
Definition and Validation of Metrics
for ITSM Process Models

Fernando Brito e Abreu
QUASAR/CITI/FCT

Universidade Nova de Lisboa
Caparica, Portugal
fba@di.fct.unl.pt

Jorge Manuel Freitas
QUASAR/CITI/FCT

Universidade Nova de Lisboa
Caparica, Portugal

 jorge.manuel.freitas@gmail.com

Raquel de Bragança V. da Porciúncula
QUASAR/CITI/FCT

Universidade Nova de Lisboa
Caparica, Portugal

raquel.braganca.porciuncula@gmail.com

José Carlos Costa
QUASAR/CITI/FCT

Universidade Nova de Lisboa
Caparica, Portugal

jcgcosta@gmail.com

Abstract – Process metrics can be used to establish baselines, to
predict the effort required to go from an “as-is” to a “to-be”
scenario or to pinpoint problematic ITSM process models.
Several metrics proposed in the literature for business process
models can be used for ITSM process models as well.

This paper formalizes some of those metrics and proposes
some new ones, using the Metamodel-Driven Measurement
(M2DM) approach that provides precision, objectiveness and
automatic collection. According to that approach, metrics were
specified with the Object Constraint Language (OCL), upon a
lightweight BPMN metamodel that is briefly described. That
metamodel was instantiated with a case study consisting of two
ITSM processes with two scenarios (“as-is” and “to-be”) each.
Values collected automatically by executing the OCL metrics
definitions, upon the instantiated metamodel, are presented.

Using a larger sample with several thousand meta-instances,
we analyzed the collinearity of the formalized metrics and were
able to identify a smaller set, which will be used to perform fur-
ther research work on the complexity of ITSM processes.

Keywords – IT Service Management; Process Modeling; BPMN;
Metamodel; Process Metrics

I. INTRODUCTION
A continuous improvement of IT Service Management

(ITSM) processes is required to keep competitiveness. To
improve existing processes, Business Process Reengineering
(BPR) actions have long been carried out [1]. In BPR,
organizations look at their processes from a "clean slate"
perspective and determine how they can best construct these
processes to improve the way they can be conducted. Reengi-
neering is a fundamental rethinking and radical redesign of
those processes to achieve effective improvements in cost,
quality, speed, and service. A technique adopted for process
reengineering is gap analysis, which aims at determining the
steps to take in moving from the current state (aka “as-is”) to a
desired future state (aka “to-be”). Before the reengineering
team can proceed to redesign an ITSM process, it should
understand the existing one (the “as-is” or baseline), namely to
identify what prevents the process from achieving the desired
results. Modeling the current state can be performed with the
Business Process Model and Notation (BPMN) [2] which has
a well defined syntax and semantics, due to a precise meta-
model, therefore allowing unambiguous modeling. The

increasing importance and adoption1 of BPMN stems from the
fact of being promoted by the Object Management Group
(OMG), a major stakeholder in the IT field, that has pushed
other important initiatives like the UML standardization.

The objective of the “to-be” phase is to produce alternatives
to the current situation which satisfy the strategic goals of
ITSM [3]. Besides performing self-assessments on the status
of IT performance, it is equally important to test and compare
it with the view the market has on which are the best practices
that characterize best-of-breed organizations. Fortunately,
several best practices frameworks for ITSM are available to
guide us in setting “to-be” scenarios, like the IT Infrastructure
Library (ITIL) [4], the Control Objectives for Information and
related Technology (CobiT) [5], the Microsoft Operations
Framework (MOF) [6] or the IBM Tivoli Unified Process
(ITUP). Those ITSM frameworks have a lot in common.
Several mapping initiatives have been conducted, such as
between COBIT and ITIL [7] or MOF and ITIL [8].

The combined results of best-practices benchmarking and
self-assessments lead to the identification of gaps in terms of
people, process and technology [9]. Having identified the
potential improvements to the existing ITSM processes, the
“to-be” process models can then be designed. Summing up,
the deliverables of either the “as is” or the “to be” phases are a
set of process models expressed in the chosen process model-
ing language. Herein we will consider that language to be
BPMN. For a comparison with other process modeling lan-
guages see [10].

To estimate the costs of process reengineering we need to
quantify the gap between “as-is” and “to-be” scenarios [11].
The larger the gap, the greater effort we will require to bridge
it. One way of quantifying that gap is measuring the difference
in complexity between the “as-is” and “to-be” process models.
This requires quantifying the complexity of each process
model.

Instead of the somehow radical process reengineering ap-
proach, we can adopt a more conservative continual process
improvement approach to the effectiveness and efficiency of
service delivery and management [9], by following a Plan-Do-

1 - An indicator of this claim is the observation that a growing number of IT
modeling tools are offering BPMN.

2010 Seventh International Conference on the Quality of Information and Communications Technology

978-0-7695-4241-6/10 $26.00 © 2010 IEEE

DOI 10.1109/QUATIC.2010.13

79

Check-Act cycle. Checking involves monitoring, measuring
and analyzing, so process complexity metrics are also a must.
Last, but not the least, process complexity has also been found
to be a good predictor of the propensity to fail [12, 13], so
measuring process complexity is required if we intend to
develop process reliability estimation models.

Although several metrics for assessing the complexity of
process models have been recently proposed, we were not able
to find in the literature a systematic and replicable approach to
specify and collect them. In this paper we formalize several
process complexity metrics using the Metamodel Driven
Measurement (M2DM) technique [14], using OCL [15] upon a
BPMN metamodel. The advantages of this technique are (i) the
clarification of the target domain (due to the use of a meta-
model), (ii) the accuracy achieved by the use of OCL, (iii) the
availability of tools for automatic metrics collection that use as
input an OCL specification, as the USE (UML-based
Specification Environment) used herein [16], and finally (iv) it
facilitates the replication of experiments due to its objectivity.

This paper is organized as follows: first, we briefly describe
a BPMN metamodel; next, an overview is given of a case
study; then, we outline the metamodel instantiation with the
USE tool; then we show how a set of metrics can be formally
defined upon that metamodel using the M2DM approach; we
then describe the metrics collection process and present the
resulting values for the case study; finally, we reduce the num-
ber of metrics to obtain a non-collinear set and envision some
research questions where those process metrics will play an
important role, as an outline of our future research in the area
of ITSM process complexity.

Figure 1. BPMN metamodel (abridged version)

II. BPMN METAMODEL
OMG specifications are usually represented by UML class

diagrams where metamodel well-formedness rules are
expressed as OCL clauses. A public domain metamodel
expressing OMG’s BPMN specification [2] was not available
by the time we started this research thread on the complexity
of ITSM process models. Therefore, we decided to develop
one in our research group [17]. Although not compliant with

OMG’s MOF [18], our metamodel is based in the BPMN v1
specification and has a full coverage of its modeling concepts,
as outlined in Figure 1. This metamodel was modularized into
several packages, by grouping related concepts, to facilitate
understanding:
� Model - Is the top view where we represent the project we

are modeling and its versions;
� StructuralElements - Represents how BPMN elements

that constitute a process interact;
� SupportingElements – Represents concepts that are

required for process implementation, but do not have
graphical representation in BPMN, such as gateway ports.

� FlowObjects – Represents Activities, Gateways and
Events; these are the more recurrent BPMN elements;

� Connectors - Represents elements that interconnect the
other BPMN elements such as Associations, Message
Flows and Sequence Flows;

� InternalConnections - Represents how the different
BPMN elements are connected to each other within the
same pool (using Sequence Flows);

� Orchestration - Represents how BPMN elements on
different pools communicate (using Message Flows);

� Artifacts – Represents additional elements such as
Groups (of elements), Data Objects and Text Annotations;

� PackageUseCases – Represents the traceability of
process modeling to use case modeling;

� Simulation - Represents the resources definition and their
allocation to tasks, to support model enactment.

The package diagram in annex A briefly outlines the
organization of our BPMN metamodel. As with OMG’s MOF-
based metamodels, this one was enriched with well-
formedness rules (e.g. referential integrity constraints)
expressed as OCL clauses.

To allow replication by other researchers, the full meta-
model and its instantiation (both expressed in the USE tool
input format) are made available at our web site in:
http://ctp.di.fct.unl.pt/QUASAR/Resources/DataFiles/

III. CASE STUDY AND METAMODEL INSTANTIATION
We now introduce a case study that will be used to instan-

tiate the BPMN metamodel and to illustrate the metrics collec-
tion process.

A. Case Study
This case study concerns a public sector organization

responsible for supporting the governance of Portuguese
Government electronic domains, with a strategic focus on
electronic security, communication and decision-support sys-
tems. It has a CEO, 2 department coordinators, 34 internal IT
professionals and 12 outside collaborators and is organized in
3 units:
1. Quality and Services Department: its mission is to as-

sure quality management and services of this organization,
including the whole range from services of local support
and personalized services to users, management of tech-
nology support services and the provision of services. It is
also in charge of auditing. This organizational unit inte-
grates all the organizational skills of Users and Services,
Control and Operations, Service Desk, Project Manage-
ment, Service Management and Media Lab.

0..1

*

attachingA ctivity

0 ..1

*

attachingGroup

*0..1

2..*1

*

1

target

*

1

flowSource

source

*1

1..*
1

*
1

pool

process

*
0..1 _

1 1..*

*

*

source

assoc iationSource

1

*

messageFlowTarget

*

1

messageFlowSource

*

1

Association

MessageFlow

Artifact

TextAnnotationDataObjectGroup

AttachedIntermediateEvent

Task
Subprocess

Activity

IntermediateEvent

OrchestrationElement

BpmnElement

GraphicalElement

SequenceFlow

GatewayExclusive

Gate

ParallelGateway

ComplexGateway

GatewayDataBasedInclusive

GatewayEventBasedExclusiveGatewayDataBasedExclusive

EndEvent

StartEvent

Gateway

Event

FlowObject

Swimlane

Lane
Pool

ProcessModel

Diagram

80

2. Technology and Applications Department: its mission is
to manage the entire technology infrastructure, including
the whole range of services from the infrastructure and
communications services and networking, operating sys-
tems, applications and internet content. This organizational
unit has all the organizational skills of Communications
and Systems, Security and Digital Identity, Applications
and Systems and Decision Support, Internet Content and
different dimensions of support and assistance, operational
control of infrastructures and engineering research and
development.

3. Board Secretariat: its mission is supporting the Director
on Administrative and Financial matters, Marketing and
Communication activities.
This organization aims to be certified on the adoption of

good practices in IT Service Management and therefore chose
the ISO/IEC 20000:2005 standard [19, 20], which is based on
ITIL version 2 [21]. Besides being a good basis for indepen-
dent (third-party) assessment, this standard may be used by
businesses that are going out to tender for their services, to
provide a consistent approach by all service providers in a
supply chain, to benchmark IT service management, to
demonstrate the ability to meet customer requirements and to
improve services.

To be certified according to ISO/IEC 20000, thirteen 13
distinct processes must be implemented. To do so, this
organization implemented new processes and improved exist-
ing ones. One of the co-authors of this paper was actively
involved in this process reengineering action. In annexes B
through E we present the “as-is” and “to-be” models for two
processes that were already in place: Incident Management
and Problem Management and were improved according to
good practices.

In ISO/IEC 20000 and ITIL terminology, an incident is de-
fined as an unplanned interruption to an IT service or reduc-
tion in the quality of an IT service. Failure of a configuration
item that has not yet impacted service is also an incident, for
example failure of one disk from a mirror set. The primary
goal of the Incident Management process is to restore normal
service operation as quickly as possible and minimize the
adverse impact on business operations, thus ensuring that the
best possible levels of service quality and availability are
maintained.

ISO/IEC 20000 and ITIL define a problem as the unknown
cause of one or more incidents. Problem Management is the
process responsible for managing the lifecycle of all problems.
The primary objectives of the Problem Management process
are to prevent problems and resulting incidents from happen-
ing, to eliminate recurring incidents and to minimize the
impact of incidents that cannot be prevented.

The main difference between Incident Management and
Problem Management is that the former deals with fighting
symptoms to incidents, while the latter seeks to remove the
causes of incidents permanently from the IT infrastructure. In
Incident Management, interaction with customers is usually
reactive, with the main objective being to find a workaround
solution to restore normal services for the customer, as soon as
possible. In Problem Management, IT support staff is more
proactive as they dedicate resources to establishing the
underlying causes of incidents. In this process there is usually

little or no interaction with the customers, as this is left to the
responsibility of the Service Desk.

B. Metamodel Instantiation
Using a model-driven transformation, our BPMN meta-

model, originally produced with a UML visual modeling tool,
was transformed into its textual representation for input in the
USE validation environment [17]. Also using a model-driven
transformation, as described in [22], we generated BPMN
metamodel instances out of the four ITSM processes in
annexes B through E, which were modeled as BPMN dia-
grams, also using a visual modeling tool. This transformation
required several steps, which are summarized:

Step 1 – Identification of all process objects (represented
as meta-objects in the BPMN metamodel) and naming them
with a convention that guaranteed uniqueness. This was
required to avoid name clashing, because the USE tool only
supports a single namespace.

Step 2 – Identification of the source and target objects for
each sequence flow and message flow. Flows were named by
composing the source and target identifiers.

Step 3 – Generation of meta-class and meta-association
instances (meta-objects and meta-links, respectively) in the
USE input format.

Step 4 – Loading the BPMN metamodel and then the
ITSM instances upon it.

Step 5 – Checking of all situations described by the well-
formedness rules, and correct those were they were being
violated. In several cases we were also able to detect meta-
model inconsistencies that were promptly eliminated.

IV. METRICS FORMALIZATION AND COLLECTION

A. Metrics definition
A significant amount of research has been conducted in the

past decades on the complexity of software programs [23], and
software complexity metrics have been used for many pur-
poses such as predicting error rates, detecting design flaws,
assessing modularity, supporting refactoring decisions,
estimating maintenance costs or identifying pieces of software
that should be re-engineered or migrated to another paradigm
[24-29]. Several authors have proposed to adapt software
complexity metrics for analyzing the complexity of process
models. Some of these authors also proposed to adapt metrics
originating from research on network complexity, due to the
similarities among software designs, network designs and
process designs (all are domain-specific directed graphs).

We now present the formalization of some of those metrics,
along with others proposed in [30], using the M2DM
approach, as mentioned previously. To fully comprehend
metrics expressions, an adequate understanding of OCL syn-
tax and BPMN metamodel semantics is required. The former
can be obtained in several textbooks such as [31]. As for the
latter, the full metamodel can be found in [17], available at the
QUASAR group page. Figure 1 is only an excerpt of that
metamodel, therefore not sufficiently detailed to fully
understand the metamodel transversals operated by several
OCL expressions presented hereafter.

81

Size Metrics
The IEEE Standard Computer Dictionary defines com-

plexity as “the degree to which a system or component has a
design or implementation that is difficult to understand and
verify” [32]. Size (aka length) is one facet of complexity and
has long been measured in software by using absolute scale
type metrics such as lines of code (LOC) or number of classes.
For process models, the number of activities in the model can
be regarded as an equivalent to the number of executable
statements in a piece of software and can be used as simple,
easy to understand, metric model size [33]. However, this
metric does not take into account the structure of the model: a
model with 50 activities may be designed using a well-struc-
tured control flow which is easy to follow or in an unstruc-
tured way which makes understanding very hard [33]. We also
present other size metrics defined in the absolute scale, which
will be required for the definition of subsequent metrics.
Metric names, which are self-explanatory, are prefixed by the
context (the metaclass Process in most cases). The “self”
identifier refers to an instance (meta-object) of the context
metaclass:

Process::countBpmnElements(): Integer = self.pool ->
iterate(elem: Pool; acc: Set(BpmnElement) =
 oclEmpty(Set(BpmnElement)) | acc ->
 union(elem.bpmnElements())) -> size()

Process::totalNumberProcessActivities(): Integer =
 self.bpmnElements()->select(oclIsKindOf(Activity))->size()

Process::totalNumberProcessStartEvents(): Integer =
self.bpmnElements()->select(oclIsKindOf(StartEvent))->size()

Process::totalNumberProcessEndEvents(): Integer =
self.bpmnElements()->select(oclIsKindOf(EndEvent))->size()

Process::totalNumberProcessGateways(): Integer =
 self.bpmnElements()->select(oclIsKindOf(Gateway))->size()

Process::totalNumberProcessTextAnnotations(): Integer =
 self.bpmnElements()->select(oclIsKindOf(TextAnnotation))->size()

Process::totalNumberProcessSequenceFlows(): Integer =
self.bpmnElements()->select(oclIsKindOf(SequenceFlow))->size()

Process::totalNumberProcessFlowObjects(): Integer =
 self.bpmnElements()->select(oclIsKindOf(FlowObject))->size()

CNC - Coefficient of Network Complexity
The Coefficient of Network Complexity (CNC) is a widely

used metric in network analysis and was proposed to measure
the degree of complexity of a critical pass network [34]. It can
be calculated as the number of arcs divided by the number of
nodes. In the context of a business process model, Cardoso
defined it as the number of arcs divided by the number of
activities, joins and splits:

CNC = number of arcs / (number of activities, joins and splits)

Using M2DM we can express it as:

Process::CNC() : Real =
totalNumberProcessSequenceFlows() / totalNumberProcessFlowObjects()

Henry and Kafura Metric (HKM)
The benefits of divide-and-conquer approaches are well

known and sought in all fields to mitigate complexity.
Dividing a process model in modular sub-models cannot only
help to make it easier to understand, it can also lead to smaller,
reusable models [33].

For analyzing the modularization of a process model, we
can adapt the ideas of Henry and Kafura [35]. They discussed
the structure of modularized software systems and proposed a
metric based on the information flow in a program’s structure.
They picked two terms used for electronic gates and dubbed
them to software modules: fan-in for a module is the number
of other modules which use it and fan-out for a module is the
number of other modules it uses. Henry and Kafura then pro-
posed the following metric for modules complexity, where the
length metric can be LOC or McCabe's CFC:

Module complexity = length * (fan-in * fan-out)2

Henry and Kafura validated their metric using historical

data on bugs found during the UNIX system development.
They found that components with higher complexity where
more problem-prone and therefore are candidates for redesign.

Ghani [36] suggested using this metric in the same way for
analyzing process models, but does not provide the corres-
ponding concept mapping. If we consider that a process model
may have several cooperating processes, each on its own pool,
we can consider processes to be the modules and the input and
output events to be their fan-in and fan-out, respectively. The
mapped Henry and Kafura metric is then:

���= total of activities× (n. of StartEvents × n. of EndEvents)2

Using M2DM we can express this as follows:

Process::HKM(): Real =
totalNumberProcessActivities() *
power((totalNumberProcessStartEvents() * totalNumberProcessEndEvents()), 2)

CFC - Control Flow Complexity
The cyclomatic number, introduced by Tom McCabe [37],

is one of the most widely used software metrics. It is calcu-
lated from the control flow graph and measures the number of
linearly-independent paths (possible control flows) through a
program [33]. A lower cyclomatic number is claimed to indi-
cate that the program is easier to understand and maintain. The
cyclomatic number is also an indicator of testability, because it
corresponds to the number of test cases needed to achieve full
path coverage. It was found that there is a significant correla-
tion between the cyclomatic number of a piece of software and
its defect level [38].

Cardoso [39] suggested a process complexity measure, as a
generalization of McCabe’s cyclomatic number. His Control-
Flow Complexity (CFC) metric is based on the analysis of
control-flow elements (XOR, OR and AND-splits). The main
idea behind this metric is to evaluate the number of mental
states that have to be considered when a designer is develop-
ing a process. Mathematically, the control-flow complexity
metric is additive, thus it is possible to calculate the com-
plexity of a process by simply adding the CFC of all split
constructs. The CFC metric is then calculated as follows:

��� (�) = � ���	
� (�)
�∈�,� ��� ��� −�����

+ � ���
� (�)
�∈�,� ��� �� −�����

+ � ������ (�)
�∈�,� ��� ��� −�����

Note: “P” is a process and “a” an activity.

82

According to [33], every split in the process adds to the
number of possible decisions as follows:
– AND-split: All transitions outgoing from an AND-split must
be processed; the designer needs only to consider one state as
the result of the execution of an AND-split; therefore, every
AND-split in a process adds 1 to its CFC metric;
– XOR-split with n outgoing transitions: Exactly one out of n
possible paths must be taken, i.e. we have to consider n possi-
ble states that may arise from the execution of the XOR-split;
hence, every XOR-split with n outgoing transitions adds n to
the CFC metric of this process;
– OR-split with n outgoing transitions: There are 2n−1
possibilities to process at least one and at most n of the out-
going transitions of an OR-split, i.e. every OR-split with n
outgoing transitions adds 2n − 1 to the CFC metric.

A preliminary proof of CFC validity is provided in [40],
where a significant correlation between the perceived com-
plexity (as rated by students) and the CFC metric is reported.
Cardoso concluded that the CFC metric is highly correlated
with the control-flow complexity of processes. This metric
can, therefore, be used by business process analysts and
process designers to analyze the complexity of processes and,
if possible, develop simpler processes. A shortcoming of this
metric is that the number of possible decisions in a process
does not tell much about its structure [33].

In our BPMN metamodel, XOR-splits are the Data-Based
Exclusive Gateways and Event-Based Exclusive Gateways,
OR-splits are the Data-Based Inclusive Gateways and AND-
splits are Parallel Gateways. Using M2DM we can therefore
express the CFC metric as follows:

Process::CFC(): Integer = CFC_XOR_DataBased() +
CFC_XOR_EventBased() + CFC_OR() + CFC_AND()

where:

Process::CFC_XOR_DataBased(): Integer = self.bpmnElements()->
 select(oclIsKindOf(GatewayDataBasedExclusive)).
 oclAsType(GatewayDataBasedExclusive)->asSet->
 select(isSplit())->collect(numberOutputGates())->sum()

Process::CFC_XOR_EventBased(): Integer = self.bpmnElements()->
 select(oclIsKindOf(GatewayEventBasedExclusive)).
 oclAsType(GatewayEventBasedExclusive)->asSet->
 select(isSplit())->collect(numberOutputGates())->sum()

Process::CFC_OR(): Integer = self.bpmnElements()->
 select(oclIsKindOf(GatewayDataBasedInclusive)).
 oclAsType(GatewayDataBasedInclusive)->asSet->
 select(isSplit())->collect(numberOutputGates())->sum()

Process::CFC_AND(): Integer = self.bpmnElements()->
 select(oclIsKindOf(ParallelGateway)).
 oclAsType(ParallelGateway)->asSet->
 select(isSplit())->collect(numberOutputGates())->sum()

Gateway::isSplit() : Boolean = numberOutputGates() > 1

Gateway::numberOutputGates() : Integer =
self.gate-> select(type=#GateType_Output)->size()

Path metrics
Since process models are stereotyped directed graphs, we can
use graph transversal algorithms (e.g. breadth-first or depth
first transversal), to determine aspects such as the number of
paths or the length of the shortest or longest paths. Hereafter
we propose some path metrics using the M2DM approach:

// This function computes all possible paths given a source and a destination.
// It basically initializes the recursive node visitor with adequate arguments
Process::compute(origin: FlowObject, destination: FlowObject):

Set(Sequence(FlowObject)) =
visit(origin, destination,

oclEmpty(Set(FlowObject))->including(origin),
oclEmpty(Sequence(FlowObject))->append(origin),
 oclEmpty(Set(Sequence(FlowObject))))

// Depth-first recursive node visitor
Process::visit (x: FlowObject, //current node

destination: FlowObject, //destination node
visited: Set(FlowObject), //set of visited nodes
path: Sequence(FlowObject), //current path
paths:Set(Sequence(FlowObject))): //all paths visited

Set(Sequence(FlowObject)) =
if x=destination then // destination was found

paths->including(path)
else

if x.successors()->isEmpty() then //recursion stops in this path
paths

else // iterates recursively on node successors
x.successors()->iterate(elem: FlowObject;

acc: Set(Sequence(FlowObject)) = paths |
if visited->excludes(elem) then

visit(elem, destination, visited ->
including(elem), path-> append(elem), acc)

else
acc // accumulator variable is returned

endif)
endif

endif

// Returns the successors of the current flowObject
FlowObject::successors(): Set(FlowObject) = self.flowSource.target->asSet()
// Returns the number of possible paths, given an origin and a destination
Process::numberPaths(origin: FlowObject,

destination: FlowObject): Integer =
compute(origin, destination) -> size()

// Returns all flowObjects in all possible paths given an origin and destination
Process::allElements(origin: FlowObject,

destination: FlowObject): Set(FlowObject) =
compute(origin, destination) -> flatten

// Counts all flowObjects in all possible paths given an origin and destination
Process::countAllElements(origin: FlowObject,

destination: FlowObject): Integer =
 allElements(origin, destination) -> size()

//Returns the longest path; when in a tie, returns the first of the longest ones
Process::biggestPath(origin: FlowObject,

destination: FlowObject): Sequence(FlowObject) =
compute (origin, destination) ->

iterate(elem: Sequence(FlowObject);
acc: Sequence(FlowObject)=oclEmpty(Sequence(FlowObject)) |

if (elem->size() > acc->size()) then
elem

else
acc

endif)

// Returns the length (number of flowObjects) of the longest path
Process::sizeBiggestPath(origin: FlowObject, destination: FlowObject):

 Integer = biggestPath(origin, destination) -> size()

Nesting depth
Like in source code, unstructured models are less

understandable than the equivalent structured ones [41]. How-

83

ever, too much (deep) nesting in the structure is a bad practice,
since it reduces readability [42]. Gruhn and Laue [33]
observed that the term “nesting depth” may be misleading.
Current graph-oriented process modeling languages do not
require proper nesting i.e. splits and joins does not have to
occur pair-wise. This is comparable with programming lan-
guages that besides structured iteration constructs (e.g., for,
forearch, while, repeat...until) also support unconditional
jumps (GOTOs). Holl and Valentin [43], picking the classic
repudiation of spaghetti code [44], observed that the current
unstructured style of process modeling, results in “spaghetti
process models”. Aalst also discussed this model unstructured-
ness issue related to the nesting of split/join constructs [45].
He uses Petri Nets for representing process models and
defined a process to be well-structured if the corresponding
workflow net does not contain handles. We have a handle, if
for any pair of nodes x and y such that one of the nodes is a
place and the other a transition, there exist two different paths
from x to y which have more common elements than just x
and y. This means that the number of handles is a measure for
the number of unstructured constructs.

Gruhn and Laue [33] claim that a model with greater nest-
ing depth implies greater complexity. The nesting depth of an
element equals the number of decisions in the control flow
that are required to reach this element. Ghani et al. [36] claim
that models with nested XOR-splits and XOR-joins are more
complex and harder to understand than an almost linear model,
but the CFC for both models may be same. For this reason,
they suggested using the nesting depth metric to get the nest-
ing depth value and add the value to the CFC in order to
measure the process complexity:

Process complexity = Nesting depth + CFC

Expressing it with M2DM we get:

Process::procComplexity(origin: FlowObject, destination: FlowObject): Integer =
 nestingDepth(origin, destination) + CFCAux(origin, destination)
Process::nestingDepth(origin: FlowObject, destination: FlowObject): Integer =
 compute(origin, destination) -> flatten->
 select(oclIsKindOf(Gateway))->
 collect(oclAsType(Gateway))->size
Process::CFCAux(origin: FlowObject, destination: FlowObject): Integer =
 compute(origin, destination) ->flatten->
 select(oclIsKindOf(Gate))->
 collect(oclAsType(Gate))->
 select(type=#Output) -> size

B. Metrics collection
For each process defined in our case study we collected the
corresponding metrics, as represented in Table I. Due to space
constraints, not all metrics definitions are included in this
paper, but can be found in [30].

As can be observed in Table I, all “to-be” metrics have
values greater or equal to those of the corresponding “as-is”
counterparts. For instance, the number of possible paths in the
“to-be” phase of the Incident Management (IM) and the
Problem Management (PM) process is much higher than their
“as-is” correspondents. This is due to the increased number of
gateways and hence to the increase of the number of activities
and connectors. This increase is also evident by the total num-
ber of objects, where we can note that the IM process has 22
elements in the “as-is” phase and 37 in the “to-be” phase, and
the PM process has 12 elements in the “as-is” phase and 25

elements in the “to-be” phase. This comes as no surprise,
because more immature ITSM processes are usually trivial and
first efforts to adopt best practices increase their complexity.
We will recall this issue in the conclusions section.

TABLE I - METRICS COLLECTION FOR THE CASE STUDY

 Incident
Management

Problem
Management

“As-Is” “To-Be” “As-Is” “To-Be”
N. of Processes 1 1 1 1
N. of possible paths 3 10 1 8
N. of different objects in all
possible paths 22 37 12 25

N. of Objects in biggest path 18 27 12 21
N. flowObjects in smallest path 12 13 12 19
N. of Pools 2 2 1 1
N. of Lanes 4 4 3 3
N. of Swimlanes 6 6 4 4
N. of FlowObjects 16 22 12 18
N. of Activities 12 15 10 14
N. of SubProcesses 0 0 0 0
N. of Tasks 12 15 10 14
N. of Events 2 2 2 2
N. of Start Events 1 1 1 1
N. of End Events 1 1 1 1
N. of Intermediate Events 0 0 0 0
N. of Gateways 2 5 0 2
N.GatewayDataBasedExclusive 2 5 0 2
N.GatewayEventBasedExclusive 0 0 0 0
N. GatewayDataBasedInclusive 0 0 0 0
N. ComplexGateways 0 0 0 0
N. ParallelGateways 0 0 0 0
N. of Gates 6 15 0 6
N. of InputGates 2 5 0 2
N. of OutputGates 4 10 0 4
N. of Artifacts 0 0 0 1
N. of DataObjects 0 0 0 0
N. of TextAnnotations 0 0 0 1
N. of Groups 0 0 0 0
N. of Connectors 17 26 12 20
N. of SequenceFlows 17 26 12 19
N. of MessageFlows 0 0 0 1
N. of Associations 0 0 0 0
CFC Metric 4 10 2 4
CNC Metric 1,1 1,2 0,9 1,1
NestingDepth Metric 3 6 1 4
Proc. Complexity Metric 8 17 2 10
HKM Metric 12 15 10 13

C. Cross-correlation analysis
Process metrics formalized in this study can be used as

explanatory (predictor) variables in regression analysis. How-
ever, their large number may not be justifiable in the presence
of multicollinearity. The latter is a statistical phenomenon in
which two or more predictor variables in a multiple regression
model are highly correlated. In this situation the coefficient
estimates may change erratically in response to small changes
in the model or the data. Multicollinearity does not reduce the
predictive power or reliability of the model as a whole; it only
affects calculations regarding individual predictors. That is, a
multiple regression model with correlated predictors can indi-
cate how well the entire bundle of predictors predicts the out-
come variable, but it may not give valid results about any indi-
vidual predictor, or about which predictors are redundant with
others.

By means of a cross-correlation analysis, we now present a
preliminary assessment on the redundancy among the process
metrics that were introduced in this paper. Since most metrics
were not normally distributed, we used a non-parametric

84

correlation coefficient – Spearman’s rank – upon a much larger
process model that was defined in the context of [22]. The
latter includes 13 BPMN diagrams, meta-objects (instances of
the BPMN metamodel).

This cross-correlation analysis aimed at identifying a set of
metrics that are weakly correlated, therefore allowing to reduce
the number of variables and thus the effort of harvesting (and
data processing), if they are redundant. This technique is often
used for data reduction. If two metrics have a very high
correlation, this probably accounts for the fact that they are
measuring the same facet of complexity and so we can get rid
of one of them. Table II presents the values of the correlation
coefficient for all weakly correlated metrics.

TABLE II – CROSS-CORRELATION ANALYSIS

ID Variables B C D E
A N. Possible Paths ,002 ,054 ,143 ,539
B N. TextAnnotations ,376 ,054 ,378
C CNC Metric -,022 ,364
D HKM Metric ,324
E HPC difficulty Metric

V. CONCLUSIONS AND FUTURE WORK
ITSM process models are directed graphs, such as those un-

derlying computer network diagrams or sequence flow dia-
grams representing source code. Therefore, complexity metrics
proposed on other knowledge areas can be adapted to measure
the complexity of ITSM process models, as other researchers
cited in this paper, in particular those concerned with business
process modeling (BPM), have already proposed. However, we
could not find in the literature a systematic and replicable
approach to measure the complexity of process models. To
mitigate this problem we propose herein the application of the
MetaModel Driven Measurement (M2DM) approach. M2DM
allows the clarification of the target domain, grants accurate-
ness in metrics specification due to the use of OCL and offers
automatic metrics collection, provided we are able to instan-
tiate the BPMN metamodel appropriately. As a result, it facili-
tates metrics usage by practitioners and experiments replication
by researchers.

After applying a data reduction technique, we have identi-
fied a set of five metrics of process complexity that are mostly
non-collinear. They are candidates to act as descriptive
variables in further research works. In concrete, we plan to set
up experimental designs to answer the following research
questions:

- How does ITSM process complexity affect process opera-

tion? In particular, we are interested in exploring how these
process complexity metrics are related to some operational
metrics such as “mean time to restore service”, “calls to
second-tier resolver teams” or “% of incidents/problems
resolved within service targets”. Here we will follow a similar
validation approach as the one we used in [46]. We also plan to
research if the proposed process complexity metrics can be
used in the formulation of Critical Success Factors (CSFs) and
Key Performance Indicators (KPIs) for ITSM processes.

- Is it possible to estimate the effort (cost) to perform an

ITSM process reengineering action, based on the distance
between “as-is” and “to-be” scenarios? If so, Continual Ser-
vice Improvement (CSI) could use these process complexity
metrics as input in identifying improvement opportunities for
each process [9]. Although sometimes small changes can cost
a lot to make, we expect that the distance calculated upon the

metrics of the “as-is” and “to-be” models may give some
pointers to the likely effort involved in such process
improvement work. Its feasibility will require the “as-is” and
“to-be” models to be expressed at the same level of abstraction
/ granularity.

- How is process maturity related with process complexity?

While maturity is usually defined in a finite number of levels
(typically 5), process complexity can be arbitrarily large. Al-
though we have not collected sufficient supporting evidence,
we believe that the corresponding transfer function (process
maturity versus process complexity) will be somehow trape-
zoidal or parabolic (convexity pointing upwards). In the begin-
ning, as organizations move from ad-hoc through defined
levels of process maturity, an increase in process maturity is
reflected by an increase in process complexity, as we observed
in our case study, but that increase tends to stabilize. As
organizations move into high maturity settings, their process
complexity decreases as they learn and improve their
processes, by applying continual innovation techniques.

We cannot conclude this paper without mentioning the
most serious threat in addressing all previously described
research questions: most IT service processes are highly
dependent on people and culture. We agree when one reviewer
mentioned that the implementation of ITIL is often a “hearts-
and-minds” exercise. As such, the precision, objectiveness and
automation that the proposed approach to collect process
metrics allows, must be somehow combined with other less
objective factors that can only be obtained with the help of the
IT staff on the ground. In other words, any estimation model
based upon process metrics will need on-site calibration.

ACKNOWLEDGMENT
The work presented herein was partly supported by the

VALSE project of the CITI research center within the
Department of Informatics at FCT/UNL in Portugal.

REFERENCES
[1] R. L. Manganelli and M. M. Klein, The Reengineering Handbook: A

Step-by-Step Guide to Business Transformation, New York, American
Management Association, New York, 1994.

[2] OMG, "Business Process Model and Notation (BPMN)", FTF Beta 1
for Version 2.0, Specification dtc/2009-08-14, Object Management
Group (OMG), 2009.

[3] M. Iqbal and M. Nieves, ITIL v3 Core Practice Book 1: Service
Strategy, London, UK, The Stationery Office (TSO), Office of
Government Commerce (OGC), London, UK, 2007.

[4] The Official Introduction to the ITIL Service Lifecycle Book, London,
UK, The Stationery Office (TSO), Office of Government Commerce
(OGC), London, UK, ISBN:13: 9780113310616, 2007.

[5] "COBIT® 4.1 - Framework, Control Objectives, Management
Guidelines, and Maturity Models", The IT Governance Institute - ITGI,
2007.

[6] "Microsoft Operations Framework (MOF): MOF Overview", 4th ed,
Microsoft Corporation, 2008.

[7] "ITIL-cobit-mapping: Gemeinsamkeiten und Unterschiede der IT-
standards", Information Systems Audit and Control Association
(ISACA) / IT Service Management Forum (itSMF), May 2008.

[8] "Microsoft Operations Framework; Cross Reference ITIL V3 and MOF
4.0", Microsoft Corporation, May 2009.

[9] G. Case and G. Spalding, ITIL v3 Core Practice Book 5: Continual
Service Improvement, London, UK, The Stationery Office (TSO),
Office of Government Commerce (OGC), London, UK, 2007.

[10] B. List and B. Korherr, "An evaluation of conceptual business process

85

modelling languages", in proceedings of the Proceedings of the 2006
ACM symposium on Applied computing, Dijon, France, 2006.

[11] H. Sneed, "Estimating the costs of a reengineering project", in
proceedings of the 12th Working Conference on Reverse Engineering
(WCRE'2005), pp. 111-119, 2005.

[12] J. Mendling, "Testing Density as a Complexity Metric for EPCs",
Technical Report JM-2006-11-15, Vienna University of Economics and
Business Administration, Vienna, Austria, 2006.

[13] J. Mendling, M. Moser, G. Neumann, H. M. W. Verbeek, B. F. v.
Dongen, and W. M. P. v. d. Aalst, "A Quantitative Analysis of Faulty
EPCs in the SAP Reference Model", BPM Center Report BPM-06-08,
Eindhoven University of Technology, Eindhoven, The Netherlands,
2006.

[14] F. Brito e Abreu, "Using OCL to Formalize Object-Oriented Design
Metrics Definitions", Technical Report ES007/2001, INESC, Lisbon,
Portugal, May, 2001.

[15] "Object Constraint Language (OCL)", Specification formal/06-05-01,
v. 2.0, The Object Management Group (OMG), May, 2006.

[16] M. Richters, "A UML-based Specification Environment",
http://www.db.informatik.uni-bremen.de/projects/USE, University of
Bremen, 2001.

[17] J. Freitas, "Process and Service Metamodeling (in Portuguese)", MSc
dissertation, F. Brito e Abreu (advisor), Departamento de Informática,
Caparica, Portugal, FCT/UNL, 2010.

[18] "Meta Object Facility (MOF) Versioning and Development Lifecycle",
Specification, v. 2.0, The Object Management Group (OMG), 2007.

[19] "ISO/IEC 20000-1: Information technology - Service management -
Part 1: Specification", Standard, International Organization for
Standardization (ISO/IEC), 2005.

[20] "ISO/IEC 20000-2: Information technology - Service management -
Part 2: Code of practice", Standard, International Organization for
Standardization (ISO/IEC), 2005.

[21] ITIL Service Delivery Version 2.0, London, UK, The Stationery Office
(TSO), Office of Government Commerce (OGC), London, UK, ISBN:0
11 330017 4, 2003.

[22] J. C. Costa, "MGPSI – A Methodology for Information Systems Project
Management (in Portuguese)", MSc dissertation, F. Brito e Abreu
(advisor), Departamento de Informática, Caparica, Portugal, FCT/UNL,
2010.

[23] H. Zuse, "Software Complexity Metrics/Analysis", in Encyclopedia of
Software Engineering, J. J. Marciniak (Ed.), John Wiley & Sons, Inc.,
pp. 131-166, 1994.

[24] S. Bryton and F. Brito e Abreu, "Modularity-Oriented Refactoring", in
proceedings of the 12th European Conference on Software
Maintenance and Reengineering (CSMR'2008), pp. 294-297, Athens,
Greece, 2008.

[25] S. Bryton, "Modularity Improvements with Aspect-Oriented
Programming", MSc dissertation, F. Brito e Abreu (advisor),
Departamento de Informática, Caparica, Portugal, FCT/UNL, 2008.

[26] F. Brito e Abreu and M. Goulão, "Coupling and Cohesion as
Modularization Drivers: Are we being over-persuaded?", in
proceedings of the 5th European Conference on Software Maintenance
and Reengineering (CSMR'2001), pp. 47-57, P. Sousa and J. Ebert
(Eds.), Lisboa, Portugal, 2001.

[27] F. Brito e Abreu and M. Goulão, "A Merit Factor Driven Approach to
the Modularization of Software Systems", L'Objet, vol. 7, n. 4, Hermes
Penton Science, ISSN:2-84107-748-9, 2001.

[28] F. Brito e Abreu and W. Melo, "Evaluating the Impact of Object-
Oriented Design on Software Quality", in proceedings of the 3rd
International Software Metrics Symposium (Metrics'96), pp. 90-99,
Berlin, Germany, 1996.

[29] F. Brito e Abreu and S. Bryton, "An Empirical Study on Refactoring
Objects to Aspects", in proceedings of the 13th Workshop on
Quantitative Approaches in Object Oriented Software Engineering

(QAOOSE'2010) (co-located with TOOLS’2010 - 48th International
Conference on Objects, Models, Components, Patterns), Malaga, Spain,
2010.

[30] R. Porciúncula, "Governance and IT Process Modeling (in
Portuguese)", MSc dissertation, F. Brito e Abreu (advisor),
Departamento de Informática, Caparica, Portugal, FCT/UNL, 2010.

[31] J. Warmer and A. Kleppe, The Object Constraint Language: Getting
Your Models Ready for MDA, 2nd ed., Addison-Wesley Publishing
Company, ISBN:0321179366, 2003.

[32] A. Geraci, IEEE Standard Computer Dictionary: Compilation of IEEE
Standard Computer Glossaries, IEEE Press, ISBN:1559370793, 1991.

[33] V. Gruhn and R. Laue, "Approaches for Business Process Model
Complexity Metrics", in Technologies for Business Information
Systems, W. Abramowicz and H. C. Mayr (Eds.), Springer, pp. 13-24,
ISBN:978-1-4020-5633-8, 2007.

[34] R. A. Kaimann, "Coefficient of Network Complexity", Management
Science, vol. 21, n. 2, pp. 172-177, October, The Institute of
Management Sciences, 1974.

[35] S. M. Henry and D. G. Kafura, "Software Structure Metrics Based on
Information Flow", IEEE Transactions on Software Engineering, vol.
7, n. 5, pp. 510-518, September, IEEE, ISSN:0098-5589, 1981.

[36] A. Ghani, K. Muketha, and W. Wen, "Complexity Metrics for
Measuring the Understandability and Maintainability of Business
Process Models using Goal-Question-Metric (GQM)", International
Journal of Computer Science and Network Security, vol. 8, n. 5, May,
http://ijcsns.org/, 2008.

[37] T. McCabe, "A Complexity Measure", in Software Engineering Metrics
- Volume I: Measures and Validations, M. Shepperd (Ed.), McGraw
Hill Book Company, pp. 184-199, 1993.

[38] R. B. Grady, "Successfully Applying Software Metrics", in Applying
Software Metrics, P. Oman and S. Pfleeger (Eds.), IEEE Computer
Society, 1997.

[39] J. Cardoso, J. Mendling, G. Neumann, and H. A. Reijers, "A Discourse
on Complexity of Process Models", in proceedings of the BPI’06 -
Second International Workshop on Business Process Intelligence (in
BPM'2006), pp. 115-126, J. Eder and S. Dustdar (Eds.), Vienna,
Austria, 2006.

[40] J. Cardoso, "Process control-flow complexity metric: An empirical
validation", in proceedings of the International Conference on Services
Computing (SCC'06), pp. 167-173, Chicago, USA, 2006.

[41] B. Kiepuszewski, A. H. M. t. Hofstede, and C. J. Bussler, "On
structured workflow modelling", in proceedings of the Conference on
Advanced Information Systems Engineering (CAiSE'2000), pp. 431-
445, B. Wangler and L. Bergman (Eds.), 2000.

[42] M. Held and W. Blochinger, "Structured collaborative workflow
design", Future Generation Computer Systems, vol. 25, n. 6, pp. 638-
653, ISSN:0167-739X, 2009.

[43] A. Holl and G. Valentin, "Structured business process modeling
(SBPM)", in proceedings of the Information Systems Research in
Scandinavia (IRIS 27) t. I. S. R. S. i. S. (IRIS'27) (Ed.), Falkenberg,
Sweden, 2004.

[44] E. W. Dijkstra, "Letters to the editor: go to statement considered
harmful", Communications of the ACM, vol. 11, n. 3, pp. 147-148,
March, ACM Press, ISSN:0001-0782, 1968.

[45] W. Aalst, "The Application of Petri Nets to Workflow Management",
The Journal of Circuits, Systems and Computers, vol. 8, n. 1, pp. 21-66,
1998.

[46] J. Caldeira and F. Brito e Abreu, "Influential Factors on Incident
Management: Lessons Learned from a Large Sample of Products in
Operation", in proceedings of the 9th International Conference on
Product Focused Software Development and Process Improvement
(PROFES’2008), A. Jedlitschka and O. Salo (Eds.), Rome, Italy, 2008.

86

ANNEX A. BPMN METAMODEL (PACKAGE DIAGRAM)

ANNEX B. INCIDENT MANAGEMENT PROCESS: “AS-IS” MODEL

Th
ird

 L
in

e

Pu
bl

ic
 B

od
y

Incident
Identification

Solved?

No

Investigation
And Diagnoses

Yes

Phone, e-mail, interface web

S
ec

on
d

Li
ne

S
er

vi
ce

 D
es

k

U
se

rs

Incident
Categorization

Initial
Diagnoses

Incident
Prioritization Functional /

Hierarchical
Scaling

Resolution
and RecoveryYes Incident

Closure

Process End

Contact
User

Solved?
Resolution

and Recovery

Investigation
And Diagnoses

No

Resolution
and Recovery

Yes

87

ANNEX C. INCIDENT MANAGEMENT PROCESS: “TO-BE” MODEL

Th
ird

 L
in

e

Pu
bl

ic
 B

od
y

Incident /
Request

Identification

Solved?

No

Investigation
And Diagnoses

Yes

Phone, e-mail, interface web

Se
co

nd
 L

in
e

Se
rv

ic
e

D
es

k

U
se

rs

Incident /
Request

Categorization

Initial
Diagnoses

Incident
Prioritization Functional /

Hierarchical
Scaling

Resolution
and RecoveryYes

Incident /
Request
Closure

Process End

Contact
User

Solved?
Resolution

and Recovery

Investigation
And Diagnoses

No

Resolution
and Recovery

Yes

Incident or Request?

Incident

Processing
Request

Request

Major Incident?

No

Processing
Major

Incident

Yes

Closure Procediment

Input
Improvement

Plan

ANNEX D. PROBLEM MANAGEMENT PROCESS: “AS-IS” MODEL

Su
pp

or
t T

ea
m

Pu
bl

ic
 B

od
y

Problem
Identification

Resources
Allocation

Pr
ob

le
m

 M
an

ag
er

Se
rv

ic
e

D
es

k Problem
Registation

Problem
Classification

Error and
Problem
Closure

Error
Resolution
Registation

Investigation
And Diagnoses

Identification
and Error

Registation

Problem
pro-active
analysis

Error
Evaluation

ANNEX E. PROBLEM MANAGEMENT PROCESS: “TO-BE” MODEL

S
up

po
rt

Te
am

Pu
bl

ic
 B

od
y

Problem
Identification

Resources
Allocation

No

P
ro

bl
em

 M
an

ag
er

S
er

vi
ce

 D
es

k

Problem
Registation

Problem
Classification

Error and
Problem
Closure

Error
Resolution
Registation

Investigation
And Diagnoses

Identification
and Error

Registation

Problem
pro-active
analysis

Error
Evaluation

Problem
Prioritization

Workaround?

No

Apply
Temporary

solution

Yes
Change necessary?

Submission
RFCYes

Input
Improvement

Plan

This activity is related
to Change
Management

88

