
Strengthening Refactoring:

Towards Software Evolution with Quantitative and Experimental Grounds

Sérgio Bryton

QUASAR/VALSE Team, CITI

Departamento de Informática, FCT

Universidade Nova de Lisboa

Monte da Caparica, Portugal

sergio.bryton@gmail.com

Fernando Brito e Abreu

QUASAR/VALSE Team, CITI

Departamento de Informática, FCT

Universidade Nova de Lisboa

Monte da Caparica, Portugal

fba@di.fct.unl.pt

Abstract: Refactoring is a process meant to improve the internal

quality of software systems. However, while on one hand, the

guidelines for this delicate process are still empirical and

qualitative, on the other hand, software product metrics often

indicate that this process has the opposite results. Also, there is a

lack of evidence regarding improvements on maintainability due to

refactoring. This means that this process, although widely

acknowledged as one of the best software practices, is difficult to

deploy within large scale software systems, and can be better

grounded. To address these challenges, we propose a method for

refactoring with quantitative and experimental grounds. Upon the

consolidation of this method, we will build the necessary blocks to

implement and validate it.

Keywords: Software Design; Quality Analysis and Evaluation

Techniques; Software Engineering Tools and Methods; Software

Quality Tools; Review and Audit.

I. INTRODUCTION

A. Overview

Refactoring is the process of changing a software system
in such a way that it does not alter the external behavior of
the code, yet improves its internal structure, with the purpose
of minimizing the chances of introducing bugs [1]. However,
this technique still presents some fragilities:

1) Qualitative, inefficient and error-prone process;
2) Lack of quantitative evidence of the effects of

refactoring on product quality.

Take, for instance, the following heuristic, proposed by

Fowler [1] to detect the Long Method bad smell:

“Whenever we feel the need to comment something, we write

a method instead.”

This kind of guidelines is mostly subjective, thus not

repeatable, prone to errors and not automatable [15, 16].

Another evidence of refactoring fragilities occurs when it is

reported that although people use refactoring to improve the

quality of their systems, metrics indicate that this process

often has the opposite results [2].

B. A refactoring example

To better understand the problem, we will use one of
Fowler’s refactoring examples, the “Video Store”, which is a
program to calculate and print a statement of a customer's
charges at a video store [1].

In this program, to justify the need for refactoring, some
design flaws are pointed out [1], like these in the statement()
method1 from the Customer class:

1) The statement() method is too long;

2) The statement() method does too much;

3) Many of the things done by the statement() method

should be done by other classes.

Requirements evolution also points out [1] to the

consequences of not performing the refactoring:

1) If we want a method to produce an HTML statement,

none of the behavior of the statement() method can be

reused, leading to the implementation of a similar

htmlStatement() method;

2) If the charging rules change, both (statement() and

htmlStatement()) methods have to be changed;

3) Changing the way movies are classified, will affect

both the way renters are charged for movies and the way

that frequent renter points are calculated, that is both

(statement() and htmlStatement()) methods will have to be

changed consistently.

As we see, the refactoring decision process is empirical

and qualitative in nature, which may lead to errors, hampers
its usage in large scale software systems and will hardly be
repeatable.

To analyze the impact of this refactoring on
maintainability, we collected a set of software product
metrics, all defined in [16], from both versions of this
example, with a tool [14], to try to find evidence of the
claimed product quality improvements.

1 The initial and final versions of the statement() method

can be found in appendix A.

2009 Fourth International Conference on Software Engineering Advances

978-0-7695-3777-1/09 $26.00 © 2009 IEEE

DOI 10.1109/ICSEA.2009.90

570

2009 Fourth International Conference on Software Engineering Advances

978-0-7695-3777-1/09 $26.00 © 2009 IEEE

DOI 10.1109/ICSEA.2009.90

570

From Figures 1 and 2 we can see that the statement()
method has improved, after the refactoring, regarding size
and complexity.

Figure 1: Size metrics for the statement() method

from the Customer class

Figure 2: Complexity metrics for the statement() method

from the Customer class

From Figures 3, 4 and 5 we can see that the Customer

class did not have improvements regarding size. On the
contrary, the method lines of code and the number of
methods have increased. Regarding complexity and
cohesion, this class records minor improvements after
refactoring. Notice that with almost the double of the number
of methods, the method lines of code practically remains
unaltered, which means that, in spite of having more
methods, these are shorter. Even though the mean cyclomatic
complexity is half the original, the number of methods has
doubled, therefore this does not mean necessarily that the
methods are less complex, as the results of the weighted
methods per class confirms.

Figure 3: Size metrics for the Customer class

Figure 4: Complexity metrics for the Customer class

Figure 5: Cohesion metrics for the Customer class

Figure 6: Size metrics for the Video Store program

From Figures 6, 7 and 8 we can see that the Video Store

program has practically doubled in size, considering the
number of classes, the number of methods and the total lines

571571

of code. Another result is that of the mean method lines of
code, which is slightly smaller in the refactored version.
However, since this version has almost the double of the
number of methods, in average, the methods of the
refactored version are not smaller than those of the original
version. Regarding cohesion, in spite of the mean lack of
cohesion of methods being half of the original, since the
number of methods practically doubled, the cohesion benefits
in the overall program are irrelevant. Finally, the mean
cyclomatic complexity is practically the same in both
versions, meaning that the methods in both versions have
similar complexities. This is corroborated by the weighted
methods per class, which is almost the double of the original
version, and coherent with the number of methods in the
refactored version, which is also practically the double of the
original version.

Figure 7: Cohesion metrics for the Video Store program

Figure 8: Complexity metrics for the Video Store

program

Considering the results obtained, there is no evidence that

the internal software quality has improved. On the contrary,
it is generally worse in size, complexity and cohesion.

Since the process which lead to these results [1] was
empirically sound and performed by an expert, either these
metrics are not appropriate to evaluate the internal quality of
software systems, namely the changes introduced by
refactoring, or there is a price to pay for maintainability in

cohesion, complexity and size2. However, to the best of our
knowledge, there is no evidence of the maintainability
benefits resulting from refactoring and, therefore, we cannot
evaluate this tradeoff.

To summarize, this research intends to provide a solid
contribution towards mitigating some of the refactoring
fragilities presented above, thus making it a stronger process.

The remainder of this paper is organized as follows.
Section 2 will present a synthesis on the state of the art;
section 3 will present the research objectives and approach;
in section 4 the current work and preliminary results will be
described, followed by section 5 where the work plan and
implications are described and by section 6 where some
preliminary conclusions are drawn.

II. STATE OF THE ART

Several refactoring catalogues have been proposed, being
the most widely accepted those from Fowler [1] and
Kerievsky [5]. There are also some works regarding
refactoring from OOP to AOP, such as those from Laddad
[6] and Monteiro [7]. All of these approaches are of
qualitative nature and lack adequate empirical validation.

Stroggylos et al. [2] question if refactoring improves the
product quality, based on metrics results.

Simon et. al. agree with the difficulty of identifying
where to apply each refactoring, and propose object-oriented
cohesion-based metrics to solve this problem. However, they
do not assess the quality improvements after the refactoring
[9] and cohesion itself is not enough, as can be concluded
from the previous example.

Tahvildari proposed a taxonomy for design flaws, a
reengineering strategy [11], and a framework to detect
design flaws and re-engineer them [12, 13] for object-
oriented systems using, among other, classical modularity
metrics. The possibility of refactoring by using design
patterns or aspects is not addressed in her work.

Mens [8], Simon [9], Naji [10] and Tahvildari [11,12,13]
corroborate the opinion that metrics can identify potential
refactorings and estimate the refactoring effect.

In spite of the research done so far, the relation between
code smells, refactorings, and their effects on the internal
product quality and maintainability has a lot of room to
progress.

III. RESEARCH OBJECTIVES AND APPROACH

A. Research Objectives

The objective of this research is to provide quantitative
and experimental grounds to the refactoring process, namely
regarding code smells detection and refactoring selection, as
well as provide evidence of its effect on the internal product
quality.

The main expected contributions of this research are:

2 Coupling was not measured since the only available metrics in the used

tool required more than one package, which was not the case (Afferent and

Efferent Coupling).

572572

(1) A refactoring method (QBR: Quantitative-Based
Refactoring) with quantitative and experimental
grounds, depicted in figures 9, 10, 11 and 12;

(2) A catalogue of adequate metrics for code smells
detection;

(3) A compilation of the actual refactoring catalogues,
including the alternatives for Design Patterns and
Aspect-Oriented Programming, amended by
quantitative evidence of each refactoring effect on
software product internal quality;

Figure 9: QBR Overview

Figure 10: QBR Preparation

Figure 11: QBR Refactoring

Figure 12: QBR Evaluation

B. Research Approach

The classical scientific method will be followed, since it
is appropriate for software engineering research [3, 4].

First, an evaluation of the state of the art will be
conducted; then the QBR method and the remainder
contributions will be developed and validated with
experiments and statistical methods.

To develop the catalogue for code smells detection
metrics, we intend to use statistics, like the Binary Logistic
Regression, to define a mathematical model for each code
smell, based on product metrics and expert’s opinion. Each
model will then be used to detect code smells based on
probabilities.

Each code smell can be refactored according to several
alternatives (aspects, design patterns, etc). The objective will
be finding which is the best alternative for each smell. We
intend to conduct experiments to find statistical evidence on
the benefits of each alternative to allow conclusions
generalization. The outcome will be a rank of alternatives for

573573

refactoring based on the probabilities of improving the code
best.

IV. CURRENT WORK AND PRELIMINARY RESULTS

A lot of significant references have already been

collected and these seem to underline the actuality and

relevance of this research.

Experiments and several statistical methods have already

been successfully used to study software quality properties

like modularity [18].

The QBR method is an evolution and generalization of

the MORe method to software properties other than

modularity [15].

The data presented here, regarding the refactoring effects

on the internal product quality, is a first step towards the

usage of metrics for code smell detection.

The Binary Logistic Regression has already been used

successfully [16] to detect the Long Method bad smell [1],

and a model has been established for it. However, further

experimentation is required to generalize the results.

V. WORK PLAN AND IMPLICATIONS

The work plan is divided into four phases, which are

expected to take place between September 2009 and

September 2012, when the PhD dissertation of the first

author is expected to be delivered.

Phase 1 (6 months): Aims at obtaining theoretical and

practical preparation. The main activity here will be an

intensive literature review. The main areas of research will

be (i) refactoring code-smells, (ii) catalogues, (iii)

quantitative based refactoring, (iv) experimental software

engineering and related areas like statistics.

Phase 2 (18 months): The research contributions will be

implemented and validated (i) QBR (2 months); (ii) Code

smells detection metrics catalogue (7 months); (iii) Amended

refactoring catalogue with evidence of refactoring effects on

software quality characteristics (9 months).

Phase 3 (3 months): Production, submission, review and

presentation of papers with intermediate results, to obtain

validation feedback from international research peers.

Phase 4 (9 months): Writing and reviewing of the PhD

dissertation chapters.

VI. CONCLUSIONS

The refactoring process, in spite of being empirically

solid, reveals some fragilities, like those discussed herein

(based upon an example), that hampers its widespread

adoption.

The outcome of this research expects to strengthen the

refactoring process, by contributing to the mitigation of the

discussed fragilities, by means of quantitative and

experimental arguments.

By providing the grounds to make refactoring a more

efficient process and granting quantitative evidence on its

effects on product quality characteristics, we believe to be

delivering a valuable contribution towards software

evolution.

REFERENCES

[1] Martin Fowler, Kent Beck, John Brant, and William Opdyke,
Refactoring: Improving the Design of Existing Code, Addison-
Wesley, 1999

[2] Konstantinos Stroggylos and Diomidis Spinellis. Refactoring: Does it
improve software quality?. In B. Boehm, S. Chulani, J. Verner, and
B. Wong, editors, 5th International Workshop on Software Quality.
ACM Press, May 2007.

[3] Marvin V. Zelkowitz, Dolores R. Wallace: Experimental validation in
software engineering. Information & Software Technology 39(11):
735-743 (1997)

[4] W. Tichy, N. Harbermann, and L. Prechelt. “Future directions in
software engineering”. ACM SIGSOFT, Software Engineering Notes,
18(1):35–48, 1993.

[5] Joshua Kerievsky, “Refactoring to Patterns”, Addison-Wesley, 2004

[6] Ramnivas Laddad, “Aspect-Oriented Refactoring”, Addison-Wesley,
2006

[7] M.P. Monteiro, J.M. Fernandes, Towards a Catalogue of Refactorings
and Code Smells for AspectJ. Transactions on Aspect-Oriented
Software Development (TAOSD), A. Rashid, M. Aksit (Eds.),
Springer LNCS vol. 3880/2006, p. 214 – 258. ISSN: 0302-9743.
DOI: 10.1007/11687061

[8] Tom Mens, Tom Tourwé, “A survey of software refactoring”, IEEE
Transactions on Software Engineering Volume 30, Issue 2, Feb 2004
Page(s): 126 – 139, 2004

[9] Frank Simon , Frank Steinbrückner , Claus Lewerentz, Metrics Based
Refactoring, Proceedings of the Fifth European Conference on
Software Maintenance and Reengineering, p.30, March 14-16, 2001

[10] Naji Habra, Miguel Lopez, “On the use of measurement on Software
Restructuring”, in Proceedings of the International ERCIM Workshop
on Software Evolution, 2006

[11] Ladan Tahvildari and Kostas Kontogiannis, in Proceedings the 7th
European Conference on Software Maintenance and Reengineering
(CSMR’03), 2003

[12] Ladan Tahvildari, “Quality-Driven Object-Oriented Reengineering
Framework, Proceedings of the 20th IEEE International Conference
on Software Maintenance (ICSM’04), 2004

[13] Mazeiar Salehie, Shimin Li, Ladan Tahvildari, “A Metric-Based
Heuristic Framework to Detect Object-Oriented Design Flaws, in
Proceedings of the 14th IEEE International Conference on Program
Comprehension (ICPC’06), 2006

[14] F. Sauer. “Metrics.” Internet: metrics.sourceforge.net, Jul. 8, 2005
[accessed on May 2, 2009].

[15] Sérgio Bryton and F. Brito e Abreu, “Modularity-Oriented
Refactoring”, in Proceedings the 12th European Conference on
Software Maintenance and Reengineering (CSMR’08), 2008

[16] Sérgio Bryton and F. B. e Abreu, “Removing Subjectivity from Bad
Smell Detection”, unpublished, 2009.

[17] Henderson-Sellers, B. “Object-Oriented Metrics, measures of
Complexity”, Prentice Hall, 1996

[18] Sérgio Bryton. "Modularity Improvements with Aspect-Oriented
Programming". MSc Dissertation, Faculdade de Ciências e
Tecnologia, Universidade Nova de Lisboa, 2008. Internet:
http://www-ctp.di.fct.unl.pt/QUASAR/Resources/publications.htm

574574

APPENDIX A – INITIAL AND FINAL VERSIONS OF THE STATEMENT METHOD FROM THE CUSTOMER CLASS

 public String statement() {

 double totalAmount = 0;

 int frequentRenterPoints = 0;

 Enumeration<Rental> rentals = _rentals.elements();

 String result = "Rental Record for " + getName() + "\n";

 while (rentals.hasMoreElements()) {

 double thisAmount = 0;

 Rental each = (Rental) rentals.nextElement();

 //determine amounts for each line

 switch (each.getMovie().getPriceCode()) {

 case Movie.REGULAR:

 thisAmount += 2;

 if (each.getDaysRented() > 2)

 thisAmount += (each.getDaysRented() - 2) * 1.5;

 break;

 case Movie.NEW_RELEASE:

 thisAmount += each.getDaysRented() * 3;

 break;

 case Movie.CHILDRENS:

 thisAmount += 1.5;

 if (each.getDaysRented() > 3)

 thisAmount += (each.getDaysRented() - 3) * 1.5;

 break;

 }

 // add frequent renter points

 frequentRenterPoints ++;

 // add bonus for a two day new release rental

 if ((each.getMovie().getPriceCode() == Movie.NEW_RELEASE)

 &&

 each.getDaysRented() > 1) frequentRenterPoints ++;

 //show figures for this rental

 result += "\t" + each.getMovie().getTitle()+ "\t" +

 String.valueOf(thisAmount) + "\n";

 totalAmount += thisAmount;

 }

 //add footer lines

 result += "Amount owed is " + String.valueOf(totalAmount) +

 "\n";

 result += "You earned " + String.valueOf(frequentRenterPoints)

 +

 " frequent renter points";

 return result;

 }

Listing 1: Initial version of the statement() method from the Customer class

 public String statement() {

 Enumeration<Rental> rentals = _rentals.elements();

 String result = "Rental Record for " + getName() + "\n";

 while (rentals.hasMoreElements()) {

 Rental each = (Rental) rentals.nextElement();

 //show figures for this rental

 result += "\t" + each.getMovie().getTitle()+ "\t" +

 String.valueOf(each.getCharge()) + "\n";

 }

 //add footer lines

 result += "Amount owed is " +

 String.valueOf(getTotalCharge()) + "\n";

 result += "You earned " +

 String.valueOf(getTotalFrequentRenterPoints()) +

 " frequent renter points";

 return result;

 }

Listing 2: Final version of the statement() method from the Customer class

575575

