Before presenting the remainder of this study, we discuss a few useful concepts con-
cerning the domain from which we collected our sample: Eclipse plug-ins.

The Eclipse workbench is, essentially, a platform for software development tools.
The Eclipse architecture is built upon the notion of plug-in. An Eclipse plug-in is a
component that provides a service within the context of the Eclipse workbench. Except
from a kernel component named Eclipse Runtime, the Eclipse workbench is built from a
core set of plug-ins that, together, provide Eclipse’s basic functionalities. The platform
is open, in the sense that new plug-ins provided both by the platform developers and
the Eclipse user community can be plugged into it. This combined effort for develop-
ing plug-ins makes Eclipse a versatile tool, due to the variety of extensions provided
by thousands of available plug-ins.

To allow for this extensibility, each Eclipse plug-in may expose a set of configurable
extension points. As a whole, the Eclipse platform provides a basic set of extension
points that allows extending its functionality. Both the plug-ins available on the basic
Eclipse release and those developed by the community (including tool vendors) may
provide such extension points.

A plug-in extends the functionalities of another plug-in by adding an extension to
one of the extension points provided by the other plug-in. New plug-ins are integrated
on the workbench as extensions to existing plug-ins. The available extension points in-
clude the extension points provided by the basic Eclipse release, those made available
by other plug-ins that have been added on to that basic release, and even the extension
points provided by the plug-in that is being integrated in the platform.

Each plug-in is identified not only by its id, but also by its version. Plug-ins de-
veloped for Eclipse versions older than 3.2, also include information such as a human-
readable plug-in name, the plug-in provider, as well as a reference to the set of runtime

245

7. COMPONENT REUSABILITY ASSESSMENT 7.2. Related work

libraries required by the plug-in, and the identity of the plug-in class that is used to
instantiate the plug-in (a subclass of org.eclipse.core.runtime.Plugin). The Eclipse
3.2 plug-in manifest narrows the directly available information down to the specifi-
cation of extension points, including identification info and an XML schema for addi-
tional data, and the specification of extensions. The latter include information concern-
ing the identification of the extension point, as well as well-formed XML that conforms
to the desired extension-point schema, which is used for configurating the extension.

In order to support our experimental work, we designed a metamodel for repre-
senting Eclipse plug-ins. Our metamodel is based on the Eclipse plug-ins manifest
DTD. Figure 7.1 contains an excerpt of the Eclipse plug-ins metamodel, where we
present the metaclasses which are relevant for this observational study. Several at-
tributes and operations defined in the complete metamodel are hidden, to avoid clut-
tering the diagram.

Figure 7.1: An excerpt of the Eclipse plug-ins metamodel

7.2.2 Experimental assessment of component reuse

In sections 2.5.5 and 2.5.6 of this dissertation, we discussed several metrics for CBD.
The majority of those metrics was proposed to help assessing reuse in the context of
CBD. This shows a great concern of the community in being able to assess reuse pat-
terns in CBD. In a brief recapitulation of some of these proposals, we can observe how
they relate to reusability:

246

7. COMPONENT REUSABILITY ASSESSMENT 7.2. Related work

• Bertoa et al. defined and validated metrics for COTS components, focusing on
the usability of those components, as perceived by the component assemblers
[Bertoa 04, Bertoa 06]. Their informal definitions relied in collecting information
from the COTS’s available documentation. The diversity of that documentation
made the automation of their metrics collection process not practical.

• Dumke proposed a set of metrics for assessing the reusability of JavaBeans, which
relied on white-box access to the components source code [Dumke 00]. This de-
pendency on white-box access to components has the shortcoming of preventing
the usage of this metrics set with black-box components.

• Washizaki et al. also proposed a metrics set to assess the reusability of compo-
nents, and tested those metrics with JavaBeans [Washizaki 03]. Their proposal
contrasted with Dumke’s in several ways, namely in the fact that it supported
the assessment of black-box components.

• Boxall and Araban focused on the textual complexity of component interfaces, as
a measure of their understandability, which in turn is expected to influence the
reusability of those components [Boxall 04].

All these proposals focused on metrics that were independent from the context of
usage of each component. Other researchers presented proposals on metrics that rely
on the context in which the plug-in is used for their computation:

• Seker proposed coupling and cohesion metrics for black-box components and
component assemblies [Seker 04]. Coupling and cohesion metrics are also of-
ten related to the reusability of components, in the literature. For instance, a
component with a high coupling to other components may be less desirable to
reuse, because of the extra components that will have to be indirectly reused
when choosing it.

• Hoek et al. proposed service utilization metrics that measured the effective reuse
rate of component services [Hoek 03]. An interesting feature of these component-
model independent metrics is that they contrast the potential utilization of a ser-
vice with its actual reuse.

• Inoue et al. proposed a component significance ranking [Inoue 05], inspired by
ranking algorithms by Google’s page rank algorithm. The ranking represents the
importance of a component in a potentially reusable population. Higher ranked
components are components that are reused more often.

None of these proposals was made for Eclipse plug-ins, although some of them (es-
pecially Hoek et al.’s) can be adapted to the Eclipse plug-in architecture. Most of these
metrics had a common concept underpinning their definition: there are some prop-
erties of a component, whether these correspond to better documentation, or easier to

247

7. COMPONENT REUSABILITY ASSESSMENT 7.3. Experimental design

understand interface, which are crucial for understanding the component’s reusability.
This is particularly noticeable in the first group of metrics presented here.

The second group of proposals adopts a more pragmatic approach to reuse. It as-
sesses the actual reuse of components, using different strategies to achieve this goal,
rather than trying to contribute to establishing some form of heuristics based assess-
ment of component’s reusability, when judging components in isolation.

The work presented in this chapter is closer to the one discussed in the second
group. However, we will explore the reuse patterns of a special type of components
- Eclipse plug-ins - using a different perspective than the one of our peers. Rather
than trying to find a heuristic for making reusable components (as in the first group
of metrics, or even in Seker’s proposal) we will follow an approach which is inspired
by the works of Hoek and Inoue. We borrow from Hoek et al. the basic idea of ser-
vice utilization - the extent to which a service provided by a component is reused by
any of the other components in the assembly (or conversely, the extent to which a ser-
vice required by a component is available in the component assembly). The idea of a
component ranking based on actual component reuse is borrowed from Inoue.

We will add to these ingredients a different perspective: the trust that component
assemblers may or may not have in the component’s origin.

7.3 Experimental design

7.3.1 Goals

The research objectives sketched in sub-section 7.1.2 are refined here as goals. Note
that the perspective taken on this study and the context remain invariant for all the
sub-goals, and are therefore represented by “(...)”, as in the previous chapter, to high-
light the differences between each sub-goal. Note that goal G1 corresponds to research
question RQ1, and so on.

G1:

Analyze plug-ins,
for the purpose of their characterization,
with respect to the extent to which belonging to the standard Eclipse distribution has
an impact on the number of extension points they provide for reuse by other plug-ins,
(...)

248

7. COMPONENT REUSABILITY ASSESSMENT 7.3. Experimental design

G2:

Analyze plug-ins,
for the purpose of their characterization,
with respect to the relationship between the origin of a plug-in (part of the standard
Eclipse distribution vs. not part of it) and its reuse,
(...)

G2a:

Analyze plug-ins,
for the purpose of their characterization,
with respect to the relationship between the origin of a plug-in (part of the standard
Eclipse distribution vs. not part of it) and its extension points reuse ratio,
(...)

G2b:

Analyze plug-ins,
for the purpose of their characterization,
with respect to the relationship between the origin of a plug-in (part of the standard
Eclipse distribution vs. not part of it) and the ratio of extensions by plug-ins which
are part of a different product than the one of the extended plug-in,
(...)

G2c:

Analyze plug-ins,
for the purpose of their characterization,
with respect to the relationship between the origin a plug-in (part of the standard
Eclipse distribution vs. not part of it) and the number of different products from
other providers in which there is at least one plug-in extending it,
(...)

7.3.2 Experimental units

The theoretical population of this observational study is the set of Eclipse plug-ins that
are available to the Eclipse community, including the plug-ins made available by the
basic Eclipse distribution. It would be unfeasible to identify and access all the eligible
Eclipse plug-ins as such identification would imply being able to enumerate all the

249

7. COMPONENT REUSABILITY ASSESSMENT 7.3. Experimental design

plug-ins available in a particular moment in time. Instead, we use a representation
of the population, known as sampling frame. Unlike the plug-ins in the theoretical
population, the plug-ins belonging to the sampling frame can be enumerated.

Our sampling frame is the union of a set of Eclipse plug-ins made available by the
Eclipse Foundation’s plug-ins broker - Eclipse Plugin Central (EPC) 2 with the set of
plug-ins available on the basic Eclipse distribution (Eclipse SDK 3.2.1). The plug-ins list
made available through EPC is frequently updated, so we include in our frame all the
Eclipse plug-ins which were listed by EPC on a particular moment in time (our frame
was defined on the 30th of January, 2007, 15h00GMT). The sampling frame includes
788 plug-ins3, ranging from open-source plug-ins to commercial ones. The plug-ins
are distributed into 31 different categories, related to their respective domain of usage.
These categories include 30 EPC categories and an extra category for the plug-ins in
the standard distribution.

We consider this frame to be representative of the Eclipse plug-ins theoretical pop-
ulation, for the purposes of this study, as it is broad, in what concerns the domain of
usage of the plug-ins. Furthermore, EPC is hosted by the Eclipse Foundation. The lat-
ter is the organization in charge of coordinating the development of the Eclipse work-
bench. Therefore, the EPC repository is a good representative of the plug-ins made
available by (and to) the Eclipse community.

7.3.3 Experimental material

In this observational study, the experimental material corresponds to a sample taken
from the sampling frame. The subjects are, in this case, the plug-ins under scrutiny. The
sample taken from the sampling frame is a convenient sample. We only include plug-
ins that are shipped as an archived file, but require no particular installation, other than
copying the files to a specific directory in an Eclipse installation. In other words, our
sample excludes the remaining plug-ins. Our analysis depends on knowing precisely
which plug-ins are part of each plug-in bundle, so it is important for us to maintain
a strict control on the origin of each plug-in. This strict control would conflict with
installation wizards that are built so that the user can be oblivious of the plug-ins that
they need to install.

7.3.4 Tasks

As noted on the previous section, the subjects of this study are Eclipse plug-ins. As
such, this common item in the experimental design description is not applicable for
this study.

2http://www.eclipseplugincentral.com/
3To be more precise, the sampling frame includes 788 plug-in bundles. While some of these bundles

include a single plug-in, others include several plug-ins that support the plug-in we are installing.

250

http://www.eclipseplugincentral.com/

7. COMPONENT REUSABILITY ASSESSMENT 7.3. Experimental design

7.3.5 Hypotheses and variables

Hypotheses

The observations on the problem statement section lead us to testing five different
basic hypotheses, to assess the effect of plug-in origin, license type, application
domain, as well as the plug-in’s extension points availability and complexity, in the
actual reuse rate of each plug-in. We identify the hypotheses as H1, H2, H2a, H2b, and
H2c. For each of them, we now formulate both a null and an alternative hypothesis
(e.g. H10 and H11). Our research hypotheses are as follows:

H10: A plug-in’s origin has no significant impact on the number of extension
points provided by that plug-in.
H11: A plug-in’s origin has a significant impact on the number of extension points
provided by that plug-in.

H20: A plug-in’s origin has no significant impact on the plug-in’s actual reuse.
H21: A plug-in’s origin has a significant impact on the plug-in’s actual reuse.

H2a0: A plug-in’s origin has no significant impact on that plug-in’s extension
points reuse ratio.
H2a1: A plug-in’s origin has a significant impact on that plug-in’s extension points
reuse ratio.

H2b0: A plug-in’s origin has no significant impact on that plug-in’s external
plug-ins clients ratio.
H2b1: A plug-in’s origin has a significant impact on that plug-in’s external plug-ins
clients ratio.

H2c0: A plug-in’s origin has no significant impact on that plug-in’s number of
external client products.
H2c1: A plug-in’s origin has a significant impact on that plug-in’s number of external
client products.

Independent variables

The independent variable is the same for all the hypotheses considered here. We will
call it Is part of Eclipse. Its value is true for plug-ins which are part of the standard
Eclipse distribution, or false, otherwise. In order to determine whether or not a plug-
in is part of the standard Eclipse distribution, we compare its product instance variable
with the integer constant ECLIPSE_ID, which corresponds to the unique product key

251

7. COMPONENT REUSABILITY ASSESSMENT 7.3. Experimental design

attributed to Eclipse when we built our product sample. In OCL, we can compute
this value by defining the operation IsPartOfEclipse in the meta-class Pluggable, as
in listing 7.1. Note that this meta-class, as well as others used in the formalization of
metrics in this chapter, are part of the metamodel presented in figure 7.1.

Listing 7.1: Defining IsPartOfEclipse.
context Pluggable

IsPartOfEclipse(): Boolean = self.product = ECLIPSE_ID

Dependent variables

The dependent variables in this study can be defined in the context of the meta-class
Plug-in. We will start by providing an informal description of each of the variables.
Then, we will formally define the OCL operations required to compute each of these
dependent variables.

For hypothesis H1, the relevant variable is Extension points. This is a simple count
of the extension points provided by a plug-in. Its value is an integer, and we can
compute its value as in OCL using the ExtensionPointsCount() operation (listing 7.2).

Listing 7.2: Counting extension points.
context Plugin

ExtensionPoints(): Set(ExtensionPoint) = self.extensionPoint

ExtensionPointsCount (): Integer = self.ExtensionPoints()->size()

For hypothesis H2a, we will use, as auxiliary dependent variables, Extension
points, as well as UsedExtensionPoints. The latter is a simple count of the exten-
sion points of a plug-in which are extended by any plug-in within our sample. These
two variables are then used in the computation of our main dependent variable for this
hypothesis: Extension points reuse ratio, which is a ratio of the used extension points,
when compared to the available extension points of a plug-in. The two auxiliary vari-
ables are integers, while the ratio is a real number. In OCL, we will add operations
UsedExtensionPointsCount() and ExtensionPointsReuseRatio() to the Plugin meta-
class (listing 7.3).

Listing 7.3: Computing the reuse ratio of extension points.
context Plugin

UsedExtensionPoints (): Set(ExtensionPoint) = ExtensionPoints()

->select(ep: ExtensionPoint | ep.IsUsed())

UsedExtensionPointsCount (): Integer = UsedExtensionPoints()->size()

ExtensionPointsReuseRatio (): Real =

self.UsedExtensionPointsCount ()/self.ExtensionPointsCount()

This definition requires an auxiliary operation IsUsed() to be defined in the meta-
class ExtensionPoint (listing 7.4). This operation checks whether or not an extension

252

7. COMPONENT REUSABILITY ASSESSMENT 7.3. Experimental design

point’s qualified identifier (a unique identifier for that extension point) is referred to as
the extension point of any of the existing extensions in the sample.

Listing 7.4: Finding if an extension point is used.
context ExtensionPoint

IsUsed(): Boolean = Extension.allInstances.point ->includes(qualifiedId)

For hypothesis H2b, we will compute the count of Client plug-ins. This is
the size of the set of plug-ins that extend at least one of the extension points pro-
vided by a plug-in. While some of these plug-ins may be part of the same prod-
uct, others may belong to different products. We define Client plug-ins from other
products as the size of the set of plug-ins that reuse a plug-in’s extension point
but are not part of the same product to which the extension point provider plug-
in belongs. Both are integer values. The External plug-in clients ratio, computed
by the operation ExternalClientPluginsProvidersRatio() is a real number corre-
sponding to the percentage of Client plug-ins from other products, computed by
ExtensionPointsExternalClientPluginsCount() in the total Client plug-ins, com-
puted by ExtensionPointsClientPluginsCount(). These operations are presented in
listing 7.5.

Listing 7.5: Computing the ratio of external plug-in clients.
context Plugin

ExtensionPointsClientPlugins (): Set(Plugin) =

self.ExtensionPoints().ClientPlugins()->asSet()

ExtensionPointsClientPluginsCount (): Integer =

self.ExtensionPointsClientPlugins()->size()

ExtensionPointsExternalClientPluginsCount (): Integer =

self.ExtensionPointsClientPlugins ().product

->excluding(self.product)->size()

ExternalClientPluginsProvidersRatio (): Real =

ExtensionPointsExternalClientPluginsCount()

ExtensionPointsClientPluginsProvidersCount()

These definitions rely on the definitions of the operation ClientPlugins(), made
available in the meta-class ExtensionPoint. Listing 7.6 presents its definition.

Listing 7.6: Selecting an extension point’s client plug-ins.
context ExtensionPoint

ClientPlugins(): Set(Plugin) =

Extension.allInstances ->select(e : Extension |

e.point = self.qualifiedId).plugin ->asSet()->excluding(self.plugin)

Finally, for hypothesis H2c, we define the number of external client products as
the size of the set of products that include plug-ins that extend any of the plug-in’s

253

7. COMPONENT REUSABILITY ASSESSMENT 7.3. Experimental design

extension points. In order for a product to belong to this set, it must be provided
by a different organization than the one which provided the extended plug-ins. This
variable is an integer. The operation ExternalClientProductsCount() is defined in
listing 7.7.

Listing 7.7: Counting the products that reuse a plug-in.
context Plugin

ExternalClientProductsCount (): Integer =

self.ExtensionPoints(). ClientPluginProducts()->asSet()

->excluding(self.product)

This definition relies on the specification of ClientPluginProducts() in the meta-
class ExtensionPoint (listing 7.8).

Listing 7.8: Selecting the client products of an extension point.
context ExtensionPoint

ClientPluginProducts (): Set(Integer) =

self.ClientPlugins().product ->asSet()

7.3.6 Design

The design used in this observational study can be classified as a quantified single con-
trol group post-test only design, which can be presented as follows, using Trochim’s
notation [Trochim 06]:

N O

N X O
This design results in 2 groups, one where the treatment (being part of the Eclipse

standard distribution) is not applied, and the other where it is. In other words, the first
group includes plug-ins which are not part of the Eclipse standard distribution, while
the second one includes the plug-ins which are part of the sample.

The groups are non-equivalent. While we use all the plug-ins of the standard
Eclipse distribution (version 3.2), we use a convenient sample of the plug-ins which
are not part of that distribution, collected from an Eclipse plug-ins broker repository.

This design is applied in hypotheses H1, and H2 (including H2a, H2b, and H2c).

7.3.7 Procedure

The data collection required for this study consists in downloading the plug-ins and
storing them in a consistent way, for further analysis. For each downloaded plug-in,
we also store the meta-information made available by the plug-in broker. Some plug-
ins are distributed as compressed archives (frequently, either as a jar archive, or as a zip
archive). Others have fairly more sophisticated installers. Either way, installing a plug-

254

7. COMPONENT REUSABILITY ASSESSMENT 7.3. Experimental design

in in Eclipse includes copying a folder with the files defining the plug-in to a specific
folder named plugins inside Eclipse’s installation folder.

In our observational study, we analyze the contents of a replica of this folder, where
we put not only the standard plug-ins but also the plug-ins downloaded from EPC. All
compressed files are uncompressed, so that we can then extract information from them.

The tool support for this study includes both off-the-shelf components (the
USE tool4 and SPSS5) and custom made components (Plugin2USE and Plugin-
Metrics2SPSS), developed for the purposes of this dissertation. Each component is
implemented as a different, independent, tool. The architecture of our tool support
follows the pipes and filters architectural style [Garlan 93].

The activity diagram in figure 7.2 details the activities and responsibilities of each
of the components involved in the observational study. The first swim lane on the
activity diagram represents the person(s) conducting the observational study. The sec-
ond swim lane represents the repository used in this study. This corresponds to the file
system. The third swim lane represents the Plugins2USE component, which we devel-
oped to support this study. The fourth swim lane represents one of reused off-the-shelf
components: the USE tool. The fifth swim lane represents the second component we
developed to support this experiment: PluginMetrics2SPSS. Finally, the last swim lane
has the other reused off-the-shelf component: SPSS. If we consider the 4 components
corresponding to the 4 swim lanes on the right, we can observe how the output of each
component is used as input to the component immediately to its right.

The experimenter is responsible for setting up the study by collecting the data sam-
ple and creating the appropriate configuration for the components used in the data col-
lection, transformation, and analysis. In this particular observational study, he collects
Eclipse plug-ins, as provided by the plug-ins producers and stores them in a plug-ins
repository (a simple directory on the file system). The experimenter is also responsi-
ble for creating three configuration items for the study. The metamodel representing
the concepts relevant for this study, in UML, the specification of the metrics to be col-
lected from that model’s instantiation, using OCL, and the statistical treatment to be
applied to the collected metrics, specified as an SPSS command file. Although such
treatment can be carried out interactively by the experimenter using the statistics tool,
storing the whole data treatment procedures in a script facilitates the replication of the
observational study.

The plug-ins to be analyzed in the observational study are used as inputs to the Plu-
gin2USE tool. We developed this tool to automatically extract information, as required
by our study, from Eclipse plug-ins. The data used by the Plugin2USE component is
the contents of the replica folder discussed earlier. This component will automatically
collect the required information from this folder. Eclipse plug-ins include a manifest
file, in XML, from which Plugin2USE extracts the information for our observational

4http://www.db.informatik.uni-bremen.de/projects/USE/
5http://www.spss.com/

255

http://www.db.informatik.uni-bremen.de/projects/USE/
http://www.spss.com/

7. COMPONENT REUSABILITY ASSESSMENT 7.3. Experimental design

Figure 7.2: Data collection activities

study. Plugin2USE parses the plug-in manifest files an creates an instantiation of the
plug-ins metamodel partially presented in figure 7.1. The instantiation is generated as
a USE instances file. The instances file is a script, which is fed into the USE tool. The
script contains USE commands to create all the meta-objects, the links among them,
and to assign values to the attributes of those meta-objects.

The USE tool collects the metrics specified in OCL from the instantiated plug-ins.
The metrics values are then stored in a text file, for further processing.

The PluginMetrics2SPSS component transforms the output of the USE tool into an
SPSS data file.

Finally, we use SPSS to perform all the statistical tests required for testing our hy-
potheses. This statistics component allows scripting a sequence of commands for per-
forming data analysis, thus contributing to the automation of the whole process.

7.3.8 Analysis procedure

We will follow these steps:

• Descriptive statistics: For all our independent and dependent variables, we will
collect a set of descriptive statistics including the mean, standard deviation, the
minimum value of the variable in the sample, the maximum value, the skew-
ness and the kurtosis of the variable’s distribution. These descriptive statistics
will provide us with a first overview on our data, that we will further detail in
subsequent analysis.

256

7. COMPONENT REUSABILITY ASSESSMENT 7.4. Execution

• Data set reduction: outliers and extreme values may be removed, if their pres-
ence biases our analysis.

• Normality tests: Data will be checked for normality, so that the statistics tests
which are suitable for our data can be selected.

• Analysis of differences between groups: Finally, we will perform a test to detect
whether there are significant differences between groups. This will allow us to
test the hypotheses stated in section 7.3.5.

Each of these steps, and how they are followed in this study will be detailed in
section 7.5.

7.4 Execution

7.4.1 Sample

We excluded from analysis any plug-ins which were not distributed as an archive, to
avoid complicated installation procedures.

7.4.2 Preparation

The preparation of this observational study consisted, primarily, the development of
the computational support required to perform the study. This includes the identifica-
tion of two off-the-shelf components (USE and SPSS), as well as the development of the
other two components (Plugin2Use and Use2SPSS), in our pipe and filter architecture.
Both components were developed in C], for the .Net platform.

We conducted a pilot study on a small sample of plug-ins, to test our architecture
with real data. Once we were satisfied with the performance of the developed tools
and their interoperability with the off-the-shelf tools, we were ready for performing
the data collection.

7.4.3 Data collection performed

In this observational study, data collection consisted in downloading a sample of
Eclipse plug-ins made available in EPC. The main constraint in this task was the per-
formance bottleneck imposed by one of our off-the-shelf components: with thousands
of objects, and hundreds of thousands of links and attributes, the performance of the
USE tool degrades significantly. Conducting this study with all the elements of the
sampling frame was not feasible.

A secondary constraint concerned the extremely time consuming download of the
plug-ins, as this task could not be conveniently automated - several plug-in producers

257

7. COMPONENT REUSABILITY ASSESSMENT 7.5. Analysis

require filling registration forms before allowing the download. The option was to
download as many plug-ins as possible, until the OCL tool’s performance limitations
made it unfeasible to increase the size of the sample, with the available resources.

The sample of plug-ins used in this study contains 588 plug-ins, which correspond
to 32 plug-in bundles. Recall that the plug-ins, rather than the bundles, are the subjects
in our sample.

7.5 Analysis

In order to facilitate the traceability between the data presented and the corresponding
research hypotheses, each of the following sub-sections is labeled with the correspond-
ing hypothesis identification, ranging from H1 to H2c. In all tables, when presenting
the significance of the tests, we use the following typing convention: the significance
of each test is highlighted in bold for tests with p < 0,05 and italic bold for tests with
p < 0,01.

7.5.1 Descriptive statistics

For each variable, we present the number of cases, the mean value within our sample,
the standard deviation, the minimum value, the maximum value, the skewness and
the kurtosis.

H1

In order to assess H1, we will consider the Extension points variable. Table 7.1 sum-
marizes its descriptive statistics.

Metric N Mean Std. Dev. Min. Max. Skewness Kurtosis
Extension points 588 ,87 2,537 0 41 8,321 111,175

Table 7.1: Descriptive statistics of the number of Extension points.

In order to decide whether or not it is appropriate to use parametric tests for our
hypothesis, we need to check if the variable has a normal distribution. The positive
skewness indicates an asymmetric distribution, with a higher frequency of the vari-
able’s lower values. In other words, the distribution is right-skewed. This contrasts
with the normal distribution, which is symmetric and should therefore exhibit a skew-
ness of 0.

Based on the value of the Kurtosis, we may say that the distribution is also lep-
tokurtic. In other words, the probability of values being close to the mean is higher
than in a normal distribution. The probability of having extreme values in the popula-
tion is also higher than in a normal distribution.

258

7. COMPONENT REUSABILITY ASSESSMENT 7.5. Analysis

Both the skewness and the kurtosis of the distribution provide us a hint on the non-
normality of our data. We will use further tests to confirm the non-normality of this
variable. Table 7.2 presents the results of two such tests: the Kolmogorov-Smirnov
with the Lilliefors correction and the Shapiro-Wilk’s normality tests. The former
is the most widely used test and adequate for our sample size. The latter is often
used with smaller samples, and used here for confirmation purposes only. The null
hypothesis, for each of the tests, is that the sample comes from a normal distribution.
The alternative is that the sample comes from a non-normal distribution.

Kolmogorov-Smirnov(a) Shapiro-Wilk
Metric Statistic df Sig. Statistic df Sig.
Extension points ,366 588 ,000 ,361 588 ,000

Table 7.2: Normality tests for the Extension points variable.

In conclusion, we cannot assume the sample to come from a normal distribution.
We will have to use non-parametric tests to assess hypothesis H1.

H2 (including H2a, H2b and H2c)

Several of the plug-ins in the sample provide no extension points. While this informa-
tion was, by itself, interesting for assessing hypothesis H1, it can be argued that having
in our sample plug-ins which provide no extension points may be a confounding effect
for further analyzing the reuse patterns of the plug-ins which were built for reuse. If
we exclude from the sample all the plug-ins with no extension points, we are left with
163 plug-ins. In order to assess hypothesis H2, we will consider only the 163 plug-ins
which provide extension points. Hypothesis H2 concerns whether the origin of the
plug-in has an effect on its actual reuse.

It should be noted that filtering out the plug-ins which do not provide any exten-
sion points has no effect on the metrics of any of the remaining plug-ins, because this
exclusion is performed after computing the metrics, rather than before. This is a per-
haps subtle, but essential detail: if we were to exclude the plug-ins before computing
the metrics, a plug-in that does not provide any extension points would no longer be
accounted for as a client, when extending another plug-in (which could impact metrics
that depend on the client plug-ins, such as the number of used extension points).

Table 7.3 summarizes the descriptive statistics for the dependent variables consid-
ered while testing this hypothesis. Table 7.4 presents the corresponding normality
tests. All the variables have non normal distributions. We have to use non-parametric
tests for hypotheses H2a, H2b and H2c.

7.5.2 Data set reduction

Apart from the selection of a subset of the sample for the analysis of hypothesis H2,
no data set reduction is performed. Although there are outlier and extreme values in

259

7. COMPONENT REUSABILITY ASSESSMENT 7.5. Analysis

H Metric N Mean Std. Dev. Min. Max. Skew. Kurt.
H2a Extension points 163 3,13 4,025 1 41 5,757 48,682

Used extension points 163 2,44 3,616 0 37 6,077 52,288
Extension points reuse ratio 163 ,7773 ,35178 ,00 1,00 -1,399 ,445

H2b Client plug-ins 163 7,53 24,607 0 267 8,264 80,456
Client plug-ins from other products 163 4,06 19,813 0 224 9,215 96,841
External plug-in clients ratio 110 ,1849 ,29843 ,00 1,00 1,379 ,429

H2c Number of external client products 163 ,84 2,815 0 26 6,017 44,271

Table 7.3: Descriptive statistics for the filtered sample, where the plug-ins with no
extension points are excluded.

Kolmogorov-Smirnov(a) Shapiro-Wilk
H Metric Statistic df Sig. Statistic df Sig.
H2a Extension points ,298 163 ,000 ,513 163 ,000

Used extension points ,250 163 ,000 ,503 163 ,000
Extension points reuse ratio ,344 163 ,000 ,658 163 ,000

H2b Client plug-ins ,380 163 ,000 ,282 163 ,000
Client plug-ins from other products ,419 163 ,000 ,198 163 ,000
External plug-in clients ratio ,369 110 ,000 ,666 110 ,000

H2c Number of external client products ,383 163 ,000 ,325 163 ,000

Table 7.4: Normality tests for the metrics, after filtering out the cases where no exten-
sion points are provided. (a) stands for Lilliefors significance correction.

the samples (both the complete and the one used in hypothesis H2), we choose not
remove them. The outlier and extreme values in the sample are not attributable to
any problems in the data collection process. Removing them would be an unnecessary
threat to the validity of the obtained results, as it would eliminate information that
we consider relevant for our analysis. For instance, if a particular plug-in is extended
much more often than the others, it will be marked as an outlier, or extreme value. Such
a plug-in can be considered a hub component, in the Eclipse architecture. Eliminating
it from the sample would sacrifice this information, which seems relevant, particularly
when our goal is precisely to characterize the features of the plug-ins which get to be
extended.

7.5.3 Hypotheses testing

H1

Hypothesis H1 concerns whether or not there are significant differences between the
usage of the extension points mechanism, between plug-ins from the basic Eclipse dis-
tribution, when compared to other plug-ins. Our independent variable is IsPartOfE-
clipse, and we use it to discriminate between the two samples (the plug-ins in the
standard Eclipse distribution vs. all the other plug-ins in the sample).

In order to compare the usage of this mechanism, we will perform the Mann-
Whitney U test (table 7.6), which is a non-parametric alternative to assess whether
two samples of observations come from the same population. The test starts by rank-

260

7. COMPONENT REUSABILITY ASSESSMENT 7.5. Analysis

ing all the observations, regardless of the sample they come from. Values are ranked
in descending order. Table 7.5 summarizes the information concerning the computed
ranks.

Is part of Eclipse N Mean Rank Sum of Ranks
Extension points false 462 279,74 129239,50

true 126 348,62 43926,50

Table 7.5: Ranks for H1

As we can see, only 126 of the analyzed plug-ins come from the standard Eclipse
distribution, and they have a lower mean rank (the lowest ranks correspond to the
highest values). If the distributions come from the same sample, they have equal prob-
ability distributions. The Mann-Whitney test summarized in table 7.6 leads us to reject
the null hypothesis (the two samples come from the same population). There is a high
probability they come from different samples.

Mann-Whitney U Wilcoxon W Z Asymp. Sig. (2-tailed)
Extension points 22286,500 129239,500 -5,122 ,000

Table 7.6: Mann-Whitney U test for the Extension points variable. The grouping vari-
able is IsPartOfEclipse.

The test’s results are confirmed with a Two-Sample Kolmogorov-Smirnov test (ta-
ble 7.7). This test relies on the same rank classification (already presented in table 7.5).
Its significance confirms the results presented for the Mann-Whitney U test.

Most Extreme Differences Kolmogorov-Smirnov Asymp. Sig.
Absolute Positive Negative Z (2-tailed)

Extension points ,213 ,213 ,000 2,118 ,000

Table 7.7: Two-Sample Kolmogorov-Smirnov test for Extension points

These results indicate that the authors of plug-ins which are not part of the Eclipse
standard distribution provide significantly less extension points than those avail-
able in the plug-ins of the standard distribution.

At this point of our analysis, it is tempting to go back at our experimental de-
sign and add an extra hypothesis concerning the distribution of the existing extension
points in the plug-ins which are not part of the standard distribution. The information
collected so far indicates that most of the plug-ins which are not part of the standard
Eclipse distributions provide no extension points. But adding a shallow hypothesis
concerning that percentage is not particularly interesting. Instead, we can complement
our test of hypothesis H1 with the following extra information, conveyed by figure 7.3:
the distribution of the plug-ins which are not part of the standard Eclipse distribution,
according to the number of provided extension points (in the horizontal scale), is sim-
ilar to a Pareto distribution, where close to 77% of the plug-ins provide no extensions.
The horizontal line drawn at 80% provides a visual hint to remind us that the Pareto

261

7. COMPONENT REUSABILITY ASSESSMENT 7.5. Analysis

distribution is often associated with the 80-20 rule of thumb, which states that 80% of the
effects (available extension points) come from 20% of the causes (plug-ins providing
those extension points). In this sample, all the extension points are provided by around
23% of the plug-ins. The monotonic function represented by the non-decreasing line
on the top represents the accumulated sum of all the previous frequencies. The scale
on the left side represents the percentage of plug-ins, while the one on the right side
represents the corresponding count of plug-ins.

Figure 7.3: Extension points distribution, for plug-ins which are not part of the stan-
dard Eclipse distribution.

H2

Hypothesis H2 concerns whether or not the origin of a plug-in is a key factor with
respect to the plug-in’s reuse. We will look into this hypothesis using 3 perspectives:
the ratio of plug-ins which provide extension points which are extended by other plug-
ins, the ratio of plug-ins which are extended by plug-ins which are not produced by
the same provider, and the number of products which reuse the plug-in (not counting
with the product of which the plug-in is part of).

As with hypothesis H1, we will perform the Mann-Whitney test, and confirm the
results with the Kolmogorov-Smirnov test. Table 7.8 presents the ranks computed for
each of the variables, which will be used in both tests. An extra column H was added
on the left of these tables, to identify the sub-hypotheses under scrutiny. For each of
these sub-hypotheses, the decisive test is the last. Both with H2a and H2b we also
present the tests for a pair of auxiliary variables, as this will help in the interpretation
of results.

262

7. COMPONENT REUSABILITY ASSESSMENT 7.5. Analysis

H Metric Is part of Eclipse N Mean Rank Sum of Ranks
H2a Extension points false 107 76,16 8149,50

true 56 93,15 5216,50
Used extension points false 107 75,21 8048,00

true 56 94,96 5318,00
Extension points reuse ratio false 107 82,91 8871,00

true 56 80,27 4495,00
H2b Client plug-ins false 107 72,34 7740,50

true 56 100,46 5625,50
Client plug-ins from other products false 107 69,63 7450,00

true 56 105,64 5916,00
External plug-in clients ratio false 66 42,58 2810,50

true 44 74,88 3294,50
H2c Number of external client products false 107 69,53 7440,00

true 56 105,82 5926,00

Table 7.8: Ranks for H2

The Mann-Whitney test summarized in table 7.9 compares the distribution of each
of the variables, contrasting two groups: the plug-ins which are part of the standard
Eclipse distribution, and those which are not. All the variables but the extension
points reuse ratio show significant differences among the two groups.

H Metric Mann-Whitney U Wilcoxon W Z A.Sig.(2-t)
H2a Extension points 2371,500 8149,500 -2,296 ,022

Used extension points 2270,000 8048,000 -2,637 ,008
Extension points reuse ratio 2899,000 4495,000 -,385 ,700

H2b Client plug-ins 1962,500 7740,500 -3,693 ,000
Client plug-ins from other products 1672,000 7450,000 -6,128 ,000
External plug-in clients ratio 599,500 2810,500 -6,037 ,000

H2c Number of external client products 1662,000 7440,000 -6,185 ,000

Table 7.9: Mann-Whitney U test. The grouping variable is IsPartOfEclipse. A.Sig.(2-t)
stands for Two tailed asymptotic significance.

Table 7.10 presents the results of the Kolmogorov-Smirnov test. In this case, we
cannot conclude that three of the variables (extension points, extension points reuse
ratio, and client plug-ins from other products) came from samples with a different
distribution.

Most Extreme Differences
H Metric Absolute Positive Negative K-S Z A.Sig.(2-t)
H2a Extension points ,200 ,200 ,000 1,213 ,105

Used extension points ,277 ,277 ,000 1,677 ,007
Extension points reuse ratio ,098 ,098 -,091 ,597 ,868

H2b Client plug-ins ,293 ,293 ,000 1,775 ,004
Client plug-ins from other products ,415 ,415 ,000 2,516 ,000
External plug-in clients ratio ,591 ,591 ,000 3,036 ,000

H2c Number of external client products ,415 ,415 ,000 2,516 ,000

Table 7.10: Kolmogorov-Smirnov test. K-S Z stands for Kolmogorov-Smirnov Z.
A.Sig.(2-t) stands for Two tailed asymptotic significance. The grouping variable is
IsPartOfEclipse.

263

7. COMPONENT REUSABILITY ASSESSMENT 7.6. Interpretation

We can aggregate the results of the Mann-Whitney U and the Kolmogorov-Smirnov
tests and adopt a conservative position to analyze their results. If we can reject the null
hypothesis using both tests, we will do so. Otherwise, we will not reject it.

Starting with the tests relevant for sub-hypothesis H2a, the only difference which is
considered significant by both tests concerns the total number of extension points of a
plug-in which get to be reused. The higher mean rank of the plug-ins which are part
of Eclipse indicates that the extension points in these plug-ins are more reused. The
conflicting results concerning the number of extension points provided by the plug-
ins in the two groups, along with the similar reuse ratio of extension points in the two
groups, lead us to think that the observed difference in the number of reused extension
points is likely to result mainly from a higher number of extension points being made
available. In conclusion, we cannot reject H2a0.

Concerning H2b, we reject the null hypothesis H2b0 and accept its alternative. The
data indicates that there is a significantly higher number of client plug-ins, both
when we include all client plug-ins and when we only include the client plug-ins
that are part of other products. When combining these two variables in the external
plug-ins reuse ratio, we still obtain a significant difference between the two groups.
The plug-ins in the Eclipse distribution are relatively more extended by plug-ins
from other products than other plug-ins.

Finally, in H2c, we reject the null hypothesis H2c0 and accept the alternative: the
number of external client products is clearly higher for plug-ins which are part of
the standard Eclipse distribution.

7.6 Interpretation

7.6.1 Evaluation of results and implications

H1

Although, from an architectural point of view, the plug-ins in the Eclipse standard dis-
tribution are potentially similar to those that can be added to them by the community,
being part of the standard distribution does seem to have implications in plug-ins
design choices, in practice. Plug-ins from the standard distribution provide exten-
sion points more often than those which are not part of it. In fact, a large majority of
the plug-ins which are not part of the Eclipse standard distribution provide no exten-
sion points at all. In other words, they are designed to be plugged to the platform, but
provide no plugs for other plug-ins to extend them.

264

7. COMPONENT REUSABILITY ASSESSMENT 7.6. Interpretation

H2

Once we filter out the plug-ins that provide no extension points, we no longer observe
a significant difference in the percentage of extension points which are reused, when
comparing plug-ins from the standard Eclipse distribution with other plug-ins (H2a).
Although there is not a significant difference concerning the extension points reuse
ratio, there is a significant difference in the mean number of extension points which
are actually extended.

In order to understand why the results in H2a occur, consider the following: the
Eclipse platform is built from plug-ins which extend other plug-ins within the standard
distribution. In addition, plug-ins, which are not part of the standard distribution, may
also extend the standard plug-ins. This may explain why the count of extension points
which are reused is higher, in general, when considering plug-ins from the standard
distribution.

Concerning H2b, there is a significantly higher ratio of client plug-ins from other
products that use the extension points of the plug-ins in the Eclipse distribution, when
compared to using extension points from other plug-ins. Both the numerator (client
plug-ins from other products) and the denominator of that ratio (all client plug-ins)
are significantly higher for plug-ins in the Eclipse distribution. The difference between
groups is greater when we are considering client plug-ins from other products, than
when we are considering all client plug-ins, thus leading to the significant difference
in the ratio of external plug-in clients, as well.

Finally, for hypothesis H2c, we observe a clearly different mean number of external
client products, extending the extension points. The Eclipse plug-ins from the standard
distribution are extended much more products from other providers than other plug-
ins, if we just consider the extensions made by other products.

In summary, although there is not much difference in the reuse ratio of plug-ins’s
extension points, we observe that the origin of the plug-ins being reused is closely
related to the kind of plug-ins that reuse them. The likelihood of a plug-in’s extension
points being used by plug-ins which are not part of the same product is much higher if
the plug-in providing the extension points is part of the basic platform. Furthermore,
this effect is also observable when we contrast the extensions made by a third party to
plug-in extension points. Third party extension is more frequent when the extension
points are located in the standard Eclipse distribution.

7.6.2 Threats to validity

Internal validity threats

In what concerns the internal validity of the study, we consider two sorts of validity
threats: social threats and multiple group threats.

265

7. COMPONENT REUSABILITY ASSESSMENT 7.6. Interpretation

Social threats to internal validity could stem from the usage of differentiated treat-
ments within our sample. We can safely dismiss this threat. The treatment in this
observational study concerns being part of the Eclipse standard distribution, vs. not
being part of it. The study itself has no influence on the behavior of the plug-in pro-
ducers as it is designed and carried out after the publication of the plug-ins, thus being
unable to influence the analyzed plug-ins and their producers options while building
them in any way.

We can dismiss the potential effect of single group threats as well, because we are
using a control group in this study. We should, however, consider potential multiple
group threats:

• History. To the best of our knowledge, no external event had a significant influ-
ence in the results of our tests. In particular, we are not aware of events that might
have influenced the two groups differently. An example would be if some evolu-
tion of the plug-in design process made a difference among older and more recent
plug-ins. However, we have no reason to believe that such evolution would affect
differently the two groups under scrutiny.

• Maturation. We are only using a single version of each plug-in, so we can ex-
clude pre-test/post-test evolutions. A possible maturation effect that could occur
relates to the stage in the development process of the plug-ins in both groups. It
is possible that the plug-ins in the Eclipse distribution are, on average, more ma-
ture than the other ones, with respect to their development process. However,
as all the plug-ins under scrutiny are publicly available and they are, in general,
considered by the plug-ins broker as stable, or at least in beta versions, we expect
any maturation effects to be mitigated.

• Testing. This threat does not apply to our chosen post-test only experimental
design. There is no repetition of activities during the experiment, thus avoiding
this validity threat.

• Instrumentation. The same instrumentation was used with all the plug-ins in
both groups, so it seems unlikely that it may have introduced some sort of differ-
entiation among the groups.

• Statistical regression. This is not applicable to our design, as we used no pre-test
information in the selection of the plug-ins in both groups. This threat should be
considered if we were to perform a pre-test and then use its results to establish a
selection criterion to choose only the plug-ins with a high pre-test score, or only
those with a low pre-test score.

• Selection. The fact that our design uses non-equivalent groups makes this a po-
tential threat. While the group of plug-ins from the standard Eclipse distribution

266

7. COMPONENT REUSABILITY ASSESSMENT 7.6. Interpretation

includes all the plug-ins in the selected Eclipse version, it is virtually unfeasible
to create a truly random sample, or, for that matter, to enumerate the whole pop-
ulation) of plug-ins which are not part of the sample. We are only using plug-ins
which were made available through a plug-ins broker (the most important one,
in the Eclipse community). This excludes all the plug-ins which were not avail-
able at the time of our sample collection, in that broker’s list. Sampling was made
through convenient sample, which has also the potential to introduce some sort
of bias, even if the researcher is not aware of it. All these factors considered,
we did our best efforts to avoid validity problems which might result from the
selection of plug-ins in our sample, by using plug-ins with varied domains of
application, size, license types, and so on.

• Mortality. This threat did not apply to our observational study, as none of the
plug-ins available in our sample was excluded from the analysis.

• Ambiguity about direction of causal influence. This is a potential threat in the
sense that if a plug-in which is not part of the standard Eclipse distribution be-
comes a hub component in many plug-in based solutions, it may be the case that,
in subsequent versions of the Eclipse platform, the Eclipse community integrates
that plug-in as part of the standard distribution.

External validity threats

External validity refers to our ability of generalizing results beyond the scope of this
experiment. We consider three potential sources of threats:

• People. This threat is not directly applicable to our design, because our subjects
are plug-ins, rather than people (e.g. the plug-in developers).

• Setting. All the plug-ins used in this study are publicly available. Some of the
reuse patterns observed here may not necessarily hold when considering plug-
ins developed for personal, non-commercial use. For instance, it is plausible that
a plug-in which exposes extension points, but has a license that only allows free
of charge extension for personal use, may be extended in that context, but not
by other products in the market. Another setting concern relates to the focus
of our attention on the usage of a particular Eclipse plug-in extension mecha-
nism: extension points. These can be compared to UML ports with provided
interfaces, for instance. However, the findings for Eclipse plug-ins are not nec-
essarily valid for plug-ins in other plug-in based architectures, or using different
extension mechanisms. For instance, it is often the case that, in order to reduce
coupling between components, several components are able to interoperate with
each other by using a common data interchange protocol. For instance, several
UML editor components are able to interchange information among them using

267

7. COMPONENT REUSABILITY ASSESSMENT 7.6. Interpretation

XMI. This kind of reuse is not addressed in our study. Finally, extrapolations
to other component models would require validation with components of those
models.

• Time. It may be the case that future developments of plug-in architectures may
render the observations reported here as obsolete. In fact, for supporters of a
more developed component-market-oriented view of CBD, this seems not only
possible, but desirable. So, these observations should be considered in the context
of a generation of plug-in products that use this extension mechanism. Extrapo-
lations to other contexts should be done with caution.

Construct validity threats

With respect to construct validity threats, we consider two categories: social and design
threats. Typical social threats include:

• Hypothesis guessing. This is not applicable to our observational study. Plug-
in developers were not aware of this study while developing and making their
plug-ins available.

• Evaluation apprehension. For the same motive as in hypothesis guessing, we do
not regard this as an applicable threat to this study. Plug-in developers would
not change their development options (e.g. by including more extension points
in their plug-ins) due to concerns on the outcome of an assessment they were not
aware of, while developing their plug-ins.

• Experimenter’s expectancies. Our expectancies while performing this study had
no influence in the observed results, as, again, we had no implicit or explicit
influence in the options of plug-in developers concerning the usage of plug-in
extension points.

Construct validity design threats include:

• Inadequate pre-operational explication of constructs. Our approach to metrics
definition supports a rigorous definition of all the metrics in this experiment. We
regard this as an effective mitigation of this potential threat.

• Mono-operation bias. This threat is mitigated by using a fairly large sample of
plug-ins in each of the groups. This contrasts with comparing, for example, one
plug-in from the Eclipse distribution with an external plug-in and inferencing
from there. This limits the inference scope to Eclipse plug-ins. The threat does
exist (and is not mitigated by our design), if one extrapolates from the results
obtained here to other extension mechanisms and component models. Such ex-
trapolations would have to be validated (e.g. through differentiated replicas of
our study).

268

7. COMPONENT REUSABILITY ASSESSMENT 7.6. Interpretation

• Mono-method bias. This threat results from using a single kind of measure, or
observation. Our study tries to mitigate this threat by using more than one way
of measuring the usage of extensions among plug-ins. As all our measurements
are based in the usage of plug-in extension points, other forms of dependencies
among plug-ins are not considered here.

• Confounding constructs and level of constructs. It follows from the previous
threat, that plug-in reusability is being measured indirectly using a specific mech-
anism (extension points). Differentiated replicas of this study could use other
mechanisms (e.g. cooperation through common data repository sharing).

• Interaction of different treatments. As a single treatment is involved in our
experiment, this threat is does not occur in our design.

• Interaction of testing and treatment. This does not apply to our design, particu-
larly as this is an observational study.

• Restricted generalizability across constructs. This relates to the presence of un-
desired side-effects that would results as an indirect outcome of providing or
extending extension points. The data available in this study does not help us to
speculate much on this matter. An example would be if we were to find evidence
that having an extension point extended had a negative impact for the plug-in’s
producers.

Conclusion validity threats

The potential threats to conclusion validity include:

• Statistical power The usage of non-parametric tests, advisable from the results
in our early data analysis, leads to a lower statistical power than the one which
would be achievable using parametric tests. The non-normality of our data de-
termined this constraint.

• Violated assumptions of statistical tests. To the best of our knowledge, all the
assumptions of the used statistical methods were met.

• Fishing and the error rate. When too many tests are performed, some of them
may reveal spurious relations between variables, purely by chance. With the
number of tests performed in this study, we have no reason to think the relations
found between variables are spurious.

• Reliability of measures. One of the metrics used in our study is the number of
used extension points, which is computed by counting the number of extension
points used by any of the plug-ins in our sample. If we were to add extra plug-
ins to the sample, it is possible that previously unused extension points would

269

7. COMPONENT REUSABILITY ASSESSMENT 7.6. Interpretation

become used by the new plug-ins. With almost 600 plug-ins in our sample, we
are confident this would have no major effect in the general conclusion of this
study, although this limitation does constitute a threat to the reliability of this
measure.

• Reliability of treatment implementation. The observational study was con-
ducted by a single person (the author of this dissertation), with the usage of
automated tools. This uniformity mitigates this potential threat.

• Random irrelevances in experimental setting. This threat refers to features in
the experimental setting which might create sources of variation in the outcome
of tests, even if those features are irrelevant to the tests being performed. To the
best of our knowledge, this threat was not present in our setting.

• Random heterogeneity of subjects. The fairly large number of plug-ins in the
sample mitigated this threat.

7.6.3 Inferences

The analysis performed in this observational study should hold for larger samples of
Eclipse plug-ins. In other words, we expect the same patterns of extension to be observ-
able with other plug-ins which are publicly made available through plug-in brokers.

It is less clear whether or not all these observations apply to Eclipse plug-ins which
do not get to be available in brokers. We expect some of the properties to hold, namely
those relating to not investing in providing extension points to other plug-in produc-
ers. But we can imagine scenarios where this would not hold. For instance, during
visits to poster sessions in software engineering conferences, we have noted that many
graduate students develop Eclipse plug-ins as part of their research. It may be the case
that these developers extend plug-ins made available through the broker, but which
are not part of the standard distribution. They may also provide extension points for
other colleagues to build on their work. These potential differences, that we are not
able to assess from our sample, would result, to a certain extent, from the frequent dif-
ferentiation concerning the inclusion of components in applications for personal use,
vs. in commercial applications. The former reuse is often free, unlike the latter.

Extrapolating the results of this study to other component models is also risky. For
some domains, such as graphical user interfaces development, the component market
seems to be more developed, so we would expect to find a higher proportion of reuse
of components by independent producers in those domains.

Overall, we think that the basic pattern of component reuse through extension is
still mostly centered around a fairly limited set of trusted component frameworks,
rather than on a true component market where alternative components for the same
task are made available and reused. Note that this market does exist for components

270

7. COMPONENT REUSABILITY ASSESSMENT 7.6. Interpretation

which are “final” products themselves. Our comment relates to those components
which would be reused as part of larger applications.

7.6.4 Lessons learned

In this section, we will discuss the lessons learned with respect to the operationaliza-
tion of the observational study itself, rather than discussing the implications of the
study’s results. There were several challenges to overcome, to ensure the data quality
for our analysis.

Although perhaps regarded as a “minor”, or “less noble” activity, data collection
often represents a large percentage of the effort while conducting a study such as the
one reported here. Consider the effort of downloading and preparing the data for anal-
ysis, so that all plug-ins were stored in a uniform way, before being fed into our data
collection pipeline. When feasible, using scripts for automating the repetitive tasks is
highly advisable. However, there is some variety of formats in which the plug-ins are
made available, which implies a somewhat repetitive effort to verify they are stored
uniformly. Although it is tempting to build a web crawler to perform the downloads,
this was not feasible in this study, as most plug-ins required the downloaders to fill in
registration forms, before allowing the downloads. In a nutshell, the effort required for
data collection must not be neglected.

The sheer volume of information gathered for analysis, with over 250 Megabytes of
plug-in’s distributions to explore was a problem. If we revisit figures ?? and 7.2, we can
see how our data is processed by a pipeline of applications to support our analysis. The
Plugins2Use component generated files containing the USE instances which were then
fed to the USE tool. The USE tool turned out to be the bottleneck in our architecture.
While none of the remaining tools showed any relevant efficiency limitations for their
tasks, the USE tool stores its data structures in main memory, rather than having a
database in the background where it can get and store information. With over 50 Mb
of instantiation files 6, the memory-based data structures of the USE tool turned out
to be very inefficient in the data loading process. Loading the whole information base
took around 45 minutes in a Intel Core2 Duo T7200 (2x 2.20GHz), with 2GB of DDR2
RAM. The bottleneck lies precisely in the data loading process. Collecting the metrics
used in this study, once the tool has all the necessary data loaded, is relatively fast. It
took less than 1 minute to compute the results of all the necessary queries.

Efficiency is not a major concern for this kind of observational study, as we were
not aiming to have this information in real time. If we were to integrate this sort of
information in an IDE, it seems unlikely that we would require this volume of infor-
mation to be processed in real time. Nevertheless, with around 600 plug-ins and the
corresponding tens of thousands of objects and links, the OCL evaluation tool used

6The USE instantiation files are text files with instructions to create objects, assign values to those
object’s instance variables, and create links among those objects.

271

7. COMPONENT REUSABILITY ASSESSMENT 7.7. Conclusions and future work

in this dissertation showed scalability problems. So, when conducting studies of this,
or larger magnitudes, it would be advisable to use an OCL evaluation tool supported
with a persistent data repository, which would allow a more efficient access to data.

7.7 Conclusions and future work

7.7.1 Summary

In this chapter, we report on an observational study where we analyzed the extension
patterns in Eclipse plug-ins. We used a quantified single control group post-test only
design. This allowed us to contrast the usage of the plug-in extension mechanism of
extension points with two groups of plug-ins: the plug-ins from the standard Eclipse
distribution, and a sample of plublicly available plug-ins, collected from a plug-in bro-
ker.

The results obtained in this study indicate that Eclipse plug-ins have different ex-
tensibility patterns when we contrast both groups. Plug-ins from the standard distri-
bution are much more likely to be extended by external developers than other plug-ins.

The extension relationship between plug-ins can be represented as a directed graph,
where the nodes represent plug-ins and the edges are directed from the extender plug-
in to the extended plug-in. The nodes representing plug-ins which are not part of the
standard distribution will have outgoing edges, but, frequently, no incoming edges.
This effect is not very clear when we consider all the edges in the graph, because it
includes edges that link plug-ins provided as part of the same product. It is common
for products to be implemented by several plug-ins, and normal to find that those plug-
ins are linked. So, the plug-in’s extensibility mechanism is used in the composition of
plug-ins developed in-house, or belonging to the basic platform. The contrast against
the plug-ins from the basic platform becomes apparent when we exclude from the
graph all the edges that are linking plug-ins from the same product, and even more
evident when we exclude the edges linking nodes which represent plug-ins developed
by the same provider.

Our sample of the universe of Eclipse plug-ins excludes those which are not made
publicly available through the main Eclipse plug-in’s broker. Although we believe this
constraint allows us to have a representative sample of mature plug-ins, it excludes
plug-ins which are not developed with the purpose of being made available to a wide
audience, such as plug-ins built for personal usage. Another limitation of this study is
that it is unfeasible to collect all the plug-ins available and use them as input for our
study. As, along with other dimensions, we are measuring the observed usage of the
plug-ins extension mechanism, it is possible that the actual reuse rate is higher than
our estimate.

Nevertheless, the size of our sample and the obtained results lead us to think the

272

7. COMPONENT REUSABILITY ASSESSMENT 7.7. Conclusions and future work

main conclusions would apply to the population of publicly available Eclipse plug-ins.

7.7.2 Impact

One of the goals of the CBD community is to strive for trustworthy components upon
which developers would be willing to produce their own more sophisticated compo-
nents (in this case, plug-ins). The observations in our study indicate that a “quality
seal” of belonging to the basic platform remains a very important asset, when building
components.

We observed that most of the analyzed components which were not part of the
standard distribution were not built to be further extended by a third party. This in-
formation hints us on the lack of incentives of software producers to spend their re-
sources to provide extension points that are not likely to be widely reused. This hint is
reinforced by the lack of external reuse observed in the majority of plug-ins which do
provide extension points. The exceptions to this lack of external reuse come precisely
from the plug-ins in the basic platform. It is possible that this leads to a self feeding
pattern, where the lack of demand for extension points in plug-ins which are not part
of the standard is an incentive for plug-in producers not to develop such extension
points. In turn, this does not foster the development of extension points with enough
“reuse-appeal” by those producers.

Overall, we are inclined to support the concerns formulated by Nierstrasz back in
1992: the plug-ins in our sample are reused, but as a complete sub-system that is built
on top of Eclipse. The plug-ins which get to be extended by a third party are still, in
their vast majority, the ones which are part of the basic platform. So, after all these
years, it seems component producers still have trouble with the four main difficulties
identified by Nierstrasz (as discussed in section 7.1).

7.7.3 Future work

This work can be extended in several ways, both by keeping the context to Eclipse
plug-ins and by changing that context to other component models.

In the realm of Eclipse plug-ins, both close and differentiated replications would be
useful. Close replicas of this study could use the same design, but a different sample
of plug-ins (either from the same broker, or from a different one). Differentiated repli-
cas could explore information not used here, such as the domain of application, and
license type of the plug-ins, as well as the complexity of the extension points, just to
enumerate a few examples. For instance, the complexity of an interface (in this case,
the extension point) is often associated with the reusability of the component providing
that interface. As such, it would be interesting to assess the impact of such complexity
on the actual usage of the extension points mechanism.

The extent to which the conclusions in this study are applicable to components

273

7. COMPONENT REUSABILITY ASSESSMENT 7.7. Conclusions and future work

from other component models should be addressed by further research. With some
adaptations, our design can be adopted in other contexts.

The main adaptations would be to port the concepts of extension to a metamodel
of the new component model, and build the data collection tools to analyze other com-
ponent repositories. Naturally, it would also be necessary to identify the component
frameworks that would play the equivalent “role” of the Eclipse standard distribution,
in this new context.

Another interesting variation, if several competing (or complementary) component
frameworks could be found, would be to change the design to a quantified multiple
control group post-test only design, where each group of components would corre-
spond to one of those frameworks and the remaining components would be consid-
ered as part of a special group.

274

Chapter 8

Conclusions

Contents
8.1 Summary . 276

8.2 Contributions . 278

8.3 Future work . 283

Background: Throughout this dissertation we presented a process for conducting ex-
perimental work in Software Engineering, along with an approach called Ontology-
Driven Measurement (ODM) to define and collect quantitative metrics that can be used
in that experimental work. We illustrated the process, and ODM, with several exam-
ples of experimentation in the context of CBD.
Objectives: In this chapter our goals are to summarize our contributions toward
achieving auditability and replicability in Experimental Software Engineering (ESE)
applied to CBD, and to discuss possible extensions to our work.
Methods: We revisit the main problems outlined in the introduction of this disserta-
tion, and discuss how our work contributes to solve them.
Results: The experimental process model and ODM are valuable tools that were suc-
cessfully applied in quantitative experimental work in the context of CBD.
Limitations: The experimental validation of claims is never complete without the iden-
tification of the validity threats to that validation. By identifying such threats we can
outline future work that complements our experimental work. In addition, we also
identify future work that extends our contributions, both in what concerns the experi-
mental process and ODM.
Conclusions: Experimental validation of CBD claims can be facilitated by an ESE pro-
cess model, along with the usage of ODM. Together, they contribute to replicable ex-
perimental work that can be reconciled with the work of our peers to allow for meta-
analysis that, in turn, facilitates advances in the body of knowledge of CBD.

275

8. CONCLUSIONS 8.1. Summary

8.1 Summary

In this dissertation we have shown that we can facilitate the repeatability and com-
parability of quantitative experiments on component based development (CBD), by
combining a well defined Experimental Software Engineering (ESE) process model
with a formal approach to software measurement called Ontology-Driven Measure-
ment (ODM). The repeatability and comparability of experimental work are two key
characteristics of the experimental validation of claims, whether we consider science,
in general, or ESE applied to CBD, in particular.

Repeatability is important so that the experiments can be replicated by independent
researchers. This is a desirable property of experimental work, because it facilitates the
independent validation of claims. By replicating experimental results reported by our
peers (and facilitating their replication of our own work) we can systematically miti-
gate the threats to validity that are intrinsic to the experimental validation of claims.

The comparability of experimental results is essential, if we are to perform any
meaningful meta-analysis of the results reported by independent researchers and prac-
titioners on a particular subject. This comparative analysis of experimental results that
support, or contradict, claims in the scope of CBD is a basic element for incrementally
building the body of knowledge in CBD.

As we have seen in chapter 2, most of the work in Component-Based Software Engi-
neering (CBSE), the area of Software Engineering dedicated to CBD, has been devoted
to the development of component models and technologies, while the experimental
validation of claims was relatively unexplored. An analysis to existing quantitative
metrics for CBD revealed several metrics sets. These sets have problems concerning
the coverage of concepts (the majority is dedicated to variations on the theme struc-
tural complexity of component’s interfaces), the lack of connection to well-defined qual-
ity models, the lack of validation of metrics, and the ill-definition of those metrics.

In order to improve the state of the art in experimental quantitative approaches to
support CBD, we followed a 2-pronged strategy, that covers both the process and the
technical difficulties identified earlier.

Chapter 3 was dedicated to the process part of our approach. We were concerned
with the tacit knowledge problem in experimentation. This problem relates to the
amount of valuable information that is usually absent from experimental reports,
severely hampering our ability to replicate experiments and perform meta-analysis
on their results. We identified a set of disperse guidelines for conducting experimen-
tal work, and combined them into a model for the experimental process in the scope
of Software Engineering. Our model was designed to complement existing propos-
als concerning experimental reporting guidelines. We also conducted a case study to
validate the process model.

Chapter 4 was dedicated to the technical challenges in defining software metrics for

276

8. CONCLUSIONS 8.1. Summary

CBD. We used the ODM approach to formally define metrics for CBD. ODM combines
the usage of an ontology, to describe the measurement targets, with OCL rules, to
define and compute the metrics. ODM was illustrated in a cross-validation case study
for a well-known CBD metrics set [Washizaki 03], in chapter 4, and exercised with
two additional metamodels (UML 2.0 and CCM 3.0) and several other metrics sets, in
chapter 5. The metrics formalization in chapter 5 covers several of the CBD metrics
sets identified in the related work, to show the praticality and expressiveness of ODM.

Chapters 6 and 7 are dedicated to the validation of our claims concerning the use-
fulness of the combination of our process model, along with the ODM approach, in
the context of CBD. They provide two examples of how our quantitative experimental
approaches can provide us insights on CBD.

Chapter 6 contains a case study on the development process of software compo-
nents. We focus on one particular activity during component development: code in-
spections. Our experimental work explores the impact of practitioner’s expertise in
the outcome of software code inspections. The code inspections were carried out in the
context of a software components factory, simulated in an academic environment.

Chapter 7 contains an observational study on the reuse patterns within a well
known component-based software system: the Eclipse project. We explored a different
angle of component reusability, when compared to the one used in the vast majority
of metrics-based approaches to assess component reuse. Rather than using existing
metrics on the component interfaces, and their complexity, and using those metrics
to indirectly compute the component’s reusability, we defined and used metrics for
the actual reuse of components. In this study, we used a particular kind of software
components: Eclipse plug-ins. Our metrics treat Eclipse plug-ins as black-box com-
ponents, even when those plug-ins are open source. There are two main motives for
this: (i) frequently, components are distributed as black-boxes, so our experiment can
be replicated for other kinds of components, regardless of the visibility level of their
features; (ii) one of the main benefits attributed to CBD is to foster the reuse of com-
ponents which can range from fine- to coarse-grained components; even when it is
possible to access components as white-box, it is often undesirable, or unfeasible with
the available resources to do so.

Our observational study indicated a reuse pattern which is independent from the
structural properties normally assessed by other metrics-based approaches to CBD: the
credibility of the component provider seems to be a dominating factor, when selecting
software components for reuse, particularly if we are to build components that reuse
the third party components. While practitioners download and install components
from several sources, they are much more conservative when it comes to developing
new components which depend on such third-party ones.

It seems plausible that component producers are not willing to make the usage of
their components dependent on third-party components, because the component mar-

277

8. CONCLUSIONS 8.2. Contributions

ket is not mature enough so that they are viewed as commodities that can be easily
replaced, if necessary, by alternatives produced by other vendors. The lack of such
alternatives makes the evolution of the third party components a risk. It is difficult
to guarantee that new versions of those components can safely replace earlier ver-
sions, in a given component assembly, with the current component models. This risk
is mitigated in well-known and often reused component frameworks (e.g. the Eclipse
platform plug-ins). Breaking backward compatibility is a more serious risk for those
framework’s producers, due to the large number of clients which depend on the frame-
work’s features. One of the alternatives for the framework’s producers is to adopt a
deprecation policy, which keeps old components available, while encouraging their
replacement by new ones.

8.2 Contributions

The most significant overall contribution of this dissertation is

the illustration, through practical examples, of how we can combine an experimen-
tal process model with ODM to support the experimental validation of claims in
the context of CBD, in a repeatable and comparable way.

In this section, we outline the main contributions of this dissertation that, when
combined, lead to this overall contribution.

8.2.1 Metamodels construction and extension

The availability of a well-defined ontology for the targets of our experimental work is a
concern that cross-cuts the whole dissertation. We consider this as one of the essential
elements to support replicability and comparability of results.

As such, throughout the dissertation, we modeled the domain upon which each
of our experiments were carried out. In several cases we created new ontologies, or
extended existing ones.

The exception is in chapter 4, where we used an extract of the standard UML 2.0
metamodel, with no further changes. The standard metamodel was suitable for our
purposes.

UML 2.0 metamodel extension

In chapter 5, we extended the UML 2.0 metamodel by adding a stereotype for repre-
senting events in UML 2.0 component diagrams. The stereotype allows representing
provided and required events, similarly to what is possible with provided and required
interfaces, thus adding to the expressiveness of UML 2.0.

278

8. CONCLUSIONS 8.2. Contributions

CCM 3.0 metamodel extension

In chapter 5, we discussed how the standard CCM 3.0 metamodel allows representing
models of component assemblies, but lacks the expressiveness required for specifying
instances of component assemblies. In other words, it is possible to know the types
of components which may be wired, but not which specific components are actually
wired. In CCM 3.0 this wiring can be specified through a textual file called Compo-
nent Assembly Descriptor (CAD). This contrasts with other metamodels, such as the
one of UML 2.0, which provide the abstractions required for representing models and
instances. The extension described in chapter 5 solves this problem by adding the
meta-classes that are required to represent the contents of the CAD files through the
extended metamodel.

Code inspections ontology

In chapter 6, we modeled the process under scrutiny in our case study: code inspec-
tions. The resulting ontology also includes the concepts required for representing the
expertise of the participants in our case study. This is an example of an ontology cre-
ated from scratch to support the ODM approach. Note that, although this ontology is
not defined at the metamodel level, the ODM approach applies to it in a similar way.
This illustrates the meta-level independence of ODM.

Eclipse plug-ins metamodel

In chapter 7, we developed a metamodel to represent Eclipse plug-ins, their depen-
dencies, and meta-information provided by a plug-ins broker about the products in
which the plug-ins are bundled. The metamodel captures the information conveyed
by Eclipse plug-ins manifest files, and adds to that information extra data provided by
an Eclipse plug-ins broker. In this metamodel, plug-ins are represented as black-box
components. It excludes white-box information on those plug-ins, even when that in-
formation is available (e.g. in open-source plug-ins), because, for the purposes of this
dissertation, we were only interested in the black-box view of the plug-ins.

UML profile for Acme

In appendix B, we present a UML 2.0 profile for specifying Acme components and
systems. Acme is a second generation Architecture Description Language (ADL) de-
signed to be used as an interchange language between different ADLs. By creating a
mapping between UML 2.0 and Acme, we are indirectly creating a mapping between
UML and those ADLs for which there is a mapping to Acme. We do not use this profile
in any of the experimental works described in this dissertation, because we chose to
use a more widely disseminated component technology (Eclipse plug-ins) in our ex-
periments. Nevertheless, we include our UML profile for Acme in this dissertation, as

279

8. CONCLUSIONS 8.2. Contributions

it may contribute for future experimental work with components defined in Acme, or
any of the ADLs that map to Acme. The rationale is to use the mapping to represent
such components, and component assemblies into our profile, and then use the ODM
approach to define and compute relevant metrics on them.

8.2.2 Quality models and their validation

As discussed in the introduction, we opted to use focused quality models, or small
sets of quality attributes, in our experimental work, rather than using a generic quality
model for CBD. Our contribution concerning quality models was focused on a quality
model proposed by Washizaki et al. [Washizaki 03], for which we performed a cross-
validation, in chapter 4.

In chapter 4’s case study, our contribution concerns only the external validation of
that quality model. We used a set of fine-grained components, developed by Washizaki
et al.’s team for educational purposes (in particular, as examples of reusable compo-
nents). The components turned out not to conform to some of the heuristics proposed
in the context of the quality model. Our results suggest that the quality model’s heuris-
tics may be vulnerable to component size, because the components used for calibrating
the heuristics were commercial components, and are likely to have a higher complexity
than those used in our case study. In summary, the quality model may lack external
consistency.

The context for other experimental works was provided by small sets of quality
characteristics, rather than by a full-blown quality model.

8.2.3 Formalization of metrics for CBD

Throughout this dissertation we presented formal specifications for metrics that cover
not only the product, but also the process. These formal specifications are built us-
ing the ODM approach. The ODM approach is an extension of the Metamodel-Driven
Measurement (M2DM) approach to allow measurement in meta-levels other than M2.
M2DM was originally created to support the specification of metrics for object-oriented
design. While extending the usage of M2DM to CBD, we found that it would be use-
ful to define and collect metrics at other meta-levels, rather than being restricted to
the metamodel level. The ODM evolution was used with new metamodels, such as
the CCM metamodel, or our Eclipse plug-ins metamodel, but also the usage of dif-
ferent parts of other metamodels which had been previously used with metrics for
object-oriented design, such as the UML 2.0 metamodel. We also extended the ODM
approach to process evaluation, namely in the case study presented in chapter 6, on the
effect of expertise in inspection teams. The variety of metrics defined using the ODM
approach, throughout the dissertation, illustrates the expressiveness of the approach.

280

8. CONCLUSIONS 8.2. Contributions

Assembly-independent component metrics

Assembly-independent component metrics are metrics for software components that
can be computed without any extra information concerning the assemblies in which
components are integrated. In chapter 4, we formalized the definitions of a metrics
set by Washizaki et al. [Washizaki 03] for JavaBeans, so that we could cross-validate
the metrics set. The formalization was performed upon the UML 2.0 metamodel.
In chapter 5, we formalized metrics originally proposed by several authors [Box-
all 04, Narasimhan 04, Goulão 05b] upon the UML 2.0 and the CCM 3.0 metamodels.
As discussed in section 8.2.1, some of these formalizations required extending the stan-
dard metamodels.

Assembly-dependent component metrics

Assembly-dependent component metrics are metrics for components, or component
assemblies, which require information concerning the component assemblies so that
their value can be computed. Unlike assembly-independent metrics, these met-
rics’ values are not simply a characterization of components in isolation, but rather
a characterization of the relationships among components, or of the assembly as
a whole. In chapter 5 we formally defined several metrics proposed in literature
[Hoek 03, Narasimhan 04] upon UML 2.0 and CCM 3.0. In chapter 7 we defined and
validated metrics for Eclipse plug-ins upon an Eclipse plug-ins metamodel designed
in the context of this dissertation. This metrics set, also proposed in the context of this
dissertation, is dedicated to the usage of the extension mechanism of Eclipse plug-ins.
It allows contrasting the potential usage of this mechanism with its actual usage.

Process metrics (for code inspections)

In order to exemplify how metrics can be defined in the context of the CBD process, we
focused on one of the activities that can be carried out in that process: code inspections
carried out by the component producer organizations. The metrics were defined in
the context of this dissertation, and cover the diversity of defects found during code
inspections, as well as the individual expertise of the members of the inspection team.
We used the combination of these two dimensions (inspection success and individual
expertise of team members) to explore how the inspection team composition might be
optimized.

8.2.4 Validation of proposals through a common process model

All the experimental validations performed during this dissertation followed a com-
mon process model, described in chapter 3. In that sense, each of those experimental
validations can be viewed as an example of the application of the process itself. This

281

8. CONCLUSIONS 8.2. Contributions

validation effort in chapter 3 was aimed at ESE in general, rather than to specific appli-
cations of ESE to CBD. The remaining experimental works described in the dissertation
focused on CBD.

Validation of the process model

In chapter 3 we presented a case study where we assessed the relative difficulty of per-
forming each part of the process. The major difficulties of our subjects in following
the process concerned data collection, although it is unclear whether their lower per-
formance while describing the data collection activity was intrinsic to the process, or a
result of the characteristics of the experimental setting.

Cross-validation of a component metrics set and quality model

In chapter 4 we performed a cross-validation of Washizaki et al.’s metrics and qual-
ity model [Washizaki 03] and found problems with the external validity of the qual-
ity model. When assessing components created for educational purposes, rather than
commercial ones, several of the quality thresholds defined by Washizaki et al. were not
satisfied by most of the components in a set also provided by Washizaki’s team. The
smaller size of educational components, when compared to the commercial ones used
while creating the thresholds is a likely cause for this lack of external validity.

Validation of inspection team’s desirable properties

In chapter 6, we performed a case study on a sub-process in the context of the devel-
opment process of software components: code inspections. The main outcome of this
case study was that it is possible to optimize the inspection team so that we minimize
the number of expert reviewers involved in the inspection, without sacrificing the in-
spection’s outcome.

Validation of claims concerning the reusability of Eclipse plug-ins

In chapter 7, we performed an observational study on the reusability of Eclipse plug-
ins. The main outcome of this study was the confirmation of the perennial nature of
several observations of Nierstrasz et al. [Nierstrasz 92]. These include the difficulty in
creating reusable components, and the prevalence of the reuse of components which
are part of a trusted framework, rather than the reuse of components from a diversity
of sources, acquired through a component broker.

8.2.5 Development of tool support for experimentation

We developed the tool support required for our experimental work in a systematic way.
Our experimental process model, with several sub-processes performed in sequence,

282

8. CONCLUSIONS 8.3. Future work

can be mapped in a pipe and filter architecture, where the outputs of an activity are
used as inputs to the next one. Our pipe and filter architecture provided support for
the data collection and subsequent statistical analysis.

If we compare the tool support for each of the experimental validations, a family of
architectures emerges. We use a custom component for collecting the data and trans-
forming it into instances of an appropriate metamodel. The metamodel also changes
from one experimental validation to the next. Then, we use this instantiation in the
USE tool, so that we can collect metrics defined in OCL upon the metamodel. The re-
sults of the OCL queries are fed into a transformation tool that formats them for further
analysis in our second off-the-shelf component: SPSS.

The option for a pipe and filter architecture allowed the usage of loosely coupled
components. Each of them is a stand-alone application. This option favored the re-
placeability of the custom components, from one experiment to the next, as well as the
independence of the custom components from the technology used in their develop-
ment. The interoperability between components was always assured by well defined
text file formats. These formats were fixed for the off-the-shelf components’ inputs, as
both selected components allow importing data through textual scripts. We defined
convenient formats for the custom made component’s inputs. Further details on the
tool support created for our experimental work can be found in appendix C.

8.3 Future work

We organize the discussion of future work into two main streams: one dedicated to
advancing the current state of practice in Experimental Software Engineering, and an-
other dedicated to extensions on the experimental work in Component-Based Devel-
opment that would complement the work performed in the scope of this dissertation.

8.3.1 Experimental process improvement

Systematic review of experimental design usage

The experimental process formalization work, described in chapter 3, was mostly
based on surveys concerning the state of practice in Experimental Software Engineer-
ing, as well as tentative guidelines to leverage the benefits of the experimental work
by streamlining the whole experimental process. A common recommendation found
in the latter concerns the usage of standard experiment designs, rather than custom
made ones, as this would help researchers and evaluators to assess the adequacy of
the experimental protocol used.

Each design has its own strengths and weaknesses. The latter are related to com-
mon threats to validity that are inherent to them. To the best of our knowledge, there
is no systematic attempt to classify the existing literature in Experimental Software En-

283

8. CONCLUSIONS 8.3. Future work

gineering with respect to the usage of experimental designs. Such a survey would be
useful to the community in that it would highlight patterns of usage of experimental
designs which could, in theory, prove useful to detect weak spots in the experimen-
tal validation efforts conducted by the community. If the experiments concerning a
given problem share a common threat to validity that was not explicitly dealt with, be-
ing aware of such prevailing threat can help guiding future experiments, so that their
chosen design can address it.

A systematic review of controlled experiments design usage would represent a step
forward, when compared to current practice. It would help defining a road map for
required experimental work, so that the combined set of experiments addressing a
particular problem would minimize the remaining threats to validity. The overall goal
would be to facilitate a more rational building of the body of knowledge concerning the
problem addressed by a set of experiments. We consider two complementary variants
of these reviews: a generic and a focused one.

The generic review could extend an existing review [Sjøberg 05] on controlled ex-
periments by using the same collection of publications as in that paper (perhaps up-
dating the collection with new publications on the same journals and conferences not
considered in the original paper). The analysis could focus not only on the frequency
of experimental designs, broken down by the Software Engineering sub-areas defined
in the Software Engineering Body of Knowledge [Abran 04], but also on their evolu-
tion over time. This would allow the identification of patterns in the used experimental
designs and their trends.

Focused reviews would cover a specific topic (e.g. code inspections) to facilitate the
meta-analysis on existing work and results, as well as the identification of remaining
validity threats that could be addressed by further experimentation.

A product line for experimentation

During our research activities within CITI and, more precisely, within the QUASAR
1 research group, we have noted that although we can identify commonalities among
the experimental tool support developed in our work and that of our colleagues, there
is little usage of synergies in tool support construction, other than the exchange of
know-how in assembling those tools.

As we have discussed in section 8.2, we were able to build a family of pipe and filter
architectures that provided the tool support for the experimental work described in this
dissertation. We were also able to single out points of variation in these architectures,
as well as their commonalities. Nevertheless, we built custom tool support for each of
the experiments, even if this support follows a common architectural style and shares
some of its components.

The challenge is to leverage the effort spent in tool support, so that we can facili-

1http://ctp.di.fct.unl.pt/QUASAR/

284

8. CONCLUSIONS 8.3. Future work

tate the design and execution of Software Engineering experiments. Software product
lines provide a good basis for the kind of tool support we would like to build. Rather
than the opportunistic reuse that we currently use, we should strive for designing a
well-defined product line and build the next generation of components to support our
experimentation activities into those product lines.

A Domain Specific Language for experimentation

The configuration of the experimental work in the previously mentioned experimen-
tation product line should be performed using a Domain Specific Language (DSL) for
experimentation. The DSL should provide adequate constructs to specify the exper-
imental process, from requirements to results packaging. The idea would be to inte-
grate several of the elements used in this dissertation, to facilitate experimentation. We
would still use an ontology based approach to represent the experimental data. The
DSL would support the experiment’s design planning, so that all the hypotheses and
used variables would be expressible in terms of that ontology. Furthermore, the DSL
would also support the selection of an experimental design, the specification of the
collection process, analysis techniques, and instrumentation.

The specification of a DSL for experimentation would allow encoding best practices
rules into the DSL. To illustrate this, consider the following examples:

• The identification of independent and dependent variables, as well as their scale
types could automatically narrow down the selection of available statistical tech-
niques that could be applied in this situation.

• Upon the selection of a particular experimental design, the appropriate set of
threats to validity that result from that design choice could be automatically se-
lected and included in a template report of the experiment.

• It is common to build well-formedness rules into DSLs, so that the designs mod-
eled with those languages can be automatically validated against those rules.
Therefore, building rules based on experimentation best practices into a DSL for
experimentation and automatically checking those rules would facilitate the con-
duction of sound experimental work.

Last, but not the least, such a DSL would contribute to mitigate the tacit knowledge
problem described in chapter 3. In fact, along with the underlying tool support, it
would also facilitate the replication of experiments.

8.3.2 Extensions to our experimental work

In this dissertation we have provided several examples of how to combine the process
model described in chapter 3 with ODM, to support quantitative experimentation in

285

8. CONCLUSIONS 8.3. Future work

CBD. We sampled these techniques with a variety of component models, as well as by
using them not only in the course of experiments concerning the product, but also the
development process. Although we have strived for variety in these examples, we are
far from exhausting the plethora of potential applications of these techniques.

Cross-validation of proposals

As noted in section 2.5.7, most of the metrics proposed for CBD (including the ones
proposed by us, in chapters 6 and 7) would benefit from external validation efforts. In
this dissertation, we conducted a cross-validation on one of the existing metrics sets. It
is possible to extend this validation with replications using other experimental designs
and samples. It would also be interesting to build up on our formalization effort in
chapter 5, and use those formalized metrics in external validation efforts for each of
them.

Process experiments

The case study in chapter 6 can be extended in several ways, namely through dif-
ferentiated replicas, where we vary not only the subjects, but also several features of
the experimental design, to mitigate the threats of validity identified in that chapter.
Among other options, we would try alternative ways of determining the expertise of
practitioners involved in the experiment, such as using a pre-test to assess their skils as
reviewers, rather than our indirect measures of expertise. Another evolution would be
to compare team’s performance with that of an independent and thorough assessment
of the inspected components, to allow for an alternative assessment of the success of
the inspections.

We would also like to extend our study on the effect of individual’s skills in soft-
ware development teams to other sub-processes of that development, as this would be
useful for project managers.

Product experiments

We would like to extend the study in chapter 7 to a significantly larger sample, to
confirm the external validity of our findings in the population of Eclipse plug-ins.

With some adaptations, we could also conduct similar experiments with compo-
nents built according to other component models. This would allow assessing the
external validity of our findings to such models. If the observed discrepancies among
the reuse patterns of plug-ins in the basic platform vs. those found in the plug-ins
brokers are generic to other component models, this information would be useful for
understanding reuse patterns in those models, as well. If, in contrast, we were to find
out significantly different patterns of reuse, more in line with the long sought “El Do-
rado” of a component market, understanding the fundamental differences between

286

8. CONCLUSIONS 8.3. Future work

such component models and the Eclipse plug-ins model would allow a deeper under-
standing of what would make a software component market work. We believe this
would be an important step forward in the identification of such component market
mechanisms, from educated guesses based on an individual’s experience, valuable as
these may be, to quantitatively supported evidence.

Time series analysis

A time series is a collection of observations made sequentially in time [Chatfield 84].
These observations may be continuous, or discrete (the latter are typically equally
spaced observations). Time series analysis has four main objectives: to describe, ex-
plain, predict, or control the evolution of those observations.

The description can be used to detect trends, seasonal effects, and observations that
do not seem consistent with the rest of the data, which can correspond to external
events, and even turning points in the time series. When we observe the evolution of
more than one variable, we may try to explain the evolution of a variable through the
evolution of other variables. We may also try to predict the evolution of a time series,
given the observations in that series in the past. Finally, we can also use time series to
control the evolution of a process. All these objectives can be useful in a quantitative
analysis of the evolution of a component-based system, or a component framework,
for instance, to support planning the evolution of those systems, or frameworks.

Although we have not used it in this dissertation, we plan to extend our work by
performing time series analysis in the development of open source component-based
products. The first candidate for analysis is the Eclipse platform itself. The advan-
tage of using an open source repository for this kind of observational study is that
we can access not only the complete evolution tracking system repository and extract
our observations from such repositories, but also that we can access the project’s ver-
sion system. This way, we can match the bug tracking reports with the corresponding
changes in the software components that make up the whole project.

This sort of analysis would increase our understanding on the evolution of
component-based systems, and of quality attributes such as their maintainability and
stability, over time, as well as the effects of development milestones and releases in
those characteristics.

The uniformity of technologies (Eclipse plug-ins implemented in Java) used in this
component-based system, its continuous evolution, and the easy access to its reposito-
ries are some of the main features that lead us to choose this system as our target for
evaluation. In time, we hope to extend this study to other projects (e.g. Mozilla).

287

8. CONCLUSIONS 8.3. Future work

[This page was intentionally left blank]

288

Appendix A

Component models

Contents
A.1 Introduction . 290

A.2 A toy example . 290

A.3 Inclusion criteria . 291

A.4 Component models . 291

Background: In chapter 2, we briefly discussed several component models and some
of their main features.
Objectives: In this appendix, our goal is to provide a more detailed overview of those
component models.
Methods: We start by presenting a toy example that will be used to illustrate some of
the features of the component models. Then, for each component model, we discuss
the model’s origin, the component’s representation, syntax, and integration kinds, the
model’s structure, and the support provided by the model to contracts, certification,
and compositional reasoning.
Results: This systematic comparison of component models allows an overall perspec-
tive of the state of the art in component technology.
Limitations: The inclusion and comparison criteria used in this survey are aimed at
a representative set of current component models and of their main features. A more
exhaustive survey would be possible, but out of the scope of this dissertation.
Conclusions: We can observe a great variety of the approaches of each component
model, according to most of the used criteria. Perhaps the most notable commonalities
concern the generally low level of contract support, the very limited support for com-
positional reasoning and the non-existing support for the certification of components.

289

A. COMPONENT MODELS A.1. Introduction

A.1 Introduction

A component model is “the set of component types, their interfaces, and, additionally, a
specification of the allowable patterns of interaction among component types. A component
framework provides a set of runtime services to support and enforce the component model”
[Bachman 00].

In this appendix, we will briefly discuss some of the main component models used
in industry and academia. We start describing a toy example representing a component
assembly for a clock system. Then, using the taxonomy presented in chapter 2, we will
briefly discuss several existing component models. The models will be illustrated by
using the clock system example. Note that the level of details provided for each of
the surveyed component models may vary, when representing the clock system as our
purpose is only to provide an intuition on how the components are represented in each
component model, rather than providing a complete specification of our toy example
for any of them.

A.2 A toy example

The clock system example consists of a component assembly that integrates two com-
ponents: a clock, and a display.

The clock is characterized by the following properties:

• hours - an integer value, such that 0 ≤ hours ≤ 23

• minutes - an integer value, such that 0 ≤ minutes ≤ 59

• seconds - an integer value, such that 0 ≤ seconds ≤ 59

At regular intervals (e.g. every second), the clock sends an event called tick, in-
dicating that it has updated the current time. The clock also provides information
concerning the current time.

In our example, the clock is integrated with a display component. The display is
characterized by the following properties:

• horizontal - an integer value, with the horizontal size of the display

• vertical - an integer value, with the vertical size of the display

• minimum refresh rate - a real value, indicating the minimum time interval
elapsed between two consecutive refreshes of the display that this component
can support.

The display component listens to the tick event fired by the clock and can ask the
clock for the current time, so that the display information can be updated.

290

A. COMPONENT MODELS A.3. Inclusion criteria

A.3 Inclusion criteria

The following sections briefly present a set of component models. With respect to
the inclusion criteria for the presented component models, we chose models with a
high visibility in the community. These include models commonly chosen in surveys
such as [Lau 07], or presented as typical component models examples in books such
as [Heineman 01, Szyperski 02, Crnkovic 02].

A.4 Component models

A.4.1 JavaBeans

Origin [industry].
Sun proposed the JavaBeans component model, with the purpose of allowing third
party independent software vendors to create and ship components that could be
composed together into applications by end users [Hamilton 97]. It became a pop-
ular component model, partly due to its relative simplicity, when compared to more
sophisticated component models, such as the CCM [Estublier 02].

Although the JavaBeans component model was designed mostly for creating
graphical user interfaces (GUIs), its scope of application is not limited to that domain.
It is also possible to create “invisible beans” and compose them into applications
(with or without a GUI). JavaBeans may range from fine-grained building blocks (e.g.
a button) of an application to application-like components (e.g. a spreadsheet to be
embedded in a web page). In other words, most components are small, although
medium sized components may also be defined.

Component representation [class].
A JavaBean is a special Java class. The JavaBean class may wrap an existing object,
or set of cooperating objects, as well as call objects outside the boundaries of the
JavaBean component.

Component syntax [object-like programming language].
JavaBeans may be described through an interface that is essentially a collection of
features (which can also be described as ports). These features can be of several types:
methods, properties, event sources, and listeners (event sinks). Figure A.1 illustrates
the available interface of a JavaBean.

Properties are used both to parameterize the components during their integration
and as attributes, in the object-oriented sense of the term, during run-time.

291

A. COMPONENT MODELS A.4. Component models

Figure A.1: JavaBean’s interface features

Events are a mechanism to allow components to be plugged together in an appli-
cation builder. Some components will act as event sources while others act as event
listeners. The former generate events that are caught and processed by the latter, or
scripting environments [Hamilton 97]. In our clock system example, we can see how
each component is responsible for starting an event. The Display component has a
listener that captures the event sent by the event source ticker. The Clock component
provides a method informer that is called whenever the Display component starts the
update event.

JavaBeans’s methods are the only operations associated with the component’s
features. In other words, the JavaBean’s properties (e.g. hours, minutes, and seconds,
in the Clock component) are local to the JavaBean, and can only be accessed through
the JavaBean’s operations. If we want to characterize the features as “required”
and “provided” features, external source events can be viewed as required features,
whereas methods and listeners can be regarded as provided features. The “black
lollipop” below each component represents the respective component’ whole interface.

Component integration [deployment with repository].
JavaBeans may be developed using a common Java development environment, but are
then stored in the toolbox of the Bean Development Kit (BDK), which is a component
repository. To this purpose, JavaBeans have to be packaged into an archive with the
resources they depend on, which may include images, configuration files, and other
Java classes. It is also common to package together JavaBeans that share several
resources, to avoid resources duplication in the repository [Estublier 02]. At runtime,
the bean can be retrieved from the repository.

Model structure [flat].
The component model is flat.

Contract support [basic syntax/type contract].
JavaBeans provides no direct support for design by contract, other than the type

292

A. COMPONENT MODELS A.4. Component models

system of the Java language.

Support for certification [not available].
JavaBeans provides no special support for the certification of components.

Support for compositional reasoning [not available].
JavaBeans provides no special support for compositional reasoning.

A.4.2 Enterprise JavaBeans

Origin [industry].
The Enterprise JavaBeans (EJB) component model was originally developed in 1997
and has evolved since then to its current version (EJB 3.0 [DeMichiel 06]). It is aimed
at server-side components that encapsulate the business logic of applications. EJB
provides standard support for concerns such as persistence, transaction processing,
concurrency control, events, naming and directory services, security, distribution, and
deployment of the software components in an application server.

The fact that EJB is a distributed component model may impact design decisions
concerning the granularity of components, because using fine-grained components,
which are supported by the model, may lead to an inefficient implementation due
to the network traffic involved in the communication between the fine grained EJBs.
Instead, it has been argued that it is better to develop coarser-grained components that
consist of multiple Java classes, in order to create reusable, self-contained, business
components, than to follow a design approach closer to traditional OO design, with
each component corresponding to an object [Lublinsky 04].

Component representation [class].
In its most simple form an EJB is a Java class, hosted and managed by an EJB container
which is provided by a J2EE1 server. In practice, rather than just a class, the EJB can be
implemented using several cooperating classes, with one of them acting as the bean
class. The EJB container supports security, transaction management, and several other
services, as discussed in the Origin sub-section. In particular, J2EE supports remote
connectivity between clients and EJBs.

Component syntax [object-like programming language].
An EJB component is specified through the bean class, along with a home and a remote
interface, if the bean is an entity, or represents a session. The bean class implements
the functionalities of the EJB, possibly in cooperation with a set of other classes. The
home interface defines the operations available for the EJB, from the point of view
of the EJB’s life cycle. This includes creation, location and destruction operations for

1J2EE - Java 2 Enterprise Edition

293

A. COMPONENT MODELS A.4. Component models

the EJB. The remote interface defines the operations made available by the EJB for its
clients. EJB does not explicitly support the specification of required interfaces.

EJBs can be of the following types:

• Entity beans are used for modeling business data, along with the operations to
manipulate it. This business data is stored persistently in a database. Their per-
sistence can be managed either by the container or by the bean itself.

• Session beans are used for modeling business processes. As such, these beans
do not keep their data persistently. Nevertheless they can keep state, if the state
of the communications with the EJB’s clients is required to implement their inter-
action protocol. In any case, this state is not stored persistently.

• Message-driven beans are used for modeling message driven business pro-
cesses. They act as Java Message Service listeners and cannot be accessed through
an interface, in contrast with session beans.

Our clock system running example is not a typical application for the EJB com-
ponent model. EJB is targeted for server side components, so the display component
would normally be a client application, rather than an EJB. The clock component could
be implemented in several different ways, and in most situations we would probably
not model it as an EJB, as well. However, just for the sake of presentation, let us assume
that we do want to represent the clock component as a stateless session bean. In figure
A.2 we represent the Clock session bean, with its home interface (ClockHome), where
life cycle methods are declared, and its remote interface (Clock), where the business
methods are declared. The ClockBean class implements the bean’s code. If necessary,
we could define helper classes for ClockBean. Note that, along with the already known
properties for storing the time, we would add an extra property to store context infor-
mation (ctx), as well as some methods required by the EJB container for supporting a
stateless session bean, none of which are directly called by the EJB’s client (ejbCreate,
setSessionContext, ejbActivate, ejbPassivate, and ejbRemove). The details of the
attributes and operations are omitted from the class diagram, for simplicity.

In a nutshell, the EJB developer has to implement a set of Java classes and in-
terfaces, adhering to a set of predefined conventions, so that his classes can be used
within the scope of the EJB component model.

Component integration [design with deposit-only repository].
The beans are stored as a JAR archive, along with an XML deployment descriptor
where the security, persistence and transactions specifications are recorded. At design
time, the enterprise beans are integrated into an EJB container. If a bean X requires
a service provided by bean Y, then Y has to be stored into the EJB container before X.
However, beans X and Y remain as two different beans in the EJB container, rather than
as an integrated bean.

294

A. COMPONENT MODELS A.4. Component models

Figure A.2: Enterprise JavaBean’s example

The beans stored in the EJB container are then made available by the J2EE server to
external clients (in our example, through the ClockHome and Clock interfaces, which
are exposed by the EJB container), but the abstraction of integrated bean built in the
design phase of the EJBs is not available at the deployment time.

Model structure [flat].
From the above discussion on component integration, we can infer that the component
model is flat.

Contract support [basic/syntax-type contracts].
EJB provides no direct support for design by contract, other than the “basic syntax/-
type contract”.

Support for certification [not available].
EJB provides no direct support for independent certification.

Support for compositional reasoning [not available].
EJB provides no direct support for compositional reasoning.

A.4.3 COM+

Origin [industry].
COM was created by Microsoft in 1995 as an approach to achieve program indepen-
dence (by using components) and languages independence, in a centralized context,
on Windows platforms [Estublier 02]. It uses interfaces and binary interoperability
conventions to support interaction among components. The model was extended to

295

A. COMPONENT MODELS A.4. Component models

DCOM, with the support for distribution, and later to COM+2, with the inclusion of
support for persistence and transaction services.

Most COM+ components are coarse-grained. Indeed, COM+ components can be
used by client applications and behave, from those application’s point of view, as a
complete system [Lau 05a].

Component representation [object].
Components are binary objects. The COM+ component model is strictly a run-time
model.

Component syntax [programming languages with IDL mappings].
COM+ interfaces are similar to C++ virtual classes, with a list of methods and at-
tributes, but no implementation. Figure A.3 presents the Clock and Display COM+
components. Each component has a client relationship with the other one. In this ex-
ample, we encapsulate the methods provided by Clock in the interface IClock, and the
methods provided by Display in the interface IDisplay.

Figure A.3: COM+ components

Although interfaces are defined using a language independent Interface
Description Language (IDL), developers write their code in a COM+ enabled
language, such as C, or C++. The IDL representation can be automatically generated,
so developers do not need to use it directly. All COM+ components implement the
IUnknown interface, which defines a basic set of operations all COM+ components
need to support, such as query methods that allow clients to dynamically discover
which interfaces each component supports.

Component integration [design with deposit-only repository].
COM+ has no integration language. Instead, it relies on a protocol to allow COM+
components to register into a component registry, and lookup available components
with which they can interact, as well as creating instances of those components. In
practice, this is achieved by making all COM+ interfaces descendants of the IUnknown

interface, which contains the basic functions.

2http://www.microsoft.com/com/

296

http://www.microsoft.com/com/

A. COMPONENT MODELS A.4. Component models

Rather than interacting directly with other components, clients use interface point-
ers to access other components. Integration is achieved through methods calls made
from one component to an interface pointer of another component. These interactions
are coded at design time.

COM+ supports two integration mechanisms: containment and aggregation.
Containment allows a COM+ component to be built by integrating another COM+
component in it, in such a way that the outer component’s clients cannot see the inner
component. The outer component may declare some of the inner component’s inter-
faces and then delegate the calls to those interfaces to the inner component, but that
is not visible outside the outer component. Aggregation allows the outer component
to expose interfaces of the inner component as if the outer component implemented
them, but does not need to implement these interfaces, as in the containment. This
requires the source code of both the inner and outer components to be changed, to
avoid conflicts with respect to the interface IUnknown.

Model structure [hierarchical].
The containment and aggregation mechanisms, described in the previous section,
supports a hierarchical structure for COM+ components.

Contract support [basic syntax/type contract].
COM+ provides no direct support for design by contract, other than the “basic
syntax/type contract”.

Support for certification [not available].
COM+ provides no direct support for certification of components, or assemblies.

Support for compositional reasoning [not available].
COM+ provides no direct support for compositional reasoning.

A.4.4 .Net

Origin [industry].
.Net 3 is Microsoft’s current component model. It is an evolution from previous
component models from Microsoft as it no longer constrained to binary interoper-
ability. Instead, the .Net platform provides Common Language Infrastructure (CLI)
support. CLI can be broken down into a Common Intermediate Language (CIL), and
a Common Language Runtime(CLR). .Net languages are compiled into CIL, which is
a platform neutral language, comparable to Java bytecode. CLR is a virtual machine,
comparable to the Java Virtual Machine, which compiles CIL to machine readable

3http://www.microsoft.com/net

297

http://www.microsoft.com/net

A. COMPONENT MODELS A.4. Component models

code, for execution. .Net supports from fine to coarse-grained components.

Component representation [object].
A .Net component instance can be viewed as an object, with a set of provided and
required interfaces and events. It has a set of modules, which are executable files, or
dynamic link libraries (DLLs).

Component syntax [programming languages with IDL mappings].
Components are developed in a programming language, such as C], C++, or Vi-
sual Basic, among several others. The compiler is responsible for transforming the
component’s source code into CIL, which runs on top of CLR. The compiler also
generates a component descriptor, known as its manifest. The manifest contains
meta-information about the component, including its resources, meta-data, code,
and the lists of exported and imported events and methods. In .Net, the interface
description of a component is called assembly. This description is flexible, in the
sense that it is possible to define custom attributes. These can be used to implement
service contracts, for instance, and are interpreted by the application code, rather than
the CLR.

Component integration [design with deposit-only repository].
During compilation, the manifest is generated, along with the main executable file and
auxiliary DLLs. Components cannot be made hierarchical, because the modules used
in a component cannot be components themselves.

.Net supports non-functional properties such as distribution and security as part
of the operating system and component dynamic loader. It has a visibility control
mechanism which allows components to be local to an application, so it is possible for
several instances of the same component and its constituents (e.g. DLLs) to be used
simultaneously. This implies the usage of a version control mechanism, to support the
dynamic loading of executables and DLLs, so that each component gets to interact with
the correct versions of other components and of its own modules.

Component wiring is specified at development time, either in the source code, or
while building the manifest. The correct versions of executables and DLLs are selected
according to a set of rules expressed in XML. Although there is a default for those
rules, they can be tailored, both system-wide and for a particular application.

Model structure [flat].
As explained in the beginning of the previous section, the .Net component model is
flat.

298

A. COMPONENT MODELS A.4. Component models

Contract support [behavior contracts].
.Net provides support for several kinds of contracts. The syntactic contracts use the
usual IDL features, with the explicit publication of provided and required interfaces,
and operation signatures. Behavior contracts, with pre and post conditions, as well
as invariants, are supported in recent .Net languages (namely, in Spec]). The custom
attributes defined in the assembly can be used for implementing extra levels of
contract support. In particular, they can been used to support the definition of quality
of service contracts.

Support for certification [not available].
.Net provides no direct support for the certification of software components.

Support for compositional reasoning [not available].
.Net provides no direct support for compositional reasoning.

A.4.5 CCM

Origin [industry].
The Corba Component Model (CCM) [OMG 02a] is the OMG standard for the
specification of software components. As such, it is independent from a specific ven-
dor, both in what concerns the component’s programming languages and platforms.
CCM components can range from fine to coarse-grained, but tend to be coarse-grained.

Component representation [object].
CCM components are server-side components, installed into a container, which is
responsible for running them in the application server. The clients of a component can
access the corresponding container through a naming server which is used for either
creating or obtaining a reference to the component.

Component syntax [programming languages with IDL mappings].
CORBA components are created and managed by homes. A home is a meta-type
which offers standard factory and finder operations and is used to manage a compo-
nent instance’s life cycle, including its creation, retrieval, and destruction. Components
run in containers that handle system services transparently and are hosted by generic
application component servers (e.g. OpenCCM 4). Each component may have several
provided and required interfaces (also known as facets and receptacles, respectively),
and has the ability to publish and subscribe events (by means of event sources and
sinks). Components also offer navigation and introspection capabilities.

Figure A.4 presents the clock system example, where several of these elements are
visible.

4http://openccm.objectweb.org/

299

http://openccm.objectweb.org/

A. COMPONENT MODELS A.4. Component models

Figure A.4: CCM components

CCM components can be specified using OMG IDL 3. In listing A.1, some details
are omitted, for simplicity. Note that this specification defines component types, but
not how the component instances are to be wired. For instance, a published event can
be consumed by more than one event sink.

Listing A.1: Clock System in CCM

eventtype tick {

...

}

interface Display {

void update (...);

...

}

component Display {

attribute int vertical;

attribute int horizontal;

attribute float minRefreshRatio;

provides Display update;

consumes tick synchronize;

}

home Displayhome manages Display {

factory new(...);

}

component Clock {

attribute int hours;

attribute int minutes;

attribute int seconds;

uses Display informer;

publishes tick ticker;

}

home Clockhome manages Clock {

300

A. COMPONENT MODELS A.4. Component models

factory new(...);

}

Component integration [design with deposit-only repository].
CCM components are stored into a component repository, available in the appli-
cation server. Component integration is done through method and event delega-
tion. As we can see in figure A.4, event sources are matched to event sinks (ticker
and synchronize, respectively), while facets are matched to receptacles (update and
informer, respectively). At design time, developers specify how component instances
should be wired using a Component Assembly Descriptor, which is an XML file such
as the one in listing A.2, where some details are omitted.

Listing A.2: Clock System in CCM
<?xml version = ‘‘1.0’’?>

<!DOCTYPE component assembly CLOCKSYSTEM ‘‘clocksystem.dtd ’’>

<component assembly id = ‘‘clocksystem ’’>

<componentfiles >

<componentfile id = ‘‘Clock component ’’>

<filearchive name = ‘‘Clock.csd ’’>

</componentfile >

...

</componentfiles >

<partitioning >

<homereplacement id = ‘‘ClockHome ’’>

<componentfileref idref = ‘‘Clock Home ’’/>

<componentinstantiation id = ‘‘clock ’’/>

<registerwithnaming name = ‘‘ClockHome ’’/>

</homereplacement >

...

</partitioning >

<connections >

<connectinterface >

...

</connectinterface >

<connectevent >

<publishesport >

<publishesidentifier >ticker </publishesidentifier >

<componentinstantiationref idref=‘‘clock ’’/>

</publishesport >

<consumesport >

<consumesidentifier >synchronize </consumesidentifier >

<componentinstantiationref idref = ‘‘display ’’/>

</consumesport >

</connectevent >

</connections >

</component assembly >

During the deployment phase, the design time assemblies are not retrievable as

301

A. COMPONENT MODELS A.4. Component models

an entity, but component instances are integrated in the same configuration that was
specified in design time. The instances run in the CCM container.

Model structure [flat].
CCM is a flat component model.

Contract support [basic syntax/type contract].
The CCM provides no direct support for design by contract, other than the contract
that results from the IDL definition of the components. However, some extensions to
the CCM, such as CIAO [Wang 04], built on top of the CCM, provide extra support for
deploying components in real-time environments, where non-functional properties
are crucial to the success of component integration. CIAO uses component composi-
tion metadata to allow QoS provisioning policies to be specified, decoupled from the
component implementations.

Support for certification [not available].
The CCM provides no direct support for certification of components and component
assemblies.

Support for compositional reasoning [not available].
The CCM provides no direct support for compositional reasoning.

A.4.6 Fractal

Origin [both].
Fractal is a component model independent from the programming language in
which components are implemented. It is a hierarchical component model. Fractal
components have reflective capabilities which are not fixed in the model, but can be
extended and adapted to fit the developer’s needs [Bruneton 04]. This allows devel-
opers to introduce non-functional aspects into component assemblies, for instance.
The component model is developed by the Object-Web consortium5, a non-for-profit
consortium of organizations and individuals dedicated to the development of open
source middleware.

Component representation [object].
A Fractal component is a runtime entity which, at the lowest level of control, does
not provide any control capability to other components, thus behaving like an object.
Objects are treated as components, which allows integrating components with legacy
software in a convenient way. Components with the lowest level of control are called
base components.

5http://www.objectweb.org/

302

http://www.objectweb.org/

A. COMPONENT MODELS A.4. Component models

At the second level of control, called introspection, Fractal components can pro-
vide a standard interface, similar to COM’s IUnknown, to allow discovering all their
services.

The third level of control is called configuration, and allows components to
provide control interfaces that can be used to introspect and modify the component’s
content. These contents are other Fractal components, integrated through bindings.

Component syntax [programming languages with IDL mappings].
A Fractal component has a component interface which acts as its access point. The
component implements a language interface, which is a type. Both interfaces are
specified through an IDL. The rationale is to have mappings from the IDL to specific
programming languages, and a compiler to generate component stubs and skeletons
in those programming languages. For instance, in the Fractal specification, a pseudo-
IDL is used, to denote that Fractal is implementation language-agnostic, but IDLs with
mappings for Java, C, as well as the OMG IDL, are suggested for using Java, C, or
any language for which OMG IDL has a mapping as the implementation language of
components.

Figure A.5 represents the clock example, in Fractal. In this diagram, components
are represented by double rectangles, where the controller part is shown in gray, and
the content part is shown with a white background. The controller part establishes the
links between the component’s external interfaces, used to interact with other compo-
nents, and internal interfaces used to interact with the component’s sub-components.

Figure A.5: Fractal components

Component integration [design without repository].
In the design phase, Fractal components are integrated through method calls, repre-
sented in figure A.5 as connectors. In the deployment phase, there is no assembler we
can use to change the component integration. However, the Fractal Component model
has dynamic reconfiguration capabilities, which are nevertheless configured at design
time.

303

A. COMPONENT MODELS A.4. Component models

Contract support [basic syntax/type contracts].
The Fractal component model has a distinction between functional and control
interfaces. The former are used for specifying the functionalities of components,
while the later are dedicated to non-functional aspects. As such, the component
model provides the basic information for contracts that address non-functional
aspects. That said, Fractal provides no contract mechanism, as a default, other than
the basic syntax/type contracts. However, support for design by contract can be
added to Fractal by using ConFract, a contracting system that relies on an assertion
language inspired in OCL, which allows defining contracts on Fractal components
and interfaces [Chang 07]. ConFract supports both interface contracts, upon the
required and provided interfaces, and composition contracts, which are built on
the external and internal sides of components, to constrain the usage and internal
assembly of components, respectively. Furthermore, ConFract enables non-functional
contracts negotiation, including the propagation of such contracts in the hierarchy of
components used in the component assemblies.

Support for certification [not available].
Fractal provides no specific support for the certification of software components.

Support for compositional reasoning [not available].
Although Fractal does not support compositional reasoning per se, this support can
be added to Fractal, as Fractal is a modular component model which, by design, is
extendable. Again, some forms of compositional reasoning (e.g. concerning resources
capacity) are supported through the adoption of the ConFract contract system.

A.4.7 OSGi

Origin[industry].
The OSGi Alliance 6 was founded in 1999 and is promoted by a consortia of over 50
organizations (mostly companies). It aims to provide a service-oriented component-
based environment for facilitating the interoperability of applications and services.
It can be used to specify from fine to coarse-grained components. OSGi relies on the
usage of Java for ensuring hardware portability.

Component representation [object].
OSGi has two main sorts of components: bundles and services. Each bundle contains
a set of services.

Component syntax [programming languages with IDL mappings].
An OSGi service component has a set of interfaces and an implementation for those

6http://www.osgi.org/

304

http://www.osgi.org/

A. COMPONENT MODELS A.4. Component models

interfaces. OSGi bundles have three kinds of ports:

• static ports, for allowing interaction with non-component-based software,
namely through Java packages import and export;

• dynamic ports, for providing services to, or requiring services from, the environ-
ment; these services can be added to or removed from bundles at any moment;

• run-time environment ports, from which the bundles can learn about the avail-
ability of new services, therefore taking appropriate actions for the architecture
to evolve, over time.

A bundle encapsulates service components, resources (such as images), and Java
packages. Physically, the bundles are represented as JAR archives.

Component integration [design with deposit-only repository].
A main contrast between OSGi and most of the other component models is that while
the latter typically support the assembly of known components, either in design, or in
deployment time, and assuming the assembly to be static. OSGi assumes the system
as an evolving set of components. So, when specifying a component, one is concerned
with how components may be connected and disconnected at run-time, rather than in
connecting components which are known a priori. The rationale is that OSGi bundles
should be able to choose from the available components (other bundles) those that best
match their necessities. In order for an OSGi bundle to be activated, all the packages
it requires from the environment, including those provided by other bundles, must be
available.

That said, the rules that dictate how components can be integrated are setup at
design time, thus making OSGi integration a design with deposit-only repository.

The integration mechanism is flexible enough to allow for hot reconfiguration of
components. For instance, when a backward compatible version of a bundle is made
available, the component infrastructure provides the mechanisms so that the clients
of the former bundle switch to the new component, while the whole system is running.

Model structure [flat].
The OSGi component model is flat.

Contract support [non-functional properties contracts].
OSGi bundles support basic syntax/type contract through the interfaces of the services
provided and required by the bundles.

Through the bundles’ meta-information, it is also possible to specify non-functional
properties and use them to select, among other available bundles, the ones that con-
form to the requirements imposed by a bundle that is looking for other bundles to

305

A. COMPONENT MODELS A.4. Component models

support its own required interfaces.

Support for certification [not available].
OSGi provides no direct support for the certification of software components.

Support for compositional reasoning [not available].
OSGi provides no support for compositional reasoning.

A.4.8 Web services

Origin [both].
Web services are the composition units of a Web Service Architecture (WSA), and pro-
vide a standard interoperation mechanism for different software applications, running
in different platforms and frameworks [W3C 04]. The WSA standards evolution is
steered by a working group of the World Wide Web Consortium (W3C), whose mis-
sion is “to lead the World Wide Web to its full potential by developing protocols and guidelines
that ensure long-term growth for the Web”. The consortium features organizations both
from industry and academia.

Web services can range from fine to coarse-grained components. This results from
the ability to compose web services, where a coarse-grained service can then delegate
parts of its functionalities to other Web-services.

Component representation [object].
A Web service is a piece of binary code “designed to support interoperable machine-to-
machine interaction over a network.” [W3C 04].

Component syntax [programming languages with IDL mappings].
Each Web service has an interface described in a machine-processable format known
as Web Service Description Language (WSDL). The service itself is implemented in
a general purpose programming language, such as Java, or C], and made available
in a server. The server makes the public interfaces of the Web services available in a
registry of Universal Description, Discovery, and Integration (UDDI) identifiers.

Component integration [design with repository].
In Web services, there is no rigid architecture: services are used and composed through
the usage of coordination languages and message passing. Web services and other
client systems can interact with web services by exchanging Service Oriented Archi-
tecture Protocol (SOAP) messages. This interaction has to adhere to the Web service’s
WSDL interface. Typical message passing is achieved by using HTTP with an XML
serialization, in conjunction with other web related standards [W3C 04].

In the design phase, a service can be composed with another service by specify-

306

A. COMPONENT MODELS A.4. Component models

ing the server where the latter is located, so that the former can send the latter SOAP
messages (and vice-versa).

The deployment of services is also specified during design. At runtime each service
runs in its own server, and the server is responsible for creating an adequate runtime
environment.

Another form of composition is the one resulting from web services orchestration,
and is performed on the client side, while creating client applications that use web
services. These orchestrations are specified in Business Process Engineering Language
(BEPL), to describe the workflows of those applications.

Model structure [hierarchical] Although web services do not have a rigid architecture,
they can be hierarchically composed. A typical example is to have a top level com-
posite service that can be decomposed into several task level services. In turn, each of
these services can be further refined into several different sub-tasks, and so on.

Contract support [non-functional properties contracts].
The WSDL interface description provides the basic support for contract specification
in Web services. The WSDL specification of a Web service defines how the Web service
will handle incoming SOAP messages. This includes not only the message formats and
typing information, but also the transport protocols and serialization formats required
for the communication between services.

The support for contracts goes well beyond basic static type contracts: Web
services may provide a contract describing the terms and conditions of the services
they provide. This contract is known as Service Level Agreement (SLA) and provides
Quality of Service (QoS) information to Web services users, such as execution price
and duration.

Support for certification [not available].
The Web services standard provides no direct support for the certification of Web
services.

Support for compositional reasoning [not available].
Web services provide no support for compositional reasoning.

A.4.9 Acme

Origin [academic].
Software architectural descriptions provide an abstract representation of the compo-
nents of software systems and their interactions. These descriptions may range from
ad-hoc notations to formal ADLs. The latter usually support some level of analysis
with respect to the consistency and completeness of the component-based systems they

307

A. COMPONENT MODELS A.4. Component models

model.
There are several examples of ADLs, such as Aesop [Garlan 94], Adage

[Coglianese 93], C2 [Medvidovic 96], Darwin [Magee 95], Rapide [Luckham 95],
SADL [Moriconi 95], UniCon [Shaw 95b], MetaH [Binns 93], or Wright [Allen 97].
Although with a considerable overlap on the core, each ADL focuses on different
aspects of software architecture. This diversity provides different approaches to
solve specific families of problems, but the difficulty in interchanging information
between different ADLs was a major drawback. Developing a single ADL providing
all the features of the various ADLs would be a very complex endeavor. Instead,
an ADL called Acme [Garlan 00b] was proposed as a generic language which can
be used as a common representation of architectural concepts in the interchange of
information between specifications with different ADLs. The rationale is that, rather
than developing mappings for all combinations of ADLs, the ADLs community only
needs to provide mappings from other ADLs to Acme and vice-versa [Barbacci 98].
Acme components can range from fine to coarse-grained components.

Component representation [architectural units].
In Acme components are architectural units. See the component syntax for further
details on Acme components.

Component syntax [ADL].
Figure A.6 illustrates the graphical presentation of an Acme description, where some
of Acme’s design elements are used. Both components (Clock and Display), have two
ports and a set of properties. The components are integrated using two connectors,
tick and info. The architecture description is further detailed in Acme’s textual de-
scription (listing A.3) of the same architecture, where we added some properties to
the specification of the connectors. Note that several details are ommitted in both the
graphical and textual descriptions, for the sake of brevity.

Figure A.6: A simple clock system in Acme

308

A. COMPONENT MODELS A.4. Component models

Listing A.3: Clock System in Acme

System ClockSystem = {

Component Clock = {

Port ticker;

Port informer;

Properties { hours : integer;

minutes : integer;

seconds : integer;

sourceCode : externalFile = ‘‘Clock.c’’}

}

Component Display = {

Port update;

Port synchronize;

Properties { vertical : integer = 300;

horizontal : integer = 400;

color: Color;

RefreshRatio: real;

sourceCode : externalFile = ‘‘Display.c’’}

}

Connector tick = {

Role source;

Role sink;

Properties { synchronous : boolean = false ;

maxRoles : integer = 2 ;

protocol : Wright = ‘‘...’’ }

}

Connector info = {

Role caller;

Role callee;

Properties { synchronous : boolean = true;

maxRoles : integer = 2 ;

protocol : Wright = ‘‘...’’ }

}

Attachments : {

Clock.ticker to tick.source ;

Display.update to tick.sink ;

Display.synchronize to time.caller ;

Clock.informer to time.callee ; }

}

An Acme component has ports(e.g. ticker, in the Clock component), which act as
the component interfaces, properties (e.g. hours, in the Clock component), a represen-
tation with several bindings (defined as rep-maps) and a set of design rules. Neither
rep-maps nor design rules are represented in this example, for simplicity.

Acme ports identify points of interaction between a component and its environ-
ment. They can be as simple as operation signatures, or as complex as collections of
procedure calls with constraints on the order in which they should be called. Acme

309

A. COMPONENT MODELS A.4. Component models

ports can only be used with Acme components and they have one provided and one
required interface.

Acme connectors represent interactions among components. They are viewed as
first class elements in this ADL. Acme connectors may be much more complex than a
simple interfaces’ match. They can be, for example, a protocol, or a SQL link between
two components (e.g. a client and a database). The tick connector is asynchronous.
The info connector is synchronous. Both connectors have two roles, and a protocol
specification property defined here using a different ADL (Wright [Allen 97]). When
reusing components built by different teams it is normal that their interfaces do not
match exactly. The connector may provide the necessary glue between the components
and this must be made explicit in the design. Roles are related to connectors the same
way as ports are related to components.

An Acme system represents a graph of interacting components. Acme’s represen-
tations provide the mechanism to add detail to components and connectors. Rep-maps
are used to show how higher and lower-level representations relate to each other.
Acme explicitly uses the concepts of representation and system for defining subsys-
tems.

Properties represent semantic information about a system and its architectural el-
ements. Among the properties of components, we can highlight the property con-
cerning the source code of each of the component. In this example the source code is
defined in the C programming language [Kernighan 88], but many other programming
languages could be used, instead, as Acme is independent from the specific program-
ming language used in the implementation of the components.

Ports can be typed with a provided interface that allows the component user to
access its properties.

Component integration [design without repository].
Acme does not have the notion of a repository for its architectural elements. All
these elements have to be specified from scratch, when designing an architecture.
The architecture may be specified using a visual tool such as AcmeStudio7. The
architecture specification can then be built into a system, as long as the source code
for components and connectors is available. Acme architectures can be specified in
ArchJava [Aldrich 08] (which is part of the AcmeStudio) and then compiled into Java,
and run on the Java Virtual Machine.

Model structure [hierarchical].
The component model is hierarchical. In other words, fine-grained components can
be composed into coarser-grained components, and so on. For instance, a component-
based system may be used as a component in a larger system.

7http://www.cs.cmu.edu/acme/

310

http://www.cs.cmu.edu/acme/

A. COMPONENT MODELS A.4. Component models

Contract support [non-functional properties contracts].
Acme supports a mechanism for specifying and checking constraints. This allows the
specification of claims on how the architecture and its components are supposed to
behave. Acme supports two sorts of constraints: invariants and heuristics. While
invariants are conditions that must hold at all times, heuristics are constraints that
should hold, although breaking them is possible. An architectural style, or type, de-
fines a vocabulary of design elements and the rules for composing them. It is used in
the description of families of architectures.

Constraints may be automatically verified. For example, AcmeStudio checks for
violations of design constraints [Garlan 03]. The added flexibility brought by the
possibility of embedding specifications of contracts in other ADLs (e.g. in Wright, in
the clock system example) makes it possible to support any of the levels of Beugnard’s
contracts.

Support for certification [not available].
Acme provides no special support for third party certification of components and
systems, other than the constraints checking mechanism. For instance, consider the
requestRate property defined for the client component. Unless the property can be
ensured to hold by construction (e.g. through the usage of a code generator that
enforces that property), Acme provides no direct support to ensure that the imple-
mentation of the component will always respect this constraint. If a the component’s
implementation has an unknown bug that violates this constraint, this will not be
detected through the Acme specification.

Support for compositional reasoning [available].
As long as the implementations of the architecture artifacts fulfill their specified prop-
erties, model checking techniques can be used to certify derived properties of the
whole system. While compositional reasoning is possible for some properties, through
the definition and observance of model constraints, its applicability to other proper-
ties may depend on external factors. For instance, in the clock system, the protocol
is been specified in Wright. As such, the support for compositional reasoning with
respect to that protocol is the support provided by the Wright ADL, rather than the di-
rect support of Acme. Model checking techniques have some limitations, particularly
in what concerns their scalability. Furthermore, there are unsolved issues concerning
dynamism [Garlan 03], as modern architectures are no longer static. Consider, for ex-
ample, architectures with support for plug-ins that can be connected at run-time. ADLs
such as Acme are not well suited to represent such architectures.

311

A. COMPONENT MODELS A.4. Component models

A.4.10 UML 2.0

Origin [both].
UML is a standard proposed by the OMG for modeling software systems. Although
it is best known by its usage in modeling use cases, for capturing requirements, and
class diagrams, to support object-oriented analysis and design, UML has also sup-
port for component-based development, among several other features. In UML 2.0
[OMG 05b,OMG 06b], OMG has significantly improved the support for modeling soft-
ware components by incorporating in UML 2.0 several abstractions borrowed from
other ADLs.

The OMG team responsible for steering the evolution of UML has a balanced com-
position, including experts from both the industry and the academia, granting UML
users the availability of a wide range of professional tools, along with scientific fora
(e.g. the MoDELS conference series8, formerly known as the UML conference series)
where UML’s foundations and evolution are discussed.

UML components can have any granularity, ranging from fine grained components
to full application-like components.

Component representation [architectural units].
UML’s representation of software components is comparable to that of other ADLs,
such as Acme [Goulão 03]. Components are first class architectural elements. In
contrast with other ADLs, connectors are not first class architectural elements.

Component syntax [ADL].
UML 2.0 features new component diagrams, when compared to previous versions of
the UML. Figure A.7 presents an example of a composite structure with the compo-
nents Clock and Display, each of which with a provided and required interfaces. In
this example, components are presented as black-boxes, with a set of ports typed by in-
terfaces. UML 2.0 is flexible in the definition of the relationships between components
and interfaces. Interfaces can be directly provided, or required, by the component,
without using a port.

Component integration [design without repository].
UML 2.0 components can be composed into coarser-grained components. In this sense,
the UML 2.0 component model is hierarchical. The details of this integration can be
made explicit in UML 2.0 component diagrams, by presenting a white-box view of
components. UML 2.0 provides a delegation is a connector that is used to specify that
the behavior available in a component instance is not realized by that component, but
rather by another component, or class, which has compatible capabilities.

The other form of integrating components is through an assembly connector. It

8http://www.models.org/

312

http://www.models.org/

A. COMPONENT MODELS A.4. Component models

Figure A.7: UML 2.0 components

is represented by the lollipop notation, adapted from COM+ and CCM, and is used
to decorate whether an interface is being provided (the “lollipop”) or required (the
“lollipop” plug) by a component. Note that the ITick interface is used so that an event
generated by the Clock component can be captured by the Display component. In
UML 2.0, this can be done by stereotyping an interface feature with <<event>>.

Unlike Acme, the assembly connector is essentially a wire connecting a provided
with a required interface, rather than a first class design element representing a con-
nector where, for instance, a communication protocol could be defined.

UML 2.0 offers no support with respect to a repository of components. They are
created and wired at design time, and that wiring can be used in code generation for
a given programming language, but components cannot be assembled in deployment
time.

Model structure [hierarchical]
UML allows the hierarchical decomposition of components into simpler components,
as well as to the implementation classes. So, it is common to see fine grained compo-
nents implemented with a set of classes, and an assembly of those components into
medium grained components, which in turn are used as the building blocks for larger
components.

Contract support [behavior contract].
UML 2.0 includes the object constraint language (OCL), that allows specifying
constraints upon a UML model. OCL offers support for defining invariants on the
model and model elements, as well as pre and post conditions on operations. These
constraints can be used, for instance, to enforce a given architectural style (see,
for instance [Goulão 03]), as well as to create a design by contract expressiveness
comparable to that of Eiffel. Furthermore, it is possible also to use other UML 2.0
diagrams to complement these restrictions, allowing for a more expressive contract
definition. For instance, sequence diagrams can be used to define behavioral aspects
of ports.

313

A. COMPONENT MODELS A.4. Component models

Support for certification [not available].
UML 2.0 offers no special support for the certification of components.

Support for compositional reasoning [not available].
UML 2.0 offers no special support for compositional reasoning.

A.4.11 Kobra

Origin [both].
The KobrA component model [Atkinson 01] is a UML-based component model
that integrates CBD with software product lines. Its development has been lead by
Fraunhofer IESE (Germany). The KobrA approach encompasses not only a component
model, but also the process for developing and exploring software product lines. The
emphasis on product line engineering justifies the special care taken by its proponents
to modeling commonalities, scope, and variability within the product line.

Component representation [architectural units].
The KobrA component metamodel is an extension to the UML 1.4 metamodel. As
such, KobrA modeling elements are stereotyped UML model elements. KobrA
components, known as Komponents are stereotyped UML subsystems. They dif-
fer from a UML subsystem in that components can have a behavior, unlike UML
subsystems. So, while a subsystem has no behavior per se (it is a repackage of the
behavior of its internal model elements), a component can add new services, which
typically use the services made available by the component’s internal elements. We
can also describe this contrast as the one between a module used for organizing
and packaging its internal constituents, or a component which adds its own behav-
ior to that of its constituents. A complete system may also be modeled as a component.

Component syntax [ADL].
A component specification may contain up to six specification artifacts:

• Structural model. The structure specification of a component specifies its visible
interfaces and structure, and its internal structure, both in terms of classifiers and
of object instantiations. A structural specification includes at least a class dia-
gram, but may also include object diagrams, to specify the internal instantiation
of objects belonging to the component.

• Behavioral model. The behavioral model specifies how the component is ex-
pected to behave in response to external stimuli. The specification itself is per-
formed using UML statechart diagrams, or statechart tables.

314

A. COMPONENT MODELS A.4. Component models

• Functional model. The functional model specifies the operations made avail-
able through the component’s interfaces. This specification includes a general
description of the operation, of what the operation receives from and sends back
to other components, the invariants that are preserved, what is changed by exe-
cuting the operation, what are the assumptions made before executing the oper-
ation, and which are the expected results after its execution. In practice, the func-
tional specification provides a contract with the usual pre- and post-conditions,
as well as invariants (all of which can be described in natural language, or, in a
more formal alternative, OCL).

• Non-functional requirements specification. This specification is optional and
provides statements constraining the options of component developers, with re-
spect to the non-functional properties of a component. For instance, one such
constraint could be that a component must be implemented in Java. The KobrA
approach does not prescribe exactly how these requirements should be speci-
ficed.

• Quality documentation. The quality documentation is optional in KobrA and
should cover quality modeling based on structural properties of KobrA compo-
nents. The rationale is that these structural properties are available early in the
development cycle and its measurement can be useful for detecting and correct-
ing potential problems early. The quality model used in the KobrA approach re-
lates structural properties (internal attributes) such as coupling, complexity, and
size, with externally visible quality attributes, such as ISO 9126 [ISO9126 01] qual-
ity attributes like reliability and maintainability.

• Decision model. The decision model constrains the selection of variations for the
valid configuration of products.

The first three specifications are mandatory, and capture the functional require-
ments of the software components. The last three specifications are optional and relate
to non-functional aspects of the components, which influence component’s quality and
help capturing product-line engineering concerns [Atkinson 01].

The KobrA approach encompasses not only the specification of components, as dis-
cussed above, but also its realization. The latter includes the development of a set of
artifacts: structural model, activity model, interaction model, data dictionary, quality
documentation, and decision model. These artifacts can be contrasted with those de-
scribed for the specification of the component. While in the specification the concern
is on what the component is supposed to do, in the realization the concern shifts to how
the component is supposed to do it. The implementation of components is not tied to
a particular programming language, although it has to accommodate the constraints
described in the specification and refined in the realization.

315

A. COMPONENT MODELS A.4. Component models

Figure A.8 presents a simplified view of a structural diagram focused on the Clock

component. The component depicted in the diagram is stereotyped with <<subject>>

while other cooperating components are stereotyped with <<Komponent>>.

Figure A.8: KobrA structural diagram

Component integration [design with repository].
KobrA components can be constructed using a UML tool and deposited into the file
system, which acts as the component’s repository. Composition occurs only in design
time. In deployment time, component’s specifications can be refined in the compo-
nent’s implementations, but no further composition is possible.

There are three kinds of relationships between components:

• Composition corresponds to a link between a composite component and its
parts, established at runtime. It includes the creation of the composite compo-
nent’s parts, and therefore creates a clientship relationship between the compos-
ite component and its constituents.

• Clientship corresponds to a link between two component instances, which is also
established at runtime. It is a unidirectional relationship, in the sense that the
client component needs to know the identity of the server to access its provided
services, but the server is unaware of the client.

• Ownership KobrA componetns can be regarded as modules, or packages, which
may contain other model elements (including other components). This contain-
ment relationship is called Ownership.

Component model structure [hierarchy] KobrA components may range from small to
coarse-grained components, and this is supported by the hierarchical nature of Ko-
brA’s component model (see the Ownership relationship, in the previous section). In
this component model, complete systems are represented as a component.
Contract support [behavioral contract].
KobrA provides support for structural and behavioral contracts. The former is
achieved through the interfaces of the operations offered by the component’s in-
terfaces, along with the specification of those operations, while the latter is made

316

A. COMPONENT MODELS A.4. Component models

available through the specification of the operation’s behavioral model. The collection
of behavior models for all the operations provided in the component interfaces
constitute the component’s functional model.

Support for certification [not available].
The KobrA component model provides no special support for the certification of com-
ponents by a third party. However, the KobrA development process does prescribe
the development of functional test cases that are stored along with the component.
These test cases should be created with respect to the component’s specification.

Support for compositional reasoning [not available].
The KobrA component model provides no special support for compositional reason-
ing. Again, the KobrA development process mitigates this shortcoming through the
usage of a technique called Extreme Harvesting [Atkinson 05], which is basically a
process for looking up software components in a large component repository (e.g., the
world wide web!). The process includes the definition of a syntactic signature of the
component, a definition of its semantics, in terms of test cases it must conform to, and
the search of those components in source code format using a normal search engine
(e.g. google). The components that are an exact match for the specified signature and
are able to pass the test battery created for verifying their semantics are considered
candidate components for composition. Note that this method for detection ignores
whatever is not tested in the test suite (e.g. non-functional requirements).

A.4.12 Koala

Origin [industry].
The Koala component model [Ommering 00, Ommering 04] was proposed in the
Philips Research Laboratories. It is a component model developed for supporting the
development of embedded software for consumer electronic devices, and currently
used in the development of Philips’s software product lines (SPL). In Koala’s devel-
opment context, it was particularly important to support the development of product
families (e.g. TV sets) and product populations (e.g home entertainment electronics
devices). A SPL as “a proactive and systematic approach for the development of software, to
create a variety of products”. A product family is “a set of products with many commonalities
and a few differences”. A product population is “a set of products with many commonali-
ties, but also many” (the definitions of SPL, product family and product population are
quoted from [Ommering 04]).

The granularity of Koala components may range from fine-grained to coarse-
grained components. As noted by van Ommering [Ommering 04], a typical Koala
component implements about 10 interfaces, and a component assembly (configura-
tion, in Koala’s terminology) usually has tens of components.

317

A. COMPONENT MODELS A.4. Component models

Component representation [architectural units].
Koala components are units of design, development, and reuse. They are built to be
strictly separated from configuration development. Component developers make no
assumptions on the configurations upon which components are used, and component
users have no way of changing the components to fit their needs. We can regard
components as architectural units, due to the ADL-like nature of the languages used
to specify them, as we will discuss in the component syntax section.

Component syntax [ADL].
Koala components have a specification and an implementation, each expressed in its
own language. The specification is expressed in a combination of three ADLs: one for
specifying the component’s interfaces, another for specifying the component, and yet
another for specifying the local data of components.

Interfaces are defined in the Interface Description Language (IDL), which has a
syntax similar to C. For instance, the Clock component would implement the interfaces
IInit and IClock. The former is dedicated to the component initialization methods
and common to many other components, while the latter is dedicated to the operations
which are specific to the Clock component.

Listing A.4: Clock System in Koala
interface IInit {

* component initialization methods *

}

interface IClock {

void setHours(int hours);

void setMinutes(int minutes);

void setSeconds(int seconds);

int getHours(void);

int getMinutes(void);

int getSeconds(void);

}

The boundaries of components are defined in a textual component description lan-
guage (CDL). Assuming the clock component is to be wired to a display component
which will provide the IDisplay interface, we can define the component as CClock in
CDL as follows:

Listing A.5: Clock System in Koala
component CClock {

provides IClock pclock;

IInit pini;

requires IDisplay pdisplay;

}

318

A. COMPONENT MODELS A.4. Component models

Koala components are compiled into the a programming language. Although
the component model is independent from the chosen programming language, the
language chosen for the initial implementation of the tools that support the devel-
opment in Koala is C. So, Koala components are used to define the corresponding C
header files. The implementation of those header files is then performed in C by the
component developers.

Component integration [design with repository].
In Koala, components can be integrated by specifying a component configuration.
Koala’s component configurations have to follow some constraints: each and every
required interface has to be bound to exactly one provided interface, while a provided
interface has to be bound to zero or more required interfaces. The Koala component
model is hierarchical, so, it is possible to define compound components. The compo-
nents are stored into a component repository. Component configurations are created
at design time, as composite components which are also stored in the component
repository. At deployment time, no further integration is available. The components
are compiled into a programming language and run in that programming language’s
run-time environment.

Model structure [hierarchical].
Components may be integrated into compound components, making this component
model hierarchical.

Contract support [basic syntax/type contract].
Koala supports the basic syntax/type contract, through the usage of the component
interfaces.

Support for certification [not available].
Koala has no specific support for component certification.

Support for compositional reasoning [not available].
Koala has no specific support for compositional reasoning.

A.4.13 SOFA 2.0

Origin [academy].
SOFA is an academic component model proposed in [Plásil 98], that has evolved since
then The original goal of the component model was to allow updating software at
runtime, in a way that could be integrated with the electronic commerce of software
components. SOFA’s authors decided to create a new version of it (2.0) that allows
dealing with the dynamic reconfiguration of component assemblies, creating a struc-

319

A. COMPONENT MODELS A.4. Component models

ture of the control part of the component, and supporting multiple communication
styles between components [Bures 06, Bures 07].

The hierarchical nature of SOFA components provides support for developing
components ranging from small to coarse-grained.

Component representation.
A SOFA component is an architectural unit with its corresponding specification and
implementation.

Component syntax [ADL].
SOFA components are described by a frame and an architecture. The frame corre-
sponds to a black-box view of the component, with its provided and required inter-
faces, as well as the component’s properties. The architecture is a corresponds to a
gray-box view of the component that implements the component’s frame by using
sub-components and their inter-connections, in a first level of nesting. A frame can
be implemented by more than one architecture, which introduces a possible variation
point in the composite component: an implementation can be replaced by another one,
while maintaining the same frame, and the choice of which implementation is used can
be performed in assembly time, rather than design time alone.

SOFA components are interconnected through connectors, which are first class en-
tities. Component behavior can be formally specified through behavior protocols. Fig-
ure A.9 presents an example of a SOFA architecture where the Clock and Display com-
ponents are integrated in a ClockSystem component. The black rectangles represent
component’s provided interfaces, while the white rectangles represent the required
interfaces. The lines connecting components are connectors. In SOFA 2.0, these are
first-class entities, and can be used with several purposes:

• as delegations between a component and a sub-component, when a sub-
component provides an interface that is externalized by the component, the com-
ponent delegates the implementation of the interface to the sub-component;

• as delegations between a sub-component and the component, when the sub-
component requires an interface, and that requirement is delegated to the com-
ponent which will expose that interface as his own required interface;

• as a bound between the required interface of a component and the provided in-
terface of another.

SOFA connectors allow incorporating more than one interface in the same com-
munication link (e.g. connecting one server to several clients), and have support for
directly expressing different architectural styles, such as pipe and filter, bus communi-
cation and shared memory (in contrast to UML, for instance where the styles would be

320

A. COMPONENT MODELS A.4. Component models

implemented through components, thus mixing “utility” components with “business”
components) [Bures 07].

Figure A.9: SOFA 2.0 components

Components are specified using an ADL called Component Definition Language
(SOFA CDL). SOFA CDL definitions are then compiled to a programming language
(Java) that provides the runtime environment for the components.

Component integration [Architectural unit].
SOFA components can be either primitive or composite. Composite components are
built of other components, but cannot add new business functionality to the one pro-
vided by their sub-components. So, at development time, component developers can
only develop the source code of primitive components, and then integrate the new
primitive components with other components from the repository. SOFA is an hier-
archical component model. The following code illustrates the textual representation
of a composite component. In this example, we use two different kinds of predefined
connectors, CSProcCall and EventDelivery, for synchronous and asynchronous com-
munication between the components, respectively.

Listing A.6: Clock System in SOFA.
system CUNI ClockSystem version ‘‘1.0’’ {

inst Clock aClock;

inst Display aDisplay;

bind aDisplay.update to aClock.informer using CSProcCall;

bind aClock.ticker to aDisplay.synchronize using EventDelivery;

...

Component integration can be performed at the design time, by linking compo-
nents with connectors and storing the components into a repository. Both the primitive
and composite components can be stored in the component repository.

Furthermore, SOFA supports the dynamic evolution of components, mainly by cre-
ating three evolution patterns: a factory pattern, for creating new components in the
component assembly, a removal pattern, for deleting the dynamically created compo-
nents, and a service access pattern for allowing the creation of utility interfaces, which
are exposed as services that can be registered in a service registry. This allows utility

321

A. COMPONENT MODELS A.4. Component models

interfaces to be dynamically bound and unbound at runtime, through requests sent
to the service registry. This registry can be made available both to other components
applications and even non-component-based applications [Bures 07].

At runtime, the application is deployed to SOFA’s runtime environment, which is
called SOFAnode. The SOFAnode includes a component repository and deployment
docks, which are basically containers that provide the infrastructure for starting, stop-
ping and updating components. SOFAnode is implemented Java, so, “under the hood”,
SOFA is using the Java Runtime Environment.

One of the distinguishing features of SOFA is the ability to define controllers
as micro-components which are organized as component aspects. These controllers
implement the SOFA control logic. When an architecture is deployed, the code of
the components is weaved with that of the controllers, so that the application can be
run using a selected control logic. The basic query, binding, and life-cycle logic is
implemented this through a set of such micro-components.

Model structure [hierarchical].
SOFA is a hierarchical component model.

Contract support [non-functional properties contracts].
SOFA supports both the syntactical contract provided through the interfaces, and
the definition of behavior protocols, which, in practice, can be regarded as behavior
contracts. Indirectly, through the definition of controllers, it may also support other,
more sophisticated levels of contracts. Having connectors as first-class architectural
entities provides flexibility for defining, for instance, performance measurement
probes in connectors, which can be used for ensuring non-functional properties. The
usage of micro-components can also help implementing such contracts.

Support for certification [not available].
SOFA provides no direct support for the certification of components.

Support for compositional reasoning [available].
The behavior protocols used in SOFA provide the basis for performing compositional
reasoning. The SOFA team is currently addressing this problem by developing a Be-
havior Protocol Checker, which tries to handle the typical state explosion problem
of these checkers through the usage of parse tree automata, which are subject to sev-
eral optimizations to trim their size, namely multinodes, forward cutting, and explicit
subtree automata [Mach 05].

322

A. COMPONENT MODELS A.4. Component models

A.4.14 PECOS

Origin [both].
The PECOS component model [Winter 02] was developed in the context of a European
project including both industry and academic partners. The model was developed
with a particular focus on embedded component software, for small field devices,
which have typically hard real-time constraints. These devices typically use sensors
to collect data from their environment and then process it to react accordingly, by con-
trolling actuators, such as motors.

According to [Winter 02], the typical devices that run PECOS software have tight
resource constraints, such as their available memory, as well real-time constrains. As
such, a typical component in PECOS ranges from small to medium grained.

Component representation [architectural units].
PECOS components are represented as architectural units. They are units of design,
with a specification and an implementation.

Component syntax [ADL].
PECOS supports three kinds of software components: active components, passive
components, and event components. Active components have their own thread of
control and are used to model long-going activities. For instance, a complete sys-
tem is modeled as a composite active component. In contrast, passive components
do not have their own thread of control and encapsulate behavior that executes syn-
chronously and completes in a short cycle time. These components are scheduled by
the nearest active parent that contains them. Event components are similar to active
components, but their internal control subnet does not cycle. Instead, their functional-
ity is triggered by an event. Event components can be used, for instance, for modeling
hardware devices that periodically generate events. Common applications for these
components include timers and components that periodically send status information
about a device.

PECOS components have interfaces with a number of ports. A port is a shared
variable used for allowing communication between different components. Connected
ports represent the same variable. Connectors connect ports of compatible type, direc-
tion and range.

PECOS components have a specification, using an ADL called CoCo, and can be
implemented in a general purpose programming language. CoCo allows specifying
the structural aspects of the components, but not their behavior. The latter is left for
the implementation.

Figure A.10 presents the ClockSystem, in PECOS. In this example, the clock system
itself is represented as a component, to illustrate the hierarchal nature of this compo-
nent model.

323

A. COMPONENT MODELS A.4. Component models

Figure A.10: The clock system, in PECOS

Component integration [design without repository].
The CoCo ADL allows specifying the composition of components into sub-
components, in the design phase. As noted in the previous section, PECOS
components are connected through ports, which have to belong to the same parent
component (in other words, connectors may not cross component boundaries). The
system, as a whole, is represented as a composite active component and normally
represents a device which has an execution model that is, essentially, a loop.

Component model structure [hierarchy].
PECOS components can be hierarchically composed, so components can be classified
as composite, or leaf components. Any of the component kinds discussed in the
component syntax section (active, passive, and event) can be composite.

Contract support. [Synchronization contracts].
We can regard the support of PECOS components for the synchronization and timing
of the interactions between components as a synchronization contract that allows,
for instance to ensure deadlock-free interaction between components, and partial
ordering for the execution of components within a composite component. PECOS
components also support the basic kind of contracts. However, they do not support
neither behavior contracts (as mentioned earlier, the implementation is separate from
the CoCo specification), nor contracts for extra-functional properties.

Support for certification [not available].
PECOS provides no special support for certification.

Support for compositional reasoning [available].
The composition of PECOS components has an underlying execution model that deals
with synchronization and timing issues. Composite components have as many threads
of control as internal active components. The execution semantics of components is
formalized as a Petri net interpretation [Nierstrasz 02].

324

Appendix B

Bridging the gap between Acme and
UML for CBD

Contents
B.1 Introduction . 326

B.2 Mapping Acme into UML . 327

B.3 Discussion . 332

B.4 Related work . 333

B.5 Conclusions . 334

Background: Acme is an Architecture Description Language (ADL) that contains the
most common ADL constructs, and provides formality in the description of software
architectures. The lack of stronger tool support hampers its adoption by a larger com-
munity, as it happens with several other ADLs. UML, on the other hand, has become
a de facto standard notation for design modeling, both in industry and in academia.
Objectives: Our goal is to map Acme modeling abstractions into UML 2.0, to assess
the expressiveness of the latter in what concerns Architectural description.
Techniques: We use a UML lightweight extension mechanism, with OCL well-
formedness rules, to build a UML profile for Acme.
Results: The feasibility of this mapping is demonstrated through several examples.
Limitations: This mapping focuses on the structural aspects of Acme, but it does not
cover the dynamic ones.
Conclusions: This mapping bridges the gap between architectural specification with
Acme and UML, namely allowing the transition from architecture to implementation,
using UML design models as a middle tier abstraction.

325

B. BRIDGING THE GAP BETWEEN ACME AND UML FOR CBD B.1. Introduction

B.1 Introduction

Software architectural descriptions provide an abstract representation of the compo-
nents of software systems and their interactions. There are three main streams of ar-
chitectural description techniques: ad-hoc, OO techniques and ADLs.

Ad-hoc notations lack formality, preventing architectural descriptions from being
analyzed for consistency or completeness and for being traced back and forward to
actual implementations [Garlan 00a].

To overcome those drawbacks, one can use ADLs, such as Aesop [Garlan 94],
Adage [Coglianese 93], C2 [Medvidovic 96], Darwin [Magee 95], Rapide [Luckham 95],
SADL [Moriconi 95], UniCon [Shaw 95b], MetaH [Binns 93], or Wright [Allen 97]. Al-
though with a considerable overlap on the core, each ADL focuses on different aspects
of architectural specification, such as modeling the dynamic behavior of the architec-
ture, or modeling different architectural styles. This diversity provides different ap-
proaches to solve specific families of problems. However, the interchange of informa-
tion between different ADLs becomes a major drawback. Developing a single ADL
providing all the features of the various ADLs would be a very complex endeavor.
Instead, an ADL called Acme [Garlan 00b] emerged as a generic language which can
be used as a common representation of architectural concepts in the interchange of
information between specifications with different ADLs [Barbacci 98].

Although ADLs allow for architecture in-depth analysis, their formality is not easily
reconciled with day-to-day development concerns. OO approaches to modeling, on
the other hand, are more widely accepted in industry. In particular, the UML has
become both a de jure and de facto standard. Using it to describe software architectures
could bring economy of scale benefits, better tool support and interoperability, as well
as lower training costs.

OO methods have some advantages in the representation of component-based sys-
tems, when compared to ADLs. There is a widespread notation (UML), an easier map-
ping to implementation, better tools support and well-defined development methods.
But they also have some shortcomings. For instance, they are less expressive than
ADLs when representing connections between components.

Several attempts to map ADLs to UML have been made in the past, as we will see
in section B.4. One motivation for such attempts is to bring architectural modeling to
a larger community, through the use of mainstream modeling notations. Another is
to provide automatic refinement mechanisms for architectures. UML can be used as a
bridge from architectural to design elements [Egyed 01]. In this appendix we present
a more straightforward mapping from Acme to UML, when compared to previous
attempts, due to the usage of the UML 2.0 metamodel.

We represent the concepts covered by Acme using the UML 2.0 metamodel
[OMG 06b, OMG 05b, OMG 03b]. This increases our modeling power due to the fea-

326

B. BRIDGING THE GAP BETWEEN ACME AND UML FOR CBD B.2. Mapping Acme into UML

tures the UML 2.0 version, mainly in what concerns the representation of components,
ports, interfaces (provided or required), and the hierarchical decomposition of compo-
nents.

This appendix is organized as follows. Section B.2 contains a formal specification of
the mapping between Acme and UML. Section B.3 includes a discussion of the virtues
and limitations of that mapping. Related work is discussed in section B.4. Section B.5
summarizes the conclusions and identifies further work.

B.2 Mapping Acme into UML

For the sake of brevity, we omit the OCL definition of predicates such
as IsAcmeComponent(), IsAcmeConnector(), IsAcmePort(), IsAcmeRole(),
IsAcmeProperty() and others with self explanatory names that will be used in
our mapping presentation. HasNoOtherInterfaces() is a predicate that denotes that
no other interfaces except for the ones defined in ports will be available for a particular
component.

B.2.1 Components

An Acme component has ports, which act as the component interfaces, properties,
a representation with several bindings (defined as rep-maps) and a set of design
rules. The closest concept to an Acme component in UML is the one of component.
To avoid mixing Acme’s components with other concepts that we will also repre-
sent with UML components, we created a stereotype for Acme components named
<<AcmeComponent>>, using UML’s Component as the base class. Invariant 1 assures
these components only have interfaces through Acme ports or properties (listing B.1.

Listing B.1: Invariant 1.
context Component inv: -- Invariant 1

self.IsAcmeComponent() implies

self.ownedPort ->forAll(ap|

ap.IsAcmePort() or ap.IsAcmeProperty())

and self.HasNoOtherInterfaces()

B.2.2 Ports

Acme’s ports identify points of interaction between a component and its environment.
They can be as simple as operation signatures, or as complex as collections of proce-
dure calls with constraints on the order in which they should be called. UML ports are
features of classifiers that specify distinct points of interaction between the classifier
(in this case, the component) and its environment (in this case, the rest of the system).
UML ports have required and provided interfaces, which can be associated to pre and

327

B. BRIDGING THE GAP BETWEEN ACME AND UML FOR CBD B.2. Mapping Acme into UML

post conditions. We use a combination of UML port and corresponding required and
provided interfaces to express Acme’s port concept. Acme ports can only be used with
Acme components and they have one provided and one required interface. Listing B.2
specifies the well-formedness rule for ports.

Listing B.2: Invariant 2.
context Port inv: -- Invariant 2

self.IsAcmePort() implies

self.owner.IsAcmeComponent() and

(self.required ->size()=1) and

(self.provided ->size()=1)

B.2.3 Connectors

Acme connectors represent interactions among components. They are viewed as first
class elements in the architecture community. Representing them using UML’s assem-
bly connector would be visually appealing, but we would loose expressiveness because
Acme connectors may be much more complex than a simple interfaces’ match. They
can be, for example, a protocol, or a SQL link between two components (a client and
a database). Moreover, when reusing components built by different teams it is normal
that their interfaces do not match exactly. The connector may provide the required
glue between the components and this must be made explicit in the design. In order to
represent the concept of connector, which has no direct semantic equivalent in UML,
we use a stereotyped component named <<AcmeConnector>> and ensure that it has
no other interfaces than the ones defined through its roles and properties. Listing B.3
presents the well-formedness rule for connectors.

Listing B.3: Invariant 3.
context Component inv: -- Invariant 3

self.IsAcmeConnector() implies

self.ownedPort ->forAll(ap|

ap.IsAcmeRole() or

ap.IsAcmeProperty()) and

self.HasNoOtherInterfaces()

Although representing a connector with a stereotyped component clutters the out-
coming design1, it offers the ability to represent the connector as a first class design
element, with flexibility in the definition of any protocols it may implement. Consider
the example in Figure B.1, where the components client and server have interfaces that
do not match, but the rpc connector implements a protocol to make both components
interact. We have included provided and required interfaces in both ends of the con-
nector, to illustrate that it provides bi-directional communication abilities.

1This cluttering problem can be circumvented by creating a different visual representation for these
connectors, as supported by UML extension mechanisms.

328

B. BRIDGING THE GAP BETWEEN ACME AND UML FOR CBD B.2. Mapping Acme into UML

Figure B.1: Using the Acme connector

B.2.4 Roles

In Acme, roles are related to connectors the same way as ports are related to com-
ponents. Thus, it makes sense to represent Acme roles as constrained UML ports,
through the use of the <<AcmeRole>> stereotype. The corresponding well-formedness
rule is presented in listing B.4.

Listing B.4: Invariant 4.
context Port inv: -- Invariant 4

self.IsAcmeRole() implies

self.owner.IsAcmeConnector() and (self.required ->size()=1) and

(self.provided ->size()=1)

B.2.5 Systems

An Acme system represents a graph of interacting components. The UML’s concept
of package (with the standard «subsystem» stereotype) represents a set of elements,
rather than the structure containing them and is not suitable for defining system-level
properties. To avoid such problems we use the constrained component stereotype
<<AcmeSystem>>, with the constraints presented in listing B.5.

Listing B.5: Invariants 5, 6, and 7.
context Component inv: -- Invariant 5

self.IsAcmeSystem() implies

self.contents()->select(el|

el.IsKindOf(Component))->asSet()->forAll(comp|

comp.IsAcmeComponent() or comp.IsAcmeConnector())

inv: -- Invariant 6

self.IsAcmeSystem() implies

self.contents()->select(el|

el.IsKindOf(Port))->asSet()->forAll(prt|

prt.IsAcmePort() or prt.IsAcmeRole() or prt.IsAcmeProperty())

inv: -- Invariant 7

self.IsAcmeSystem() implies

self.ownedPort ->forAll(ap|

329

B. BRIDGING THE GAP BETWEEN ACME AND UML FOR CBD B.2. Mapping Acme into UML

ap.IsAcmePort() or ap.IsAcmeRole() or ap.IsAcmeProperty()) and

self.HasNoOtherInterfaces()

B.2.6 Representations

Acme’s representations provide the mechanism to add detail to components and con-
nectors. Acme rep-maps are used to show how higher and lower-level representations
relate to each other. We will use the features for packaging components of UML 2.0
to express representations. UML provides two wiring elements (in the UML specifica-
tion, they are referred to as “specialized connectors”): assembly and delegation. The
former provides a containment link from the higher level component to its constituent
parts, while the latter provides the wiring from higher level provided interfaces to
lower level ones, and from lower level required interfaces to higher level ones. A dele-
gation corresponds to Acme’s rep-map concept. To ensure components are connected
to other components through connectors, we need to constrain all assembly connectors
to link ports to roles. The corresponding well-formedness rule is presented in listing
B.6.

Listing B.6: Invariant 8.
context connector inv: -- Invariant 8

self.kind = #assembly implies

self.end ->(exists(cp|cp.role.IsAcmePort())

and exists(cr|cr.role.IsAcmeRole()))

Figure 2.10 depicts the specification of server. The wiring between the internal
structure of server (a system which contains a topology with three components and
the connectors among them) and the server’s own ports is achieved with the usage
of the <<delegate>> connectors. Although Acme explicitly uses the concepts of repre-
sentation and system for defining subsystems, we make them implicit in our mapping.
Making them explicit would not improve the expressiveness of the resulting design
and would clutter the diagram by creating an extra level of indirection.

B.2.7 Properties

Properties represent semantic information about a system and its architectural ele-
ments. To allow automatic reasoning on them, using OCL, we can make these prop-
erties available outside the component’s internal scope. Ports can be typed with a
provided interface that allows the component user to access its properties. The down-
sides of representing Acme properties as UML ports are that by doing so we are clut-
tering the design and extending the interfaces provided by the design element. An
<<AcmeProperty>> port owns a single provided interface that must provide get and set
operations for the property’s value and type.

330

B. BRIDGING THE GAP BETWEEN ACME AND UML FOR CBD B.2. Mapping Acme into UML

Figure B.2: Detailing a component specification

Listing B.7: Invariant 9.

context Port inv: -- invariant 9

self.IsAcmeProvided() implies

(self.required ->IsEmpty()) and

(self.provided ->size()=1)

B.2.8 Constraints (invariants and heuristics)

Constraints allow the specification of claims on how the architecture and its compo-
nents are supposed to behave. While invariants are conditions that must hold at all
times, heuristics are constraints that should hold, although breaking them is possi-
ble. In UML, we can express design constraints through OCL. These constraints can
be pre-conditions, post-conditions or invariants. Acme’s notion of invariant can be
directly mapped to its OCL counterpart. However, there is no direct UML seman-
tic equivalent for the notion of heuristic. This could be circumvented by creating the
<<AcmeConstraint>> stereotype as a specialization of the UML Constraint metaclass.
The former would have an enumerated attribute with two allowed values: invariant
and heuristic.

331

B. BRIDGING THE GAP BETWEEN ACME AND UML FOR CBD B.3. Discussion

B.2.9 Styles and types

An architectural style defines a vocabulary of design elements and the rules for com-
posing them. It is used in the description of families of architectures. Since we have
created stereotypes for the several UML constructs used in this Acme to UML map-
ping, we can now specify architectural styles using these stereotyped elements.

Figure 3 represents the pipe and filter family, an architectural style that defines
two types of components, FilterT and UnixFilterT, a specialization of FilterT. The
architectural style is defined by means of a UML package, as the family definition does
not prescribe a particular topology. It does, however, establish an invariant that states
that all the connectors used in a pipe and filter system must conform to PipeT.

Figure B.3: The pipe and filter family

B.3 Discussion

The presented mapping from Acme to UML is more straightforward than previous
approaches. This mainly results from the increased expressiveness provided by the
new UML 2.0 design elements. From a structural viewpoint, representing a topology
is fairly simple when using UML. This is mainly due to the relative closeness of the sort
of structural information that we want to express both at the architectural and design
levels. In both cases we have to identify components and the connections among them,
possibly at different levels of abstraction.

However, while a connector is regarded as a first class design element by the archi-
tecture community, it has no direct mapping in UML 2.0. Our proposal is to promote
connectors to first class design elements, by representing them as stereotyped com-
ponents. This seems to be a sensible option, considering that the evolution of CBD

332

B. BRIDGING THE GAP BETWEEN ACME AND UML FOR CBD B.4. Related work

should provide us with an increasing number of off-the-shelf components and that,
the complexity of building component-based software is shifting to the production of
glue code. Representing connectors as stereotyped components gives us the extra flex-
ibility to meet this challenge.

The representation of properties is not an easy nut to crack. Perhaps they could be
more suitably defined at the meta-level, rather than using the <<AcmeProperty>> ports
for this purpose, but this still requires further research.

Heuristics are also complex to map directly to UML, as UML provides no direct
representation for this concept, although we can use OCL to deal with this problem.

Since Acme does not provide a direct support for component dynamics specifica-
tion, in this appendix we do not address it. Nevertheless, we could use properties to
annotate the architectural entities with information on their expected behavior. For in-
stance, a connector may have a property specifying its protocol with some formalism
(e.g. Wright). We could use UML’s behavioral modeling features similarly, thus com-
plementing the structural information in the mapped specification with a behavioral
specification of the design elements used.

B.4 Related work

A number of mappings among the concepts expressed in ADLs and their representa-
tion with UML have been attempted. A possible strategy is to use UML “as is”, in the
mapping. In [Medvidovic 02], UML is used to express C2 models. In [Garlan 00a],
Garlan presents several UML metamodel elements as valid options to express each of
the structural constructs defined in Acme. Each mapping becomes the best candidate
depending on the goals of the translation from Acme to UML. The semantic mismatch
between the ADL and UML concepts is the main drawback of this strategy.

An alternative is to modify the UML metamodel, to increase the semantic accuracy
of the mapping [Selic 02]. Unfortunately, this drives us away from the standard, and
consequently sacrifices existing tool support.

An interesting compromise is to use UML’s extension mechanisms to mitigate con-
ceptual mismatches, while maintaining compatibility with the standard metamodel.
Examples of this strategy can be found in [Egyed 01] (C2SADEL to UML), [Cheng 01]
(Acme to UML-RT), and [Robbins 98] (C2 and Wright to UML). The latter uses OCL
constraints on the metamodel elements which is close to the one proposed in this ap-
pendix, but requires a mapping for each ADL and uses an older and notably less ex-
pressive version of UML). The approach discussed in this appendix bridges the gap
between software architecture and design using an OO modeling notation. All the
mappings discussed so far in this section were performed with UML 1.x, whereas here
we use the new UML 2.0 metamodel elements, which enhance the language’s suitabil-
ity for component-based design.

333

B. BRIDGING THE GAP BETWEEN ACME AND UML FOR CBD B.5. Conclusions

The mapping presented in this chapter can be used as a way of assessing the expres-
siveness of UML 2.0 with respect to representing structural information conveyed by
architectural description languages. This kind of exercise has also been performed for
other component models discussed in this dissertation. Polák created mappings from
SOFA and Fractal to UML 2.0 [Polák 05]. His objective was to start from a specification
in SOFA, or Fractal, transform it to the corresponding UML specification, and then use
the latter to generate source code. Rather than specifying the well-formedness rules in
OCL, Polák hard coded those constraints in the implementation of a prototype to per-
form the transformation, due to limitations with the UML tools he had available. This
problem could have been avoided with more recent tools, such as MagicDraw2, by us-
ing the support for modeling Domain Specific Languages, which includes the ability
to define and validate OCL constraints.

Following the publication of our mapping between Acme and UML 2.0, Roh et al.
proposed an alternative to our connector representation [Roh 04]. Their alternative
definition builds on the fact that UML 2.0 connectors are instances typed by the asso-
ciation between the classifiers that they connect. Their metamodel extension is consid-
erably more complex than ours. It requires four stereotyped meta-classes: ArchRole,
defined as a stereotyped version of the UML 2.0 ConnectableElement meta-class is
used to represent the roles in the ends of the connector; ArchComposition, defined
as a stereotyped version of the UML 2.0 Collaboration meta-class, allows represent-
ing composition patterns among components; ArchConnector is a specialization of the
stereotype ArchComposition, and is used when we want to model connectors that im-
plement a complex protocol. For simple connections, the normal UML connector is
used. The main advantage is that this combination of stereotypes allows representing
Acme connectors through UML connectors, rather than as components.

Another interesting feature of Roh et al.’s proposal is that they use a layered struc-
ture for defining their profile. They define a profile for a generic ADL in the M2 meta-
level that may be extended by domain-specific ADLs, also at the M2 meta-level. At
the M1 meta-level, they expect domain engineers to provide reusable elements of the
domain as a framework architecture. When defining an architecture, one can not only
apply the domain specific architecture, but also import reusable elements from the
framework. This approach mitigates the problem created by the diversity of ADLs,
by postponing the definition of constructs which are specific to a given ADL to the
domain-specific extensions to the generic ADL.

B.5 Conclusions

We have shown the feasibility of expressing architectural information expressed in
Acme using the UML 2.0. It is possible to obtain a mapping from a given ADL to UML,

2http://www.magicdraw.com/

334

http://www.magicdraw.com/

B. BRIDGING THE GAP BETWEEN ACME AND UML FOR CBD B.5. Conclusions

through a two-step approach. We could first map the architecture from the original
ADL to Acme and then use the mapping proposed in this appendix to obtain the cor-
responding specification in UML. Details lost in the ADL to Acme conversion can al-
ways be added later to the resulting UML specification. The proposed mapping builds
upon the added expressiveness of UML 2.0 for architectural concepts, when compared
to UML’s previous versions. The availability of components with ports typed by pro-
vided and required interfaces has proved to be a step forward in the exercise of bridg-
ing the gap between architectural and design information. This improves traceabil-
ity between architectural description and its implementation, using the design as a
middle layer between them. This traceability is relevant for keeping the consistency
between the architecture, design and implementation of a software system. The pro-
posed mapping focuses mainly on structural aspects and design constraints. Although
it also points out to ways of dealing with the definition of system properties, including
semantics and behavioral specification, further research is required to provide more
specific guidance on these aspects.

335

B. BRIDGING THE GAP BETWEEN ACME AND UML FOR CBD B.5. Conclusions

[This page was intentionally left blank]

336

Appendix C

Tool support

Contents
C.1 Documentation roadmap . 338

C.2 System overview . 338

C.3 Requirements . 339

C.4 Views . 339

C.5 Mapping between the views . 346

C.6 Architecture Analysis and Rationale 347

C.7 Mapping architecture to requirements 348

Background: The metrics collection activities described throughout this dissertation
use a set of tools developed specifically to support Ontology-Driven Measurement
(ODM).
Objectives: In this appendix, our goal is to briefly describe the architecture of the tool
support built for collecting and analyzing metrics in this dissertation.
Techniques: We will use a combination of views to support our discussion on the cho-
sen architecture.
Results: The generic architecture presented here can be easily mapped to the specific
architecture in each of the experimental works discussed in this dissertation.
Limitations: Although it is possible to identify a family of architectures used in this
dissertation, each of the instances of this architecture was built separately. This could
be improved by following a software product line approach, in the future.
Conclusions: We were able to consistently use a family of architectures to support
the experimental work described in this dissertation. Among other characteristics, the
usage of standard techniques made these implementations interesting prototypes that
help understanding how this tool support could evolve toward the integration in cur-
rent IDEs.

337

C. TOOL SUPPORT C.1. Documentation roadmap

C.1 Documentation roadmap

This appendix describes the basic architecture for collecting metrics, specifying the
expected inputs and outputs of the interacting tools. The appendix is organized as
follows: In section C.2 we present an overview of the desired system. We outline the
system’s main requirements in section C.3. We present the description of the archi-
tecture through two different views: a structure view, in section C.4.1, and a dynamic
view, in section C.4.2. The mapping between these views is presented in section C.5.
We provide a brief discussion on the rationale behind this architecture in section C.6.
Finally, we map the architecture to our requirements, in section C.7.

C.2 System overview

The architecture presented in this appendix supports the specification and usage of
quantitative metrics in the scope of Experimental Software Engineering (ESE) activi-
ties. This support is underpinned by the Ontology-Driven Measurement (ODM) ap-
proach. With some variation points, which we will identify in the architecture’s de-
scription, this generic architecture was applied in our metrics collection and analysis,
throughout the work described in this dissertation.

Figure C.1 represents a high level context view of the whole system through a UML
use case diagram. The Experimenter uses the tool support to conduct three main tasks:
Configure data collection, Gather sample, and Perform analysis.

Figure C.1: Context view of the system

Configure data collection includes creating configuration files for the used
components, such as an Ontology specification and an OCL metrics specification.
Gather sample consists in depositing in the experiment’s repository the raw data for
experimentation and using the appropriate component InstancesGenerator to repre-
sent that raw data as an instance of the chosen ontology. Note that it is beyond of the
scope of the tool support described in this section to help in the raw data collection.

338

C. TOOL SUPPORT C.3. Requirements

Finally, Perform analysis consists in computing metrics and testing heuristics on the
ontology instantiation, and then using those results to perform the statistical analysis
upon them. The interpretation and packaging of results is out of the scope of the tool
support provided by the architecture described in this appendix.

C.3 Requirements

The architecture described in this appendix supports the following activities:

• Ontology definition in UML

• Metrics and heuristics definition, in OCL, using the ODM approach

• Representation of the experimental data as an instantiation of the ontology

• Automatic metrics collection and heuristics test

• Automatic statistical analysis of results

To the best of our knowledge, no single tool supports all these activities. Therefore,
we need to use a combination of off-the-shelf components with some custom-made
components created by us. This combination of components from various sources
makes their interoperability an important requirement. In order to facilitate the de-
velopment of the required glue code, it is important to use tools that allow importing
and exporting information in textual format with a well specified grammar.

Concerning distribution, the architecture for our prototypical tool support for ex-
perimentation can be run on a single machine. With respect to performance, this is
not a critical requirement, either. For the purposes of this dissertation, having a met-
rics computation, or a statistical analysis, ready in a few seconds, or minutes, is not a
critical requirement, as well.

C.4 Views

We present two complementary views of our architecture: a structural, and a dynamic
view. The former illustrates the overall configuration of the components used to pro-
vide the tool support for our experiments, while the latter makes more explicit the
process followed in the metrics definition and collection. We choose to present these
views because they are the ones that best represent the main requirements of the tool
support.

Other views, such as a detailed implementation view, or a view of the physical
view of the architecture would not bring much added value for the discussion of this
architecture. The implementation of our custom-made components was not severely
constrained by the architecture. Those components had to process text files, transform

339

C. TOOL SUPPORT C.4. Views

them, and produce other text files, with no real-time, or concurrency constraints. Some
of those text files were XML files, so the main constraint was that the chosen imple-
mentation language would have good support for working with XML. Programming
languages such as Java, or C] were used and combined (e.g. the InstancesGenerator

can be defined in C] and integrated with an architecture where the Convert2StatsTool
is developed in Java), for any of the experiments. All communication between com-
ponents was established through text files. Concerning the physical representation,
presenting its detailed view is not particularly useful, either, because all the compo-
nents can run on a single machine.

C.4.1 Structural view

Primary presentation

The structural view of our architecture, presented in figure C.2, uses a UML 2.0 com-
ponent diagram. The chosen architecture follows the pipe and filter architectural style
(see, for instance, [Garlan 00b]). We identify 5 components (the filters) which com-
municate through the operating system’s file system (the pipe). All the connectors
are annotated with the stereotype <<file system>>. This denotes that the component
playing the source role in a connector makes a file available to the file system, so that
the component playing the sink role can read that file. The artifacts presented in the
diagram correspond to the files being produced and consumed by the components.
See the element catalog for further details.

Element catalog

We can identify three main types of elements in this view: components, connectors,
and artifacts. We use the following components:

• Repository - This component is responsible for storing all the experimental data
and configuration files. It typically corresponds to the file system where all the
necessary files (including sample data, ontology description and other configu-
ration files) are stored.

• InstancesGenerator - The raw sample data (original subjects) has to be rep-
resented as an instantiation of the chosen ontology (subjects ontology). This
component is responsible for parsing the original subjects and creating such
an instantiation (the subjects artifact).

• OCL tool - This component is a UML tool with support to OCL specification and
evaluation. In all our experiments, the chosen tool was USE. Although USE only
supports a subset of UML 1.*, this subset covers our ontology modeling require-
ments. USE has both a textual and a graphical mode. For our purposes, we

340

C. TOOL SUPPORT C.4. Views

Figure C.2: Structural view

only use the textual mode. USE includes commands for importing model files,
where we can specify a model (our ontology), as well as OCL rules for that model.
These OCL rules are then used to specify metrics and heuristics for the ontology.
The USE tool also includes commands for importing text files with instantiation
instructions, as well as queries to the model and its instances. The queries are ex-
pressed in OCL. The combination of these four sources (an ontology, its metrics
and heuristics specifications, and instantiation instructions) is then used to com-
pute the metrics and test the heuristics. The results produced by the USE tool are
finally exported as a text file (using the comma separated values notation).

• Convert2StatsTool - The comma separated values (CSV) file has to be translated
to a format readable by the chosen StatisticsTool. The Convert2StatsTool is
responsible for this transformation.

• StatisticsTool - This component is a statistics tool. In all our experimental
works, we used the SPSS tool. Among other features, such as a wide variety of
available statistical tests, SPSS includes a production facility which is very useful
for automating statistical tests. The production facility uses a textual scripting
language of commands that can be used to prepare data and then execute all the
necessary statistical tests.

341

C. TOOL SUPPORT C.4. Views

The connectors represented in the architecture are always similar and correspond
to the file system where the component playing the source role deposits a file (an
artifact) that is then used by the component playing the sink role.

Finally, we consider the following artifacts:

• original subjects - This artifact represents the raw data of our experimental
work. This data can be stored in any format. It is up to the InstancesGenerator

to transform the raw data into instances of an ontology. For example, in chapter 4,
original subjects corresponds to the source code of the JavaBeans. In chapter
5, it corresponds to UML 2.0 components and CCM 3.0 components. In chapter
6, it corresponds to the inspection reports submitted by each inspection team. In
chapter 7, it corresponds to a folder with the Eclipse plug-ins.

• subjects ontology - This artifact represents the ontology used in each of the
experiments. These ontologies were expressed as UML models (most of which
were metamodels). These ontologies were expressed in a format readable by the
chosen OCL tool (USE).

• OCL metrics specification - These metrics are defined in OCL upon the
subjects ontology. Several examples of such definitions can be found in chap-
ters 4, 5, 6 and 7.

• OCL heuristics specification - These heuristics are defined in OCL upon the
subjects ontology. Examples of heuristics definitions can be found in chapter
4.

• subjects - This is the file (or set of files) representing the sample as instances of
the subjects ontology. These instantiation files are expressed in USE’s snapshot
specification language.

• metrics and heuristics - This artifact contains the results of the OCL queries
that compute the metrics. This is a plain text file, with comma separated values.

• metrics and heuristics data - The OCL tool used in the computation of met-
rics and heuristics tests is not very flexible with respect to the output format. So,
those raw results are formatted into this artifact, to facilitate their import in a
statistics tool.

• script - This artifact contains the commands for the statistics tool. In our exper-
imental work this tool was always SPSS, so this artifact is a SPSS command file,
for using with the SPSS production facility.

• statistics report - This is the output report produced with the statistics tool.
SPSS has a proprietary report format that we used without changes. It would
be possible to export the results in other formats, such as html, with embedded

342

C. TOOL SUPPORT C.4. Views

images for representing graphical outputs, but this was not necessary for our
purposes.

Variability guide

The architecture was specified so that the components are as loosely coupled as pos-
sible. In principle, any of these elements could be changed by another component
providing a similar functionality. In practice, with the exception of version upgrades,
for all the instantiations of this architecture that we have developed, there were always
three components that were fixed, and two that changed from one experiment to the
next. More generally, these are the most likely points of variation in our architecture
for future experiments, as well.

The fixed elements of our architecture are the Repository, the OCL Tool, and the
Statistics tool. The Repository was the file system. The OCL tool used in all ex-
periments was the USE tool. Finally, the Statistics tool was SPSS. The variation
points were the InstancesGenerator and the Convert2StatsTool.

The InstancesGenerator is the component of our architecture that is responsible for
generating an instantiation of the chosen ontology that represents the subject’s sample.
As such, this is the most variable element of the architecture. Depending on what our
subjects are, the ontology specifying them may vary. Each ontology requires its own
InstancesGenerator. As we have used a different ontology for each of our experimen-
tal works, this implied using a different instances generator.

The Convert2StatsTool is essentially a glue component. In each of our experi-
mental works, the set of metrics being extracted from the sample was different, and
this implied that the format of the results would also differ, from one experiment to
the next. These results had to be converted into a data format that SPSS could read,
and this conversion was the task of the component that would assume the role of
Convert2StatsTool in each architecture instantiation.

Related views

The dynamic view, presented in section C.4.2, illustrates the activities that, together,
represent the metrics collection process supported by this architecture.

C.4.2 Dynamic view

Primary presentation

Figure C.3 represents an activity diagram in UML 2.0, decorated with swim lanes, to
illustrate the responsibilities of each of each of the used components, and those ac-
tivities which require direct intervention by the Experimenter. The experimenter is
responsible for creating a set of configuration files, including a subjects ontology, an

343

C. TOOL SUPPORT C.4. Views

OCL metrics specification, an OCL heuristics specification, and a script with
the commands for the statistical analysis. The experimenter is also responsible for
gathering a sample of subjects that will be tested in the statistical analysis. Finally,
the experimenter is also responsible for interpreting and packaging the results. In this
diagram, the activities’ description is decorated with object flows, where the objects
are the files being written during an activity (this is denoted by the <<write>> stereo-
type) and being read during a subsequent activity (this is denoted by the <<read>>

stereotype).

Figure C.3: Metrics collection activities

Element catalog

In this catalog, we have essentially three sorts of elements: activities, files and swim
lanes. We also have transitions among these elements. A transition between activities
denotes the sequence in which the activities are performed. The dotted arrows from an
activity to a file denote that the activity produces that file. The dotted arrows from a file
to an activity denotes that the activity consumes that file. The files correspond to the
artifacts discussed in section C.4.1, so please refer to the data catalog in that session for
further information on them. The swim lanes correspond to the components, also dis-
cussed in section C.4.1. The exception is the swim lane dedicated to the Experimenter,
a swim lane used for expressing the activities conducted by the human experimenter

344

C. TOOL SUPPORT C.4. Views

and how they fit into the overall architecture. Note that the experimenter’s activities
are conducted out of the boundaries of the tool support. We represent them here any-
way, to provide a better context for the discussion on the overall process.

We now describe the activities in further detail:

• Configure data collection - This activity is carried out by the experimenter
and consists on preparing the whole experimental environment. This involves
specifying the subjects ontology, as well as OCL metrics and heuristics. It also
involves specifying the statistics tests to be performed upon the sample, during
the experiment.

• Gather sample - This activity corresponds to the data collection part of the ex-
perimental process. Its outcome is a set of files with the raw data for experimen-
tation.

• Generate ontology instances - This activity corresponds to expressing the raw
experimental data in terms of instances of the chosen ontology. The activity is
performed by the InstancesGenerator, and generates a file (or set of files) repre-
senting those instances.

• Compute metrics and heuristics - The instances generated in the previous ac-
tivity are used in this activity to compute metrics and test heuristics upon the
instances and their corresponding metrics’ values.

• Perform data analysis - This activity consists in performing the data analysis
and statistics tests to the hypotheses being researched. It can be automated, to
ensure its repeatability, by using a command script.

• Interpret and package results - Finally, this activity is performed by the ex-
perimenter, using the results obtained during data analysis. The results of this
activity are typically written down in an experimental report, for dissemination
among interested stakeholders, but the details of these interpretation and pack-
aging operations fall beyond the scope of the tool support described here.

Variability guide

The variability in the dynamic matches that of the structural view. From an archi-
tectural point of view, the activities in the swim lanes Repository, OCL tool, and
Statistics tool remain the same, from one experiment to the next. They are con-
figured by different files, handle different data, compute different metrics and heuris-
tics, and perform different statistics tests, but the components performing those
tasks remain the same. The points of variation in this view are the activities in the
Experimenter, InstancesGenerator, and the Convert2StatsTool swim lanes. We have

345

C. TOOL SUPPORT C.5. Mapping between the views

already discussed the inherent variability of the latter two while presenting the vari-
ability guide for the static structure.

We will now focus on the Experimenter swim lane. It is not surprising that the
activities of the experimenter, which correspond to how this architecture is used, in
practice, are the main point of variability in this dynamic view. However, we do not
consider these variations to be within the scope of the architecture described here. The
kind of tasks performed by the Experimenter remains essentially the same, from one
experiment to the next. Each experimental design feature will lead to a specific impact
in these tasks. Concerning the configuration, the nature of the sample conditions the
adoption of the ontology: in some cases, the experimenter will adopt an existing ontol-
ogy, while in other the experimenter has to adapt an existing ontology, or create a new
one from scratch. With respect to the sample gathering, this too, varies with the nature
of the sample. The raw data must be collected in a format suitable for automated on-
tology instance generation. However, all these variations, as well as those concerning
data interpretation and packaging, are beyond the scope of the architecture presented
in this appendix.

Related views

The structural view, presented in section C.4.1, illustrates the components that support
the activities described in this dynamic view.

C.5 Mapping between the views

The mapping between the structural and dynamic views is relatively straightforward,
as we have used the same identifiers in both views:

• Both views represent the same model. Each component in the structural view has
a corresponding swim lane in the dynamic view, which allows specifying which
are the activities performed by each of the participant components.

• The only swim lane in the dynamic view which does not correspond to a compo-
nent in the structural view is the swim lane of the experimenter.

• All the artifacts in the structural view are represented, with the same name, in
the dynamic view, as object flows. While in the structural view we use a generic
<<artifact>> stereotype, in the dynamic view we use a more specific stereotype,
to differentiate among the different types of files being written and read by the
activities. In both views, they correspond to files to be stored in the file system of
the machine running this tool support.

346

C. TOOL SUPPORT C.6. Architecture Analysis and Rationale

C.6 Architecture Analysis and Rationale

The development of the prototypical implementation of the tool support for our ex-
periments aimed at reusing available existing components, where possible, combined
with custom-made components for the remaining functionalities. It was important that
our reused components would be as independent as possible from the domain under
scrutiny in each experimental work, so that the architecture would be flexible.

The option for using a style which is, in essence, a pipe and filter, using the file sys-
tem as a connector and the set of custom-made and off-the-shelf components as filters,
was mostly constrained by the available resources. We developed all the custom made
components. With only one developer, options such as extending existing tools, or in-
tegrating several tools into a new one (e.g. a plug-in for an Integrated Development
Environment) would divert resources from the experimentation per se, which was our
core concern.

Although it would be possible to devise a distributed version of this architecture,
for the purposes of this dissertation, this would not bring any relevant benefits. Distri-
bution might make sense in an environment where several installations of this system
would be required. For instance, we could be interested in making the statistics com-
ponent available on a remote server, if the cost of the distributed solution was lower
than the licensing costs involved in using several copies of the same statistics tool.

The choice of the off-the shelf components used in the implementations of this ar-
chitecture was also driven by a combination of flexibility of those components to sup-
port the diversity of experiments we wanted to conduct and the availability of those
components in our context. Both the USE tool and SPSS are flexible, in the sense that
we can script their usage in plain text files.

The USE tool allows scripting the loading of a particular ontology and its instantia-
tion, as well as the definition and computation of OCL rules upon the instances of that
ontology. Although the USE tool is a research prototype and this has some efficiency
drawbacks when dealing with large samples, few (if any) UML tools available when
we started building this architecture supported OCL evaluation, scripted instantiation
of models, and were open source, freely available, and as stable as USE. These combi-
nation of characteristics made USE a good test bed for the ODM approach. As OCL
support is becoming generalized in modern UML tools, replacing USE by a more mod-
ern tool that provides the key features (ontology definition, support for its instantiation
through scripts, and full OCL support) is an option to consider, in the future.

With respect to SPSS, this is a mature and widely used commercial statistics pack-
age. Among other characteristics, such as an adequate robustness, usability, and full
coverage of the statistics tests we used in this dissertation, our long experience with the
tool from other research projects, and the scripting ability of the tool made it a good
candidate for our architecture. The scripting ability allows repeating exactly the same

347

C. TOOL SUPPORT C.7. Mapping architecture to requirements

process with different samples, which is an important characteristic for making exper-
iments replicable. Although other competing statistics packages with similar features
might have been used, as well, factors such as the availability, suitability for the task,
and our prior experience with this one were decisive in our option.

C.7 Mapping architecture to requirements

C.7.1 Ontology definition in UML

This requirement is supported by the OCL tool component. The OCL tool is, of course,
a UML tool with OCL support. As such, one can define the ontology as a UML model
using the same tool which will be used for defining and collecting metrics and heuris-
tics in OCL. An alternative is to use another UML tool for defining the ontology and
then exporting the ontology to the UML tool with support to OCL.

C.7.2 Metrics and heuristics definition, in OCL, using the ODM ap-

proach

This requirement is supported by the OCL tool component. The metrics are defined as
OCL rules which are added to the ontology (i.e. to a UML model, or metamodel).

C.7.3 Representation of the experimental data as an instantiation of

the ontology

This requirement is supported by the InstancesGenerator tool. The sole purpose of
this component is to parse the existing raw data sample and translate it into an instan-
tiation of the chosen ontology, that can then be used by the OCL tool.

C.7.4 Automatic metrics collection and heuristics test

This requirement is supported by the OCL tool. As discussed in this dissertation, the
OCL expressions are an executable specification of the metrics and heuristics. As such,
the OCL tool can be used to compute the metrics and to test if any heuristics are being
violated.

C.7.5 Automatic statistical analysis of results

This requirement is supported by the Statistics tool component. The data for sta-
tistical analysis is pre-processed by the Convert2StatsTool component, so that it is
transformed into a format suitable for being imported by the statistics tool.

348

Bibliography

[Abran 04] Alain Abran, James W. Moore, Pierre Bourque & Robert
Dupuis, editors. Guide to the Software Engineering Body of
Knowledge (SWEBOK). IEEE Computer Society, 2004.

[Abreu 94a] Fernando Brito Abreu & Rogério Carapuça. Candidate Metrics
for Object-Oriented Software within a Taxonomy Framework. Jour-
nal of Systems and Software, vol. 26, no. 1, pages 87–96, 1994.

[Abreu 94b] Fernando Brito Abreu & Rogério Carapuça. Object-Oriented
Software Engineering: Measuring and Controlling the Development
Process. In 4th International Conference on Software Quality
(ICSQ’94), McLean, Virginia, USA. American Society for Qual-
ity, 1994.

[Abreu 96] Fernando Brito Abreu & Walcélio Melo. Evaluating the Impact
of Object-Oriented Design on Software Quality. In 3rd Interna-
tional Software Metrics Symposium (Metrics’96), Berlin, Ger-
many. IEEE Computer Society, 1996.

[Abreu 99] Fernando Brito Abreu, Luís Miguel Ochoa & Miguel Goulão.
The GOODLY Design Language for MOOD2 Metrics Collection.
In Fernando Brito e Abreu, Houari Sarahoui & Horst Zuse, ed-
itors, 3rd ECOOP Workshop on Quantitative Approaches in
Object-Oriented Software Engineering (QAOOSE’1999), Lis-
bon, Portugal. 1999.

[Abreu 01a] Fernando Brito Abreu. Engenharia de Software Orientado a Ob-
jectos: uma Aproximação Quantitativa. PhD thesis, Instituto Su-
perior Técnico, Universidade Técnica de Lisboa, 2001.

[Abreu 01b] Fernando Brito Abreu. Using OCL to formalize object oriented
metrics definitions. Technical Report ES007/2001, INESC, May
2001.

[Albrecht 83] Allan J. Albrecht & John E. Gaffney. Software Function, Source
Lines of Code and Development Effort Prediction: A Software Sci-

349

BIBLIOGRAPHY

ence Validation. IEEE Transactions on Software Engineering,
vol. 9, no. 6, pages 639–648, 1983.

[Aldrich 08] Jonathan Aldrich. Using Types to Enforce Architectural Structure.
In 7th Working IEEE/IFIP Conference on Software Architec-
ture (WICSA 2008), pages 211–220, Vancouver, Canada. IEEE
Computer Society, 2008.

[Allen 97] Robert Allen & David Garlan. A Formal Basis for Architectural
Connection. ACM Transactions on Software Engineering and
Methodology, vol. 6, pages 213–249, 1997.

[Alvaro 05] Alexandre Alvaro & Silvio Romero de Lemos Meira. Software
component certification: a survey. In 31st EUROMICRO Con-
ference on Software Engineering and Advanced Applications,
pages 106–113, Porto, Portugal. IEEE Computer Society, 2005.

[Aoyama 98] Mikio Aoyama. New Age of Software Development: How
Component-Based Software Engineering Changes the Way of Soft-
ware Development? In International Conference on CBSE, 1998.

[Atkinson 01] Colin Atkinson, Joachim Bayer, Christian Bunse, Erik Kam-
sties, Oliver Laitenberger, Roland Laqua, Dirk Muthig, Bar-
bara Paech, Jürgen Wüst & Jörg Zettel. Component-based
Product-Line Engineering with UML. The Addison-Wesley
Object Technology Series. Addison-Wesley Publishing Com-
pany, 2001.

[Atkinson 05] Colin Atkinson & Oliver Hummel. Towards a Methodology for
Component-Driven Design. In Nicholas Guelfi, editor, First In-
ternational Workshop on Rapid Integration of Software Engi-
neering Techniques (RISE 2004), volume LNCS 3475, pages 23–
33, Kirchberg, Luxembourg. Springer, 2005.

[Bachman 00] Felix Bachman, Len Bass, Charles Buhman, Santiago Cornella-
Dorda, Fred Long, John Robert, Robert Seacord & Kurt Wall-
nau. Volume II: Technical Concepts of Component-Based Software
Engineering. Technical Report CMU/SEI-2000-TR-008, Soft-
ware Engineering Institute, May 2000.

[Barbacci 98] Mario R. Barbacci & Charles B. Weinstock. Mapping MetaH
into ACME. Technical Report CMU/SEI-98-SR-006, Software
Engineering Institute, July 1998.

350

BIBLIOGRAPHY

[Baroni 02a] Aline Lúcia Baroni. Formal Definition of Object-Oriented Design
Metrics. MSc thesis, Vrije Universiteit Brussel - Belgium, in col-
laboration with École des Mines de Nantes - France and Uni-
versidade Nova de Lisboa - Portugal, 2002.

[Baroni 02b] Aline Lúcia Baroni & Fernando Brito Abreu. Formalizing
Object-Oriented Design Metrics upon the UML Meta-Model. In
Brazilian Symposium on Software Engineering, Gramado - RS,
Brazil. 2002.

[Baroni 03] Aline Lúcia Baroni & Fernando Brito Abreu. A Formal Library
for Aiding Metrics Extraction. In 4th International Workshop on
Object-Oriented Reengineering (WOOR2003) at ECOOP’2003,
Darmstadt, Germany. 2003.

[Baroni 05a] Aline Lúcia Baroni, Fernando Brito Abreu & Coral Calero.
Finding Where to Apply Object-Relational Database Schema Refac-
torings: an Ontology-Guided Approach. In X Jornadas sobre In-
geniería del Software y Bases de Datos (JISBD 2005), Granada,
Spain. 2005.

[Baroni 05b] Aline Lúcia Baroni, Coral Calero, Mario Piattini & Fer-
nando Brito Abreu. A Formal Definition for Object-Relational
Database Metrics. In 7th International Conference on Enterprise
Information System (ICEIS 2005), Miami, USA. 2005.

[Bartezko 01] D. Bartezko, C. Fischer, M. Möller & H. Wehrheim. Jass - Java
with assertions. Eletronic Notes in Theoretical Computer Sci-
ence, Proceedings of RV 01, vol. 55, no. 2, 2001.

[Basili 85] Victor R. Basili. Quantitative Evaluation of Software Engineering
Methodology. In 1st Pan Pacific Computer Conference, Mel-
bourne, Australia. 1985.

[Basili 94] Victor R. Basili, Gianluigi Caldiera & Dieter H. Rombach. Goal
Question Metric Paradigm. In John J. Marciniak, editor, Encyclo-
pedia of Software Engineering, volume 1, pages 469–476. John
Wiley & Sons, 1994.

[Basili 96a] Victor R. Basili. The role of experimentation in software engineer-
ing: past, current, and future. In 18th International Conference
on Software Engineering (ICSE’1996), pages 442–449, Berlin,
Germany. IEEE Computer Society, 1996.

351

BIBLIOGRAPHY

[Basili 96b] Victor R. Basili, Scott Green, Oliver Laitenberger, Filippo Lanu-
bile & Forrest Shull. The Empirical Investigation of Perspective-
Based Reading. Empirical Software Engineering, vol. 1, no. 2,
pages 133–164, 1996.

[Bass 01] Len Bass, Charles Buhman, Santiago Comella-Dorda, Fred
Long, John Robert, Robert Seacord & Kurt Wallnau. Volume
I: Market Assessment of Component-Based Software Engineering.
Technical Note CMU/SEI-2001-TN-007, Software Engineering
Institute, May, 2000 2001.

[Beck 99] Kent Beck & Martin Fowler. Bad Smells in Code. In Martin
Fowler, editor, Refactoring: improving the design of existing
code, Object Technology Series, pages 75–88. Addison Wesley
Longman, Inc., 1999.

[Benestad 05] Hans Christian Benestad, Erik Arisholm & Dag I. K. Sjøberg.
How to Recruit Professionals as Subjects in Software Engineering
Experiments. In E. Hustad, B.E. Munkvold, K. Rolland & L.S.
Flak, editors, Information Systems Research in Scandinavia
(IRIS), Kristiansand, Norway. Department of Information Sys-
tems, Agder University College, 2005.

[Berezin 98] Sergey Berezin, Sérgio Campos & Edmund M. Clarke. Com-
positional Reasoning in Model Checking. Lecture Notes in Com-
puter Science, vol. 1536, pages 81–103, 1998.

[Bertoa 02] Manuel Bertoa & Antonio Vallecillo. Quality Attributes for
COTS Components. In Mario Piattini, Fernando Brito Abreu,
Houari Sahraoui & Geert Poels, editors, 6th International
Workshop on Quantitative Approaches in Object-Oriented
Software Engineering (QAOOSE’2002), Málaga, Spain. 2002.

[Bertoa 04] Manuel Bertoa & Antonio Vallecillo. Usability metrics for soft-
ware components. In 8th International Workshop on Quanti-
tative Approaches in Object-Oriented Software Engineering
(QAOOSE’2004), Oslo, Norway. 2004.

[Bertoa 06] Manuel Bertoa, José Troya & Antonio Vallecillo. Measuring the
usability of software components. Journal for Systems and Soft-
ware, vol. 79, no. 3, pages 427–439, 2006.

[Beugnard 99] Antoine Beugnard, Jean-Marc Jézéquel, Noël Plouzeau &
Damien Watkins. Making Components Contract Aware. IEEE
Computer, vol. 32, no. 7, pages 38–45, 1999.

352

BIBLIOGRAPHY

[Biffl 02] Stefan Biffl & Michael Halling. Investigating the Influence of In-
spector Capability Factors with Four Inspection Techniques on In-
spection Performance. In Eighth IEEE International Symposium
on Software Metrics (Metrics’02), 2002.

[Binns 93] Pam Binns & Steve Vestal. Formal real-time architecture specifi-
cation and analysis. In Tenth IEEE Workshop on Real-Time Op-
erating Systems and Software (RTOOS’1993), pages 104–108,
New York, USA. IEEE Computer Society, 1993.

[Bisant 89] David B. Bisant & James R. Lyle. A Two-Person Inspection
Method to Improve Programming Productivity. IEEE Transactions
on Software Engineering, vol. 15, no. 10, pages 1294–1304,
1989.

[Boehm 81] Barry W. Boehm. Software Engineering Economics. Prentice-
Hall, Englewood Cliffs, NJ, EUA, 1981.

[Bourgeois 96] Karen V. Bourgeois. Process Insights from a Large-Scale Software
Inspections Data Analysis. CROSSTALK: The Journal of Defense
Software Engineering, pages 17–23, 1996.

[Boxall 04] Marcus A. S. Boxall & Saeed Araban. Interface Metrics for
Reusability Analysis of Components. In Australian Software
Engineering Conference (ASWEC’2004), pages 40–51, Mel-
bourne, Australia. IEEE Computer Society, 2004.

[Briand 98] Lionel Briand, Khaled El Emam, Oliver Laitenberger &
Thomas Fussbroich. Using simulation to build inspection effi-
ciency benchmarks for development projects. In 20th international
conference on Software engineering (ICSE’1998), pages 340 –
349, Kyoto, Japan. IEEE Computer Society, 1998.

[Brooke 02] Chris Brooke. The Return on Investment on Commercial off-the-
shelf (COTS) Software Components - Preliminary Study Results.
White paper, Component Source, August 2002.

[Brooks 97] Andy Brooks. Meta Analysis -A Silver Bullet - for Meta-Analysts.
Empirical Software Engineering, vol. 2, no. 4, pages 333–338,
1997.

[Brownsword 00] L. Brownsword, T Oberndorf & C. A. Sledge. Developing New
Processes for COTS-Based Systems. IEEE Software, vol. 17, no. 4,
pages 48–55, 2000.

353

BIBLIOGRAPHY

[Bruneton 04] E. Bruneton, T. Coupaye & J. B. Stefani. The Fractal Compo-
nent Model. Specification, The ObjectWeb Consortium, Febru-
ary 2004.

[Bryton 07] Sérgio Bryton & Fernando Brito Abreu. Towards Paradigm-
Independent Software Assessment. In Ricardo Machado, Fer-
nando Brito Abreu & Paulo Rupino Cunha, editors, 6th Inter-
national Conference on the Quality of Information and Com-
munications Technology (QUATIC 2007), pages 40–51, Lisbon,
Portugal. IEEE Computer Society, 2007.

[Bryton 08] Sérgio Bryton. Modularity Improvements with AOP. MSc the-
sis, Faculdade de Ciências e Tecnologia, Universidade Nova
de Lisboa, 2008.

[Budgen 03] David Budgen & Mitchell Thomson. CASE tool evaluation: expe-
riences from an empirical study. Journal of Systems and Software,
vol. 67, no. 2, pages 55–75, 2003.

[Bures 06] Tomás Bures, Petr Hnetynka & Frantisek Plásil. SOFA 2.0: Bal-
ancing Advanced Features in a Hierarchical Component Model. In
Fourth International Conference on Software Engineering Re-
search, Management and Applications (SERA 2006), pages 40–
48, Seattle, Washington, USA. IEEE Computer Society, 2006.

[Bures 07] Tomás Bures, Petr Hnetynka & Frantisek Plásil. Runtime Con-
cepts of Hierarchical Software Components. International Jour-
nal of Computer & Information Science, vol. 8, pages 454–463,
2007.

[Calero 05] Coral Calero, Francisco Ruiz, Aline Lúcia Baroni, Fer-
nando Brito Abreu & Mario Piattini. An Ontological Approach
to Describe the SQL:2003 Object-Relational Features. Computer
Standards and Interfaces, 2005.

[Campbell 05] Donald T. Campbell & Julian C. Stanley. Experimental and
Quasi-Experimental Designs for Research. Houghton Mifflin
Company. Originally published in N. L. Gage (ed.) Handbook
of research on teaching (pp. 1-76), Chicago, Rand McNally,
2005.

[Canal 03] Carlos Canal, Lidia Fuentes, Ernesto Pimentel, José María
Troya & Antonio Vallecillo. Adding roles to CORBA objects. IEEE
Transactions on Software Engineering, vol. 29, no. 3, pages
242–260, 2003.

354

BIBLIOGRAPHY

[Chaki 07] Sagar Chaki, James Ivers, Peter Lee, Kurt Wallnau & Noam
Zeilberger. Model-Driven Construction of Certified Binaries. In
ACM/IEEE 10th International Conference on Model Driven
Engineering Languages and Systems (MODELS 2007), volume
LNCS 4735, pages 666–681, Nashville, USA. Springer, 2007.

[Chang 07] Hervé Chang & Philippe Collet. Patterns for Integrating and Ex-
ploiting Some Non-Functional Properties in Hierarchical Software
Components. In 14th Annual IEEE International Conference
and Workshops on the Engineering of Computer-Based Sys-
tems (ECBS’07), pages 83–92, 2007.

[Chatfield 84] Christopher Chatfield. The Analysis of Time Series: An Intro-
duction. Chapman and Hall, 3rd edition, 1984.

[Cheng 01] Shang-Wen Cheng & David Garlan. Mapping Architectural Con-
cepts to UML-RT. In 2001 International Conference on Paral-
lel and Distributed Processing Techniques and Applications
(PDPTA’2001), Las Vegas, Nevada, USA. 2001.

[Cherniavsky 91] John C. Cherniavsky & Carl H. Smith. On Weyuker’s Axioms For
Software Complexity Measures. IEEE Transactions on Software
Engineering, vol. 17, no. 6, pages 636–638, 1991.

[Chidamber 94] Shyam R. Chidamber & Chris F. Kemerer. A Metrics Suite for
Object Oriented Design. IEEE Transactions on Software Engi-
neering, vol. 20, no. 6, pages 476–493, 1994.

[Chrissis 03] Mary Beth Chrissis, Bart Broekman, Sandy Shrum & Mike
Konrad. CMMI: Guidelines for Process Integration and
Product Improvement. SEI Series on Software Engineering.
Addison-Wesley Professional, 2003.

[Cicalese 99] Cynthia Della Torre Cicalese & Shmuel Rotensreich. Behavioral
Specification of Distributed Software Component Interfaces. IEEE
Computer, vol. 32, no. 7, pages 46–53, 1999.

[Coglianese 93] Lou Coglianese & Roy Szymanski. DSSA-ADAGE: An En-
vironment for Architecture-based Avionics Development. In Ad-
visory Group for Aeronautical Research and Development
(AGARD’93), 1993.

[Cook 76] Thomas D. Cook & Donald T. Campbell. The design and con-
duct of quasi-experiments and true experiments in field settings. In

355

BIBLIOGRAPHY

M. D. Dunette, editor, Handbook of industrial and organiza-
tional psychology, pages 223–326. Rand MacNally, Chicago,
1976.

[Councill 01] Bill Councill. Third-Party Certification and Its Required Elements.
In Ivica Crnkovic, Heinz Schmidt, Judith A. Stafford & Kurt
Wallnau, editors, 4th ICSE Workshop on Component-Based
Software Engineering (CBSE 2001), Toronto, Canada. IEEE
Computer Society, 2001.

[Counsell 07] Steve Counsell, George Loizou & Rajaa Naijar. Quality of man-
ual data collection in Java software: an empirical investigation. Em-
pirical Software Engineering, vol. 12, pages 275–293, 2007.

[Creswell 03] John W. Creswell. Research Design: Qualitative, Quantitative
and Mixed Methods Approaches. SAGE Publications, 2nd edi-
tion, 2003.

[Crnkovic 02] Ivica Crnkovic & Magnus Larsson. Building Reliable
Component-Based Software Systems. Artech House Publish-
ers, Boston, 2002.

[Crnkovic 04] Ivica Crnkovic, Heinz Schmidt, Judith A. Stafford & Kurt Wall-
nau. 6th ICSE Workshop on Component-Based Software Engineer-
ing: Automated Reasoning and Prediction. ACM SIGSOFT Soft-
ware Engineering Notes, vol. 29, no. 3, pages 1–7, 2004.

[Crnkovic 06] Ivica Crnkovic, Stig Larsson & Michel Chaudron. Component-
based Development Process and Component Lifecycle. In Inter-
national Conference on Software Engineering Advances (IC-
SEA’06), Tahiti, French Polynesia. 2006.

[Dashofy 01] Eric M. Dashofy, André van der Hoek & Richard N. Taylor. A
Highly-Extensible, XML-Based Architecture Description Language.
In 2nd Working IEEE/IFIP Conference on Software Architec-
ture (WICSA’2001), pages 103–112, Amsterdam, Netherlands.
IEEE Computer Society, 2001.

[DeMichiel 06] Linda DeMichiel & Michael Keith. JSR 220: Enterprise Jav-
aBeans, version 3.0. Technical report, Sun Microsystems, May
2006.

[Deming 00] W. Edwards Deming. Out of the Crisis. The MIT Press, Cam-
bridge, MA, EUA, 1st edition, 2000.

356

BIBLIOGRAPHY

[D’Souza 98] Desmond Francis D’Souza & Alan Cameron Wills. Objects,
Components and Frameworks with UML: The Catalysis Ap-
proach. Addison Wesley Longman, Reading, Massachussets,
1998.

[Dumke 00] Reiner Dumke & Andreas Schmietendorf. Possibilities of the De-
scription and Evaluation of Software Components. Metrics News,
vol. 5, no. 1, 2000.

[Duncan 98] A. Duncan & U. Hölzle. Adding contracts to Java with handshake,
TRCS98-32. Technical report, University of California at Santa
Barbara, 1998.

[Dybå 05] Tore Dybå, Barbara Ann Kitchenham & Magne Jørgensen.
Evidence-based software engineering for practitioners. IEEE Soft-
ware, vol. 22, no. 1, pages 58–65, 2005.

[Dyer 92a] M. Dyer. Verification based inspection. In 26th Annual Hawaii In-
ternational Conference on System Sciences (HICSS 1992), vol-
ume 2, pages 418–427, Kauai, HI, USA. IEEE Computer Soci-
ety, 1992.

[Dyer 92b] Michael Dyer. The Cleanroom Approach to Quality Software
Development. Wiley, 1992.

[Egyed 01] Alexander Egyed & Nenad Medvidovic. Consistent Architec-
tural Refinement and Evolution using the Unified Modeling Lan-
guage. In 1st Workshop on Describing Software Architecture
with UML, co-located with ICSE 2001, pages 83–87, Toronto,
Canada. 2001.

[Estublier 02] Jacky Estublier & Jean-Marie Favre. Component Models and
Technology. In Ivica Crnkovic & Magnus Larsson, editors,
Building Reliable Component-Based Software Systems, pages
57–86. Artech House, 1 edition, 2002.

[Fagan 76] Michael E. Fagan. Design and Code Inspections to Reduce Errors
in Program Development. IBM Systems Journal, vol. 15, no. 3,
pages 182–211, 1976.

[Fagan 86] Michael E. Fagan. Advances in Software Inspections. IEEE Trans-
actions on Software Engineering, vol. 12, no. 7, pages 744–753,
1986.

357

BIBLIOGRAPHY

[Fenton 94] Norman Fenton. Software Measurement: A Necessary Scientific
Basis. IEEE Transactions on Software Engineering, vol. 20,
no. 3, pages 199–206, 1994.

[Fenton 02] Norman Fenton, Paul Krause & Martin Neil. Software Measure-
ment: Uncertainty and Causal Modelling. IEEE Software, vol. 10,
no. 4, pages 116–122, 2002.

[Fenton 06] Norman Fenton, Martin Neil, William Marsh, Peter Hearty,
Paul Krause & Rajat Mishra. Predicting Software Defects in Vary-
ing Development Lifecycles using Bayesian Nets. Information and
Software Technology, 2006.

[Fitzgerald 05] John Fitzgerald, Peter Gorm Larsen, Paul Mukherjee, Nico Plat
& Marcel Verhoef. Validated Designs for Object-oriented Sys-
tems. Springer, New York, 2005.

[Friedman 37] Milton Friedman. The Use of Ranks to Avoid the Assumption
of Normality Implicit in the Analysis of Variance. Journal of the
American Statistical Association, vol. 32, no. 200, pages 675–
701, 1937.

[Fukazawa 03] Yoshiaki Fukazawa, Hironori Washizaki, Hirokazu Ya-
mamoto, Takao Adachi, Yuhki Sakai, Kohzo Satoh & Daiki
Hoshi. FukaBeans: JavaBeans Components Library, http://www.
fuka.info.waseda.ac.jp/Project/CBSE/fukabeans/,
2003.

[Gamma 95] Eric Gamma, Richard Helm, Ralph Johnson & John Vlissides.
Design Patterns: Elements of Reusable Object-Oriented Soft-
ware. Addison-Wesley Publishing Company, Reading, MA,
USA, 1995.

[Garcia 04] Félix Garcia, Francisco Ruiz, Manuel Bertoa, Coral Calero,
Marcela Genero, Luis Olsina, M. Martín, C. Quer, N. Tondori,
S. Abrahao, Antonio Vallecillo & Mario Piattini. Una Ontología
de la Médición del Software. Technical report UCLM DIAB-04-
02-2, Universidad de Castilla-La Mancha, February 2004.

[Garlan 93] David Garlan & Mary Shaw. An Introduction to Software Ar-
chitecture, volume 1. World Scientific Publishing Company,
1993.

358

http://www.fuka.info.waseda.ac.jp/Project/CBSE/fukabeans/
http://www.fuka.info.waseda.ac.jp/Project/CBSE/fukabeans/

BIBLIOGRAPHY

[Garlan 94] David Garlan, R. Allen & J. Ockerbloom. Exploiting style in
architectural desing environments. In The Second ACM Sym-
posium on the Foundations of Software Engineering (SIG-
SOFT’94), pages 179–185, 1994.

[Garlan 00a] David Garlan & Andrew J. Kompanek. Reconciling the Needs
of Architectural Description with Object-Modeling Notations. In
Andy Evans, Stuart Kent & Bran Selic, editors, «UML» 2000,
volume 1939 of Lecture Notes in Computer Science, pages 498–
512, York, UK. Springer, 2000.

[Garlan 00b] David Garlan, Robert T. Monroe & David Wile. Acme: Ar-
chitectural Description of Component-Based Systems. In Gary T.
Leavens & Murali Sitaraman, editors, Foundations of Compo-
nent Based Systems, pages 47–68. Cambridge University Press,
2000.

[Garlan 03] David Garlan. Formal Modeling and Analysis of Software Archi-
tecture: Components, Connectors and Events. In Marco Bernardo
& Paola Inverardi, editors, Formal Methods for Software Ar-
chitectures, volume 2804 of LNCS, pages 1–24. Springer, Berti-
noro, Italy, 2003.

[Gill 03] Nasib. S. Gill & P. S. Grover. Component-Based Measurement:
Few Useful Guidelines. ACM SIGSOFT Software Engineering
Notes, vol. 28, no. 6, pages 4–4, 2003.

[Gill 04] Nasib. S. Gill & P. S. Grover. Few Important Considerations for
Deriving Interface Complexity Metric for Component-Based Soft-
ware. ACM SIGSOFT Software Engineering Notes, vol. 29,
no. 2, 2004.

[Glass 02] R. L. Glass, I. Vessey & V. Ramesh. Research in software engi-
neering: an analysis of the literature. Information and Software
Technology, vol. 44, pages 491–506, 2002.

[Gosling 96] James Gosling, Bill Joy & Guy L. Steele. The Java Language
Specification. Addison-Wesley Longman Publishing Co., Inc.,
Boston, 1996.

[Goulão 02a] Miguel Goulão & Fernando Brito Abreu. The Quest for Software
Components Quality. In 26th International Computer Software
and Applications Conference (COMPSAC’2002), Oxford, Eng-
land. IEEE Computer Society, 2002.

359

BIBLIOGRAPHY

[Goulão 02b] Miguel Goulão & Fernando Brito Abreu. Towards a Components
Quality Model. In Work in Progress Session of the 28th Euromi-
cro Conference (Euromicro 2002), Dortmund, Germany. 2002.

[Goulão 03] Miguel Goulão & Fernando Brito Abreu. Bridging the gap be-
tween Acme and UML for CBD. In Specification and Verifica-
tion of Component-Based Systems (SAVCBS’2003), at the ES-
EC/FSE’2003, Helsinki, Finland. 2003.

[Goulão 04a] Miguel Goulão & Fernando Brito Abreu. Cross-Validation of
a Component Metrics Suite. In IX Jornadas de Ingeniería del
Software y Bases de Datos (JISBD’2004), Malaga, Spain. 2004.

[Goulão 04b] Miguel Goulão & Fernando Brito Abreu. Formalizing Metrics
for COTS. In Eric Dubois & Xavier Franch, editors, Interna-
tional Workshop on Models and Processess for the Evaluation
of COTS Components (MPEC 2004) at ICSE 2004, pages 37–40,
Edimburgh, Scotland. IEE, 2004.

[Goulão 04c] Miguel Goulão & Fernando Brito Abreu. Independent valida-
tion of a component metrics suite. In 8th International Workshop
on Quantitative Approaches in Object-Oriented Software En-
gineering (QAOOSE’2004), Oslo, Norway. 2004.

[Goulão 04d] Miguel Goulão & Fernando Brito Abreu. Software Components
Evaluation: an Overview. In 5a Conferência da APSI (CAPSI
2004), Lisbon. 2004.

[Goulão 05a] Miguel Goulão & Fernando Brito Abreu. Composition As-
sessment Metrics for CBSE. In 31st Euromicro Conference
- Component-Based Software Engineering Track (Euromi-
cro’2005), Porto, Portugal. IEEE Computer Society, 2005.

[Goulão 05b] Miguel Goulão & Fernando Brito Abreu. Formal Definition of
Metrics upon the CORBA Component Model. In Ralf Reussner,
Johannes Mayer, Judith A. Stafford, Sven Overhage, Steffen
Becker & Patrick J. Schroeder, editors, First International Con-
ference on the Quality of Software Architectures (QoSA’2005),
volume 3712 of LNCS, Erfurt, Germany. Springer, 2005.

[Goulão 05c] Miguel Goulão & Fernando Brito Abreu. Validação Cruzada de
Métricas para Componentes. IEEE Transactions Latin America,
vol. 3, no. 1, 2005.

360

BIBLIOGRAPHY

[Goulão 06] Miguel Goulão & Fernando Brito Abreu. On the Influence of
Practitioners’ Expertise in Component-Based Software Reviews. In
10th ECOOP Workshop on Quantitative Approaches in Object-
Oriented Software Engineering (QAOOSE’2006), Nantes. 2006.

[Goulão 07a] Miguel Goulão & Fernando Brito Abreu. Modeling the Ex-
perimental Software Engineering Process. In Ricardo Machado,
editor, 6th International Conference on the Quality of Infor-
mation and Communications Technology (QUATIC’2007), Lis-
bon, Portugal. IEEE Computer Society, 2007.

[Goulão 07b] Miguel Goulão & Fernando Brito Abreu. An overview of metrics-
based approaches to support software components reusability assess-
ment. In Ravi Kumar Jain B., editor, Software Quality Mea-
surement: Concepts and Approaches, page 264. ICFAI Books,
Hyderabad, 2007.

[Grassi 05] Vincenzo Grassi, Raffaela Mirandola & Antonio Sabetta. An
XML-Based Language to Support Performance and Reliability Anal-
ysis in Software Architectures. In Ralf Reussner, Johannes Mayer,
Judith A. Stafford, Sven Overhage, Steffen Becker & Patrick J.
Schroeder, editors, First International Conference on the Qual-
ity of Software Architectures (QoSA’2005), volume 3712 of
LNCS, pages 71–87, Erfurt, Germany. Springer, 2005.

[Guerreiro 01] Pedro Guerreiro. Simple Support for Design by Contract in C++.
In TOOLS USA 2001, pages 24–34, Santa Barbara, CA, USA.
IEEE Computer Society, 2001.

[Gursaran 01] Gursaran & Gurdev Roy. On the Applicability of Weyuker Prop-
erty 9 to Object-Oriented Structural Inheritance Complexity Met-
rics. IEEE Transactions on Software Engineering, vol. 27, no. 4,
pages 381–384, 2001.

[Hamilton 97] Graham Hamilton. JavaBeans (version 1.01-A). Api specifica-
tion, Sun Microsystems, August 1997.

[Heineman 01] G. T. Heineman & W. T. Councill. Component-Based Software
Engineering - Putting the Pieces Together. Addison-Wesley,
Boston, MA, 2001.

[Henderson-Sellers 02] Brian Henderson-Sellers, F. Stallinger & B. Lefever. The
OOSPICE Methodology Component: Creating a CBD Process Stan-
dard. In Frank Barbier, editor, Business Component-Based Soft-

361

BIBLIOGRAPHY

ware Engineering, The Kluwer International Series in Engi-
neering and Computer Science. Kluwer Academic Publishers,
Boston Hardbound, 2002.

[Hoek 03] André van der Hoek, Ebru Dincel & Nenad Medvidovic. Us-
ing Service Utilization Metrics to Assess and Improve Product Line
Architectures. In 9th IEEE International Software Metrics Sym-
posium (Metrics’2003), Sydney, Australia. IEEE Computer So-
ciety Press, 2003.

[Höst 00] Martin Höst, Björn Regnell & Claes Wohlin. Using Students as
Subjects - A Comparative Study of Students and Professionals in
Lead-Time Impact Assessment. Empirical Software Engineering,
vol. 5, no. 3, pages 201–214, 2000.

[Inoue 05] Katsuro Inoue, Reishi Yokomori, Tetsuo Yamamoto, Makoto
Matsushita & Shinji Kusumoto. Ranking Significance of Software
Components Based on Use Relations. IEEE Transactions on Soft-
ware Engineering, vol. 31, no. 3, pages 213–225, 2005.

[ISBSG 07a] ISBSG. ISBSG Data Demographics. Technical report, Interna-
tional Software Benchmarking Standards Group, January 2007.

[ISBSG 07b] ISBSG. ISBSG Repository Data Release 10 - Field Descriptors.
Technical report, International Software Benchmarking Stan-
dards Group, January 2007.

[ISO15504 98] ISO15504. Software Process Improvement and Capability dEtermi-
nation, 1998.

[ISO9126 01] ISO9126. ISO/IEC 9126: Information Technology - Software Prod-
uct Evaluation - Software Quality Characteristics and Metrics, 1995
2001.

[Jedlitschka 04] Andreas Jedlitschka & Marcus Ciolkowski. Towards Evidence
in Software Engineering. In International Symposium on Em-
pirical Software Engineering (ISESE’04), pages 261–270. IEEE
Computer Society, 2004.

[Jedlitschka 05a] Andreas Jedlitschka & Marcus Ciolkowski. Guidelines for Em-
pirical Work in Software Engineering. Technical Report IESE-
Report No. 053.05/E (Version 1.0), Fraunhofer Institute for Ex-
perimental Software Engineering, August 2005.

362

BIBLIOGRAPHY

[Jedlitschka 05b] Andreas Jedlitschka & Dietmar Pfahl. Reporting Guidelines for
Controlled Experiments in Software Engineering. In 4th Interna-
tional Symposium on Empirical Software Engineering (ISESE
2005), pages 95–104, Noosa Heads, Australia. IEEE Computer
Society, 2005.

[Jeusfeld 98] Manfred A. Jeusfeld, Christoph Quix & Matthias Jarke. Design
and Analysis of Quality Information for Data Warehouses. In In-
ternational Conference on Conceptual Modeling / the Entity
Relationship Approach, pages 349–362, 1998.

[Jones 90] Cliff B. Jones. Systematic Software Development Using VDM.
Prentice-Hall International, Hemel Hempstead (U.K.), 2nd
(first in 1986) edition, 1990.

[Josuttis 99] Nicolai M. Josuttis. The C++ Standard Library: A Tutorial and
Reference. Addison-Wesley Publishing Company, 1999.

[Juristo 98] Natalia Juristo & Ana M. Moreno. An Adaptation of Experimen-
tal Design to the Empirical Validation of Software Engineering Theo-
ries. Technical report, Nasa Goddard Space Flight Center, 1998.

[Juristo 01] Natalia Juristo & Ana M. Moreno. Basics of Software Engineer-
ing Experimentation. Kluwer Academic Publisher, 2001.

[Katz 82] Ralph Katz & Thomas J. Allen. Investigating the Not Invented
Here (NIH) Syndrome : A Look at the Performance, Tenure, and
Communication Patterns of 50 R&D Project Groups. R&D Man-
agement, vol. 12, pages 7–19, 1982.

[Kerievsky 05] Joshua Kerievsky. Refactoring to Patterns. The Addison-
Wesley Signature Series. Addison Wesley, 2005.

[Kernighan 88] Brian W. Kernighan & Dennis M. Ritchie. The C Programming
Language. Prentice Hall, Englewood Cliffs, NJ, EUA, 2nd (1st
in 1978) edition, 1988.

[Kitchenham 95] Barbara Ann Kitchenham, Shari Lawrence Pfleeger & Norman
Fenton. Towards a Framework for Software Measurement Vali-
dation. IEEE Transactions on Software Engineering, vol. 21,
no. 12, pages 929–944, 1995.

[Kitchenham 96a] Barbara Ann Kitchenham. Evaluating Software Engineering
methods and tool - Part 1: The evaluation context and evaluation
methods. ACM SIGSOFT Software Engineering Notes, vol. 21,
no. 1, pages 11–14, 1996.

363

BIBLIOGRAPHY

[Kitchenham 96b] Barbara Ann Kitchenham. Evaluating Software Engineering
Methods and Tool - Part 3: Selecting an appropriate evaluation
method – practical issues. ACM SIGSOFT Software Engineering
Notes, vol. 21, no. 4, pages 9–12, 1996.

[Kitchenham 01] Barbara Ann Kitchenham & Robert T. Hughes. Modeling Soft-
ware Measurement Data. IEEE Transactions on Software Engi-
neering, vol. 27, no. 9, pages 788–804, 2001.

[Kitchenham 02] Barbara Ann Kitchenham, Shari Lawrence Pfleeger, Lesley M.
Pickard, Peter W. Jones, David C. Hoaglin, Khaled El Emam &
Jarrett Rosenberg. Preliminary Guidelines for Empirical Research
in Software Engineering. IEEE Transactions on Software Engi-
neering, vol. 28, no. 8, pages 721–734, 2002.

[Kitchenham 04] Barbara Ann Kitchenham, Tore Dybå & Magne Jørgensen.
Evidence-based Software Engineering. In 26th International Con-
ference on Software Engineering (ICSE 2004), pages 273–281,
Edinburgh, Scotland. IEEE Computer Society Press, 2004.

[Kitchenham 08] Barbara Ann Kitchenham, Hiyam Al-Khilidar, Muhammed Ali
Babar, Mike Berry, Karl Cox, Jacky Keung, Felicia Kurniawati,
Mark Staples, He Zhang & Limimg Zhu. Evaluating guide-
lines for reporting empirical software engineering studies. Empir-
ical Software Engineering, vol. 13, no. 1, pages 97–121, 2008.

[Knight 93] John C. Knight & E. Ann Myers. An Improved Inspection Tech-
nique. Communications of the ACM, vol. 36, no. 11, pages 51–
61, 1993.

[Koning 94] Ross Koning. The Scientific Method. Plant physiology infor-
mation website, http://plantphys.info/Plants_Human/scimeth.
html. accessed on 2006/07/04., Eastern Conneticut State Uni-
versity, 1994.

[Kramer 98] R. Kramer. iContract - The Java Design by Contract Tool. In
TOOLS’98 USA, pages 295–307, Santa Barbara, CA, EUA. 1998.

[Krueger 92] Charles W. Krueger. Software Reuse. ACM Computing Surveys,
vol. 24, no. 2, pages 131–183, 1992.

[Kruger 99] Justin Kruger & David Dunning. Unskilled and Unaware of It:
How Difficulties in Recognizing One’s Own Incompetence Lead to
Inflated Self-Assessments. Journal of Personality and Social Psy-
cology, vol. 77, no. 6, pages 1121–1134, 1999.

364

 http://plantphys.info/Plants_Human/scimeth.html
 http://plantphys.info/Plants_Human/scimeth.html

BIBLIOGRAPHY

[Kruskal 52] William H. Kruskal & W. Wallis Allen. Use of ranks in one-
criterion variance analysis. Journal of the American Statistical
Association, vol. 47, no. 260, pages 583–621, 1952.

[Laitenberger 00] Oliver Laitenberger & Jean-Marc DeBaud. An Encompassing
Life-Cycle Centric Survey on Software Inspection. Journal for Sys-
tems and Software, vol. 50, no. 1, pages 5–31, 2000.

[Laitenberger 02] Oliver Laitenberger. A Survey on Software Inspection Technolo-
gies. In S. K. Chang, editor, Handbook on Software Engineer-
ing and Knowledge Engineering, volume 2, pages 517–555.
World Scientific Publishing Co., 2002.

[Larsson 04] Magnus Larsson. Predicting Quality Attributes in Component-
based Software Systems. PhD thesis, Mälardalen University,
2004.

[Lau 05a] Kung-Kiu Lau & Zheng Wang. A Survey of Software Component
Models. Technical Report CSPP-30, University of Manchester,
School of Computer Science, April 2005.

[Lau 05b] Kung-Kiu Lau & Zheng Wang. A Taxonomy of Software Compo-
nent Models. In 31st Euromicro Conference - Component-Based
Software Engineering Track (Euromicro 2005), Porto, Portugal.
IEEE Computer Society, 2005.

[Lau 07] Kung-Kiu Lau & Zheng Wang. Software Component Models.
IEEE Transactions on Software Engineering, vol. 33, no. 10,
pages 709–724, 2007.

[Lüders 02] Frank Lüders, Kung-Kiu Lau & Shui-Ming Ho. Specification of
Software Components. In Ivica Crnkovic & Magnus Larsson, ed-
itors, Building Reliable Component-Based Software Systems,
Artech House Computing Library, pages 23–38. Artech House,
Boston, 1 edition, 2002.

[Li 05] Shuyu Li, XiaoJiang Li & Jian Wu. Components and Contracts
for Embedded Software. In 12th IEEE International Conference
and Workshops on the Engineering of Computer-Based Sys-
tems (ECBS’05). IEEE Computer Society, 2005.

[Lorenz 94] Mark Lorenz & Jeff Kidd. Object-Oriented Software Metrics:
A Practical Guide. Prentice Hall, Englewood Cliffs, NJ, USA,
1994.

365

BIBLIOGRAPHY

[Lublinsky 04] Boris Lublinsky. The Key to Superior EJB Design - Decrease net-
work traffic in EJB implementations. Java Developer’s Journal,
2004.

[Luckham 95] D. C. Luckham, L. M. Augustin, J. J. Kenney, J. Veera, D. Brian
& W. Mann. Specification and analysis of system architecture using
Rapide. IEEE Transactions on Software Engineering, vol. 21,
no. 4, pages 336–355, 1995.

[Ma 04] Haohai Ma, Weizhong Shao, Lu Zhang, Zhiyi Ma & Yanbing
Jiang. Applying OO Metrics to Assess UML Meta-models. In 7th
International Conference on Modelling Languages and Appli-
cations («UML» 2004), volume 3273 of LNCS, pages 12–26, Lis-
bon, Portugal. Springer, 2004.

[Mach 05] M. Mach, Frantisek Plásil & J. Kofron. Behavior Protocol Verifi-
cation: Fighting State Explosion. International Journal of Com-
puter and Information Science, vol. 6, no. 1, pages 22–30, 2005.

[Madachy 93] R. Madachy, L. Little & S. Fan. Analysis of a successful inspection
program. In 18th Annual Nasa Software Engineering Labora-
tory Workshop, pages 176–198, 1993.

[Magee 95] Jeff Magee, Naranker Dulay, Susan Eisenbach & Jeff Kramer.
Specifying distributed software architectures. In Wilhelm Schäfer
& Pere Botella, editors, Fifth European Software Engineering
Conference (ESEC’95), volume 989 of LNCS, pages 137–153,
Sitges, Spain. Springer, 1995.

[Maroco 03] João Maroco. Análise Estatística - Com Utilização do SPSS.
Edições Sílabo, Lisbon, 2nd edition, 2003.

[McIlroy 69] M. D. McIlroy. Mass Produced Software Components. In P. Naur
& B. Randell, editors, Software Engineering, Report on a con-
ference by the NATO Science Committee. NATO Scientific Af-
fairs Division, Brussels, Belgium, pp. 138-150., volume 1, pages
138–150. NATO Science Committee, Garmisch, Germany, 1969.

[Medvidovic 96] Nenad Medvidovic, P. Oreizy, Jason E. Robbins & Richard N.
Taylor. Using object-oriented typing to support architectural design
in the C2 style. In Fourth ACM Symposium on the Foundations
of Software Engineering (SIGSOFT’96). ACM Press, 1996.

[Medvidovic 02] Nenad Medvidovic, David S. Roseblum, David F. Redmiles &
Jason E. Robbins. Modeling Software Architectures in the Unified

366

BIBLIOGRAPHY

Modeling Language. ACM Transactions on Software Engineer-
ing and Methodology, vol. 11, no. 1, pages 2–57, 2002.

[Merle 03] Philippe Merle. DTD for Component Assembly Descriptor defined
by the CORBA Components Specification 3.0, 2003.

[Meyer 92a] Bertrand Meyer. Applying "Design by Contract". IEEE Com-
puter, vol. 25, no. 10, pages 40–51, 1992.

[Meyer 92b] Bertrand Meyer. Eiffel: The Language. Prentice Hall, 2nd edi-
tion, 1992.

[Meyer 00] Bertrand Meyer. Contracts for components. Software Develop-
ment Magazine, July 2000.

[Meyer 06] Bertand Meyer & Karine Arnout. Componentization: The Visitor
Example. IEEE Computer, vol. 39, no. 7, pages 23–30, 2006.

[Microsoft 96] Microsoft. The Component Object Model Specification, 1996.

[Miller 56] George A. Miller. The Magical Number Seven, Plus or Minus Two
: Some limits in our Capacity for Processing Information. The Psy-
chological Review, vol. 63, pages 81–97, 1956.

[Miller 98] James Miller, Murray Wood, Marc Roper & Andrew Brooks.
Further Experiences with Scenarios and Checklists. Empirical Soft-
ware Engineering, vol. 3, no. 1, pages 37–64, 1998.

[Miller 00] James Miller. Applying Meta-Analytical Procedures to Software
Engineering Experiments. Journal of Systems and Software,
vol. 54, no. 11, pages 29–39, 2000.

[Milner 92] Robin Milner, Joachim Parrow & David Walker. A Calculus
of Mobile Processes, parts I and II. Journal of Information and
Computation, vol. 100, pages 1–77, 1992.

[Milner 93] Robin Milner. The polyadic π-calculus: a tutorial. In Logic and
Algebra of Specification, pages 203–246. Springer, 1993.

[Mohagheghi 07] Parastoo Mohagheghi & Reidar Conradi. Quality, productivity
and economic benefits of software reuse: a review of industrial stud-
ies. Empirical Software Engineering, vol. 12, pages 471–516,
2007.

[Moreno 05] Gabriel Moreno, Scott A. Hissam & Kurt Wallnau. Statisti-
cal Models for Empirical Component Properties and Assembly-Level
Property Predictions: Toward Standard Labeling. In 5th ICSE

367

BIBLIOGRAPHY

Workshop on Component-Based Software Engineering (CBSE
2005), Orlando, Florida. 2005.

[Moriconi 95] M. Moriconi, X. Qian & R. Riemenschneider. Correct architec-
ture refinement. IEEE Transactions on Software Engineering,
vol. 21, no. 4, pages 356–373, 1995.

[Narasimhan 04] V. Lakshmi Narasimhan & Baju Hendradjaya. A New Suite of
Metrics for the Integration of Software Components. In Henry Det-
mold, Katrina Falkner & David S. Munro, editors, The First In-
ternational Workshop on Object Systems and Software Archi-
tectures (WOSSA’2004), South Australia, Australia. The Uni-
versity of Adelaide, 2004.

[Nierstrasz 92] Oscar Nierstrasz, Simon Gibbs & Dennis Tsichritzis.
Component-Oriented Software Development. Communications of
the ACM, vol. 35, no. 9, pages 160–165, 1992.

[Nierstrasz 02] Oscar Nierstrasz, Gabriela Arévalo, Stéphane Ducasse, Roel
Wuyts, Andrew P. Black, Peter Müller, Christian Zeidler,
Thomas Genssler & Reiner van der Born. A Component Model
for Field Devices. In Judith Bishop, editor, IFIP/ACM Working
Conference on Component Deployment, volume LNCS 2370,
pages 200–209, Berlin, Germany. Springer, 2002.

[Ning 96] Jim Q. Ning. A Component-Based Software Development Model. In
20th International Computer Software and Applications Con-
ference (COMPSAC 1996), pages 389–394, 1996.

[OMG 02a] OMG. CORBA Components - Version 3.0. Specification
formal/02-06-65, Object Management Group Inc., June 2002.

[OMG 02b] OMG. Meta Object Facility (MOF) Specification (Version 1.4).
Technical report, Object Management Group, April 2002.

[OMG 03a] OMG. Common Warehouse Metamodel (CWM) Specification (Ver-
sion 1.1, Volume 1). Technical Report formal/03-03-02, Object
Management Group Inc., March 2003.

[OMG 03b] OMG. UML 2.0 OCL Final Adopted specification. Technical Re-
port ptc/03-10-14, Object Management Group Inc., October
2003.

[OMG 04] OMG. Meta Object Facility (MOF) 2.0 Core Specification. Techni-
cal Report ptc/04-10-15, Object Management Group Inc., 2004.

368

BIBLIOGRAPHY

[OMG 05a] OMG. UML Profile for Schedulability, Performance, and Time -
version 1.1. Technical Report formal/05-01-02, Object Manage-
ment Group Inc., January 2005.

[OMG 05b] OMG. Unified Modeling Language: Superstructure - version 2.0.
Technical Report formal/05-07-04, Object Management Group
Inc., August 2005.

[OMG 06a] OMG. UML Profile for Modeling Quality of Service and Fault Tol-
erance Characteristics and Mechanisms - OMG Available Specifica-
tion, version 1.0. OMG Available Specification formal/06-05-02,
Object Management Group Inc., May 2006.

[OMG 06b] OMG. Unified Modeling Language: Infrastructure - version 2.0.
Technical Report formal/05-07-05, Object Management Group
Inc., March 2006.

[OMG 07] OMG. Unified Modeling Language: Superstructure - version
2.1.1. Technical Report formal/2007-02-05, Object Manage-
ment Group Inc., February 2007.

[Ommering 00] Rob van Ommering, Frank van der Linden, Jeff Kramer & Jeff
Magee. The Koala Component Model for Consumer Electronics
Software. IEEE Computer, vol. 33, no. 3, pages 78–85, 2000.

[Ommering 04] Rob van Ommering. Builiding Product Populations with Software
Components. PhD thesis, Rijksuniveriteit Groningen, 2004.

[Pai 04] Madhukar Pai, Michael McCulloch, Jennifer D. Gorman,
Nikita Pai, Wayne Enanoria, Gail Kennedy, Prathap Tharian
& Jr Colford John M. Systematic reviews and meta-analyses: An
illustrated step-by-step guide. National Medical Journal of India,
vol. 17, no. 2, pages 86–95, 2004.

[Parnas 85] David Lorge Parnas & D. M. Weiss. Active Design Reviews:
Principles and Practices. In 8th International Conference on Soft-
ware Engineering (ICSE’85), pages 215–222, 1985.

[Parnas 87] David Lorge Parnas & D. M. Weiss. Active Design Reviews:
Principles and Practices. Journal of Systems and Software, vol. 4,
no. 7, pages 259–265, 1987.

[Plauger 91] P. J. Plauger. The Standard C Library. Prentice Hall, 1991.

369

BIBLIOGRAPHY

[Plösh 04] Reinhold Plösh. Contracts, Scenarios and Prototypes: An In-
tegrated Approach to High Quality Software. Springer, Berlin,
2004.

[Plásil 98] Frantisek Plásil, Dusan Bálek & Radovan Janecek. SOFA/D-
CUP: Architecture for Component Trading and Dynamic Updat-
ing. In Fourth International Conference on Configurable Dis-
tributed Systems (ICCDS 1998), pages 43–51, Annapolis, MA,
USA. IEEE Computer Society, 1998.

[Polák 05] Matej Polák. UML 2.0 Components. Msc., Faculty of Mathemat-
ics and Physics, Charles University, 2005.

[Porter 95] Adam A. Porter, Lawrence G. Votta & Victor R. Basili. Com-
paring Detection Methods for Software Requirement Inspections: a
Replicated Experiment. IEEE Transactions on Software Engineer-
ing, vol. 21, no. 6, pages 563–575, 1995.

[Porter 97a] Adam Porter & Philip Johnson. Assessing Software Review Meet-
ings: Results of a Comparative Analysis of Two Experimental Stud-
ies. IEEE Transactions on Software Engineering, vol. 23, no. 3,
pages 129–145, 1997.

[Porter 97b] Adam Porter & Lawrence Votta. What Makes Inspections Work?
IEEE Software, vol. 14, no. 6, pages 99–102, 1997.

[Porter 97c] Adam A. Porter, Harvey Siy, C. A. Toman & Lawrence G. Votta.
An experiment to assess the cost-benefits of code inspections in large
scale software development. IEEE Transactions on Software Engi-
neering, vol. 23, no. 6, pages 329–346, 1997.

[Porter 98] Adam Porter, Harvey Siy, Audris Mockus & Lawrence Votta.
Understanding the sources of variation in software inspections.
ACM Transactions on Software Engineering and Methodology,
vol. 7, no. 1, pages 41–79, 1998.

[Ramesh 04] V. Ramesh, Robert L. Glass & Iris Vessey. Research in computer
science: an empirical study. Information and Software Technol-
ogy, vol. 70, pages 165–176, 2004.

[Richters 01] Mark Richters. A UML-based Specification Environment, 2001.

[Robbins 98] Jason E. Robbins, Nenad Medvidovic, David F. Redmiles &
David S. Rosenblum. Integrating Architecture Description Lan-
guages with a Standard Design Method. In International Confer-
ence on Software Engineering (ICSE98), Kyoto, Japan. 1998.

370

BIBLIOGRAPHY

[Roh 04] Sunghwan Roh, Kyungrae Kim & Taewoong Jeon. Architecture
modeling language based on UML2.0. In 11th Asia-Pacific Soft-
ware Engineering Conference, pages 663–669, 2004.

[Royce 70] W. W. Royce. Managing the Development of Large Software Sys-
tems. In IEEE WESCON 1970, pages 1–9, 1970.

[Runeson 03] Per Runeson. Using Students as Experiment Subjects - An Analy-
sis on Graduate and Freshmen Student Data. In 7th International
Conference on Empirical Assessment in Software Engineering
(EASE 2003), 2003.

[Sahraoui 01] Houari A. Sahraoui, Mounir Boukadoum & Hakim Lounis.
Building Quality Estimation Models with Fuzzy Threshold Values.
L’Objet, vol. 17, no. 4, pages 535–554, 2001.

[Sauer 00] Chris Sauer, Ross Jeffery, Lesley Land & Philip Yetton. The
Effectiveness of Software Development Technical Reviews: A Behav-
iorally Motivated Program of Research. IEEE Transactions on Soft-
ware Engineering, vol. 26, no. 1, pages 1–14, 2000.

[Schmidt 99] Douglas C. Schmidt. Why Software Reuse has Failed and How to
Make It Work for You. C++ Report, vol. 11, no. 1, 1999.

[Sedigh-Ali 01] Sahra Sedigh-Ali, Arif Ghafoor & Raymond A. Paul. Software
Engineering Metrics for COTS-Based Systems. IEEE Computer,
2001.

[Seker 04] Remzi Seker, Alta van der Merwe, Paula Kotze, Murat Mehmet
Tanik & R. Paul. Assessment of Coupling and Cohesion for
Component-Based Software by Using Shannon Languages. Jour-
nal of Integrated Design & Process Science, vol. 8, no. 4, pages
33–43, 2004.

[Selic 02] Bran Selic. On Modeling Architectural Structures with UML. In
ICSE 2002 Workshop Methods and Techniques for Software
Architecture Review and Assessment, Orlando, Florida, USA.
2002.

[Sharma 06] Naveen Sharma, Padmaja Joshi & Rushikesh K. Joshi. Applica-
bility of Weyuker’s Property 9 to Object Oriented Metrics. IEEE
Transactions on Software Engineering, vol. 32, no. 3, pages
209–211, 2006.

371

BIBLIOGRAPHY

[Shaw 95a] Mary Shaw. Architectural Issues in Software Reuse: It’s Not Just
the Functionality, It’s the Packaging. In ACM SIGSOFT Sympo-
sium on Software Reusability, pages 3–6. ACM Press, 1995.

[Shaw 95b] Mary Shaw, Robert DeLine, Daniel V. Klein, Theodore L. Ross,
David M. Young & Gregory Zelesnik. Abstractions for Software
Architecture and Tools to Support Them. IEEE Transactions on
Software Engineering, vol. 21, no. 4, pages 314–335, 1995.

[Shaw 96] Mary Shaw. Truth vs Knowledge: The Difference Between What a
Component Does and What We Know It Does. In 8th International
Workshop on Software Specification and Design (IWSSD ’96),
pages 181–185. IEEE Computer Society, 1996.

[Shepperd 91] Martin Shepperd & Darrel Ince. Algebraic Validation of Software
Metrics. In 3rd European Software Engineering Conference
(ESEC’91), Milan, Italy. 1991.

[Shull 02] Forrest Shull, Victor R. Basili, Jeffrey Carver, José C. Maldon-
ado, Guilherme Horta Travassos, Manoel Mendonça & Sandra
Fabbri. Replicating software engineering experiments: addressing
the tacit knowledge problem. In 2002 International Symposium on
Empirical Software Engineering (ISESE’02), pages 7–16. IEEE
Computer Society, 2002.

[Shull 04] Forrest Shull, Manoel Mendonça, Victor R. Basili, Jef-
frey Carver, José Carlos Maldonado, Sandra Fabbri, Guil-
herme Horta Travassos & Maria Cristina Ferreira. Knowledge-
Sharing Issues in Experimental Software Engineering. Empirical
Software Engineering, vol. 9, no. 1-2, pages 111–137, 2004.

[Simão 03] Régis P. S. Simão & Arnaldo D. Belchior. Quality Characteris-
tics for Software Components: Hierarchy and Quality Guides. In
Alejandra Cechich, Mario Piattini & Antonio Vallecillo, edi-
tors, Component-Based Software Quality: Methods and Tech-
niques, LNCS 2693, pages 184–206. Springer, 2003.

[Singer 99] Janice Singer. Using the American Psychological Association
(APA) Style Guidelines to Report Experimental Results. In Work-
shop on Empirical Studies in Software Engineering (WSESE
1999), pages 71–75, Oxford, England. 1999.

[Siy 96] Harvey Siy. Identifying the Mechanisms to Improve Code Inspec-
tion Costs and Benefits. PhD thesis, University of Maryland,
1996.

372

BIBLIOGRAPHY

[Sjøberg 05] Dag I. K. Sjøberg, Jo E. Hannay, Ove Hansen, Vigdis By Kam-
penes, Amela Karahasanovic, Nils-Kristian Liborg & Anette
Rekdal. A survey of controlled experiments in software engineer-
ing. IEEE Transactions on Software Engineering, vol. 31, no. 9,
pages 733–753, 2005.

[Sommerville 06] Ian Sommerville. Software Engineering. Addison Wesley, 8
edition, 2006.

[Stafford 01a] Judith A. Stafford & Kurt Wallnau. Component Composition
and Integration. In Ivica Crnkovic & Magnus Larsson, editors,
Building Reliable Component-Based Software Systems, pages
179–191. Artech House, Boston, London, 2001.

[Stafford 01b] Judith A. Stafford & Kurt Wallnau. Is Third Party Certification
Necessary? In 4th ICSE Workshop on Component-Based Soft-
ware Engineering (CBSE 2001), Toronto, Canada. 2001.

[Stewart 95] W. J. Stewart. Introduction to the Numerical Solution of
Markov Chains. Princeton University Press, 1995.

[Szyperski 02] Clemens Szyperski, Dominic Gruntz & Stephan Murer. Com-
ponent Software: Beyond Object-Oriented Programming.
Component Software Series. ACM Press - Addison Wesley,
New York, 2nd edition, 2002.

[Tichy 95] Walter Tichy, Paul Lukowicz, Lutz Prechelt & Ernst A. Heinz.
Experimental Evaluation in Computer Science: A Quantitative
Study. Journal for Systems and Software, vol. 28, no. 1, pages
9–18, 1995.

[Tichy 98] Walter Tichy. Should Computer Scientists Experiment More? IEEE
Computer, pages 32–40, 1998.

[Trochim 06] William M. Trochim. The Research Methods Knowledge
Base, 2nd Edition. http://trochim.human.cornell.edu/kb/
index.htm, (accessed on 2006/08/10) 2006.

[Vogelson 01] Cullen T. Vogelson. Seeking the perfect protocol. Modern Drug
Discovery: from concept to development, American Chemical
Society Press, vol. 4, no. 1, 2001.

[W3C 04] W3C. Web Services Architecture. Technical report, W3C, Febru-
ary 2004.

373

 http://trochim.human.cornell.edu/kb/index.htm
 http://trochim.human.cornell.edu/kb/index.htm

BIBLIOGRAPHY

[Wallnau 01] Kurt Wallnau & Judith A. Stafford. Ensembles: abstractions for a
new class of design problem. In 27th Euromicro Conference (Eu-
romicro 2001), pages 48–55, Warsaw, Poland. IEEE Computer
Society, 2001.

[Wallnau 02] Kurt Wallnau & Judith A. Stafford. Dispelling the Myth of Com-
ponent Evaluation. In Ivica Crnkovic & Magnus Larsson, ed-
itors, Building Reliable Component-Based Software Systems,
pages 157–177. Artech House, Boston, London, 2002.

[Wallnau 03] Kurt Wallnau. Volume III: A Technology for Predictable Assem-
bly from Certifiable Components. Technical Report CMU/SEI-
2003-TR-009, Carnegie Mellon, Software Engineering Institute,
April 2003.

[Wang 01] Nanbor Wang, Douglas C. Schmidt & Carlos O’Ryan. Overview
of the CORBA Component Model. In George T. Heineman &
William T. Councill, editors, Component-Based Software Engi-
neering: Putting the Pieces Together, pages 557–571. Addison-
Wesley Publishing Company, 1st edition, 2001.

[Wang 04] Nanbor Wang, Christopher Gill, Venkita Subramanian & Dou-
glas C. Schmidt. Configuring Real-time Aspects in Component
Middleware. In International Symposium on Distributed Ob-
jects and Applications, pages 1520–1537, Agia Napa, Cyprus.
2004.

[Washizaki 03] Hironori Washizaki, Hirokazu Yamamoto & Yoshiaki
Fukazawa. A Metrics Suite for Measuring Reusability of
Software Components. In 9th IEEE International Software
Metrics Symposium (METRICS 2003), Sydney, Australia. IEEE
Computer Society, 2003.

[Weller 93] Edward F. Weller. Lessons from Three Years of Inspection Data.
IEEE Software, vol. 10, no. 5, pages 38–45, 1993.

[Weyuker 88] Elaine J. Weyuker. Evaluating Software Complexity Measures.
IEEE Transactions on Software Engineering, vol. 14, no. 9,
pages 1357–1365, 1988.

[Winter 02] Michael Winter, Thomas Gensler, Alexander Christoph, Os-
car Nierstrasz, Stéphane Ducasse, Roel Wuyts, Gabriela Aré-
valo, Peter Müller, Chris Stich & Bastiaan Schönhage. Compo-
nents for Embedded Software - The PECOS Approach. In Second

374

BIBLIOGRAPHY

ECOOP International Workshop on Composition Languages
(WCL 2002), Málaga, Spain. 2002.

[Wohlin 99] C. Wohlin, P. Runeson, M. Höst, M. C. Ohlsson, B. Regnell &
A. Wesslén. Experimentation in Software Engineering: An In-
troduction, volume 6. Kluwer Academic Publishers, Boston,
EUA, 1999.

[Wohlin 02] Claes Wohlin, Aybuke Aurun, Håkan Petersson, Forrest Shull
& Marcus Ciolkowski. Software Inspection Benchmarking - A
Qualitative and Quantitative Comparative Opportunity. In Eighth
IEEE Symposium on Software Metrics (METRICS’2002), pages
118–127. IEEE Computer Society, 2002.

[Wolfs 96] Frank Wolfs. Introduction to the Scientific Method.
http://teacher.pas.rochester.edu/phy_labs/AppendixE/

AppendixE.html (accessed on 2006/07/04), University of
Rochester, 1996.

[Wudka 98] Jose Wudka. Physics 7 Notes. http://physics.ucr.edu/~wudka/

Physics7/Notes_www/node5.html (accessed on 2006/07/04).,
University of California Riverside, 1998.

[Yohai 87] Victor J. Yohai. High breakdown-point and high efficiency robust
estimates for regression. The Annals of Statistics, vol. 15, no. 20,
pages 642–656, 1987.

[Zelkowitz 96] Marvin V. Zelkowitz & Dolores Wallace. Experimental Models
for Software Diagnosis. Technical Report NISTIR 5889, National
Institute of Standards and Technology, September 1996.

[Zelkowitz 97] Marvin V. Zelkowitz & Dolores Wallace. Experimental Valida-
tion in Software Engineering. Journal of Information and Soft-
ware Technology, vol. 39, pages 735–743, 1997.

[Zhang 02] Lu Zhang & Dan Xie. Comments on "On the Applicability of
Weyuker Property 9 to Object-Oriented Structural Inheritance Com-
plexity Metrics. IEEE Transactions on Software Engineering,
vol. 28, no. 5, pages 526–527, 2002.

375

 http://teacher.pas.rochester.edu/phy_labs/AppendixE/AppendixE.html
 http://teacher.pas.rochester.edu/phy_labs/AppendixE/AppendixE.html
 http://physics.ucr.edu/~wudka/Physics7/Notes_www/node5.html
 http://physics.ucr.edu/~wudka/Physics7/Notes_www/node5.html

BIBLIOGRAPHY

[This page was intentionally left blank]

376

	1 Introduction
	1.1 Component-based development
	1.2 Current state of the art
	1.3 Contributions of this dissertation
	1.4 The approach
	1.5 Dissertation outline

	2 Component-Based Software Engineering
	2.1 Component-based development
	2.2 Software components
	2.2.1 Software components specification
	2.2.2 Component certification
	2.2.3 Component integration and composition
	2.2.4 Model structure

	2.3 Component-based development process
	2.3.1 Fundamental changes from traditional software development
	2.3.2 Roles in component-based development

	2.4 Component models
	2.4.1 A taxonomy for component models and technologies
	2.4.2 Models summary

	2.5 Metrics for component-based development
	2.5.1 Metrics and their underlying context
	2.5.2 Metrics ill-definition
	2.5.3 Insufficient validation
	2.5.4 A taxonomy for metrics proposals classification
	2.5.5 Environment-free component metrics
	2.5.6 Environment-dependent component metrics
	2.5.7 Discussion on metrics proposals

	2.6 Quantitative vs. Qualitative research
	2.7 Conclusions

	3 Experimental Software Engineering
	3.1 The scientific method
	3.2 Evidence-Based Software Engineering
	3.2.1 The benefits of evidence
	3.2.2 The pitfalls of evidence
	3.2.3 Experiment replication and tacit knowledge

	3.3 An Experimental Software Engineering process
	3.3.1 Experiment's requirements definition
	3.3.2 Experiment planning
	3.3.3 Experiment execution
	3.3.4 Data analysis
	3.3.5 Results packaging
	3.3.6 An overview of all the sub-processes

	3.4 The experimental process case study
	3.4.1 Motivation
	3.4.2 Related work
	3.4.3 Experimental planning
	3.4.4 Execution
	3.4.5 Analysis
	3.4.6 Interpretation
	3.4.7 Case study's conclusions and further work

	3.5 Related work
	3.5.1 Experimental Software Engineering process models
	3.5.2 Alternatives to experimental results evaluation
	3.5.3 Qualitative approaches to evaluation in Software Engineering
	3.5.4 Benchmarking

	3.6 Conclusions

	4 Ontology-driven Measurement
	4.1 Revisiting metrics proposals limitations
	4.1.1 Providing adequate context for metrics proposals
	4.1.2 Toward a sound and usable approach to metrics definition
	4.1.3 Facilitating metrics validation

	4.2 Defining Ontology-Driven Measurement
	4.2.1 Aligning the approach with a standard

	4.3 Defining and collecting metrics with OCL
	4.3.1 Using OCL expressions to collect information

	4.4 The FukaBeans case study
	4.4.1 Motivation
	4.4.2 Related work
	4.4.3 Experimental planning
	4.4.4 Execution
	4.4.5 Analysis
	4.4.6 Interpretation
	4.4.7 Case study's conclusions and further work

	4.5 Related work
	4.5.1 ODM applications to other domains

	4.6 Conclusions

	5 ODM expressiveness assessment
	5.1 Introduction
	5.2 A component assembly toy example
	5.2.1 Structural model in UML 2.0
	5.2.2 Structural model, in CCM
	5.2.3 Concerns addressed in our example

	5.3 Informal description of structural metrics
	5.3.1 Component metrics
	5.3.2 Assembly-dependent component metrics
	5.3.3 Collected metrics
	5.3.4 Comments on metrics values

	5.4 Metrics definition formalization
	5.4.1 UML 2.0
	5.4.2 CORBA Component Metamodel

	5.5 Comments on the metrics' definitions
	5.5.1 Uncovering shortcomings in the original metrics definitions
	5.5.2 Reusing formalizations
	5.5.3 Uncovering hidden relationships between metrics sets
	5.5.4 Metrics definition patterns
	5.5.5 Quality framework
	5.5.6 Metrics definition context
	5.5.7 Specification formalism
	5.5.8 Computational support
	5.5.9 Flexibility
	5.5.10 Validation

	5.6 On the complexity of metamodels
	5.7 Conclusions

	6 Process assessment in CBD
	6.1 Motivation
	6.1.1 Problem statement
	6.1.2 Research objectives
	6.1.3 Context

	6.2 Related work
	6.2.1 Inspection techniques
	6.2.2 Inspection success drivers

	6.3 Experimental planning
	6.3.1 Goals
	6.3.2 Experimental units
	6.3.3 Experimental material
	6.3.4 Tasks
	6.3.5 Hypotheses and variables
	6.3.6 Design
	6.3.7 Procedure
	6.3.8 Analysis procedure

	6.4 Execution
	6.4.1 Sample
	6.4.2 Preparation
	6.4.3 Data collection performed

	6.5 Analysis
	6.5.1 Descriptive statistics
	6.5.2 Data set reduction
	6.5.3 Hypothesis testing

	6.6 Interpretation
	6.6.1 Evaluation of results and implications
	6.6.2 Threats to validity
	6.6.3 Inferences
	6.6.4 Lessons learned

	6.7 Conclusions and future work
	6.7.1 Summary
	6.7.2 Impact
	6.7.3 Future work

	7 Component reusability assessment
	7.1 Motivation
	7.1.1 Problem statement
	7.1.2 Research objectives
	7.1.3 Context

	7.2 Related work
	7.2.1 The Eclipse plug-ins architecture
	7.2.2 Experimental assessment of component reuse

	7.3 Experimental design
	7.3.1 Goals
	7.3.2 Experimental units
	7.3.3 Experimental material
	7.3.4 Tasks
	7.3.5 Hypotheses and variables
	7.3.6 Design
	7.3.7 Procedure
	7.3.8 Analysis procedure

	7.4 Execution
	7.4.1 Sample
	7.4.2 Preparation
	7.4.3 Data collection performed

	7.5 Analysis
	7.5.1 Descriptive statistics
	7.5.2 Data set reduction
	7.5.3 Hypotheses testing

	7.6 Interpretation
	7.6.1 Evaluation of results and implications
	7.6.2 Threats to validity
	7.6.3 Inferences
	7.6.4 Lessons learned

	7.7 Conclusions and future work
	7.7.1 Summary
	7.7.2 Impact
	7.7.3 Future work

	8 Conclusions
	8.1 Summary
	8.2 Contributions
	8.2.1 Metamodels construction and extension
	8.2.2 Quality models and their validation
	8.2.3 Formalization of metrics for CBD
	8.2.4 Validation of proposals through a common process model
	8.2.5 Development of tool support for experimentation

	8.3 Future work
	8.3.1 Experimental process improvement
	8.3.2 Extensions to our experimental work

	A Component models
	A.1 Introduction
	A.2 A toy example
	A.3 Inclusion criteria
	A.4 Component models
	A.4.1 JavaBeans
	A.4.2 Enterprise JavaBeans
	A.4.3 COM+
	A.4.4 .Net
	A.4.5 CCM
	A.4.6 Fractal
	A.4.7 OSGi
	A.4.8 Web services
	A.4.9 Acme
	A.4.10 UML 2.0
	A.4.11 Kobra
	A.4.12 Koala
	A.4.13 SOFA 2.0
	A.4.14 PECOS

	B Bridging the gap between Acme and UML for CBD
	B.1 Introduction
	B.2 Mapping Acme into UML
	B.2.1 Components
	B.2.2 Ports
	B.2.3 Connectors
	B.2.4 Roles
	B.2.5 Systems
	B.2.6 Representations
	B.2.7 Properties
	B.2.8 Constraints (invariants and heuristics)
	B.2.9 Styles and types

	B.3 Discussion
	B.4 Related work
	B.5 Conclusions

	C Tool support
	C.1 Documentation roadmap
	C.2 System overview
	C.3 Requirements
	C.4 Views
	C.4.1 Structural view
	C.4.2 Dynamic view

	C.5 Mapping between the views
	C.6 Architecture Analysis and Rationale
	C.7 Mapping architecture to requirements
	C.7.1 Ontology definition in UML
	C.7.2 Metrics and heuristics definition, in OCL, using the ODM approach
	C.7.3 Representation of the experimental data as an instantiation of the ontology
	C.7.4 Automatic metrics collection and heuristics test
	C.7.5 Automatic statistical analysis of results

