

Universidade Nova de Lisboa

Faculdade de Ciências e Tecnologia

Departamento de Informática

Software Languages Engineering:

Experimental Evaluation

Pedro Hugo do Nascimento Gabriel

Orientador: Prof. Doutor Miguel Carlos Pacheco Afonso Goulão

Co-Orientador: Prof. Doutor Vasco Miguel Moreira do Amaral

Dissertação apresentada na Faculdade de Ciências e

Tecnologia da Universidade Nova de Lisboa para obtenção do

grau de Mestre em Engenharia Informática.

Lisboa

(2010)

ii

iii

Student Id: 27227

Name: Pedro Hugo do Nascimento Gabriel

Dissertation Title:

Software Languages Engineering: Experimental Evaluation

Keywords:

 Domain-Specific Languages

 Experimental Software Engineering

 Quantitative Methods

 Qualitative Methods

 Threats to Validity

 Usability Engineering

 Systematic Literature Reviews

 Systematic Evaluation Methodology

iv

v

Resumo

As Linguagens de Domínios Específicos (DSLs) são linguagens que através de

notações e abstracções apropriadas, fornecem uma maior abstracção sobre um

determinado problema de um domínio para uso mais restrito. A utilização de DSLs

pretende contribuir para a melhoria da produtividade do seu utilizador, fiabilidade,

facilidade de manutenção, validação e portabilidade quando comparada com a utilização

de linguagens de programação comuns. No entanto, como qualquer produto de

software, sem a passagem por todas as fases de construção da DSL, nomeadamente

Análise do Domínio, Desenho, Implementação e Avaliação, algumas das alegadas

vantagens das DSLs poderão ser impossíveis de alcançar com um nível de satisfação

significativo, levando potencialmente, em alguns casos, à produção de linguagens

inadequadas ou ineficientes. O foco desta dissertação incide precisamente sobre a fase

de Avaliação.

De modo a caracterizar o compromisso actual da comunidade das DSLs com a fase

de Avaliação, foi efectuada uma revisão sistemática bibliográfica publicada nos

principais fora dedicados à investigação e desenvolvimento de DSLs. Nesta revisão

foram analisados e catalogados artigos publicados entre 2001 e 2008, tendo-se

observado uma reduzida preocupação com a fase de Avaliação. Uma das facetas mais

relevantes que sobressaiu desta revisão sistemática foi a verificação da ausência de uma

abordagem concreta à fase de avaliação, dificultando assim uma correcta aferição dos

benefícios reais introduzidos pela utilização destas linguagens. Deste modo, o principal

objectivo da dissertação consiste na proposta de uma metodologia para a avaliação

sistemática de DSLs. De modo a alcançar este objectivo foi efectuado um levantamento

das principais técnicas usadas no contexto da Engenharia de Software Experimental e

Engenharia de Usabilidade, por forma a que a metodologia proposta combinasse boas

práticas de ambas as áreas. A metodologia proposta foi validada com a sua utilização

em diversos casos de estudo, em que a avaliação de DSLs foi feita de acordo com esta

metodologia.

vi

vii

Abstract

Domain-Specific Languages (DSLs) are programming languages that offer, through

appropriate notation and abstraction, still enough an expressive control over a particular

problem domain for more restricted use. They are expected to contribute with an

enhancement of productivity, reliability, maintainability and portability, when compared

with General Purpose Programming Languages (GPLs). However, like in any Software

Product without passing by all development stages namely Domain Analysis, Design,

Implementation and Evaluation, some of the DSLs’ alleged advantages may be

impossible to be achieved with a significant level of satisfaction. This may lead to the

production of inadequate or inefficient languages. This dissertation is focused on the

Evaluation phase.

To characterize DSL community commitment concerning Evaluation, we conducted

a systematic review has been conducted. The review covered publications in the main

fora dedicated to DSLs from 2001 to 2008, and allowed to analyse and classify papers

with respect to the validation efforts conducted by DSLs’ producers, where have been

observed a reduced concern to this matter. Another important outcome that has been

identified is the absence of a concrete approach to the evaluation of DSLs, which would

allow a sound assessment of the actual improvements brought by the usage of DSLs.

Therefore, the main goal of this dissertation concerns the production of a Systematic

Evaluation Methodology for DSLs. To achieve this objective, has been carried out the

major techniques used in Experimental Software Engineering and Usability Engineering

context. The proposed methodology was validated with its use in several case studies,

whereupon DSLs evaluation has been made in accordance with this methodology.

viii

ix

Contents

1. Introduction ... 1

1.1. Motivation .. 1

1.2. Description and Context .. 2

1.3. Scope of the problem .. 3

1.4. Main Contributions ... 4

1.5. Document Structure .. 4

2. Domain-Driven Development .. 7

2.1. Domain-Specific Languages ... 7

2.2. Summary .. 10

3. Experimental Software Engineering ... 11

3.1. Empirical Methods .. 11

3.2. Quantitative Methods .. 11

3.3. Qualitative Methods .. 12

3.3.1. Qualitative Methods Description .. 13

3.3.1.1. Ethnographies ... 13

3.3.1.2. Action Research.. 13

3.3.1.3. Case Study .. 14

3.3.2. Data Collection Methods ... 15

3.3.2.1. Subject Observation .. 15

3.3.2.2. Interviews and Questionnaires .. 16

3.3.2.3. Eye Tracking .. 16

3.3.2.4. Log Analysis .. 17

3.3.3. Coding Qualitative Data... 17

3.4. Mixed Methods ... 17

x

3.4.1. Survey Research .. 18

3.5. Threats to Validity .. 18

3.5.1. Construct Validity .. 19

3.5.2. Internal Validity ... 19

3.5.3. External Validity.. 19

3.5.4. Conclusion Validity ... 20

3.6. Reliability/Replication .. 20

3.7. Summary .. 21

4. Usability Engineering .. 23

4.1. Usability ... 23

4.2. Usability Lifecycle .. 24

4.2.1. Know the User ... 24

4.2.2. Competitive Analysis ... 25

4.2.3. Goal Setting ... 25

4.2.4. Parallel Design... 26

4.2.5. Participatory Design .. 27

4.2.6. Coordinating the Total Interface... 27

4.2.7. Heuristic Evaluation .. 27

4.2.8. Prototyping .. 29

4.2.9. Empirical Tests .. 29

4.2.10. Iterative Design ... 31

4.2.11. Feedback from Field .. 31

4.3. Summary .. 32

5. A Domain Specific Languages Survey .. 33

5.1. Introduction .. 33

5.2. Research Questions ... 34

5.3. Review Methods ... 35

5.4. Data Analysis.. 38

xi

5.5. Threats to Survey Validity .. 43

5.6. Summary .. 44

6. Systematic Evaluation Methodology ... 47

6.1. Introduction .. 47

6.2. Motivation .. 48

6.3. Stakeholders ... 50

6.4. Evaluation Methodology ... 52

6.4.1. Domain Analysis ... 53

Competitive Analysis ... 54

6.4.2. Design ... 57

Prototyping... 59

Visual Elements ... 60

Scenarios .. 62

Conducted Tests ... 68

Amendments .. 69

6.4.3. Implementation .. 70

6.4.4. Evaluation ... 70

Subject Recruitment ... 71

Task Preparation... 74

Pilot Session ... 75

Training Session ... 77

Exam .. 77

Results Analysis ... 79

6.5. Summary .. 79

7. Systematic Evaluation Methodology Validation ... 83

7.1. Introduction .. 83

7.2. Experiment Design ... 83

7.2.1. Subjects ... 84

xii

7.2.2. Questionnaire .. 84

7.3. Results of the Case Study .. 86

7.3.1. DSL Producers’ Decisions ... 87

7.3.2. Checklist Based Validation .. 89

7.3.3. Evaluation Process ... 89

7.4. Threats to Validity .. 92

7.5. Summary .. 93

8. Conclusions .. 95

8.1. Summary .. 95

8.2. Future Work ... 97

Appendix 1 – Group Results for each Scenario and their General Impressions 99

xiii

List of Figures

Figure 1.1 – Waterfall Model [3] ... 2

Figure 1.2 – Spiral Model [2] .. 3

Figure 2.1 – DSL Development Phases [4, 6] .. 9

Figure 2.2 – DSLs' Development Process [1]... 9

Figure 4.1 – Usability Lifecycle Model [9] .. 24

Figure 4.2 – Goal Setting example [9] ... 26

Figure 4.3 - Parallel Design [1] ... 26

Figure 5.1 – Reviewed publications time frame ... 37

Figure 6.1 – Stakeholders in DSL’s development process .. 51

Figure 6.2 – Validation Techniques ... 52

Figure 6.3 – Iterative Evaluation Model .. 58

Figure 6.4 – Scenarios ... 63

Figure 6.5 – Content of the template with the conducted tests .. 69

Figure 6.6 – DSL Evaluation Process .. 71

Figure 6.7 – Subject Recruitment .. 72

Figure 6.8 – Subject Recruitment Example .. 72

Figure 6.9 – Task Preparation .. 75

Figure 6.10 – Pilot Session .. 76

Figure 6.11 – Training Session .. 77

Figure 6.12 – Exam ... 78

Figure 6.13 – Results Analysis .. 79

Figure 7.1 – Question 8. How did you set up experiment’s environment? 88

Figure 7.2 – Question Q14. How useful did you find the checklist based validation? 89

Figure 7.3 – Questions Q3 and Q16 ... 90

Figure 7.4 – Question Q15. How demanding did you find establishing the experiment? 91

Figure 7.5 – Question Q17. Did you feel lost in WHAT and HOW to do, to establish the

experiment? ... 92

file:///F:/Tese/Dissertação/PedroGabriel.docx%23_Toc267379654
file:///F:/Tese/Dissertação/PedroGabriel.docx%23_Toc267379655
file:///F:/Tese/Dissertação/PedroGabriel.docx%23_Toc267379657

xiv

xv

List of Tables

Table 4.1 – Severity Scale [9] ... 31

Table 5.1 – Selected papers ... 36

Table 5.2 – Development of DSLs .. 38

Table 5.3 – Quantitative and Qualitative Experimentation ... 39

Table 5.4 – Ad-hoc/Toy Example and Industrial Level Experimentation.................................. 41

Table 5.5 – Domain Experts usage .. 41

Table 5.6 – Usability Techniques reported... 42

Table 5.7 – Number of articles with reference to the steps taken by year 43

Table 6.1 – Languages to consider in Competitive Analysis .. 55

Table 6.2 – Collectable Attributes ... 56

Table 6.3 – Goal Settings .. 57

Table 6.4 – Final Questionnaire... 67

Table 6.5 – Scenario's Questionnaire ... 68

Table 6.6 – Number of Domain Experts .. 73

Table 7.1 – Questionnaire ... 86

Table 7.2 – Questions Q4, Q5, Q6, Q11, Q12 .. 87

xvi

1

1. Introduction

1.1. Motivation

Software Languages Engineering aims at enhancing the software development

process through the usage of Domain-Specific Languages (DSLs). A DSL is ―a

programming language, or executable specification language, that offers, through

appropriate notation and abstraction, expressive power focused on, and usually

restricted to, a particular problem domain‖ [4]. The main difference between DSLs and

general-purpose programming languages (GPLs) is that DSLs place domain

expressiveness first. This allegedly provides productivity and quality improvements,

reduces maintenance work, and allows its use to a wider range of end-users (the Domain

Experts), since new developers with less experience in programming can effectively

develop features more easily [5-8].

Nevertheless, in order to achieve these improvements, on top of all rigorous

development work to plan, design and implement the language, it is also necessary to

assure that the DSL is adequate to the domain experts. This covers not only the

language’s correctness, but also language’s Usability. It is in this last field, Language’s

Usability Evaluation, that we think there is a common shortcoming in DSL development

projects, where much more must be done.

DSL’s Usability Evaluation seems to be considered as waste of time and resources

where decision makers seldom involve domain experts during DSL development. In

practice, it is as if decision makers prefer to risk using or selling inadequate products,

rather than spending resources in evaluating them. A software engineering study based

on the usability of software products has characterized this situation by showing that

63% of large projects have overran the initial budget due to usability issues [9].

Although this study was not targeted to DSLs, its results support our concern that poor

DSL usability evaluation is likely to lead to relevant economic losses.

We consider DSL usability a quality attribute of major importance for their wide

acceptance. In this sense, the DSL community should start a paradigm shift that would

lead current DSL development practices from craftsmanship to an Engineering activity.

1. INTRODUCTION 1.2. Description and Context

2

For this purpose, the Language Evaluation phase should be considered as a key process

activity during the DSL development.

1.2. Description and Context

Software Engineering is the application of a systematic, disciplined, quantifiable

approach to the development, operation and maintenance of software, and the study of

these approaches; that is, the application of engineering to software [10]. Based on this

assumption we argue that the DSL community must evolve to achieve the desired

maturity and thus get wider acceptance for DSLs. In this sense, our objective consists in

supporting this maturity improvement by providing a Systematic Evaluation

Methodology for the construction of DSLs.

We borrow influences from two important software lifecycle models, the Waterfall

[3] and Spiral [2]. A software development process should be defined in advance for

each new product (although we acknowledge Agile Methods’ different views on this

subject).

The Waterfall Model includes five phases: Requirements Analysis, Design,

Implementation, Testing (Validation), and Maintenance. In what concerns the testing

phase, it is introduced in a final stage, which in some cases, depending on projects’

magnitude, might prove to be late to get final results with lower budget, despite the

existence of some retroactivity in each step, as shown in Figure 1.1.

Figure 1.1 – Waterfall Model [3]

1. INTRODUCTION 1.3. Scope of the problem

3

On the other hand, the Spiral Model is organized in four stages: Determination of

the Objectives, Identification and Resolution of Risks, Development and Test, and,

finally, the Planning of the next iteration. This model makes products validation more

often, for each new iteration in the development process, since new tests are performed

adjusting to iteration needs (Figure 1.2).

Both models try to set up a formal development procedure that helps developers to

establish their own objectives in each specified phase to improve the final product

quality. Another relevant aspect is that both models give considerable importance to the

Testing phase in contrast to what is observed in a typical DSL’s development process,

as is characterized in chapter 5 of this dissertation.

1.3. Scope of the problem

Observing the absence of a well-defined DSL evaluation phase, without clear

procedures, assuring that the DSL is adequate to domain experts, as well as satisfies

stakeholders’ needs, led us to propose a methodology that could change this situation,

through a Systematic Evaluation Methodology (chapter 6).

This methodology builds upon previous development models, such as the Waterfall

and Spiral models, as well as usability methods and data collection methods from the

Usability Engineering and Experimental Software Engineering. Other evaluation

Figure 1.2 – Spiral Model [2]

1. INTRODUCTION 1.4. Main Contributions

4

approaches such as metamodel testing [11], or ontologies to assess DSLs [12, 13], are

out of the scope of this work, although we recognize their importance to DSL

validation.

As DSLs are developed for domain experts, only they can provide a true feedback of

a DSL’s final quality. Based on this rationale, we found imperative to have them

involved in our methodology. In this sense, it is essential to recognize who will use the

DSL and what is the domain experts' background in advance. This helps during domain

analysis and experiment conduction, since DSL is developed in view of the users, as

well as the evaluation material produced. In summary, it enables the achievement of a

better and more adequate final product.

1.4. Main Contributions

In the context of the work described in this dissertation, we characterized the DSL

community’s commitment to evaluate their own DSLs. We conducted a systematic

review on DSL evaluation. The review covered publications in the main fora dedicated

to DSLs from 2001 to 2008 and allowed to analyse and classify papers with respect to

the validation efforts conducted by DSLs’ producers. Our initial concerns have been

confirmed by this review supporting the usefulness of the second contribution of this

dissertation: the proposal of a concrete evaluation approach for DSLs.

This Systematic Evaluation Methodology bridges this evaluation gap, where we had

in mind factors, such as production costs, and domain experts’ satisfaction and

productivity. Any additional cost introduced by our methodology, is our sentiment that

are retrievable given the better adjustment of the DSL to the domain experts needs.

Finally, the benefits and easiness of application of the Systematic Evaluation

Methodology have been measured by comparing its usage against the current ad-hoc

approach (chapter 7).

1.5. Document Structure

This document is organized as follows. Chapter 2 provides Domain-Specific

Language benefits and current development process. Chapter 3 outlines the current

state-of-the-art in Experimental Software Engineering. This includes a brief discussion

on Quantitative, Qualitative and Mixed Methods, and the empirical methods validity

1. INTRODUCTION 1.5. Document Structure

5

assessment. An overview of the usability techniques from the Usability Engineering

according to dissertation objective appears in Chapter 4. Chapter 5 presents a Domain-

Specific Languages Survey, to understand DSL community efforts to evaluate their own

languages, published in “XIII Congreso Iberoamericano en “Software Engineering”

(CIbSE) [14]. In Chapter 6 we describe the Systematic Evaluation Methodology.

Chapter 7 presents the results of the case studies performed in the context of this

dissertation to validate our methodology. Finally, in chapter 8 we present dissertation’s

conclusions, and future work.

6

7

2. Domain-Driven Development

Domain-Driven development is an approach to software development which relies

on Domain-Specific Languages to raise the level of abstraction, while at the same time

narrowing the design space [15]. In order to attain DSLs benefits in its plenitude, a

mature domain knowledge must be gathered, otherwise significant losses will be

achieved in too late amendments [4].

A Domain, also known as Application Domain, is a bounded field relative to the

problem at hand, characterized by a set of concepts and terminology understood by

practitioners [16]. In DSLs this domain is more restricted, compared to GPLs, but also

more expressive and less generic, which helps to attain a superior level of domain

experts’ satisfaction, as well as increases flexibility, productivity, reliability and

usability [17]. For example, a ―Medical‖ domain is quite large and generic, thus we can

―restrict‖ it to a sub-domain like ―Medicines administration management to patients‖.

Nevertheless, despite all its proclaimed advantages, creating a DSL should be cost-

effective; therefore, costs should never exceed the advantages of defining a DSL rather

than using a GPL [18].

In section 2.1 we will discuss in more detail Domain-Specific Languages benefits

compared to GPLs, and its development process. In section 2.2 we summarize.

2.1. Domain-Specific Languages

Domain-Specific Languages, also known as Micro-Languages [4], or Little

Languages [4, 17], are programming languages or executable specification languages

that offer, through appropriate notation and abstraction, expressive power focused on,

and usually restricted to, a particular problem domain [4]. We can usually find them

expressed as text or graphic diagrams; however, they can also use representations such

as matrices, tables, forms or even trees [19, 20].

Industrial experiences have consistently reported remarkable productivity increases,

5 to 10 times higher than with current development approaches [21] (e.g. Nokia [22],

EADS [23]). This is due to DSL’s capacity to offer domain experts the domain

2. DOMAIN-DRIVEN DEVELOPMENT 2.1. Domain-Specific Languages

8

abstractions and semantics in a more readily apparent form, allowing experts to work

directly with domain concepts [20, 24].

Beyond their valuable expressiveness, DSLs also offer substantial gains in terms of

ease of use compared with GPLs, fostering a lower product complexity [25]. Therefore,

DSLs’ main benefits are [4, 17]:

 Enhanced productivity, reliability, maintainability and portability.

 Programs are concise and self-documenting.

 DSLs facilitate validation and optimization at the domain level.

 Specifications are easier to modify and modifications are easier to understand.

 Domain Experts can understand and validate specifications by themselves.

However, DSLs’ usage also has its disadvantages, such as [4, 17]:

 Education costs of DSL end users.

 Difficulty in finding the proper domain or sub-domain for a DSL.

 Potential efficiency loss compared to General Purpose Languages (GPL).

 DSLs may be too expensive when used by a reduced number of domain experts.

DSLs’ development process can be described as sequential, passing through four

main phases, as depicted in Figure 2.1. The first one, the Domain Analysis, includes the

identification of the problem domain by gathering all the underlying knowledge. In this

phase, a meticulous understanding of domain experts’ tasks and expertise guarantee a

more concise and accurate design (see section 4.2.1 for further details).

The second phase is the Design. Here, a two phase job is performed. The Abstract

Syntax definition, where it is established the legal relationships between the domain

concepts of the DSL, usually made through a metamodel [26], and Concrete Syntax

definition, which make clear how the established modeling concepts are represented by

visual and/or textual elements [26].

The third phase is the Implementation, where the information from the metamodel is

translated into a native programming language, typically using workbench tools such as

MetaEdit [27], MetaEdit+ [28], GMF/EMF [29], GME [30], or Microsoft DSL Tools

[31]. For instance, in a diagrammatic DSL, each symbol and its underlying relationships

2. DOMAIN-DRIVEN DEVELOPMENT 2.1. Domain-Specific Languages

9

produce certain fixed code. This automated generation saves time and improves

consistency. Finally, the Evaluation, or Testing, phase aims to assess the final product,

so that domain experts’ productivity and satisfaction are meet with good quality

standards.

Figure 2.1 – DSL Development Phases [4, 6]

Reaching the end of this process does not mean the work is already done, since new

features may need to be introduced in the language. In this sense, Figure 2.2 expresses

this state of affairs by defining the DSL development process through a two level

model: the Domain Engineering and Application Engineering levels. The Domain

Engineering level reflects the work conceived for each DSL development phase,

previously presented, while the Application Engineering illustrate the application of the

attributes and the feasibility of enhancing the DSL according user requirements.

In our opinion, the Language Evaluation phase should be as important as any of its

predecessors in the DSL development process. Nevertheless, among the DSL

community (both in industry and academia) there appears to exist a low investment on

this phase. This situation might lead to production of inadequate DSLs, wasting

important financial and staff resources, and time in later improvements for not fulfilling

stakeholder’s needs. Consider, for instance, the maintenance costs associated with the

Figure 2.2 – DSLs' Development Process [1]

2. DOMAIN-DRIVEN DEVELOPMENT 2.2. Summary

10

creation and usage of a DSL. Boehm modeled maintenance costs using the following

equation [32]:

M = F * D * ACT

where F reflects an assigned weight to a maintenance factor, such as the type of system,

the language used, or the maintainers’ experience, among others ([17] lists 14

maintenance factors); D corresponds to applications initial development costs; finally,

ACT (Annual Change Traffic) designates the fraction of code changed due to

maintenance. After a period of DSL’s usage, D will considerably decrease, as well as F,

but ACT will continue the same in contrast to a system developed in a GPL. Domain

expert involvement in maintenance would be valuable but also introduce costs.

2.2. Summary

Domain-Specific Languages focus on a specific issue from a domain, which

comparatively to General Purpose Languages has considerable advantages. However,

we cannot always rely on DSLs for reasons of efficiency loss compared to GPL and

development costs that are not covered when used by a reduced number of domain

experts. Therefore, in any new development, DSLs’ advantages and disadvantages

should be compared to GPL, to attain the best option concerning costs, expressiveness

and stakeholders (Client and Domain experts) requirements fulfillment.

11

3. Experimental Software Engineering

Experimental evaluation in Software Engineering tries to assess Software

Engineering claims through application of a set of experimental techniques. Since the

scope of the dissertation focuses in the DSL’s evaluation phase and we are interested in

assessing DSL’s usability, Experimental Software Engineering plays an important role

in the Systematic Evaluation Methodology.

3.1. Empirical Methods

Developing a new software product is very challenging and, sometimes, the

expected final result does not achieve the required reliability, productivity, etc. To help

in the evaluation of these and other aspects of quality we can use solid and well

structured experimental evaluation techniques. There are several experimental

techniques borrowed from other scientific disciplines, which have been adapted to the

validation of claims in the context of Software development. They can be classified into

three major categories: Quantitative Methods, Qualitative Methods and Mixed Methods.

When Qualitative and Quantitative analysis are combined, the retrieved outcome from

the experiment is richer, since we are able to understand more easily the cause-effect of

the issues, otherwise it might not be easy to infer a theory [33]. For example, we can

achieve a statistical result without knowing the background cause for that.

In section 3.2 through 3.7 we discuss: the Quantitative, Qualitative and Mixed

methods; the Threats to Validity; the Reliability/Replication of experiments; finally, we

summarize this chapter.

3.2. Quantitative Methods

Quantitative Methods are based on the evaluation of measurable properties from

real data, with the aim of supporting or refuting a hypothesis raised by the experimenter

3. EXPERIMENTAL SOFTWARE ENGINEERING 3.2. Quantitative Methods

12

[34]. Our discussion will focus on a particularly representative type of quantitative

method: Experiments.

A Controlled Experiment is conducted to test a hypothesis or a set of hypotheses,

which can be supported or refuted, but not proven, where the effect on the dependent

variables is measured after the independent variables have been manipulated, in order to

provide results with statistical validity and identify cause-effect relationships [33], [35],

[36]. The impact that a specific selected method or tool, independent variable, has on an

attribute of the dependent variable is called treatment [35], where the simplest

experimental design has only two treatments (e.g. using a tool vs. not using it). Thus, it

is feasible to test different solutions on an attribute of concern by applying each time a

different treatment (i.e. a method or tool).

There are two sorts of experiments which are often performed in Software

Engineering [36]:

 Randomized Experiment – An experiment in which units are assigned to

receive the treatment, or an alternative condition, by random process, such as

table of random numbers.

 Quasi-Experiment – An experiment in which units are not assigned to

conditions randomly.

To perform such experiments, it is imperative to have a significant and well-defined

sample of the population, so that inferences can be drawn. A thorough data analysis of

the population should be held to identify potential anomalies in the data, such as

outliers/extreme cases. These types of anomalies raise the risk of bias and consequently

can reduce the external validity of results [34]. We will discuss validity threats in

section 3.5. The identification of extreme or outlier cases is considered particularly

valuable when the source of the collected data is unknown.

3.3. Qualitative Methods

Qualitative Methods focus on qualitative data obtained through observation,

interviews, questionnaires, and so on, from a specific population. The data is then

catalogued in such way that it can be useful to infer to other situations. In contrast with

3. EXPERIMENTAL SOFTWARE ENGINEERING 3.3. Qualitative Methods

13

Quantitative Methods, no kind of measurable evaluation is performed. In spite of this

apparent fragility, in many cases, they might help to explain the reasons for some

relationships and results, which otherwise couldn’t be well understood [34]. Qualitative

data is also assumed, by many, to be subjective due to the lack of quantitative

information. However, it can be made more expressive and less abstract [34], for

example, through structured interviews and questionnaires to subjects. This allows the

interviewer/observer to understand what the subject is thinking and the reason for his

actions when performing a specific task. In sections 3.3.1 through 3.3.3, we will discuss

the qualitative methods, data collection methods and coding qualitative data.

3.3.1. Qualitative Methods Description

When performing a qualitative analysis, experimenter has the possibility to choose

the method that best fits to his goals. In section 3.3.1.1 through 3.3.1.3, we discuss three

such methods: Ethnographies, Action Research and Case Study.

3.3.1.1. Ethnographies

This method is based on a field observation and studies how people from a

particular community interact with each other. In Software Engineering, for example,

one can use this approach to study the behavior of java programmers’ community. Thus,

ethnographic researchers are committed to producing well-structured assumptions that

lead them to create local theories to improve their understanding of a particular process

or product [33]. However, the lessons learned through this process, might be also useful

to outsiders by providing insights in a particular context that can later lead to new

hypotheses in other contexts.

3.3.1.2. Action Research

The key point of this method concerns the application of a feasible solution to solve

a real-world issue and understand its consequent impact [1]. During an Action research

process, researchers plan and conduct possible alternatives in the field with the purpose

to improve the situation and then, assess the impact of those changes. Although

practical and relatively low-cost, sometimes the desired changes may not be feasible to

3. EXPERIMENTAL SOFTWARE ENGINEERING 3.3. Qualitative Methods

14

apply because of internal organizational constraints, costing issues, ergonomics, etc.

Another potential shortcoming of this approach concerns the external validity of

findings using it.

Action research is vulnerable to biases of the researcher, particularly from those

which are unaware of such biases, since the researcher participates in the area of study

and simultaneously evaluates its results. It is, however an often viable surrogate for a

stronger form of validation and an interesting option, particularly when external validity

of the conclusions is not a priority (e.g. a company is typically more concerned with

finding a solution that works well in its own context than with finding a solution that

will also work well in other contexts, if finding the latter is less cost-effective for the

company and the extra generalization effort brings no tangible benefits for the

company).

3.3.1.3. Case Study

Probably the most used qualitative method among researchers. A Case Study can be

defined as a field research, since particular subjects, such as an organization, a group of

people, or systems are evaluated at point of time. In this sense, techniques of qualitative

nature are used to get the data, such as the ones that will be presented in section 3.3.2,

offering more and better knowledge about the object of study. In turn, a case study can

be in one of the two stages [33]:

 Exploratory Case Study – this kind of case study is conducted mostly in the

beginning of the research, with the objective of deriving new hypotheses and

build theories.

 Confirmatory Case Study – this kind of study is used to confirm (or refute) the

results obtained in previous case studies, so that an inference can be drawn.

A Case Study might seem similar with Action Research or even Ethnographies but

what differentiates it from the others is the fact of being more robust and more feasible

to apply to a wide range of cases. For instance, in Action Research, the researcher may

bias the outcome of an experiment by acting according to his preconceptions on the

expected outcome of the experiment [33], because he participates in the experiment. In

Case Study, this in no way happens, because the researcher only conducts, but never

participates in the experiment.

3. EXPERIMENTAL SOFTWARE ENGINEERING 3.3. Qualitative Methods

15

3.3.2. Data Collection Methods

When a Qualitative Method approach is chosen, two data collection methods can be

used, together or separately, so that one can retrieve as much information as possible. In

sections 3.3.2.1 and 3.3.2.2, we discuss those two data collection method: Subject

Observation and Interviewing with or without Questionnaires.

3.3.2.1. Subject Observation

In general this kind of data collection focuses the necessity of observing the actions

taken by participants, but in some cases it is not imperative [34] (e.g. a participant might

perform an activity in a specific tool from which his actions can be retrieved after). In

Software Engineering this is slightly different because information gathered through

observation has its limits. Often, the most important and interesting information is

inside the participant’s head. There are some useful techniques to understand what they

are thinking at each moment that help retrieving that kind of data [9, 34]:

 Think aloud – the participant articulates his thoughts, enabling the experimenter

to understand his view of the system (e.g. during subject’s keystrokes and mouse

movements).

 Constructive Interaction – a thinking aloud variation, which involves two

participants testing the system together. This allows a more natural dialogue

between them, contributing with greater collected data detail for the

experimenter.

 Participant Actions – records all planned or unplanned communications

between the subject and his colleges.

 Meetings Observations – the observer must take measures to not be seen and

get as much information as possible.

The inclusion of more observers is a measure that should be taken to increase the

accuracy of data collection, because there are some cases where only one observer is

incapable of retrieving all information from the participants’ performed actions.

3. EXPERIMENTAL SOFTWARE ENGINEERING 3.3. Qualitative Methods

16

Another alternative is to record a video of the participant’s actions, which can then be

analyzed off-line.

3.3.2.2. Interviews and Questionnaires

The interviewing process is performed in most cases along with observations and,

when both are combined, the obtained results are richer. In terms of interviews they can

be [34]:

 Structured – the interviewer has a defined set of questions to which the

interviewee has to answer.

 Unstructured – the objective is to get as much information as possible on a

broadly defined topic.

 Semi-Structured – is a mixture of the previous ones.

Questionnaires are another useful data collection method. A questionnaire is often

performed by retrieving participant general information (e.g. age, gender, experience),

using multiple choice questions, scalar questions, which allows the participant judging a

statement according to a predefined numeric scale (e.g. agreement or disagreement 1-5),

and open questions, where participants write their own considerations about the system.

3.3.2.3. Eye Tracking

Eye tracking is the process of measuring either the point of gaze or the motion of an

eye relative to the head. This kind of data collection provides a means to understand the

effect the visual elements in a system have to their users, and so identify which

elements potentiate mistakes.

A number of methods for measuring users’ eye movements can be used, but eye

position extraction on video images seems the most popular variant [37]. During this

process a wide range of data is achieved. However, is in its interpretation that dwells the

hard work, since we have to associate each segment of data with the visual elements

visualized by the users at the moment.

3. EXPERIMENTAL SOFTWARE ENGINEERING 3.4. Mixed Methods

17

3.3.2.4.Log Analysis

When we are interested in capturing users’ actions in an automated way of a

particular system, for instance, determine which icons and menus have been selected, or

the most used system elements, among others, then the Log Analysis is the right choice.

During this automated process a file with quantitative data is being filled. A major

problem of this data collection method concerns the analysis of the data, since it only

shows what users did but not why they did it. Therefore, it is recommended to combine

it with other methods such as Interviews [9].

3.3.3. Coding Qualitative Data

After data collection has been made, using one of the previously discussed methods,

it may be useful to extract values from qualitative data, to perform quantitative or meta-

analysis. This process is called Coding. This kind of transformation is not always easy

and might be subjective, so, it must be performed with caution [34].

3.4. Mixed Methods

There are some cases in which a method cannot be considered purely quantitative or

qualitative and while it can be catalogued into one of the categories, we cannot

guarantee that it does not use aspects of the other.

In most cases, researchers try to use the best of both worlds with the purpose of

gathering more powerful results to consolidate their theory. The strategy behind this

approach is using qualitative results to explain/characterize quantitative results from the

study [33].

To perform such analysis the researcher must be familiar with both methods.

Of the methods discussed in the previous sections, Controlled Experiments are

primarily Quantitative while Ethnographies, Action Research and Case Studies are

primarily Qualitative [33] but they might use aspects of the other.

3. EXPERIMENTAL SOFTWARE ENGINEERING 3.5. Threats to Validity

18

3.4.1. Survey Research

Survey Research has been considered in the mixed category as it includes a

balanced combination of qualitative and quantitative characteristics. The conduction of

survey research bases on gathering field data. It requires a clear point of departure, the

research question, and a well-defined research protocol, to keep in mind the initial

objectives, which afterwards will allow us to obtain a more solid theory or explanation

of some issue. A survey can be conducted with or without participants, but when they

are included it is typical to use a set of questionnaires as well as interviews for

collecting richer data [33]; as noted in section 3.3.2.2, it might also use quantitative

methods so that a more powerful inference can be drawn.

3.5. Threats to Validity

Even carefully well-planned, experiments are always vulnerable to some form of

validity threat. During an experiment, one or more factors might affect the obtained

result thus constituting a validity threat. In some cases, these factors introduce

undesirable effects, called biases, putting risk the internal and external validity. There

are some potential sources of biases, such as:

 Conduction of an experiment according the researcher’s expectations.

 Misclassification of some parameters

 Wrong subject or paper rejection or acceptance

 Type of subjects

 Non-representativeness of the target population

 Low response rates

 Type of the participants used in the research

All previous research methods are vulnerable to this sort of threats, so it is important

to be aware of them. They may compromise the generalization of results. Sections 3.5.1

through 3.5.4 present a brief description of the main threats.

3. EXPERIMENTAL SOFTWARE ENGINEERING 3.5. Threats to Validity

19

3.5.1. Construct Validity

An experiment is built to support some concept or theory. Construct Validity

concerns the generalization of the results of the experiment to the theory behind it [38].

Sometimes, those generalizations may be compromised, due to inconvenient threats

which might be reflected in final results. Some common construct validity threats are:

 Hypothesis guessing – a pre-conceived idea of the hypothesis result exists,

which may influence experimenter behavior, or that of the experiment’s

participant.

 Experimenter expectancies – conduction of the experiment according to the

experimenter expectancies.

3.5.2. Internal Validity

Internal Validity is considered the validity of the study itself, with respect to the

causal effect being studied. Like the previous validity type, Internal Validity is also

threatened by several issues. Some of these inconvenient threats are caused by [38]:

 Testing – repetition of the test by the same subjects. This situation can provide

different results each time, since subjects have a previous knowledge from the

earlier test.

 Instrumentation – concerns the artifacts used to materialize the experiment,

such as data collection forms (e.g. interview and observation form). When badly

designed, instrumentation affects negatively the experiment.

 Selection – Depending on the type, number and performance of the subjects

that take part in an experiment, results may be different. The method of primary

studies selection is another aspect that also influence results.

3.5.3. External Validity

External Validity can be described as researcher’s ability to generalize experiment

results to software industrial practice [38]. Therefore, External Validity is somehow

3. EXPERIMENTAL SOFTWARE ENGINEERING 3.6. Reliability/Replication

20

dependent of Internal Validity quality to get better experiment results generalization

[39]. Possible threats of External Validity include:

 Selection – without a representative population and subject type, such as

students, larger samples but reduce the probability of convince generalization,

volunteers, more motivated and capable than others and professionals, easier to

extrapolate to industry [33, 36].

 Setting – the absence of a very used tool among industry in the experimentation

sample.

 History – the time or day of a conducted experiment (e.g. a performance

questionnaire after a system crash).

3.5.4. Conclusion Validity

Conclusion Validity concerns the ability to extract the right conclusions about the

relations between the treatment and experiment’s outcome. This is vulnerable to the

following validity threats:

 Low Statistical Power – reveals the true patter in the data. A low statistical

power may provide mistaken conclusions.

 Violated assumptions of statistical tests – some statistical tests have certain

assumptions (e.g. normal distributed sample), when they are not fulfilled

erroneous conclusions are obtained.

3.6. Reliability/Replication

After the experiment has been conducted and results obtained, a concern that all

researchers should have is the presentation of all steps taken, so that others can replicate

it and confirm the reliability of the process, also referred as a ―repeating study‖, or

―replica‖ [33, 36].

Experimental replication is essential for validation for two main motives: when

conducted by an independent team it is a form of external, independent validation;

furthermore replicas can be designed to counter the effects of validity threats in the

3. EXPERIMENTAL SOFTWARE ENGINEERING 3.7. Summary

21

experiments they replicate. Although the replica will have its own threats, the

combination of all replicas can mitigate those threats better than an isolated experiment.

3.7. Summary

An experiment can be conducted in many different ways. Some methods are more

appropriated than others depending on the objective, scope and intentions of study.

Some may think that quantitative methods are better than qualitative and vice-versa,

but the best of both worlds can lead us to better solutions where the weaknesses of one

can be compensated by the strengths of the other, so we can argue that quantitative and

qualitative methods complement each other [33].

Processes of experimentation can begin with qualitative methods through

observation and/or interviewing where after the retrieving data and consistently coding

it, the data can be used as input to statistical analysis [34]. During data codification

some information may be lost. Qualitative data may be more expressive but it is harder

to analyze objectively than quantitative data. In turn when quantitative methods are

conducted there is the chance of some results not being well understood, so qualitative

methods can help to overcome this situation [39].

Another important issue that must be considered with caution is the active

mitigation of potential validity threats. In most cases the low portion of professionals

involved as subjects in Software Engineering experiments reduces the ability to

generalize results to other industrial contexts [34].

Finally, regardless from the method chosen in the experiment an hypothesis can

never be proven, only supported or refuted.

22

23

4. Usability Engineering

Any new system must satisfy customer pre-established requirements. Often, these

requirements are not fully met in the final product, due to interface miscommunication

of specific features to end-users, increasing error-proneness and decreasing

productivity. Therefore, performing a system Usability Inspection should be considered

an important and desirable mechanism to counter this situation. In DSLs, this should be

no different. A DSL with usability problems is likely to lead to productivity losses of

DSL users and, consequently, to a potentially lower quality of the products built with

that DSL. However, as we will discuss in chapter 5, usability is not among the major

priorities of DSL builders.. In this chapter we will discuss Usability Engineering, a

domain of Engineering from which there is many lessons to be learned concerning the

development of a validation approach for DSLs. In sections 4.1 through 4.3 we provide

a usability definition, discuss the usability lifecycle model and summarize by

establishing the fundamental steps of the Usability Engineering.

The usability content presented in this section is based on Jakob Nielsen’s work [9,

40].

4.1. Usability

Usability is a quality attribute based on users’ and/or stakeholders’ needs

satisfaction by assessing how easy a system is to use, more generally corresponds to the

user-friendless or fitness of a product. In ISO 9241-11 [41], usability is defined as ―the

extent to which a product can be used by specified users to achieve specified goals with

effectiveness, efficiency and satisfaction in a specified context of use‖. Normally,

usability has several components can be assessed through five usability attributes:

 Learnability – the system should be easy to learn so that new users can begin

effective interaction and achieve maximal performance.

 Efficiency – once the user has learned to use the system, a high level of

productivity should be possible.

4. USABILITY ENGINEERING 4.2. Usability Lifecycle

24

 Memorability – the system should be easy to remember after a period without

being used.

 Errors – the system should have a low error rate so that users can perform their

tasks normally.

 Satisfaction – the system should be pleasant to use.

These components allow any Usability Engineer to focus the fundamental aspects

that every single system must have and afterwards performing much deeper analysis.

4.2. Usability Lifecycle

Every time a new product is requested, the development team must immediately

start thinking the right route to reach the established customer requirements. During this

journey punctual Usability Methods should be considered, if a full usability procedure is

not possible to be taken. On the other hand, a clear number of test users and evaluators

have to be defined as well, to be used among the usability methods. This practice will

strengthen the final product correctness. Therefore, to accomplish this objective, Jakob

Nielsen outlined eleven usability tasks, which are depicted in Figure 4.1, and will be

described with further detail in section 4.2.1 through 4.2.11.

Figure 4.1 – Usability Lifecycle Model [9]

4.2.1. Know the User

This first stage starts by identifying the intended users and their future use of the

system. An early definition of their capabilities should be considered in every new

4. USABILITY ENGINEERING 4.2. Usability Lifecycle

25

system development, since they provide significant knowledge of the domain and

feedback in the way that certain features should behave in the whole. In this sense, a

visit to their workspace should be equated, to acquire more consciousness of their tasks.

Similarly, the developer is capable to understand what is important and what is

disposable, reducing the number of redundant or unnecessary features, as well as

prioritizing between them. This process will carry out an interface more familiar and

focused to end-users, since they are the real final users of the system, by increasing their

productivity and satisfaction.

A significant aspect that should be taken into account during systems’ usability

development concerns users’ capability to improve their efficiency, so it is advisable to

use input of any previous experiences.

4.2.2. Competitive Analysis

A new system development may involve starting everything from scratch, which is

expensive and exhausting, even to usability engineering. To improve this situation we

can learn from the existing products developed in-house or in other companies. In most

cases, competing products have passed through reasonable usability tests before arriving

to market. Therefore, we can take advantage of this by putting users performing real

tasks on them to understand how well their functionality and interaction techniques

would be advisable to our new product. This allows having stronger basis to perform all

usability lifecycle.

4.2.3. Goal Setting

During DSL development, Software Language Engineers are faced to choose one

option over another. Typically, some of these options bring more revenue than others.

Goal Setting can be useful in this context. This specifies, through a measurable scale,

the minimum and target value to be achieved according to a specific task performed by

the end-users. Figure 4.2, depicts an example of its application where, for a particular

system, the reasonable number of users errors per hour should be two, although users

make an average of 4.5 errors per hour. An early Goal Setting establishment for each

desirable task will provide the developer with more guidance to choose the right option,

as well as, provides with a more robust and faithful interface to end-users. For new

4. USABILITY ENGINEERING 4.2. Usability Lifecycle

26

versions of existing systems or for systems that have clearly defined their competitors,

the minimum acceptable usability rate should be equal to the current usability level. For

those which are completely new and without any competition, usability goals are much

harder to set.

Figure 4.2 – Goal Setting example [9]

4.2.4. Parallel Design

The expected outcome of a system can be achieved through adoption of different

design processes. Usually it starts by a designer establishing system requirements and

respective functional structure. However, a better result can be accomplished by using

several designers in parallel by doing the same procedures. This can be a good option

for novel systems, where little guidance is available. As this leads to several alternative

definitions of the same system, the best design can be combined with others, providing

stronger basis for the remainder of the project. This process should be done with

designers working independently, before any proper implementation has been carried

out. In Figure 4.3 we present an instance of a parallel design.

Figure 4.3 - Parallel Design [1]

4. USABILITY ENGINEERING 4.2. Usability Lifecycle

27

4.2.5. Participatory Design

A first study of users’ capabilities and future tasks has already been performed by

Knowing the User, discussed in section 4.2.1. However, we can benefit much more

from their presence in the design process, for instance, through regular meetings

between users and designers. During these meetings they can provide with new fresh

ideas, criticize existing options, which may not reveal as productive as the initial

intention, and suggest solutions for improvement of specific features. Despite the

considerable advantages of users’ introduction in design process, after some period of

time they become less representative, as soon as they understand the proposed system

structure. So a periodical refresh of the pool of users used in development process

should be performed. However, there is a trade-off in refreshing the pool of users: this

procedure has a negative short-term impact, since changing users involves spending

extra time explaining the project all over again.

4.2.6. Coordinating the Total Interface

During all product development process everyone should be informed with the latest

changes, improvements and trends, so that all efforts are conducted in the right

direction. In this sense, among DSLs, the software language engineers should

communicate the newly introduced feature(s) to the evaluators, so that they could

produce, or adequate, the material for the experiment, and evaluators should provide

them with the changes that must be carried out after being conducted the experiment,

promoting consistency. This consistency shouldn’t be measured at a single point in

time, but over successive releases, so that each new release is consistent with the

previous one.

4.2.7. Heuristic Evaluation

The Heuristic Evaluation for Jakob Nielsen is a usability evaluation method to find

usability problems in a user interface design. This evaluation process involves a small

set of evaluators examining and judging interface compliance according with fairly

broad usability principles, referred as ―Heuristics‖. In widespread Software Engineering

4. USABILITY ENGINEERING 4.2. Usability Lifecycle

28

this process is usually referenced as checklist based evaluation. The ten Heuristics for

this purpose are:

1. Match between system and the real world – the system should speak the

users’ language, with words, phrases and concepts familiar to the user. Follow

real-world conventions.

2. Consistency and Standards – similar things should look and act similar, as

well as different things should look different, letting users unconfused.

3. Help and Documentation – help and documentation should be provided with

easy search and understanding.

4. User control and Freedom – the user should not feel trapped in his tasks. An

―emergency exit‖ is advised. Support undo and redo features.

5. Visibility of system status – users should be informed about what is happening

in the system through appropriate feedback.

6. Flexibility and Efficiency of use – shortcuts should be included to speed up

users’ frequent operations.

7. Error Prevention – do not give users the opportunity to make errors. Eliminate

error-prone conditions or check for them and present users with a confirmation

option before they commit to the action.

8. Recognition Rather than Recall – minimize user’s memory load by making

objects, actions, and options visible. Users should not have to remember

information from one part of the dialogue to another.

9. Help users Recognize, Diagnose, and Recover from errors – error messages

should be intuitive and in users’ language.

10. Aesthetic and Minimalist Design – users should be faced with good graphic

design, and simple dialogues.

Evaluators’ capability to find usability problems is not an exact science and varies

from one session (or evaluator) to another. However, since we know that each new

evaluator tends to find different issues, we can achieve relatively better final results by

incorporating a minimum of three and a maximum of five evaluators, Nielsen suggests.

The exact number depends on the cost-benefit analysis. On the other hand, sessions

4. USABILITY ENGINEERING 4.2. Usability Lifecycle

29

should not last more than two hours. Longer and complicated evaluations must be

divided into smaller sessions, each one focusing on a specific part of the interface.

During this process each individual evaluator should inspect the interface more than

once by himself. Evaluators should only be allowed to change ideas among them after

performing their individual assessments. This procedure produces unbiased evaluations

from each evaluator. Then, the respective output corresponds to a detailed list of

usability problems, where afterwards, each usability problem found should be classified

according to their severity priority, as discussed in section 4.2.9.

This approach is especially valuable: when time and resources are short and makes

it possible to develop heuristics to specific classes of products. However, it is deeply

dependent on evaluator’s experience, although this effect can be mitigated by using

evaluators with different expertise in the evaluation team.

4.2.8. Prototyping

When developing a new system, regardless of it being completely new or a new

system version, usability engineers recommend not starting a full-scale implementation.

This mitigates the risk of having to perform large changes or even starting all over

again. Both would lead to an extra time expenditure and project final costs’

increasement. Thus, usability engineers often support the construction of system

prototypes. In user centered interfaces, this can be achieved by creating a prototype

from the intended interface using paper mock-ups or a small computational version of

the system. Afterwards, they can be used for evaluation several times. In this sense,

there are two prototyping approaches to consider: Vertical Prototyping, which cuts the

number of features and includes a detailed functionality definition but only for a few

features which are selected for testing; and Horizontal Prototyping, which reduces the

level of detailed of functionalities, but allows testing the entire user interface. The latter

approach is less feasible.

4.2.9. Empirical Tests

After sufficient features of the system are implemented, the system is put into a real

world test. Therefore, a pool of users must be gathered. A typical protocol for the

empirical evaluation of usability defines five users as a sufficient number for each

4. USABILITY ENGINEERING 4.2. Usability Lifecycle

30

round. Since several rounds might be useful to find more interface design problems,

developers can modify the system between each round. The number of usability

problems to be found can be approximated by the following expression, where i is the

number of test users, N the total number of usability problems in the interface and λ the

probability of a single test user finding any problem, which varies from project to

project.

A usability test should be performed in four stages:

 Preparation – makes sure that is everything prepared to start the test, including

materials, instructions, questionnaires, room.

 Introduction – a brief explanation of test purpose is given by the experimenter.

 Running the test – users should not be helped unless there is a clear issue in the

system observed in previous test users that makes them get stuck and unhappy

with the situation.

 Debriefing – a semi-structured conversation with each test user where they are

asked to fill a questionnaire.

During test running, beyond the useful Subject Observation (section 3.3.2.1), we can

collect statistics about system usage by having the computer collecting users’ actions,

Log Analysis (section 3.3.2.4). This allows developers to track the most used features,

users’ failures, etc, as a complementary analysis.

After each usability test, it is time to analyse the outcome values. Frequently, some

revealed usability problems are much more severe than other. Therefore, a prioritization

among them is performed by the evaluators after determining which heuristics have

been violated, since it is not feasible to solve all problems at once. In Table 4.1 we

present a single rating scale for usability severity.

Usability_Problems_Found(i) = N (1 – (1 – λ)
i
)

4. USABILITY ENGINEERING 4.2. Usability Lifecycle

31

Severity Description

0 This is not a usability problem at all.

1 Cosmetic Problem – need to be fixed unless extra time is available on project.

2 Minor Usability Problem – fixing this should be given low priority.

3 Major Usability Problem – important to fix, so should be given high priority.

4 Imperative to fix this before product can be released.

Table 4.1 – Severity Scale [9]

4.2.10. Iterative Design

Each new product development process requires well-defined production guidelines,

so that customer requirements and domain comprehension are accurately achieved.

However, it is not always feasible to retrieve all domain information at once, since we

only notice the importance of some attributes in later stages of the project, taking us

back a few times in our development, and new attributes appear with new pretensions of

the customer. In most cases new iteration designs are performed to counter these

situations. Nevertheless, these new iterations may interfere with other previously

implemented components, introducing new usability problems. Therefore, a list

cataloguing all changes performed and respective reasons is advisable so that usability

principles are not sacrified to attain a minor objective.

4.2.11. Feedback from Field

At the end, the whole usability engineering process performed in the system is revealed

publicly. However, there is still much work ahead. A post-development analysis of the

system should be performed, by gathering usability data in the field, through end-users

experimentation and feedback, for the next version and future products. In this sense, a

release can be viewed has a prototype, since several assumptions can be retrieved for

future products.

4. USABILITY ENGINEERING 4.3. Summary

32

4.3. Summary

Each stage of Nielsen’s usability lifecycle model provides with singular aspects to

system’s quality improvement and users’ satisfaction. Nevertheless, it is not always

possible to perform full system usability engineering, passing through all the usability

methods described in this chapter, due to budget constraints or development deadlines.

Even when this happens it is highly recommended to rely on more than one usability

method.

33

5. A Domain Specific Languages Survey

5.1. Introduction

Domain-Specific Languages have an important role in Software Languages

Engineering (SLE), since they are said to bring important benefits in productivity, time-

to-market responsiveness, and training time when compared to General Purpose

Languages (GPLs) [42]. The rationale is that developers no longer need to make error-

prone mappings from domain concepts to design concepts, and onto programming

language concepts. Instead, they can work directly with domain concepts. To attain

these considerable gains, a typical development process has to be followed. The

Domain Analysis starts it, in order to elicit the domain concepts from the pre-establish

customer requirements. The language Design follows it, through previous concepts

relationship establishment. Then, the language is implemented by constructing the

library, typically using a workbench tool for the purpose. And finally, the Evaluation

phase assures that the DSL is adequate to the end-user (the Domain Expert).

As with any other software product, we need to assure that the DSL is adequate to

the end-user. This covers not only the language’s correctness, but also quality attributes,

such as language’s usability, the maintainability of the produced systems, or the

productivity of the developers using the DSL. Deursen et al. [17], corroborate the

importance that DSL’s Usability has on their acceptance and success.

We think there is a serious gap in what language Evaluation should be. In this sense,

we present a systematic review to assess whether or not we can find evidence in the

literature to back up our hypothesis: in general, software language engineers do not

evaluate their languages with respect to their impact in the software development

process in which DSLs will be integrated.

To the best of our knowledge, there is no available systematic review and meta-

analysis on the level of evaluation of DSLs reported in literature. The review presented

in this chapter aims to fill in this gap. Ultimately, we aim to raise community’s

awareness to the problem of poor validation of DSLs. This chapter reports on a survey

that quantitatively characterizes the description of experimental validation of DSLs in

5. A DOMAIN SPECIFIC LANGUAGES SURVEY 5.2. Research Questions

34

papers published in top venues from 2001 to 2008. Therefore, from a total of 246

inspected articles, 36 have been successfully selected [18, 43-77].

The followed Systematic Experimental Review Methodology [39], helped us to

establish the research questions and a review protocol, which left us tightly connected

with the predefined research parameters. This methodology inhibits researchers from

contaminating the review with their expectations, reducing thus the likelihood of bias

introduction. This contrasts with ad-hoc literature surveys, which are much more

vulnerable to researcher’s biases. This detail is important for the context of this

dissertation. As our purpose is to propose a methodology for evaluating DSLs, we first

need to assess the current state of evaluation of DSLs. An ad-hoc review on the topic

would provide weaker evidence concerning the lack of proper evaluation in the current

state of practice of DSL development. By conducting a systematic review on this topic,

we make our survey repeatable and more auditable. This is common practice in other

sciences, such as medicine, where evidence-based research has a longer tradition than in

Software Engineering.

This survey has been published in “XIII Congreso Iberoamericano en “Software

Engineering” (CIbSE) [14].

The chapter is organized as follows. In section 5.2 we present the research protocol

followed in this systematic review of the current state of practice in SLE. In section 5.3

we present the selection method with the inclusion and exclusion criteria in this review.

Section 5.4 depicts the Data Analysis, with the articles that has performed Quantitative

and Qualitative analysis, the Subjects’ involved in DSL’s development and/or

evaluation, as well as the Usability criteria, and articles’ Replication. Section 5.5

discusses the feasible threats to survey validity and how they were mitigated. Section

5.6 summarizes this chapter.

5.2. Research Questions

Our main motivation was to determine DSL community commitment to the extent

of usability experimentation, in the context of proposals of new DSLs. In order to guide

our systematic review on the state of practice, we start by stating the research questions:

 Is there a concrete and detailed evaluation model to measure DSLs Usability?

 Is the DSL community concerned about experimental evaluation as a

mechanism to prevent future problems from the proposed DSLs?

5. A DOMAIN SPECIFIC LANGUAGES SURVEY 5.3. Review Methods

35

 Is there any evidence that the developed DSL is easy to use and corresponds to

end-users needs?

In order to facilitate our characterization of DSLs state of practice on each of the

inspected papers, we broke these questions into more detailed criteria that we then used

to classify the surveyed papers. These more detailed questions were:

RQ1: Does the paper report the development of a DSL?

RQ2: Does the paper report any experimentation conducted for the assessment of

the DSL?

RQ3: Does the paper report the inclusion of end-users in the assessment of a DSL?

RQ4: Does the paper report any sort of usability evaluation?

RQ5: Does the paper report the DSL development process with some detail?

5.3. Review Methods

Paper selection was performed in two steps. For the first step a direct inspection of

paper abstracts and conclusions has been followed, to identify papers covering our

research questions. If any doubt remained with respect to the paper’s eligibility, we

selected it for further analysis. This enabled a more systematic and rapid filtering of

articles. In the second step, we followed an in-depth analysis of each of the reviewed

papers. To facilitate paper selection, we defined strict paper inclusion criteria, namely:

(1) the paper reported on the development of at least one DSL; (2) the paper reported on

the experimental evaluation of DSLs; or (3) the paper reported on specific techniques of

DSLs Usability evaluation. In what concerns our third criterion we had no success while

applying it.

All selected and discarded papers have been inspected from 15 of the most

important scientific publications. The selected publications include: 1 special issue of a

journal, Journal of Visual Languages and Computing (JVLC), 2 conferences,

International Conference on Software Language Engineering (SLE), International

Conference on Model Driven Engineering Languages and Systems (MODELS), and 10

workshops, IEEE Symposium on Visual Languages and Human-Centric Computing

(VL/HCC), OOPSLA Workshop on Domain-Specific Modeling (DSM), OOPSLA

5. A DOMAIN SPECIFIC LANGUAGES SURVEY 5.3. Review Methods

36

Workshop on Domain-Specific Visual Languages (DSVL), ECOOP Workshop on

Domain-Specific Program Development (DSPD), International Workshop on Language

Engineering (ATEM), Model-Driven Development Tool Implementers Forum (MDD-

TIF), Modellierung DSML (DSML), International workshop on Software Factories at

OOPSLA (OOPSLA-SF), ECOOP Workshop on Evolution and Reuse of Language

Specifications for DSLs (ERLS), ETAPS Workshop on Language Descriptions, Tools

and Applications (LDTA). The survey also covers 2 general Software Engineering

publications, namely IEEE Transactions on software Engineering (TSE) and the

International Conference in Software Engineering (ICSE) conference series.

Table 5.1 presents an overview of the selected papers. We grouped the publications

in two categories: publications at least partially targeted to DSLs versus generic

Software Engineering publications. Each table row presents the publication name, the

number of available papers in that publication, from 2001 to 2008, the number of

inspected papers, the number of selected papers and their percentage with respect to the

number of inspected papers.

Table 5.1 – Selected papers

1This value corresponds to the number of articles obtained through an advanced search where research keywords
have been ―Domain Specific Language‖ from ICSE from 2001 to 2008 in ACM Portal web site, due to considerable
amount of articles in the respective conference between the defined date scopes.
2 This value corresponds to the number of articles obtained through an advanced search where research keywords
have been ―Domain Specific Language‖, ―Domain Specific Modeling Language‖, ―DSL‖ and ―DSM‖ in IEEE
Transactions on Software Engineering web site, due to considerable amount of articles in the respective journal

between the defined date scopes.

Selection Publication Available

articles

Inspected

articles

Selected

articles

Selection

percentage

Specific

OOPSLA-DSM 97 97 14 14.4%

OOPSLA-DSVL 27 27 5 18.5%

DSPD 19 19 3 15.8%

SLE 18 18 0 0.0%

ATEM 13 13 2 15.4%

MDD-TIF 10 10 3 30.0%

DSML 12 10 0 0.0%

OOPSLA-SF 9 9 0 0.0%

ECOOP-ERLS 6 6 0 0.0%

JVLC 5 5 2 40.0%

General

VL/HCC 141 16 2 12.5%

MODELS 200 4 1 25,0%

ICSE 42
1
 6 2 33.3%

TSE 32
2
 2 1 50.0%

LDTA 10 2 1 50.0%

 Total 763 246 36 14.6%

5. A DOMAIN SPECIFIC LANGUAGES SURVEY 5.4. Data Analysis

37

The papers from ICSE and TSE have been retrieved with our text-based search,

rather than analyzing all the published papers, during the whole time frame. In

VL/HCC, MODELS, and LDTA, due to conferences scope being less focused on DSL

domain, papers’ title served as a mean of selection. In what concerns the DSML

conference there is a variation between the available and inspected articles, because 2 of

the papers were written in German and were, therefore, discarded from further analysis.

Although we have used a common time frame for all publications, several of these

publications were only available in some of the years under scrutiny. Figure 5.1

represents the distribution of these publications during the analyzed period. As we can

observe, several of publications considered in our review had a single edition. The most

notable exceptions are OOPSLA-DSM and VL/HCC, among the more focused venues,

and both of the selected general Software Engineering publications, TSE and ICSE.

This diversity of number of editions of the publications explains the variability of the

number of scrutinized papers, with respect to their origin. Nevertheless, we believe that

our sample is representative of the current state of practice in DSL development.

Figure 5.1 – Reviewed publications time frame

During the systematic review many papers addressed DSLs. However, not all

fulfilled the research parameters. Some of them have been discarded because they

concerned the development of frameworks for DSLs, the application of DSL attributes

for other development domains, for instance, code generation and metamodels, or

announced case studies where no scientific evidence was provided.

5. A DOMAIN SPECIFIC LANGUAGES SURVEY 5.4. Data Analysis

38

Our survey target was especially publications with a strong concentration on

discussions on DSLs, and their creation, although, we are aware that DSLs are widely

disseminated through whole software industry. Therefore, it is fair to assume that there

are several DSLs addressed in different journals, conferences, and workshops,

according to their domain.

5.4. Data Analysis

In this section, we report the obtained results from the selected papers under the

defined parameters in section 5.3.

RQ1: Does the paper report the development of a DSL?

In what concerns this subject, a considerable percentage of the total selected papers

reports the development of a DSL, 91.7%, to satisfy a specific demand in the real world,

while others were presented as proof of concept, targeted to improve a specific domain

in software production (e.g. a DSL for Interactive Television applications [50, 62, 63], a

DSL for Interoperability between Object-Oriented and mainframe systems, [54]). In

turn, the 3 papers which did not reported DSL development were selected for presenting

a quantitative analysis to assess domain-specific modeling techniques [72], a qualitative

analysis of collected experiences during DSMLs development [76], and usage of

usability techniques for DSLs assessment [18]. Table 5.2 depicts the number of selected

papers reporting DSL development.

 Category Number of Articles Percentage

Development of DSLs 33 91.66%

Without Developing a DSL 3

Quantitative Experimentation 1 2.78%

Qualitative Experimentation 1 2.78%

Usability Techniques 1 2.78%

Total 36 100%

Table 5.2 – Development of DSLs

5. A DOMAIN SPECIFIC LANGUAGES SURVEY 5.4. Data Analysis

39

RQ2: Does the paper report any experimentation conducted for the assessment of

the DSL?

After identifying papers reporting DSL development, we were interested to know

how many of them have performed any sort of experimental evaluation. In this sense,

we grouped these parameters of analysis in two groups: Experimentation Kind,

quantitative and qualitative experimentation, and Experimentation Material Kind,

Industrial Level and Ad-hoc/Toy Example:

 Quantitative Experimentation – papers with quantitative evaluation.

 Qualitative Experimentation – papers with qualitative evaluation. This

attribute has been divided into subgroups, participant observation, interviewing

or not defined to get more understanding.

 Industrial Level – papers reporting DSLs tested in industry.

 Ad-hoc/Toy Example – papers reporting a DSL implementation as proof of

concept.

A Quantitative Method is based on the evaluation of measurable property (or

properties) from real data, with the aim of supporting or refuting a hypothesis raised by

the experimenter. Qualitative Methods focus on qualitative data obtained through

observation, interviews, questionnaires, etc., from a specific population. The data is then

catalogued in such way that it can be useful to infer to other situations. In contrast with

Quantitative Methods, no kind of measurable evaluation is performed. In spite of this

apparent fragility, in many cases, they might help to explain the reasons for some

relationships and results, which otherwise couldn’t be well understood [34]. In this

sense, we obtain the following results, depicted in Table 5.3.

Experimentation kind Total Articles

Quantitative 3

Qualitative 2

Unknown 21

Without Experimentation 10

Table 5.3 – Quantitative and Qualitative Experimentation

5. A DOMAIN SPECIFIC LANGUAGES SURVEY 5.4. Data Analysis

40

As some of the papers claim performing some sort of experimentation, but without

further relevant information to the reader according the kind of evaluation, we add the

category Unknown. In turn, some of them report no experimental evaluation, Without

Experimentation.

The first noticeable information concerns the few papers performing

experimentation validation of DSLs, five in a universe of 36 selected papers. In what

concerns quantitative experimentation, only 3 articles has performed it, [65, 67, 76], but

without a reliable evaluation process. Merilinna et al. [65], report on a comparison

between two different approaches, the ―traditional software implementation‖ versus

using a DSML. In Zeng et al. [67], a DSL dataflow analyzer has been performed to

analyze programs as part of the compilation process, where the experimental evaluation

focused on a comparison in lines of code (LOC) between the ―traditional‖ method and

DSLs generated code. Finally in Bettin et al. [76], once again a LOC comparison has

been done, but this time between ―traditional software development‖, UML based

software development and DSL software development based. An atomic model element

was introduced to measure the effort of production, but no further evaluation was

conducted to give wider scientific evidence.

The two papers reporting qualitative experimentation are [64, 72]. In Luoma et al.

[72], a 20 industrial project research using DSMs and MetaEdit+ has been performed.

The qualitative data has been collected through diverse means: interviews and

discussions with consultants or in-house developers who created the DSMLs, with

domain engineers, responsible personnel for the architectural solution and tool support.

On the other hand, Correal et al. [64], assess DSM techniques targeted to the definition

and improvement of software process models within a software development company,

Industrial Level.

In contrast, 10 papers do not report the implementation of any kind of experimental

evaluation of DSLs [18, 45, 49, 52, 55, 56, 61, 68, 69, 74].

The remaining 21 papers [43, 44, 46-48, 50, 51, 53, 54, 57-60, 62, 63, 66, 70, 71,

73, 75, 77], report the usage of ad-hoc or toy examples as mean of proofing their

concept. However, from five papers performing either a quantitative or qualitative

validation, three [65, 67, 76] provide no details concerning the kind of examples used in

their evaluation, and two [64, 72] declare to use industry-level examples. In turn, [72]

goes further and claim to have obtained their information at industrial level, but does

not provide details on the particular evaluation. Table 5.4 summarizes this information.

5. A DOMAIN SPECIFIC LANGUAGES SURVEY 5.4. Data Analysis

41

 Experimentation material kind Total Articles

Ad-hoc/Toy Example 21

Industrial Level 2

Unknown 3

Without Experimentation 10

Table 5.4 – Ad-hoc/Toy Example and Industrial Level Experimentation

RQ3: Does the paper report the inclusion of end-users in the assessment of a DSL?

When developing a new system, regardless of being completely new or a new

system version is important to make an exhaustive study of the intended users profile

and how they will use the system. Their impact on usability is enormous, so an early

definition of their capabilities allows developers to understand what is important and

what is disposable, reducing the number of redundant or unnecessary features in the

system [9]. This observation is applicable to software users in general, and to DSL users

in particular. In order to characterize DSL users who participate in a DSL evaluation,

each paper was inspected concerning three categories:

 Industrial or Specialized personnel – articles reporting subjects with expertise

in the domain. He doesn’t necessarily need to have knowledge about DSLs, in

general.

 Academic – usage of students as a surrogate for real end-users of a DSL.

 Not defined – when were revealed the usage of subjects but not the profile.

From the 36 selected papers only 5 have explicitly reported the usage of subjects.

Three of them reported using domain experts, including seismologists [51], and other

specialized developers [67, 72]. The remaining two papers didn’t specify subjects type

in the evaluation of the DSL [55, 64]. Once again all available data was not carefully

disclosed. Table 5.5 depicts the retrieved information.

Domain Experts Total Articles

Industrial or Specialized personnel 3

Academic 0

Not defined 2

Unknown 31

Table 5.5 – Domain Experts usage

5. A DOMAIN SPECIFIC LANGUAGES SURVEY 5.4. Data Analysis

42

RQ4: Does the paper report any sort of usability evaluation?

Usability is a quality attribute based on users’ and/or stakeholders’ needs

satisfaction, and concerns how easy a system is to use. In the context of our survey, it

was imperative to assess the extent to which DSLs were tested for usability, and

whether they fulfill the end user’s needs. Thus, we identify three categories for this:

 Usability Techniques – the papers report a set of techniques that allow DSLs

becoming more accurate to the end users.

 Ad-hoc – the paper reports an ad-hoc approach to improving DSLs’ usage

without a detailed rationale.

 No Usability Assumption – The paper provides no information about usability

evaluation.

80.6% of the total selected articles revealed no concern in measuring DSL’s

usability, while 19.4% consider that some options might improve it. In terms of those

who spared some time in this issue, 14.3% belong to Usability Techniques category,

while the remaining 85.7% correspond to Ad-hoc. Table 5.6 summarizes this

information.

The paper that used Usability Techniques has provided a questionnaire to assess a

general purpose language, which was afterwards adjusted to the DSLs’ context [18].

Papers in category of General Options focused on visual issues pointed out by subjects,

such as layout ideas [55], usage of familiar icons and commands [53], interactive

dialogs to increase users performance [44], and the impact that an iterative development

with subjects during production has in usability [51]. Finally, [74] has developed three

Domain Specific Visual Languages, each one with an intended target user group, where

have been undertaken usability trials, without specifying the exact procedure.

Consistency and error-proneness have been also compared.

Usability Total Articles

Usability Techniques 1

Ad-hoc 6

No Usability Assumption 29

Table 5.6 – Usability Techniques reported

5. A DOMAIN SPECIFIC LANGUAGES SURVEY 5.5. Threats to Survey Validity

43

RQ5: Does the paper report the DSL development process with some detail?

To understand DSL community commitment concerning evaluation replication, we

asked the following question ―Does the article report the DSL development process

with some detail?‖. This question helps us characterizing the extent to which authors

provide details about the DSLs whose development was detailed in the papers. So, for

each paper, we looked for details on DSL construction. From 33 papers reporting a DSL

development, 16 provide some in-depth details on how those DSLs are built [18, 46, 48,

50, 51, 54, 55, 58, 59, 62, 63, 65, 67, 70, 72, 73]. The presence of a metamodel was not

imperative, for this classification, but in some cases proved to be a good help explaining

the developed DSL. The number of DSLs reporting the construction details over the

years is depicted in Table 5.7.

Year Total Articles Reference to steps

2008 9 4

2007 10 7

2006 7 2

2005 1 1

2004 3 2

2003 1 0

2002 3 0

2001 2 0

Total 36 16

Table 5.7 – Number of articles with reference to the steps taken by year

We can observe that a major percentage of articles reporting DSL development

process with further detail occurred in the most recent half of the time considered in this

survey.

5.5. Threats to Survey Validity

Even when carefully planned, surveys are always vulnerable to some sort of validity

threats, similarly to what concerns experiments, as discussed in section 3.5. However,

these threats can be mitigated. In this sense, we have followed a systematic review [39],

to avoid biasing the results of this survey with our expectations. Although we were very

conservative in our selection, it is always possible that some papers may have been

5. A DOMAIN SPECIFIC LANGUAGES SURVEY 5.6. Summary

44

missed, either because we failed to understand the abstract, or because the abstract was

incomplete and did not cover the validation of the proposals with enough detail.

Another common threat concerns the misclassification of papers. This can happen

when the reviewers misunderstand some important information about the paper and

classify it in the wrong category. Nevertheless, we mitigated this threat by creating

objective criteria to classify the surveyed papers, thus minimizing subjectiveness in the

data collection.

A shortcoming in the reviewed work that corresponds to a threat to survey validity

is the predominance of toy examples, when compared to the usage of industry level

examples. This represents a threat to the validity of claims made in such papers, as the

conclusions drawn from toy examples do not necessarily scale up to industry. Most of

the publications scrutinized in this review are workshops. Therefore, it may be the case

that the predominance of work in progress papers in such venues increases the relative

frequency of insufficiently validated claims.

The lack of detail on the surveyed experimentation reports implies that we often do

not know who the subjects were involved in the process. This is a threat, as we do not

know the extent to which domain experts were really involved in this process, in most

cases.

5.6. Summary

We found a low level of experimentation in the surveyed papers. Only about 14% of

the papers report to have followed a quantitative or a qualitative evaluation of the DSL,

and yet they provide very few details on what was done. Researchers planning to

replicate such evaluations would suffer from a lot of tacit knowledge, which is a well-

known factor hampering validation of claims supported through experimentation [78,

79]. The proposal of a roadmap for the validation of DSLs could mitigate this

shortcoming of current practice. A widely accepted methodology for DSLs validation is

our objective, presented in chapter 6.

 Most of the publications scrutinized in this review are workshops. Therefore, it may

be the case that the kind of chosen examples are in line with what we typically find in

workshops, i.e., the presentation of work in progress papers to get valuable feedback

from the community to their approaches, and then mature their work and publish more

5. A DOMAIN SPECIFIC LANGUAGES SURVEY 5.6. Summary

45

validated claims in major conferences and journals. However, the focus of the selected

workshops is centered on DSL issues.

In summary, we can characterize that DSL community does not systematically

report on the realization of any sort of experimental validation of the languages it

builds. Therefore, one of the present challenges to the community is to foster the

systematic evaluation of the languages as part of the standard of practice in the

development process.

46

47

6. Systematic Evaluation Methodology

6.1. Introduction

Domain-Specific Languages are becoming widely used by a growing number of

vendors [80]. Industrial experiences have consistently reported remarkable productivity

increases by a factor of 5 to 10 times higher than with current development approaches

[21].

Nevertheless, in the middle of such promising opportunity, through our Domain-

Specific Languages survey, chapter 5, we verified that, in general, DSL producers still

neglect the evaluation of their languages, either due to the absence of a concrete

evaluation methodology or to a poor perception of DSL usefulness in the development.

Therefore, we try to mitigate this problem by providing the Software Language

Engineer with a Systematic Evaluation Methodology that can guide him during the

evaluation process.

We argue for a systematic methodology, in the sense that provides repeatable

procedures, enabling the developer to have a controlled universe built-in with a pre-

defined modus operandi for each technique, reducing the development time, error rate,

experimentation biases and, consequently, the production costs.

DSLs development process is established through the analysis of the problem

domain, followed by the design, domain application, and implementation, library

construction, and finally ends up with the evaluation, or final testing to assess the final

product (as discussed in chapter 2). During this process several iterations are made and

several versions of the language are produced until a satisfactory one is achieved.

Typically, software language engineers with different degrees of language expertise are

involved [81, 82]. Ideally, Domain Experts should also participate in this process as

well, since they are a decisive factor for language’s acceptance and success [17].

A Verification and Validation of the DSL must be performed. Ensuring that

software correctly implements specific functions and satisfies its specification is the

mission of the Verification, while determining if the system satisfies customer

6. SYSTEMATIC EVALUATION METHODOLOGY 6.2. Motivation

48

requirements is a Validation task. Here our main concern is the Validation, in order that

the DSL meet domain experts’ expectations and desires, by increasing their satisfaction

and productivity.

The remainder of this chapter is organized as follows: Section 6.2 presents the

motivation of our work by evincing Systematic Evaluation Methodology foundations.

Section 6.3 describes which stakeholders should be involved in the evaluation process.

The achieved evaluation procedures can be found in Section 6.4. Section 6.5

summarizes this chapter.

6.2. Motivation

Domain-Specific Languages development is a discipline within Software Languages

Engineering. Its application domain is more restricted than GPLs development. Even so,

they share several challenges.

In GPLs, customer requirements are usually captured using a generic specification

language (e.g. UML). In DSLs, this is often defined in form of a Metamodel with a

workbench tool for this purpose [26]. If the metamodel is not self-consistent, easily and

correctly read, processed and assimilated, the communication instance fails and brings

more difficulties [82], for present and future Domain Experts.

An extreme to avoid is having a DSL engineer doing everything by himself,

ignoring other people’s expertise, because, without all stakeholders’ commitment, the

language is unlikely to achieve a good result [19].

On the other hand, some significant problems only arise after the entire development

process has been followed, making the language difficult to evolve, understand and use

to its full potential, as well as error-prone [83].

In order to counter systematic problems proliferation in languages building, we can

borrow approaches from Experimental Software Engineering and Usability

Engineering. Some of these approaches, especially in Usability Engineering, are based

on iterative designs and usability methods. This allows software language engineers to

find errors in advance and reduce future drastic and costly changes in the produced

DSLs. On the other hand, with Experimental Software Engineering techniques we are

able to retrieve domain experts’ impressions of the language and if possible compare

them with previous versions of the DSL or previous languages that have already been

tested, in in-house or in other organizations in order to understand their significance.

6. SYSTEMATIC EVALUATION METHODOLOGY 6.2. Motivation

49

Two leading researchers, make strong claims concerning the importance of using

several methods during the Evaluation phase. Jakob Nielsen in Usability Engineering:

―Several studies have shown that usability inspection methods are able to

find many usability problems that are overlooked by user testing but that

user testing also finds some problems that overlooked by inspection,

meaning that the best results can often be achieved by combining several

methods.‖ [84]

and Barbara Kitchenham in Experimental Software Engineering:

―…we do not expect a specific method/tool to be the best in all

circumstances.‖ [85]

Our Systematic Evaluation Methodology builds on this notion of combining several

evaluation methods that already exist. Therefore, the choice of the evaluation methods,

as well as the evaluation process uses some particular aspects of:

 Production Costs – Time and budget constraints, which have an effective

repercussion on the Validation Techniques and on the number of software

language engineers, evaluators and domain experts used in the evaluation

process.

 Effectiveness – How well the produced DSL meet stakeholders’ objectives: if

modeling concepts’ are well represented by visual and/or textual elements; and

language’s comprehensibility, this factor is influenced by domain experts’

previous knowledge on: (1) Language Expertise, previous expertise with

modeling languages in general, (2) Domain Expertise, previous expertise with

similar DSL domains, (3) Problem Size, size of the domain to be modeled, and

(4) Type of Task, difficulty of each task, since some tasks are more easily

implemented than others.

 Satisfaction – The user satisfaction while performing specified tasks. This is

influenced by the language intuitiveness - ease of use and ease of learning -,

interaction methods, and closeness - proximity between domain expert’s mental

representation of the DSL and DSL’s capacity to satisfy their intentions.

6. SYSTEMATIC EVALUATION METHODOLOGY 6.3. Stakeholders

50

 Productivity – How proficient the domain experts performing their

specification tasks with the DSL. Whenever possible domain experts’ results are

compared with previous versions of the language and/or competitive languages.

Given milestones for the Systematic Evaluation Methodology, a roadmap will be

provided to be followed by the Software Language Engineers and Evaluators during

DSLs’ development process.

6.3. Stakeholders

In order to achieve a language well suited for the future users, we identified three

classes of actors, each of them with different background and knowledge, as part of the

DSL evaluation process: Domain Experts, the end-users of the language, Software

Language Engineers, who are responsible for establishing the language, and Evaluators,

in charge of setting the evaluation parameters, such as define the number of domain

experts to involve in the experiment, produce the evaluation material for domain

experts, and examine visual and/or textual elements of the DSL in order to find

inaccuracies. Communication among all of these actors is primordial to ensure that each

one plays their role efficiently. In Figure 6.1 we depict each actor and associate them to

the development phases in which they participate.

In what concerns the first phase of the DSL development process, the Domain

Analysis, we identified the domain experts and software language engineers as playing

a role in this activity. The domain experts provide their daily tasks, natural capabilities

and desires, in which software language engineers take to make DSL planning. This

interchange of information will benefit the final DSL, in the way that will help to

determine its characteristics, and therefore achieve a more adjusted language to their

users’ needs, expectations and desires. Domain experts’ satisfaction should be one of

the main concerns to increase usability standards (as discussed in section 4.2.1).

 During Design, software language engineers and evaluators share opinions and

envision the future language. Software language engineers are responsible for language

definition, whereas evaluators, if necessary, suggest new development directions based

on their evaluations of previous versions of the DSL or previous languages that have

already been tested.

6. SYSTEMATIC EVALUATION METHODOLOGY 6.3. Stakeholders

51

The Implementation phase concerns DSLs library construction. This is outside our

evaluation methodology scope. Nevertheless, the software language engineers are

responsible for this task, as depicted in Figure 6.1.

Finally, the Evaluation phase takes place. At this point we considered two primary

classes of actors, the domain experts and evaluators. Nevertheless, we are aware that in

some cases evaluators’ usage may become difficult or impossible due to language

development constraints (e.g. budget constraints, or available personnel). In this case

software language engineers become part of the evaluation process by performing

evaluators’ tasks. The domain experts serve as a mean of evaluation for the evaluators

or software language engineers depending on each case.

In any case, we still support the presence of an evaluator (or team of evaluators),

since a seasoned evaluator is likely to have superior evaluation expertise, and thus is

capable to find more inconsistencies and avoid bias during the experiment conduction.

This is somewhat similar to having independent quality assurance teams (e.g. testing

teams) in ―normal‖ software development.

Figure 6.1 – Stakeholders in DSL’s development process

6. SYSTEMATIC EVALUATION METHODOLOGY 6.4. Evaluation Methodology

52

6.4. Evaluation Methodology

Regardless of the particular target domain, any DSL should be easy to learn and

remember, and useful. This means that it should contain easy-to-use functions. It should

also bring efficiency, so that the target domain experts can achieve higher productivity

standards, and ensure the satisfaction of their users. Verification, Validation and Testing

of the language can help achieving these goals.

Given this and the assumptions in section 6.2, we build our Systematic Evaluation

Methodology upon a set of Validation Techniques belonging to specific phases of a

typical DSL development process. These techniques are based on Usability Methods

from Usability Engineering, discussed in chapter 4, and Data Collection Methods from

Experimental Software Engineering, discussed in section 3.3.2. In Figure 6.2, we

present a synopsis of the validation techniques adopted during the evaluation of the

language, as proposed in our methodology.

Figure 6.2 – Validation Techniques

The Validation Techniques selected to our methodology are based on the following

assumptions: the costs of applying the technique, its capacity to determine domain

experts’ satisfaction, and productivity, and DSL effectiveness.

Some Usability Methods have been extended to fulfill particular DSL usability

criteria, which is the case of the Heuristic Evaluation. Data Collection Methods have

6. SYSTEMATIC EVALUATION METHODOLOGY 6.4. Evaluation Methodology

53

been introduced to obtain useful insights from the domain experts, so that evaluators

can provide software language engineers with the right directions to the next step of

language development.

In our opinion, two usability methods, Competitive Analysis and Goal Setting, can

be used during Domain Analysis. Both will help establishing the baseline for

comparison with the results obtained from the language assessment. Regarding

competitive analysis, similar languages (DSLs or GPLs) produced in-house, or by a

third-party, allow to retrieve development procedures as well as evaluation indicators

(e.g. number of errors, task duration, etc). These indicators will serve as basis to the

new language’s requirements, by helping in the Goal Settings phase.

In the Design phase, we think the remaining techniques should be applied through

an iterative process between the development and evaluation of the DSL. This process

allows a deeper relationship between design, test and redesign, repeated as often as

necessary, to strengthen language Usability [86]. This iterative process is also supported

by several articles about DSL construction, such as [5, 87-90]. Nicholas et al. [20],

outside DSL scope, address this situation by building a model as an ongoing process.

Nevertheless, we are aware that in some cases software language engineers would

still prefer to evaluate their language only in a final stage of production. In this sense,

our evaluation methodology also satisfies this situation, which matches the particular

case of a single iteration of the iterative evaluation process.

We did not assign any validation technique to the implementation phase, as the

validation of the implementation is beyond the scope of our work.

In the last phase, the Evaluation, we establish the procedures to prepare, conduct and

analyze the experiment. For those who follow our previous recommendations, a

competitive analysis and an iterative design, they will benefit from that, since they are

able to take advantage of the already produced evaluation material by the evaluators, for

the domain experts to experiment the DSL.

In sections 6.4.1 through 6.4.4, we characterize each method and its application,

regarding the respective phase of DSL development process.

6.4.1. Domain Analysis

At this moment, before establishing any evaluation procedure, the software

language engineer must be aware of: (1) customer demands, to define the crucial and

6. SYSTEMATIC EVALUATION METHODOLOGY 6.4. Evaluation Methodology

54

optional DSL features, (2) the target domain experts, their experience and future use of

the language, and (3) customer’s time and budget constraints. This last point is of great

importance for the evaluator as well, in the sense that it helps him to determine the

validation procedures to follow, since some of them are more time demanding and

expensive than others [91].

The evaluator should be also concerned with what has been done in-house and/or in

other organizations’ products that can be used as an asset to the new DSL evaluation.

This leads to the selection of our first validation technique, the Competitive Analysis.

Competitive Analysis

Competitive Analysis is helpful for defining a baseline for our evaluation purposes.

It uses in-house, or third-party languages (DSLs or GPLs) as a baseline, and then

assesses the DSL using that baseline.

Acquiring third-party languages information might become a complex task. In most

cases, an extra work has to be done in order to measure the usability factors of interest

to compare with the targeted DSL, and get language development details. For that

reason, it is often more feasible to perform competitive analysis with in-house targeted

DSL, since most languages are not completely new and share more commonalities than

idiosyncrasies. This is in line with Product Line Engineering (PLE) [92], and appears to

be a recent DSL development trend, since PLE has been contributing to DSL

development process. The rationale is to improve the reusability of DSL core assets

with SPL techniques [93]. For instance, in Karsai et al. [94], the authors promote the

reuse of existing language definitions as much as possible, saying that: ―taking the

definition of a language as a starter to develop a new one is better than creating a

language from scratch. Both the concrete and the abstract syntax will benefit from this

form of reuse‖.

In summary, DSLs or GPLs with similar domains and development characteristics

as the targeted DSL should be analyzed, since much information can be obtained from

competing languages and thus considered in DSL’s development and evaluation.

Languages outside/with similar DSL’s target domain and similar/different development

characteristics’ should not be discarded, as valuable information may be obtained as

well. In turn, languages with different domains and development characteristics’ from

the target DSL are disposable. Table 6.1 summarizes this information.

6. SYSTEMATIC EVALUATION METHODOLOGY 6.4. Evaluation Methodology

55

Competitive Analysis (GPLs or DSLs) Analyze Discard

Similar Domain & Similar Development Characteristics √

Similar Domain & Different Development Characteristics √

Different Domain & Similar Development Characteristics √

Different Domain & Different Development Characteristics ×

Table 6.1 – Languages to consider in Competitive Analysis

Competitive Analysis serves two purposes in our Systematic Evaluation

Methodology.

The first one corresponds to the identification of good development practices to be

introduced in the development of the new DSL. The collectable attributes range from: a

simple tool adoption, by identifying its advantages and disadvantages, to development

procedures, such as the required number of evaluators and domain experts, and the

techniques used and its benefits to the final product. In Table 6.2 we present these

attributes with further detail.

Collectable Attributes Considerations

Tool

The tool used to produce the DSL has a large impact on

the perception of characteristics of models, their creation

and use [19]. If more than one alternative workbench tool

exists, we can compare their advantages and

disadvantages of adopting one tool over another. Since

many tool details only become apparent with their usage,

testing each tool is helpful, before deciding which one to

use.

Number of Evaluators

The selection of the ideal number of evaluators to be used

is not an exact science, although we are aware of typical

upper and lower limits, five and three evaluators

respectively [9]. With similar competitive languages we

may become more accurate on the right number of

evaluators to use in the target DSL, since more

commonalities than idiosyncrasies are shared.

Number of Domain Experts

Similarly to the number of evaluators the number of

domain experts is not easy to define. Therefore, having a

baseline for comparison will help in this task.

Validation Techniques

Observing in action the early presented Usability

Techniques and Data Collection Methods in competitive

6. SYSTEMATIC EVALUATION METHODOLOGY 6.4. Evaluation Methodology

56

languages, helps DSL producers to perform a more

accurate decision concerning which ones best fit the

desired purpose of the target DSL.

Table 6.2 – Collectable Attributes

The second purpose concerns the establishment of the base values of the evaluation

elements: the Goal Settings. These values serve as baseline for comparison with the

results obtained through domain experts’ involvement in the target DSL to measure its

usability. Cao et. al [8], provide an example that shows the importance of such results

comparison in order to understand their real significance. In their research they compare

maintenance tasks using Domain-Specific Models (DSM) and UML Models. Their

findings suggest that DSM saves user’s time understanding implementation or language

issues, granting them more time to model the solution.

In Table 6.3 we present the Goal Settings we found more important to take into

consideration during DSL evaluation. It combines inputs from [9, 37, 95-100]. The

number of errors made by the users of the language are evinced in [9], their success or

failure while performing the tasks in [95, 99], the time needed to perform the task in

[37, 96-98], task completion in [37], help request during the experiment in [9], domain

experts’ satisfaction about the language in [98, 100], and users mental effort with the

language in [37]. The list is not exhaustive, in the sense that other goals may be found

useful, depending on the DSL scope and objectives. Likewise, this represents a set of

alternatives, where for each DSL only the Goal Settings of major interest should be

chosen. The provided definitions for each goal setting are possible examples of their

usage. However other solutions may be established.

Targets for Goal Settings Definition

Number of Errors

The average number of users’ errors while performing a

task. In some cases it may be useful determine the

number of users’ errors while performing a task during a

specified period of time (e.g. number of users’ errors per

hour).

Task Success or Failure

A percentage of the domain experts that successfully

performed the task and of those who were unable to

accomplish it.

Task Duration

The average duration that domain experts spend to

6. SYSTEMATIC EVALUATION METHODOLOGY 6.4. Evaluation Methodology

57

complete the task.

Task Completion

The percentage of a task completion by the domain

experts. This percentage might be determined with

respect to a pre-defined duration assigned to the task.

Help Request

The average number of help requests that domain

experts perform to accomplish the task. When

establishing this value, it is important to understand if in

competitive languages a specific duration for the task

has been assigned, otherwise we may compare results

with different characteristics.

User Satisfaction

Domain experts ease of use, learning and

comprehension of the DSL. This can be measured by a

questionnaire where the questions for that purpose are

answered through a Likert scale.

Mental Effort

The necessary mental effort that a domain expert has

spend to perform a specific task. This can be measured

by a questionnaire where the question for that purpose is

answered through a Likert scale.

Table 6.3 – Goal Settings

6.4.2. Design

After performing the Domain Analysis it is time to Design the future language

according the pre-established domain concepts. In this sense, the Abstract and Concrete

Syntax have to be defined.

In what concerns the Abstract Syntax, the modelling concepts’ and their legal

relationships are established. On the other hand, the Concrete Syntax makes clear how

the established modelling concepts are represented by visual and/or textual elements.

The abstract and concrete syntax are key to the success of the DSL. Therefore, a

poor definition and evaluation of the entities relationships and visual and textual

elements, will force the domain experts to use an inadequate language. In this sense, we

argue for an iterative design between development and evaluation of the Abstract and

Concrete Syntax, as the one depicted in Figure 6.3. However, for those who still prefer

to conduct a single evaluation, this is also achievable with a single iteration of the

iterative evaluation model.

6. SYSTEMATIC EVALUATION METHODOLOGY 6.4. Evaluation Methodology

58

Figure 6.3 – Iterative Evaluation Model

The process should start by modelling a small subset of the language and then test it.

If the result from the experiment is not satisfactory, the necessary changes should be

performed and stored, as well as the conducted tests, in order to be used in future for

comparison. Then the process continues until the desired language is accomplished.

This kind of evaluation process is also supported by [88, 89].

6. SYSTEMATIC EVALUATION METHODOLOGY 6.4. Evaluation Methodology

59

Each procedure presented in Figure 6.3 will be described in this section with further

detail. In turn, the necessary steps to prepare, conduct and analyze the experiment will

be the same as the evaluation process described in section 6.4.4.

Prototyping

Developing a new DSL is a hard and demanding work. Domain concepts and

customer requirements usually change has language evolves, and with that several

adjustments have to be done. Regarding a short-term DSL development, i.e., a language

that is under development and has not yet used for any circumstance by its intended

users, the sooner these adjustments are carried out, the less time and resources are

wasted unnecessarily.

Prototyping is a useful approach in this context. A preliminary version of the

intended language is created, unveiling certain details that would be otherwise revealed

in later stages with higher associated costs. Steven et al. [19], state that software

language engineers often view language creation as a waterfall process, neglecting its

iterative nature and the need for prototyping, which can result from spacing

development milestones too far apart.

Prototyping is associated to both Abstract and Concrete syntaxes, as depicted in

Figure 6.3, since they are responsible for language concepts’ communication to the

domain experts. In this sense, we believe that prototyping is capable to: (1) give an

earlier feedback, (2) anticipate the future errors and conflicts; (3) facilitate previewing

language’s complexity; and (4) help recognizing which integrity constraints should be

established, for instance: missing rules, associations, constraints, and cardinality.

Using paper-mocks for prototyping can be a choice, as discussed in session 4.2.8.

Another alternative is producing a computational version of the language. In DSLs’

scope this could be valuable for a start up project. However, in subsequent versions of

the same language, we consider that both approaches may introduce unproductive

labour, since the base of the project has already been established and assessed. This

statement is somehow sustained by Jakob Nielsen [9], who claims that in early stages of

the design where functional prototypes are not yet available, paper mock-ups or simply

a few screen designs can be used to prompt user discussion.

6. SYSTEMATIC EVALUATION METHODOLOGY 6.4. Evaluation Methodology

60

Visual Elements

After establishing a new feature, to a start up DSL or to a previous DSL version, the

first evaluation procedure to be followed concerns language’s visual and/or textual

elements, Figure 6.3. But, before setting up our validation process we will make some

observations regarding this subject.

The first thing that any software language engineer should be aware, when

establishing the visual elements, concerns the extent of use of his DSL, namely whether

it is Local or International [101]. This issue plays an important role in how the

vocabulary and symbols should communicate the entities.

In a Local environment, restricted vocabulary and symbol metaphors would easily

work. However, in an International environment the restricted vocabulary and symbol

metaphors solution may not be suitable, introducing a wide range of misunderstandings

to domain experts. In this sense, the usage of widely recognizable symbols and text is a

good opportunity to overcome this issue. However, the costs associated with

introducing this (desirable) redundancy may be too high, when we are only interested to

use the DSL within a local context.

When performing the evaluation of a DSL, built for an international community of

domain experts, it is useful to gather a sample of multicultural domain experts, in order

to guarantee that the visual elements are potentially recognized everywhere.

In spite of the recognized importance of good looking and familiar symbols that are

easy to read, remember, understand and use in the DSL, symbol selection does not

receive as much attention as it should, as referred in [19]. A choice of symbols with lack

of detail can cause ambiguity, and lack of usability [102]. Common shortcomings that

should be overcome in symbols used in DSLs include:

 Complex Bitmaps – the more detail included, the more difficult it will be to

understand the symbols’ intension, therefore decreasing usability [102-104].

 Poorly scaled Bitmaps – this occurs particularly with aspect-ratio changes and

can make symbols hard to understand [19].

 Subtle distinctions – too subtle distinctions between symbols may lead domain

experts to commit a wide range of mistakes by choosing the wrong symbol

[103].

6. SYSTEMATIC EVALUATION METHODOLOGY 6.4. Evaluation Methodology

61

 Photographic Representations – the usage of photographs to communicate the

concepts. Alan Blackwell [104], has shown through an experiment that his

participants did not recognise the photographic images from which they were

faced with in a data flow.

In what concerns the textual elements, the DSL should provide terms that are easily

understood by any potential end user, avoiding too much mental effort. For instance,

using a large number of acronyms may burden the user with unnecessary complexity,

particularly if those acronyms are not commonly used in the user’s jargon. However, if

the DSL target users are quite experienced this may not be a huge problem, as long as

they are familiar with the acronyms. Nevertheless, new users with lower expertise may

be involved in the future and their performance may suffer from the lack of clarity

brought by inadequate acronyms.

Our first validation process builds on the criteria discussed in this section

concerning text and symbols, as well as on the heuristics proposed by [40] (already

discussed in section 4.2.7), and in Karsai et al.’s DSL design guidelines for Concrete

Syntax [94].

This validation process consists on having a pool of Evaluators, with a strong

background on usability evaluation, appraising the Concrete Syntax in search for

potential usability problems. The detailed list of usability problems found by each

evaluator should be discussed with the others in order to achieve a consensus in what

must be changed. We can regard this process as a special kind of software review [105],

targeted to detecting usability problems. If such evaluators do not exist, another element

of the company, except the one(s) who developed the feature and set the visual

elements, should perform the evaluator’s role. Thus, the heuristics that should always be

preserved are:

H1. Match domain experts’ language – the DSL should speak domain experts’

language with one or two words by entity. Follow real-world conventions to

wide acceptance.

H2. Error Prevention – Similar words and symbols should be avoided between

dissimilar entities.

H3. Minimize domain experts’ memory load – avoid too many technical terms

and acronyms to identify symbols and entities.

6. SYSTEMATIC EVALUATION METHODOLOGY 6.4. Evaluation Methodology

62

H4. Default values – Symbols with dynamic graphical behaviour should provide

default values for input fields.

H5. Help and documentation – help and documentation should be provided with

easy search and understanding.

H6. Aesthetic and Minimalist Design – domain experts should be faced with good

symbols expressing each entity purpose.

This pre-validation will ―clean‖ the Concrete Syntax from visual and/or text

inaccuracies introduced during DSL development process, responsible for diminishing

language’s usability. Likewise, the pre-validation allows domain experts to find major

structural problems during the experimentation phase.

Scenarios

The next step of our evaluation process concerns collecting domain experts’

impressions about DSL’s new feature correctness. Regarding this, we try to measure

DSL capacity to satisfy domain experts’ expectations and desires, as well as increase

their productivity standards. In order to achieve these assumptions we established a

validation process based on Scenarios, as shown in Figure 6.3.

A Scenario describes a sequence of actions that a domain expert should perform by

himself on the model, in order to understand if the expected task is achieved in its

fullness or something lead him to stop in the middle. If the domain expert cannot

achieve his desires this may suggest that the model contains an error or something is not

sufficiently perceptive. This last case can be caused by remaining undetected visual

elements issues from the previously validation, Visual Elements section.

The usage of scenarios to evaluate models is a widespread practice, depicted in

Nielsen [9], Nicholas et al. [20], Kamandi et al. [37], where instead of Scenario they

call it Task, and in Richard et al. [99], and Jiménez et al. [98]. In what concerns DSLs,

scenarios are also used as depicted in [98, 99]. In both cases scenarios are part of a set

of validation procedures to evaluate their own languages.

A scenario may be Closed, or Open. A Closed Scenario provides a sequence of

detailed actions. An Open Scenario provides only the starting and end points, but not a

detailed description of any intermediate steps (Figure 6.4).

6. SYSTEMATIC EVALUATION METHODOLOGY 6.4. Evaluation Methodology

63

In Open Scenarios, domain experts are faced with more freedom during tasks

execution. Therefore different solutions may be obtained by different domain experts

due to language expressiveness. We believe that this Open Scenarios allows detecting

missing attributes, such as: (1) missing constraints, (2) cardinality entities, (3) missing

rules, and (4) missing associations. In this sense, we propose a major usage of Open

Scenarios in detriment of Closed Scenarios during domain experts Examination, as

discussed in section 6.4.4.

Figure 6.4 – Scenarios

This validation technique can be combined with Data Collection Methods

(discussed in session 3.3.2). In this sense, we identified five methods which are useful

in this context: (1) Observation, (2), Think-Aloud (3) Log Analysis, (4) Interviewing,

and (5) Questionnaire. The first three allow evaluators understand domain experts’

actions as the scenario is performed, while the last two are useful for post analysis. A

combination of these methods can and should be considered by the evaluators, in order

to achieve more significant conclusions of domain experts’ actions.

Regarding Observation and Think-aloud, two measurements can be taken: assign at

least one evaluator per domain expert while they perform the scenario; or doing it

automatically by recording domain experts’ session and analyze it in the future. Both

approaches allow us to understand domain experts’ actions and feelings, where

otherwise slightly details would be forgotten.

In what concerns the first option, one evaluator per domain expert, it might

represent an overload when too many evaluators are required, which organizations

usually do not have. In this sense, two aspects should be retained: less domain experts

performing the scenario at the same time requires less evaluators, but more time would

be required; more evaluators allows more domain experts evaluated in less time, but

more resources are needed.

6. SYSTEMATIC EVALUATION METHODOLOGY 6.4. Evaluation Methodology

64

The second option, record domain experts’ session, may overtake the drawback of

having too many evaluators. However, it is important take into consideration that this

approach will require more time to analyze domain experts’ actions and some of the

users would not feel very pleased to give his thoughts to a recorder without a human

presence by his side.

The Log Analysis, reported to be used by [99], is another suitable data collection

method, since it permits to retrieve a lot of statistical data, such as: (1) scenario

duration, (2) created and removed entities, (3) documentation access, and (4) entered

and removed values. However, it is strongly dependent on the DSL tool to provide this

functionality. If a log analysis is feasible, it should be combined with domain expert

interviews as characterized by [9], otherwise results interpretation may be extremely

difficult and inconclusive, since it only reveals what was done, but not why.

In the end an Interview and/or Questionnaire should be performed, to assess domain

experts’ feelings about the feature produced for the DSL. This process has been

followed by [95, 97, 98]. In what concerns the questionnaire, in [97] the authors

strongly recommend engineers to perform a questionnaire as part of their design effort.

Nevertheless, we think that conducting not only a final questionnaire (Table 6.4) but

also intermediate ones for each scenario (Table 6.5), is a good opportunity to understand

more effectively what went right and what went wrong. These questionnaires, are built

on [37, 97, 100, 106], and serve as a start for any new DSL evaluation, since some other

feasible questions which are dependent of DSL’s scope that can be introduced. The

areas of focus in the questionnaires should include:

 Domain Expert Background – perceive domain experts’ programming skills

and experience with DSL modelling tools.

 Learnability – the ease of assimilation of the domain concepts and DSL

modelling tool functionality.

 Familiarity – whether the concrete syntax offers recognizable symbols and text

that can be easily understood by the domain expert.

 Ease of Use – domain expert impression of the performed scenario, which in

turn reflects the ease of use of the DSL.

 Effectiveness – the capability of the DSL to enable domain experts to achieve

specified tasks with accuracy and completeness.

6. SYSTEMATIC EVALUATION METHODOLOGY 6.4. Evaluation Methodology

65

 Expressiveness – how compact and restrictive is the DSL to express our

intentions.

 General Impressions – overall domain expert impression.

On the other hand, each question in both Final questionnaire and Scenario’s

questionnaire has been identified at least with one usability factor:

 Memory Load – the amount of information that the domain expert needs to

memorize in order to perform a specified task.

 Understanding – whether the language concepts are easily perceived by the

domain expert.

 Intuitiveness – Language’s capacity to enable domain expert to automatically

recognize what and how to achieve a specified task, through a previously

learning of concepts.

 User Guidance – whether a helpful documentation or supervisor explanation is

provided with enough detail.

 Readability – whether language’s symbols and/or text elements can be easily

understood.

 Attractiveness – whether language’s symbols are good-looking to domain

experts.

 Error-Proneness – whether the language avoids the domain expert to make

mistakes.

 Controllability – whether the language give domain experts the sense of control

of the environment.

 Changeability – whether the language is easily modified by the domain experts.

 Operability – the necessary amount of effort to operate and control the

language.

 Accuracy – Language’s capability to provide correct results.

 Minimal Action – Language’s capability to help domain experts achieve their

tasks in a minimum number of steps.

6. SYSTEMATIC EVALUATION METHODOLOGY 6.4. Evaluation Methodology

66

 Likeability – Domain experts’ perceptions, feelings, and opinions of the

language.

The final questionnaire (Table 6.4) is structured in three columns, containing the

question itself (Question), the usability factor the question seeks to answer (Factor), and

the identifier of the question (ID). In turn, each question belongs to one of the

previously presented area of focus (Domain Experts Background, Learnability,

Familiarity, Ease of Use, Effectiveness, Expressiveness, and General Impressions).

Factor ID Question

Domain Experts Background

Previous

Experience with

Programming

B1

Did you have software programming skills? (Yes, No)

How do you classify yourself? (Advanced,

Experienced, Average, Beginner, Inexperienced)

How many years of programming experience do you

have?

Preview

Experience with

DSL tool

B2

How often did you use a DSL tool? (Very often, Often,

Sometimes, Seldom, Never)

How long have you used it?

Have you enjoyed it? (Yes, No)

What for?

Learnability

Understanding L1
How do you classify the learning concepts? (Very Easy, Easy,

Normal, Difficult, Very difficult)

User Guidance L2
How useful were the provided examples? (Very Good, Good,

Satisfactory, Poor, Very Poor)

Familiarity

Attractiveness F1

How do you classify the symbols representing the concepts?

(Very Good, Good, Satisfactory, Bad, Very Bad)

Which of them did you find inadequate?

Readability F2

How do you identify the text representing the concepts? (Very

Good, Good, Satisfactory, Bad, Very Bad)

Which of them did you find inadequate?

Readability F3
How often did you make mistakes due to symbols similarity?

(Very often, Often, Sometimes, Seldom, Never)

Readability F4
How often did you make mistakes due to ambiguous

vocabulary? (Very often, Often, Sometimes, Seldom, Never)

Ease of Use

Controllability U1
What do you think of the DSL tool? (Very Good, Good,

Satisfactory, Bad, Very Bad)

Changeability U2 How did you feel performing changes? (Very Easy, Easy,

6. SYSTEMATIC EVALUATION METHODOLOGY 6.4. Evaluation Methodology

67

Normal , Difficult, Very difficult)

Operability U3
How physically demanding was performing the scenario?

(Undemanding, Simple, Regular, Tough, Severe)

Effectiveness

Accuracy EF1
Does the outcome reflect what you were expecting? (Totally,

Close, Normal, Hardly, Very far)

Expressiveness

Operability EX1
What percentage of code you needed to add after DSLs code

generation?

Controllability EX2

How often did you feel unable to express what you intended?

(Very often, Often, Sometimes, Seldom, Never)

Where did you feel more difficulties?

General Impressions

Likeability G1
What is your overall assessment of the DSL?

(Very Good, Good, Satisfactory, Poor, Very Poor)

Likeability G2 What changes or additions do you propose to the model?

Likeability G3

Do you feel the new system as a value-added compared to the

previous one? (Yes, No)

Why?

Likeability G4

Do you feel more productive than with the previous system?

(Yes, No)

Why?

Table 6.4 – Final Questionnaire

Scenario’s questionnaire (Table 6.5) structure is the same as presented in the final

questionnaire. The only difference concerns the identifiers assigned to each question.

Here we continued to follow the numbering inside each area of focus in order to

facilitate questions distinction.

The objective of this questionnaire is to help the evaluators determine more

effectively what went right and what went wrong with the domain experts during the

tasks they were told to perform, and therefore, achieve more accurate conclusions.

These intermediate questionnaires may also serve as mean to perform questions about

particular concepts of the language focused in the developed scenarios.

Factor ID Question

Learnability

Intuitiveness

User Guidance
L3

How often did you find the need to consult the documentation?

(Very often, Often, Sometimes, Seldom, Never)

User Guidance L4 How often did you perform questions to the supervisor? (Very

6. SYSTEMATIC EVALUATION METHODOLOGY 6.4. Evaluation Methodology

68

often, Sometimes, Seldom, Never)

Ease of Use

Controllability

U4

How confident did you feel during scenario execution? (Very

confident, Confident, Normal, Insecure, Very insecure)

Error-Proneness U5
How often did you find trapped or confused during the

scenario? (Very often, Often, Sometimes, Seldom, Never)

Memory Load U6

How mentally demanding was the scenario? (Very Simple,

Simple, Regular, Difficult, Very Difficult)

What did you feel more difficult to reason/perform?

Effectiveness

Accuracy EF2
How do you feel about the correctness of the performed

scenario? (Very Good, Good, Satisfactory, Poor, Very Poor)

Expressiveness

Minimal Action

Operability
EX3

How compact did you find the accomplished scenario? (Very

Simple, Simple, Regular, Difficult, Very Difficult)

General Impressions

Likeability G2 What changes or additions do you propose to the model?

Table 6.5 – Scenario's Questionnaire

Conducted Tests

At this point, DSL’s visual elements and domain concepts have already been

inspected. During this process data collection methods were used to retrieve domain

experts’ impressions and results from feature evaluation. In our opinion, supported by

[20, 81] where historical record of model testing is seen as good practice, domain

experts’ impressions, as well as their results have extreme value for next iterations,

versions or even new DSLs. In this sense, we consider it is important to record this

information for future consultation (Figure 6.3). This historical record will serve: (1) as

basis to establish the Goal Settings for a new DSL; (2) as a basis for comparison, to

measure domain experts’ results significance; (3) as support to establish new tests; and

(4) to preview future directions of usability analysis of the language. In summary makes

the DSL more accessible to experimentation.

Based on previous assumptions, we defined a template, presented in Appendix 1, to

store the results of each group of domain experts. A group is defined as a set of

individuals with similar characteristics, for instance, a group of domain experts based

on their programming skills, age, experience, etc. This division allows us to perceive

difficulties and comfortability within a group, as well as, understand if the same issue

remains in different groups. Thus avoids the misinterpretation of the overall results.

6. SYSTEMATIC EVALUATION METHODOLOGY 6.4. Evaluation Methodology

69

The template contains four major areas of interest: Domain Experts Classification,

with domain experts’ background (e.g. experience, programming skills, etc) and type

(e.g. Programmers, Students, etc); the Tool area, contains the name of the workbench

tool used in the project; Scenarios’ Results, stores domain experts results and their own

perception of their performance for each implemented scenario; and General

Impressions, where domain experts impressions of the overall DSL are retrieved (Figure

6.5).

Figure 6.5 – Content of the template with the conducted tests

Amendments

Domain experts have tested and judged DSL’s feature in several areas defined by

the evaluators. Their tests and results have already been packaged for future uses. Then

comes the moment to conduct the necessary amendments according the results obtain

through language evaluation, in order to eliminate the remaining flaws and thus increase

DSL usability for their users (Figure 6.3).

Once again, we propose in our evaluation approach, supported by [20, 81] where

historical record of model transformations and modifications of the language is seen as

good practice, to record the amendments performed to the DSL after conducting feature

evaluation. We see this approach a valuable mechanism to assist next iterations,

versions and even new DSLs to: (1) prevent conflicts between features, since software

language engineers are aware of previous approaches that led to conflicts; (2) preview

the most common mistakes to be avoided during DSL development; and (3) provide

new software language engineers with better documentation, so that they can learn from

the experience gained in previous iterations. In summary makes DSL’s maintenance

easier.

6. SYSTEMATIC EVALUATION METHODOLOGY 6.4. Evaluation Methodology

70

Hence, we strongly recommend the annotation of the amendments, so that not only

the current DSL but the future DSLs can benefit with what have been learned in the

past. Regarding this factor, we perceive that organizations may be capable to produce a

list of good development practices, leading them to establish higher usability standards

over time.

6.4.3. Implementation

The DSL is then translated to code. Each textual element, symbol and model

relationships will produce certain fixed code to a specific programming language.

This phase is outside our evaluation methodology scope, since it is based on

programming skills instead of usability factors. However, we recognize its importance

to domain experts overall satisfaction with the DSL. A DSL capable to generate the full

extent of the domain concepts will be embraced with more ―enthusiasm‖ than a DSL

where it is necessary to write code to achieve the objectives.

6.4.4. Evaluation

The DSL is finally developed. During this process, if our process has been followed,

an iterative evaluation has been incorporated within the DSL development process,

involving domain experts to experience and judge it. Therefore, at this stage if all steps

were strictly fulfilled and every single component of the model tested with sufficient

detail, then we think that the DSL is potentially prepared to provide significant

satisfaction, productivity and effectiveness to domain experts. However, we should

consider that some pending issues may have escaped the software language engineers’or

evaluators’ attention, and more important, some software language engineers would still

prefer to evaluate their DSL only in a final stage of production. In this sense, a final

evaluation involving the entire DSL components is always advisable.

Our next step in our systematic evaluation methodology was to identify the

procedures to prepare, conduct and analyze the experiment. For this purpose, Figure 6.6

presents an overview of the steps to be taken. The process should be preceded by a pre-

validation of language’s Concrete Syntax, based on the heuristics presented in Visual

Elements section. However, if all visual and/or text elements have already been

6. SYSTEMATIC EVALUATION METHODOLOGY 6.4. Evaluation Methodology

71

inspected in previous evaluations, this pre-validation may no longer be necessary. Each

of the activities will be discussed in the next sub-sections.

In our model, the deliverables and their relationships are represented with UML 2.0

class diagrams. Some of the activities carried out during the evaluation process have a

direct impact on deliverables, or are fed by deliverables produced earlier. In this

context, we use three stereotypes to establish the relations between activities and

deliverables: <<read>>, used when the contents of the deliverable feed an activity;

<<write>>, used when an activity produces a deliverable; and <<update>>, used

when an activity updates a deliverable. These stereotypes are not part of the standard

UML 2.0 metamodel, but were used in order to increase the expressiveness of our

model.

Figure 6.6 – DSL Evaluation Process

Subject Recruitment

The first step is to clearly define the domain experts that will experiment the DSL

and group them according similar characteristics (Figure 6.7). Whenever possible,

6. SYSTEMATIC EVALUATION METHODOLOGY 6.4. Evaluation Methodology

72

evaluators should select the same domain experts that will use the DSL. This will

provide the most real understanding of how prepared the DSL is to their users.

However, this not always happens and students usually take their place [98]. On the

other hand, grouping domain experts allows us perceive difficulties and comfortability

within each group, which in turn can be compared between groups in order to achieve

stronger conclusions, and thus avoiding misinterpretation of the overall results.

Figure 6.7 – Subject Recruitment

This group division can be performed based on several internal company

assumptions. For instance, a possible division can be based on domain experts’ prior

education and experience, as depicted in Figure 6.8.

Figure 6.8 – Subject Recruitment Example

Another important issue concerns the number of domain experts to use in the

experiment. This topic is enclosed in much controversy since there is not a consensus on

the right size of the sample. However, we are aware that the sample size is closely

related to the power of the statistical test [38].

Here, our approach to determine the number of domain experts to involve in the

experiment is based on a previous formula, presented in session 4.2.9, that is capable to

6. SYSTEMATIC EVALUATION METHODOLOGY 6.4. Evaluation Methodology

73

tell us the amount of usability problems that a particular number of users find in the

language. The recovered formula is:

On this formula we can focus our attention in 1 – (1 – λ)
i
. Here λ is typically 31%

[107], where 5 domain experts will find 85% of the usability problems and 15 domain

experts find 99%. At a first glance, it seems that involving 15 domain experts at a single

test is the solution, but according to Jakob Nielsen work [107], this is not the case. He

states that an iterative evaluation based on three tests with 5 users each is always

preferable. This assumption comes in line with our iterative evaluation model, since a

feature is implemented, tested, changed, and if necessary, the cycle is repeated once

again.

When more than one group of disparate domain experts is defined, has presented in

Figure 6.8, the required number of domain experts to experiment the DSL change. In

this sense, based on Nielsen [107], with two groups of users, 3 to 4 users should be

selected to each group, whilst with three or more groups, at least 3 users should be

selected in order to ensure that behavior diversity within the group is covered. Table 6.6

summarizes this information.

Number of Groups Number of Domain Experts

Single Group
Single Test 15

Iterative Evaluation Three tests with 5

Two Groups 3 to 4

Three or More Groups At least 3

Table 6.6 – Number of Domain Experts

Before establishing the number of groups and the number of domain experts for

each group, two aspects of major importance must be considered. The first one concerns

to domain experts capability to learn with previous experiences. In this context, when

three tests with 5 users each is conducted, users from one test should not be used in the

Usability_Problems_Found(i) = N (1 - (1 – λ)

i
)

i – The number of test users

N – The total number of usability problems in the interface

λ – The probability of a single test user finding any problem

6. SYSTEMATIC EVALUATION METHODOLOGY 6.4. Evaluation Methodology

74

next, unless that is the purpose of the experiment to measure their evolution. The second

issue concerns the number of domain experts defined for each group. Since different

groups may have different number of users, when this happens we must compare the

results between groups with care in order to not misinterpret the results. In this sense,

whenever possible define groups with equal domain experts so that a truthful extent of

the results can be measured.

In our approach we tried to instantiate only the required attributes, so that resources,

time and budget constraints were not wasted. However, we are aware that the number of

domain experts established lack of statistical significance, but as presented in Jakob

Nielsen work [107], more domain experts in the experiment will not introduce major

benefits.

Task Preparation

Then arises the moment to prepare the material for domain experts’ exam (Figure

6.9). This process starts by defining the Open and Closed Scenarios. The number of

scenarios and their extent depends on what is looked to evaluate. However, they should

be sufficient to assure that the attributes to be assessed are effectively used by the

domain experts.

Afterwards, takes place a set of tasks in parallel concerning different areas of

interest. Updating the already previously presented questionnaires (Table 6.4 and Table

6.5) is one of them. Here new questions can be introduced to adjust it to DSL reality.

Then, if necessary, prepare a Structured, Unstructured, or Semi-Structured interview

(session 3.3.2.2) to get more impressions of domain experts. Tutorial creation is another

important step. Here, Closed and/or Open scenarios can be presented to domain experts

to experience the DSL. However, the amount of the information provided and how it is

presented should be carefully selected to not influence the exam results. In turn, we

think the tutorial should have references to documentation, so that the next time domain

experts need to consult it they know where to look for, reducing the amount of time

searching in the documentation. Finally, a consent form might be useful in some cases,

to inform domain experts of the uses to be made of the data to be collected during the

experiment, as followed by Kieburtz et al. [99].

The final step concerns the preparation of the data collection tools. We regard this

step as optional, as it is not always feasible, or necessary. Nevertheless, we have

6. SYSTEMATIC EVALUATION METHODOLOGY 6.4. Evaluation Methodology

75

identified two possible mechanisms to retrieve domain experts’ actions during the

exam. They are through Recording Material and/or Log Analysis. These mechanisms

can be truly helpful if domain experts are not restricted to a single place, i.e., when we

have domain experts spread over the world performing the exam.

In what concerns the iterative evaluation model, much of the developed work to

prepare the evaluation can and should be reused between iterations. The scenarios and

tutorial only need to be readjusted in order to satisfy new attributes. The questionnaire

will not suffer major changes as well as the consent form, since the core of interest has

already been established. The interview should be rearranged to focus on the new

feature attributes. Thereby, this process will assess not only the new feature but also all

previous ones.

Figure 6.9 – Task Preparation

Pilot Session

This phase intends to simulate the exam, to guarantee that all previous produced

material and lab conditions are ready to be used by the domain experts at the exam

(Figure 6.10). For this purpose, a different person from the one who produced the

material should assess it under the same conditions as domain experts will face in the

exam, so that any inappropriate aspect can be easily identified and readjusted.

6. SYSTEMATIC EVALUATION METHODOLOGY 6.4. Evaluation Methodology

76

Nevertheless, if this is not followed, then the person who produced the material will

find fewer inconsistencies, since he is too focused on the subject.

The process starts by defining and establishing the environment whereupon the

exam will be conducted. If an in-house exam takes place, then it should be as natural as

possible wherewith domain experts are used to in their workplace, in order to avoid any

kind of pressure. On the other hand, if domain experts will be spread over different

places, then the necessary means to support them should be created.

Then starts material review process according to the environment already pre-

established. The subject or subjects assigned to this task, initiate the process by

performing the tutorial looking for inconsistencies and/or misunderstandings. Then, if

any data collection tool has been defined, it is time to test it and put it into operation for

the next stage. At this point, each scenario and its respective questionnaire are reviewed.

These intermediate questionnaires (Table 6.5) in most cases may suffer few changes and

yet will provide great insights of DSL usability. The final step concerns reviewing the

updates made to the final questionnaire (Table 6.4), as well as to the interview if it has

been previously defined.

In the iterative evaluation model we can take advantage from our previous

experiences, in terms of the right environment to provide to the domain experts, the

most appropriate data collection tools to use and type of questions to be made to its

users.

Figure 6.10 – Pilot Session

6. SYSTEMATIC EVALUATION METHODOLOGY 6.4. Evaluation Methodology

77

Training Session

The training session will help domain experts get used with the DSL, and prepare

them to what they will do in the exam. Figure 6.11 expresses what we think ought to be

done.

Training Session should start by informing each domain expert the uses to be made

of the data that will be collected over the course of the experiment. In some cases it

might be also useful to supply a consent form to be signed for all participants. Then, it

should be established the environment experienced in Pilot Session. If necessary,

explain how the data collection tools work, so that domain experts get used to and feel

more comfortable during the exam. Finally, each participant performs the tutorial

produced in Task Preparation and assessed in Pilot Session, so he gets aware of DSL

terminology and its respective behavior.

The iterative evaluation model will not experience any transformation or gain

compared to a single evaluation.

Figure 6.11 – Training Session

Exam

After all previous work to set up the experiment foundations, arises the moment to

start the examination process (Figure 6.12). Subjects must be once again established

with the optimal environment to perform the exam. We focus this aspect quite

frequently since it is of fundamental importance to reduce domain experts’ nervousness

6. SYSTEMATIC EVALUATION METHODOLOGY 6.4. Evaluation Methodology

78

and sensation of pressure, so that in the end we are not faced with unwanted biased

results.

Any data collection tool previously defined should then be established to retrieve

domain experts’ actions. At this point, some assumptions must be very clear. One of

them concerns the extent of help provided to domain experts. If a domain expert’s group

receive any help the other groups should receive the same treatment as well. Another

assumption concerns the amount of interaction between the domain expert and the

evaluator. As presented in Scenarios section, Observation and Think-aloud are two

feasible approaches, but nevertheless can distract domain experts and bias the results if

not done automatically (recording domain experts’ session).

Only then, it is the right moment to initiate the exam. Here, for each scenario,

domain experts should have a respective questionnaire to fill (scenario’s questionnaire,

Table 6.5). This will allow the evaluator to understand what went wrong with the

attributes that have been evaluated in the underlying scenario. Then, the final

questionnaire takes place to get domain experts final impressions of the DSL. In the

end, if necessary and already defined in previous stages of the evaluation process, an

interview should be performed.

In what respects the iterative evaluation model, this process remains the same

between iterations as well as the amount of effort to conduct the exam.

Figure 6.12 – Exam

6. SYSTEMATIC EVALUATION METHODOLOGY 6.5. Summary

79

Results Analysis

The final phase of our DSL evaluation process concerns the analysis of domain

experts’ results from the exam. The process is summarized in Figure 6.13. For each

group of domain experts their results and impressions from the intermediate and final

questionnaire should be stored in Appendix 1. Meanwhile, any threat found during the

experiment should be meticulously analyzed in order to understand their impact on

results. Only after, should start interpretation of results. During this process we

identified two major objectives. Compare Results between Groups is the first one. Here

domain experts’ results from each group for a particular scenario should be compared

with the other groups. This allows the evaluator to understand if a specific issue is

restricted to a single group or occurs in the others. If a widespread problem takes place

then it is compulsory to be changed. The second objective concerns the comparison of

the results with previous versions. As previously mentioned in Competitive Analysis

section, this helps better understand domain experts’ results significance.

Figure 6.13 – Results Analysis

6.5. Summary

In this chapter we provided a Systematic Evaluation Methodology to assess

Domain-Specific Languages usability. For this purpose we began by defining the actors

involved in language’s assessment, as well as their tasks.

Our next step focused on the establishment of the evaluation measures to be taken in

each phase of DSL’s development process. In this context, at the Domain Analysis

phase we sought to define the measures to set up a baseline for comparison with the

results obtained from language’s assessment. For that purpose we specified the

6. SYSTEMATIC EVALUATION METHODOLOGY 6.5. Summary

80

languages to be considered in comparison, as well as, the elements of comparison, for

instance, number of errors, user satisfaction, etc.

In the Design phase we produced an iterative evaluation model, where we outlined

the measures for both Abstract and Concrete Syntaxes. In this process Software

Language Engineer(s) and/or Evaluator(s) start by modelling a small subset of the

language and then test it. For this purpose we considered prototyping as first evaluation

method, since it is a preliminary version of the intended language, and unveils certain

details that would be otherwise revealed in later stages. Then DSL’s Visual Elements

inspection follows it. For this purpose we provided a set of six heuristics to become this

process more easily followed by Evaluators. We also specified which common

shortcomings should be avoided when establishing the symbols for DSL’s feature

attributes. The next step concerns collecting domain experts’ impressions about DSL’s

new feature correctness through Scenarios. Here we specified which measures should be

taken into account when developing a scenario, which data collection methods can be

used, and provide a questionnaire in order to assess domain experts’ feelings.

We consider both conducted tests and amendments performed to the language

should be stored in order to be used in future for comparison. For this purpose we

provided a template to store the results of each group of domain experts.

Although our methodology has been especially designed for an iterative

development, it is also applicable only in the final stage of the development process.

At the Implementation phase we did not assign any evaluation mechanism in the

sense that it was outside the scope of our work, although, we are aware of its

importance to domain experts overall satisfaction of the DSL.

In the last phase, the Evaluation, we established the procedures to prepare, conduct

and analyze the experiment. Here we defined: how to group the domain experts

assigned to the experiment, as well as their number; how to prepare the material for

domain experts’ exam, and how to evaluate such produced material and by whom; how

to conduct domain experts’ training session, so that they get used with the DSL; how to

conduct domain experts’ exam and what should be done in order to avoid biasing the

results; and how to analyze the experiment results.

Our methodology has been built on the notion of combining several usability

methods and data collection methods from Usability Engineering and Experimental

Software Engineering, in order to help the evaluator assess the language. The choice of

the evaluation methods, as well as the evaluation process has in consideration

organization’s budget constraints, and domain experts’ satisfaction.

6. SYSTEMATIC EVALUATION METHODOLOGY 6.5. Summary

81

When producing a DSL every stakeholder should remain in his mind that despite all

efforts to conduct the most thorough experiment there is always something that escapes

and the workbench tool has its limits, where in extreme cases may influence negatively

our pretensions, by dictating language development procedures [19].

82

83

7. Systematic Evaluation Methodology Validation

7.1. Introduction

In the previous chapter we provided a methodology to help DSL producers to

overcome the documented low evaluation, by providing an evaluation roadmap to

follow. In this chapter we try to characterize our Systematic Evaluation Methodology in

terms of easiness of use and capability to improve DSLs’ usability standards compared

to previous state of practice.

To measure and understand the full extent of the benefits of our approach, we

conducted a software engineering case study in which DSL producers that assessed their

languages according to our methodology has been compared with those who have used

an ad-hoc evaluation approach. With the results of this study, we seek to answer the

following research question:

 Does a Systematic Evaluation Methodology brings effective advantages to your

DSL?

The remainder of this chapter is structured as follows. Section 7.2 presents the

questionnaire and DSL producers involved in the experiment. In section 7.3 we discuss

the results of the experiment. Section 7.4 discusses the feasible threats to experiment

validity and how they were mitigated. Section 7.5 summarizes this chapter.

7.2. Experiment Design

In order to answer the previous research question, we need to measure the success of

our Systematic Evaluation Methodology criteria. For this purpose, we began by

establishing two groups of DSL producers, one for those who evaluated their DSLs

based on our methodology and another for those who used an ad-hoc evaluation

approach. In both cases, DSL producers only assessed their languages after completing

7. SYSTEMATIC EVALUATION METHODOLOGY VALIDATION 7.2. Experiment Design

84

the development process. In the end of their language evaluation we asked both groups

to answer a questionnaire over the internet.

During their evaluation process, we never gave any kind of advice, but we did

clarify any doubts about our methodology. We think that this process helped us

avoiding the contamination of the results according to our desires or expectations.

7.2.1. Subjects

Eight subjects were engaged to our experiment. Four of them used our

methodology. They developed: a DSL for ubiquitous devices, a DSL for languages

composition, between ―I*‖ and ―KAOS‖, a DSL tool for transformations, and the last

subject did not actually develop a DSL, but used two DSLs to perform transformation

rules between ―I*‖ and ―KAOS‖. The other four subjects based on an ad-hoc evaluation

approach developed: a DSL to specify ―I*‖ language rules, a DSL for queries

optimization, a DSL to specify ―KAOS‖ language rules, and a DSL to specify

applications of augmented reality. In both cases subjects were MSc Students from

DI/FCT.

The four subjects, who used our methodology, have followed a single iteration of

our iterative evaluation model presented in Figure 6.3 of section 6.4.2. This has

happened since they could only assess their languages after the development process has

been fully completed.

In order to explain our evaluation methodology, presented in section 6.4, we carried

out a debriefing session. Here, we gave the details about what should be developed and

established in each stage of the evaluation process (Figure 6.6), the actors that should be

involved and their tasks (section 6.3), and the number of domain experts that we

recommend for each group. The material of our methodology, scenario’s questionnaire

(Table 6.5), final questionnaire (Table 6.4) and template to store domain experts’ results

(Appendix 1) was also made available to them.

7.2.2. Questionnaire

A questionnaire has been answered by both groups (Table 7.1). Every question

relates to one of the two main areas. The first one, questions E1 to E13, concerns the

procedures that DSL producers have made to set up the experiment. Here, we tried to

7. SYSTEMATIC EVALUATION METHODOLOGY VALIDATION 7.2. Experiment Design

85

identify their experimental foundations and advantages from using them. For those who

have followed our methodology we tried to understand the extent to which they used of

our evaluation methodology. The second area of interest, questions Q14 to Q17,

concerns DSL producers’ general impressions. This time, for each group of DSL

producers we sought to understand their satisfaction level with the evaluation process

followed.

Subjects’ responses have been collected in two ways: through a Likert scale and

open answers. We used both, in order to get more knowledge about certain options they

have made during language’s assessment.

ID Question

Experiment

Q1
Have you used the checklist based validation? Yes/No

If you answered No, explain why.

Q2
How many changes have you done to the DSLs Concrete Syntax based on the

checklist based validation?

Q3

Have you followed the entire Evaluation Process? Yes/No

If you answered No, which of the following steps did you not use?

Subject Recruitment

Task Preparation

Pilot Session

Training Session

Exam

Scenario’s Questionnaire

Final Questionnaire

Result Analysis

Why did you not use them? (Provide a reason for each unused step)

Q4
How many groups of domain experts did you create?

(E.g. Experienced Group, Student Group, etc.)

Q5 How many domain experts did you assign to each group?

Q6 How many scenarios have you defined?

Q7

Did you add new questions or update the existing ones from the provided

questionnaire? Yes/No

Identify the new questions and the updated ones, and give a reason Why

you needed it.

Q8

Did you remove any question? Yes/No

Identify the ID of the removed questions, and give a reason Why you

removed it.

Q9

How did you set up experiment’s environment?

In-house Environment

Asynchronous Communication (offline communication, e.g. email)

Which one?

7. SYSTEMATIC EVALUATION METHODOLOGY VALIDATION 7.3. Results of the Experiment

86

Synchronous Communication (online communication, e.g. VOIP)

Which one?

Q10

Did you establish any Data Collection Tools (e.g. Recording, Log Analysis)?

Yes/No

Which tools? (If you answered Yes)

Q11
How much effort (Man-Hours) did it take to set up the experiment until

domain experts’ Exam?

Q12 How many changes have you performed to the DSL after the experiment?

General Impressions

Q14
How useful did you find the checklist based validation? (Very Good, Good,

Satisfactory, Bad, Very Bad)

Q15
How demanding did you find establishing the experiment? (Undemanding,

Simple, Regular, Tough, Severe)

Q16

Which step(s) of the Evaluation Process did you find more challenging to

follow?

Subject Recruitment

Task Preparation

Pilot Session

Training Session

Exam

Scenario’s Questionnaire

Final Questionnaire

Result Analysis

Why? (Please express your feelings for each selected one)

Q17
Did you feel lost in What and How to do, to establish the experiment? (Very

often, Often, Sometimes, Seldom, Never)

Table 7.1 – Questionnaire

7.3. Results of the Case Study

In this section we present the results of our software engineering case study grouped

by three main areas: DSL Producers’ Decisions (section 7.3.1), where we present DSL

producers’ decisions to establish the experiment and changes they found necessary to

perform to their languages in the end of the evaluation process; Checklist Based

Validation (section 7.3.2), here we focus our attention on the pre-validation of

languages’ Concrete Syntax carried out by DSL producers that used our evaluation

methodology; and Evaluation Process (section 7.3.3), where for both groups of DSL

producers we explore their impressions about the evaluation process they have

followed.

7. SYSTEMATIC EVALUATION METHODOLOGY VALIDATION 7.3. Results of the Experiment

87

7.3.1. DSL Producers’ Decisions

To understand the similarities and differences between both groups of DSL

producers, in terms of their decisions to establish the experiment and changes performed

in the end of the evaluation process was our first goal. For this purpose, for each row of

Table 7.2 we present the number of domain experts within each group created by the

DSL producer, the number of scenarios developed, their effort to set up the experiment,

and the number of changes made to the language. The effort to set up the experiment

has been measured in Man-Hour, since this unit accounts the effective work performed

by all people involved in the process [108].

Evaluation

Type

N Domain Experts per Group
N

Scenarios

Effort (Man-

Hour) to set up

the experiment

Changes
Group 1 Group 2 Group 3

Systematic

Evaluation

Methodology

7 – – 2 14 2

5 5 – 2 8 1

6 3 – 1 12 4

5 5 – 1 7 22

Ad-hoc

Evaluation

10 – – 3 6 1

2 2 2 3 6 0

5 – – 8 15 10

5 – – 2 2 1

Table 7.2 – Questions Q4, Q5, Q6, Q11, Q12

Regarding the number of domain experts identified to involve in DSLs’ evaluation,

presented in Subject Recruitment’s section, three DSL producers based on our

methodology were capable to fulfil our recommendations. The remaining DSL producer

was unable to reach our recommendations due to insufficiency of available personnel to

assess his language. On the other hand, none of the DSL producers who followed an ad-

hoc evaluation has assigned enough domain experts to meet the requirements of our

methodology.

Only based on the findings about the number of domain experts to involve in DSLs’

evaluation and their capacity to find inconsistencies in a language, we can assert that

DSL producers, who used our methodology, find more inconsistencies in their language

than those who have followed the ad-hoc evaluation. Based on the results of our DSL

7. SYSTEMATIC EVALUATION METHODOLOGY VALIDATION 7.3. Results of the Experiment

88

producers, we verify that our expectations come true, since, in general, more changes

have been performed by those who have followed our methodology.

Scenarios created by our DSL producers were another of our concerns. This is due

to scenarios being directly related to the extent of language evaluated. As described in

Scenarios’ section, more scenarios do not necessarily mean more language evaluated or

even more errors found, if enough efforts are not made to guarantee that all attributes

are effectively used by their domain experts during the evaluation session. In our case

study we can notice that our statement confirms, since a larger number of scenarios,

developed by DSL producers based on an ad-hoc evaluation, did not contribute with

more inconsistencies found and changes performed.

DSL producers using our methodology spent slightly more effort to set up the

experiment than those who followed an ad-hoc evaluation. This effort made by both

groups is directly related with the scenarios produced, and their measures to conduct

and analyze the experiment. We can notice that the superior effort spent by those who

followed our methodology, combined with our recommendations about the number of

domain experts to involve in language’s evaluation, and clarifications about how to

produce Scenarios, made possible for DSL producers to find more inconsistencies in

their languages. In this sense, these results lead us to believe that our guidelines helped

the DSL producers in producing and establishing the evaluation material.

Another point of interest was the kind of environment established by DSL producers

and the mechanisms they have used to communicate with his domain experts (Figure

7.1). Regarding this subject we notice great similarities between both groups of DSL

producers, which strengthen our previous considerations.

Figure 7.1 – Question 8. How did you set up experiment’s environment?

Email; Forms

Email

0

1

2

3

4

5

In-House

Environment

Asynchronous

Communication

Synchronous

Communication

Systematic Evaluation

Methodology Users

Users of their own

evaluation criteria

7. SYSTEMATIC EVALUATION METHODOLOGY VALIDATION 7.3. Results of the Experiment

89

When asked if they have used and/or established any Data Collection Tool, all of

them promptly answered to have not used it.

7.3.2. Checklist Based Validation

Regarding this element of validation to assess languages’ Concrete Syntax, we can

conclude that it brought considerable advantages to those who have used it. From the

four DSL producers involved, three of them guarantee to have followed the checklist

based validation and said to have been a good or very good option concerning its

usefulness (Table 7.2).

In the case of two DSL producers it led to carry out four changes for one of them

and two changes for the other. One did not find any inconsistency, and the other DSL

producer have not followed it since he has not developed a DSL, but used two DSLs to

perform his work.

Despite we are aware that results does not present statistical significance, they are

encouraging with respect to these evaluation criteria being truly valuable to find

inaccuracies even before involving the domain experts in the case study, leading us to

consider that with a larger sample similar results will be found.

Figure 7.2 – Question Q14. How useful did you find the checklist based validation?

7.3.3. Evaluation Process

Here, for both groups of DSL producers, we present their impressions about the

evaluation process they have followed. For those DSL producers based on our

0

1

2

3

4

Very Good Good Satisfactory Bad Very Bad

7. SYSTEMATIC EVALUATION METHODOLOGY VALIDATION 7.3. Results of the Experiment

90

evaluation methodology we also have focused on their choices and what they have used

from our methodology to evaluate their languages.

From the four DSL producers who have followed our methodology, none have used

all the resources that we made available, and some steps were considered more

challenging than others (Figure 7.3). Nevertheless, all of them reveal a very good

impression about the evaluation process that we present.

Figure 7.3 – Questions Q3 and Q16

The scenario’s questionnaire and final questionnaire, that we made available, have

been used by two DSL producers. The other two DSL producers have not used them

since another questionnaire had already been approved by their master thesis

supervisors, in order they could compare the results among them.

Both DSL producers who used our questionnaires decided to merge them. The

reason that one of them gave for doing this was: ―Due to low availability of users, we

chose to use only one final questionnaire‖. When asked about the questions they have

updated or removed, one answered to have removed questions L4 and EX1 from Table

6.4 and Table 6.5, and the other made small adjustments to suit the questionnaire to his

DSL needs, but did not specify those changes in detail.

According to both DSL producers’ answers we notice that some decisions are

dependent on the objectives, and capacity to find enough domain experts to evaluate the

language.

0 1 2 3 4

Result Analyis

Final Questionnaire

Scenario's Questionnaire

Exam

Training Session

Pilot Session

Task Preparation

Subject Recruitment

Challeging steps

Unused steps of the Evaluation Process

7. SYSTEMATIC EVALUATION METHODOLOGY VALIDATION 7.3. Results of the Experiment

91

When all four DSL producers were asked about the most challenging steps of the

evaluation process, one reported to be the Subject Recruitment/Exam, where he made

the following statement: ―They are both related, and the problem is always the user

availability. In subject recruitment it is not always easy to find the candidates to

perform a good evaluation‖, and other said to be the Final Questionnaire, since he had

to give domain experts a prior training so they could be able to answer the

questionnaire.

As result of their answers we confirm that none of them has felt truly difficulties to

set up our recommendations, but with custom adjustments in order to fulfil their own

objectives. This statement can be consolidated by Figure 7.4. This time we asked them

about how demanding they found establishing the experiment, where most of them

found it simple. On the other hand, DSL producers based on an ad-hoc evaluation found

it relatively more demanding.

Figure 7.4 – Question Q15. How demanding did you find establishing the

experiment?

A final question has been made to both groups of DSL producers in order to

understand if, in any time, they felt lost in What and How to do to establish the

experiment. Based on their answers, depicted Figure 7.5, we observe that most DSL

producers who followed our methodology said they never felt lost, whereas the other

group is divided between seldom, sometimes and often. These results reinforce our

confidence that our efforts to establish a roadmap that could be easily understood

0

1

2

3

4

Severe Tough Regular Simple Undemanding

Systematic Evaluation Methodology Users

Users of their own evaluation criteria

7. SYSTEMATIC EVALUATION METHODOLOGY VALIDATION 7.4. Threats to Validity

92

were successfully achieved. In this sense, we believe to have provided a helpful

mechanism to DSL producers evaluate their languages.

Figure 7.5 – Question Q17. Did you feel lost in WHAT and HOW to do, to establish

the experiment?

7.4. Threats to Validity

When conducting a survey, any sharing of information between subjects should be

avoided, otherwise answers of a respondent may be influenced by other replies [109]. In

order to mitigate this issue we made sure that no respondent had access to the responses

of the others. Moreover, some subjects did not know the other elements involved in the

experiment, which made less likely that they could share opinions about the survey.

Regarding the questionnaire presented to our DSL producers, it was first built and

then reviewed by my supervisors, and only after that, subjects had the opportunity to

answer it. This helped to assure a further content validity. Every time we asked our DSL

producers to estimate the amount of time spent in their evaluation tasks we were aware

that effort information tends to be imprecise. However, we believe the results are

sufficiently reliable, based on our knowledge on their experiments. Furthermore, we

have no reason to think imprecisions would favour one of the alternatives over the

other.

Regarding the methods to manipulate the data, they were very straightforward, and

did not introduce any kind of menace to survey validity.

0

1

2

3

4

Very Often Often Sometimes Seldom Never

Systematic Evaluation Methodology Users
Users of their own evaluation criteria

7. SYSTEMATIC EVALUATION METHODOLOGY VALIDATION 7.5. Summary

93

7.5. Summary

The goal of this case study was to understand the applicability and advantages of

our Systematic Evaluation Methodology against previous state-of-affairs, to assess

Domain-Specific Languages. For this purpose, we defined two groups of DSL

producers. In both cases subjects were MSc Students from DI/FCT. One group has

evaluated their languages based on our methodology and the other group followed an

ad-hoc evaluation approach.

In order to assess DSL producers’ impressions and understand the extent of use they

have made from our methodology we asked them to answer a questionnaire over the

internet. Here we focused our attention in three main areas: DSL producers’ decisions,

checklist based validation, and general impressions about the evaluation process they

have followed.

Our software engineering case study has produced promising results showing that

our evaluation process was easily followed and DSL producers found themselves much

more confortable in What and How to do at each moment of the evaluation of their

languages, comparatively to those who have used an ad-hoc evaluation. The checklist

based validation presented in our methodology has shown good results as well. Here,

the group of DSL producers using our methodology was capable to find significant

inconsistencies. DSL producers based on our methodology found more inconsistencies

than those based on an-hoc evaluation.

We also noted how that some evaluation approaches are truly dependent on the

extent that each one gives to the experiment. An example of it was scenario’s

questionnaire suppression by two DSL producers.

Some evaluation criteria presented in our Systematic Evaluation Methodology have

not been able to be experienced in this case study. An instance of that concerns the

iterative evaluation that we presented in section 6.4.2. To have followed it, it would

have been necessary more time and resources (e.g. DSL producers), which in this

dissertation we did not have.

Based on our study results we believe that we are capable to answer our research

question: ―Does a Systematic Evaluation Methodology brings effective advantages to

your DSL?‖, by saying that these early tests on our methodology point to tangible

benefits to those who use it to attain a language with higher usability standards, and so

increase DSL proclaimed productivity levels [21].

94

95

8. Conclusions

8.1. Summary

In this dissertation we have shown that the DSL community does not systematically

report on the realization of any sort of experimental validation of the languages it

builds, as discussed in chapter 5. In practice, it is as if decision makers prefer to risk

using or selling inadequate DSLs to their end-users (the Domain Experts), rather than

spending resources evaluating them.

Regarding these facts, in chapter 6, we propose a Systematic Evaluation

Methodology to mitigate this problem that can be easily followed by Software

Language Engineers and/or Evaluators, and thus improve current DSL development

practices from craftsmanship to an Engineering activity. For this purpose, we began by

doing a review of existing techniques from Experimental Software Engineering,

discussed in chapter 3, and Usability Engineering, discussed in chapter 4. From them

we borrowed data collection methods and usability methods, respectively.

Our next step was to develop the methodology itself. In this sense, for each phase of

DSL’s development process we specified the evaluation procedures to be taken. In the

Domain Analysis phase we sought to define the measures to set up a baseline for

comparison with the results obtained from language assessment. For this purpose we

specified the languages (GPLs and/or DSLs) to be considered in comparison, as well as,

the elements of comparison, for example, number of errors, user satisfaction, etc.

In the Design phase we produced an iterative evaluation model, where we outlined

the measures for both Abstract and Concrete Syntaxes. In this process Software

Language Engineer(s) and/or Evaluator(s) start by modelling a small subset of the

language and then test it. For this purpose we considered prototyping as first evaluation

method, since it is a preliminary version of the intended language, and unveils certain

details that would be otherwise revealed in later stages. Then DSL’s Visual Elements

inspection follows it. For this purpose we provided a set of six heuristics to become this

process more easily followed by Evaluators. We also specified which common

shortcomings should be avoided when establishing the symbols for DSL’s feature

8. CONCLUSIONS 8.1. Summary

96

attributes. The next step concerns collecting domain experts’ impressions about DSL’s

new feature correctness through Scenarios. Here we specified which measures should be

taken into account when developing a scenario, which data collection methods can be

used, and provide a questionnaire in order to assess domain experts’ feelings.

We consider both conducted tests and amendments performed to the language

should be stored in order to be used in future for comparison. For this purpose we

provided a template to store the results of each group of domain experts.

Although our methodology has been especially designed for an iterative

development, it is also applicable only in the final stage of the development process.

At the Implementation phase we did not assign any evaluation mechanism in the

sense that it was outside the scope of our work, although, we are aware of its

importance to domain experts overall satisfaction of the DSL.

In the last phase, the Evaluation, we established the procedures to prepare, conduct

and analyze the experiment. Here we defined: how to group the domain experts

assigned to the experiment, as well as their number; how to prepare the material for

domain experts’ exam, and how to evaluate such produced material and by whom; how

to conduct domain experts’ training session, so that they get used with the DSL; how to

conduct domain experts’ exam and what should be done in order to avoid biasing the

results; and how to analyze the experiment results.

 Then, in order to validate our Systematic Evaluation Methodology we carried out a

Software Engineering case study, discussed in chapter 7. For this purpose, we defined

two groups of DSL producers. In both cases subjects were MSc Students from DI/FCT.

One group has evaluated their languages based on our methodology and the other group

followed an ad-hoc evaluation approach. The Application Domain of the studied DSLs

are based on ―KAOS‖ and ―I*‖ transformations, ―I*‖ language rules, ubiquitous

devices, augmented reality and queries optimization.

In order to assess DSL producers’ impressions and understand the extent of use they

have made from our methodology we asked them to answer a questionnaire over the

internet. Here we focused our attention in three main areas: DSL producers’ decisions,

checklist based validation and general impressions about the evaluation process they

have followed.

Our questionnaire produced some interesting results. One of these results concerns

to the number of inconsistencies that both groups of DSL producers were able to find in

their own languages. The DSL producers who followed our methodology found more

inconsistencies than those following an ad-hoc evaluation.

8. CONCLUSIONS 8.2. Future Work

97

The checklist based validation presented in our methodology has shown good results

as well. Here, the group of DSL producers using our methodology was capable to find

significant inconsistencies. When we asked both groups if, in any time, they felt lost in

What and How to do to establish the experiment, almost all of those who followed our

methodology, except one, answered to never felt lost. In contrast, the answers from

participants of the ad-hoc evaluation group included instances of ―seldom‖,

―sometimes‖, and ―often‖.

From this software engineering case study we were also able to confirm that some

evaluation approaches are truly dependent on the extent that each one gives to the

experiment.

In summary, despite we have experienced our Systematic Evaluation Methodology

with a relatively small sample of academia DSL producers’, a common practice and

already noticed as an interesting alternative to carry out pilot studies in related areas

[36, 99, 110], it shows promising results.

8.2. Future Work

We identify several areas for future work. One direction is to conduct a similar

survey as presented in chapter 7, but this time at an industry level. A second direction is

to experiment the iterative evaluation process during the DSL development process in

both academia and industrial level. The challenge here will be to find academia subjects

with enough experience and skills in developing DSLs and an industrial partner that is

willing to collaborate in such surveys.

It is our belief that these opportunities will be useful, not only to corroborate the

results obtained from our previous software engineering case study to validate our

methodology, but also to the DSL community, since it might highlight with more

precision the impact that our evaluation procedures have on: DSL development costs,

domain experts’ productivity and satisfaction, and amount of time and evaluators to

establish the experiment.

Academia and industrial level experiments may also have an important role in order

to find future increments to our methodology. The collectable attributes from previous

versions of the language and/or competitive languages is one case. Here new base

values for comparison with the new DSL, the Goal Settings, may be found useful. Both

scenario’s questionnaire and final questionnaire may also benefit from it, since new

8. CONCLUSIONS 8.2. Future Work

98

relevant questions may be found to retrieve domain experts’ thoughts. The list of

common shortcomings to avoid when establishing the symbols for DSL’s feature

attributes may grow up as new common mistakes are being noticed. In the end, the

template to store the results of each group of domain experts may be updated in order to

satisfy in a better way other software language engineers or evaluators desires.

A third direction is to assess the applicability of our Systematic Evaluation

Methodology, with the necessary adjustments, outside DSL scope, in particular in

GPLs, in order to understand if they would benefit from our work regarding the step-by-

step evaluation process presented in section 6.4.4, and so increase their usability

standards.

99

Appendix 1 – Group Results for each Scenario and their General Impressions

Domain Experts Classification Tool

ID

Background

Type

Scenarios’ Results

Scenario
Domain

Expert
Success Completion (%) N Errors

Help Duration

(HH/MM)

Ease of Use Expressiveness Effectiveness

Doc Sup Mental Effort Confused Confident Compact Correctness

1

2

 Related Questions General Impressions

N Errors F3 and F4 gives Feedback Satisfaction Expressiveness Effectiveness

Help(Documentation, Supervisor) L3, L4 Domain Expert Tool Change Symbols Textual Overall Total/Partial UEI Expectation

Mental Effort U6

Trapped/Confused U5

Tool U1. U3 physical effort

Confident U4

Change U2

Symbols F1

Textual F2

Overall G1

Compact EX3

Total/Partial EX1

UEI(unable to express intension) EX2

Correctness EF2

Expectation EF1

100

Scenario Description

Scenario 1

Scenario 2

Notes

101

Bibliography

[1] S. Thibault, ―Domain-Specific Languages: Conception, Implementation and

Application,‖ University of Rennes, France, 1998.

[2] B. W. Bohem, ―A spiral model for software development and enhancement,‖

Computer, vol. 21, no. 5, pp. 61-72, May, 1988.

[3] W. W. Royce, ―Managing the Development of Large Software Systems,‖

Technical Papers of Western Electronic Show and Convention, August, 1970.

[4] A. van Deursen, P. Klint, and J. Visser, ―Domain-Specific Languages: An

Annotated Bibliography,‖ SIGPLAN Notices, vol. 35, no. 6, pp. 26-36, 2000.

[5] J. Hammond. "Boosting productivity with domain-specific modelling," 2008;

http://www.metacase.com/papers/mte-boosting.pdf.

[6] M. Mernik, J. Heering, and A. M. Sloane, ―When and How to Develop Domain-

Specific Languages,‖ ACM Computing Surveys, vol. 37, no. 4, pp. 316-344,

December, 2005.

[7] J. L. Hammond. "Improving productivity and quality with domain-specific

modeling," 2008; http://www.metacase.com/papers/ESDE-apr08.pdf.

[8] L. Cao, B. Ramesh, and M. Rossi, ―Are Domain-Specific Models Easier to

Maintain Than UML Models?,‖ IEEE Software, vol. 26, pp. 19-21, 2009.

[9] J. Nielsen, Usability Engineering: AP PROFESSIONAL, 1993.

[10] A. Abran, and J. W. Moore, Guide to the Software Engineering Body of

Knowledge, 2004.

[11] D. A. Sadielek, and S. Weißleder, ―Towards Automated Testing of Abstract

Syntax Specifications of Domain-Specific Modeling Languages,‖ in Workshop

on Domain-specific Modeling Languages, Humboldt-Universität zu Berlin,

Germany, 2008.

[12] G. Guizzardi, L. F. Pires, and M. v. Sinderen, ―Ontology-based evaluation and

design of domain-specific visual modeling languages,‖ in International

Conference on Information Systems Development (ISD), Karlstad, Sweden,

2005.

http://www.metacase.com/papers/mte-boosting.pdf
http://www.metacase.com/papers/ESDE-apr08.pdf

BIBLIOGRAPHY

102

[13] R. Tairas, M. Mernik, and J. Gray, ―Using Ontologies in the Domain Analysis of

Domain-Specific Languages,‖ in Workshop on Transformation and Weaving

Ontologies in Model-Driven Engineering (TWOMDE), Toulouse, France, 2008,

pp. 332-342.

[14] P. Gabriel, M. Goulão, and V. Amaral, ―Do Software Languages Engineers

Evaluate their Languages?,‖ in XII Congreso Iberoamericano en "Software

Engineering", Cuenca, Ecuador, 2010.

[15] J. Gray, M. Rossi, and J.-P. Tolvanen, ―Preface,‖ Journal of Visual Languages

and Computing, vol. 15, pp. 207-209, June-August, 2004.

[16] A. J. Sánchez-Ruíz, M. Saeki, B. Langlois et al., ―Domain-Specific Software

Development Terminology: Do We All Speak the Same Language?,‖ in

OOPSLA Workshop on Domain-Specific Modeling, Jacksonville, Florida, USA,

2006.

[17] A. V. Deursen, and P. Klint, ―Little Languages: Little Maintenance?,‖ Journal of

Software Maintenance: Research and Practice, vol. 10, no. 2, pp. 75-92, March-

April, 1998.

[18] Ø. Haugen, and P. Mohagheghi, ―A Multi-dimensional Framework for

Characterizing Domain Specific Languages,‖ in OOPSLA Workshop on

Domain-Specific Modeling, Montréal, Canada, 2007.

[19] S. Kelly, and R. Pohjonen, ―Worst Practices for Domain-Specific Modeling,‖

IEEE Software, vol. 26, pp. 22-29, July/August, 2009.

[20] N. A. Allen, C. A. Shaffer, and L. T. Watson, ―Building modeling tools that

support verification, validation, and testing for the domain expert,‖ in WSC '05:

Proceedings of the 37th conference on Winter simulation, Orlando, Florida,

2005, pp. 419-426.

[21] S. Kelly, and J.-P. Tolvanen, Domain-specific modeling: Enabling Full Code

Generation: John Wiley & Sons, 2008.

[22] MetaCase. "Nokia Case Study," 2007;

http://www.metacase.com/papers/MetaEdit_in_Nokia.pdf.

[23] MetaCase. "EADS Case Study," 2007;

http://www.metacase.com/papers/MetaEdit_in_EADS.pdf.

[24] J. Sprinkle, M. Mernik, J.-P. Tolvanen et al., ―What Kinds of Nails Need a

Domain-Specific Hammer?,‖ IEEE Software, vol. 26, pp. 15-18, 2009.

[25] J. Heering, and M. Mernik, ―Domain-Specific Languages as Key Tools for

ULSSIS Engineering,‖ in ULSSIS, Leipzig, Germany, 2008, pp. 1-2.

http://www.metacase.com/papers/MetaEdit_in_Nokia.pdf
http://www.metacase.com/papers/MetaEdit_in_EADS.pdf

BIBLIOGRAPHY

103

[26] T. Baar, "Correctly Defined Concrete Syntax for Visual Modeling Languages,"

Springer, 2006.

[27] K. Smolander, V. P. Tahvanainen, and P. Marttiin, ―Metaedit - a exible

graphical environment for methodology modelling,‖ in International Conference

on Advanced Information Systems Engineering, CAISE'91, Trondheim,

Norway, 1991.

[28] S. Kelly, K. Lyytinen, and M. Rossi, ―Metaedit+ a fully configurable multi-user

and multi-tool case and came environment.,‖ in 8th International Conference on

Advanced Information Systems Engineering, CAiSE'96, Herak-lion, Crete,

Greece, 1996, pp. 1-21.

[29] W. Moore, D. Dean, A. Gerber et al., ―Eclipse Development using the Graphical

Editing Framework and the Eclipse Modeling Framework,‖ IBM Redbooks,

2004.

[30] Vanderbilt, "Gme: Generic modeling environment," 2007.

[31] S. Cook, G. Jones, S. Kent et al., "Domain-Specific Development with Visual

Studio DSL Tools," Addison-Wesley Professional, 2007.

[32] B. W. Boehm, Software Engineering Economics: Prentice-Hall, 1981.

[33] S. Easterbrook, J. Singer, M.-A. Storey et al., Selecting Empirical Methods for

Software Engineering Research: Springer, 2007.

[34] C. B. Seaman, ―Qualitative Methods in Empirical Studies of Software

Engineering,‖ IEEE Transactions Software Engineering, vol. 25, no. 4, pp. 557-

572, July/August, 1999.

[35] M. V. Zelkowitz, and D. R. Wallace, ―Experimental Models for Validating

Technology,‖ Computer, vol. 31, no. 5, pp. 23-31, May, 1998.

[36] D. I. K. Sjoberg, J. E. Hannay, O. Hansen et al., ―A Survey of Controlled

Experiments in Software Engineering,‖ IEEE Transations Software

Engineering, vol. 31, no. 9, pp. 733-753, September, 2005.

[37] A. Kamandi, and J. Habibi, ―Modeling Languages Study and Evaluation

Techniques,‖ Asia International Conference on Modelling & Simulation, vol. 0,

pp. 553-558, 2008.

[38] C. Wohlin, M. Host, P. Runeson et al., Experimentation in Software

Engineering: An Introduction, 2000.

[39] B. Kitchenham, Guidelines for performing Systematic Literature Reviews in

Software Engineering, Keele University and University of Durham, UK, 2007.

BIBLIOGRAPHY

104

[40] J. Nielsen, ―Enhancing the Explanatory Power of Usability Heuristics,‖ in

Conference on Human Factors in Computing Systems, Boston, Massachusetts,

United States, 1994, pp. 152-158.

[41] "I. O. for Standardization. ISO Norm 9241-11," 2007; http://www.iso.org.

[42] S. Kelly, and J.-P. Tolvanen, ―Visual domain-specific modelling: benefits and

experiences of using metacase tools,‖ in International Workshop on Model

Engineering, ECOOP'2000, 2000.

[43] J. W. Carlson, ―A Visual Language for Data Mapping,‖ in OOPSLA Workshop

on Domain-Specific Visual Languages, Tampa-Bay, Florida, USA, 2001.

[44] C. Schmidt, P. Pfahler, U. Kastens et al., ―SIMtelligence Designer/J: A Visual

Language to Specify SIM Toolkit Applications,‖ in OOPSLA Workshop on

Domain-Specific Visual Languages, Seattle, Washington, USA, 2002.

[45] E. S. Grant, J. Whittle, and R. Chennamaneni, ―Checking Program Synthesizer

Input/Output,‖ in OOPSLA Workshop on Domain-Specific Modeling, Anaheim,

California, USA, 2003.

[46] J. Evermann, and Y. Wand, ―Toward Formalizing Domain Modeling Semantics

in Language Syntax,‖ IEEE TRANSACTIONS ON SOFTWARE ENGINEERING,

vol. 31, no. 1, pp. 21-37, January, 2005.

[47] B. Trask, and A. Roman, ―Using Domain Specific Modeling in Developing

Software Defined Radio Components and Applications,‖ in ECOOP Workshop

on Domain-Specific Program Development (DSPD), Nantes, France, 2006.

[48] V. Svansson, and R. E. Lopez-Herrejon, ―A Web Specific Language for Content

Management Systems,‖ in OOPSLA Workshop on Domain-Specific Modeling,

Montréal, Canada, 2007.

[49] H. Prähofer, D. Hurnaus, C. Wirth et al., ―The Domain-Specific Language

Monaco and its Visual Interactive Programming Environment,‖ IEEE

Symposium on Visual Languages and Human-Centric Computing, pp. 104-110,

September, 2007.

[50] D. S. Kolovos, R. F. Paige, L. M. Rose et al., ―Implementing the Interactive

Television Applications Case Study using Epsilon,‖ in Model-Driven

Development Tool Implementers Forum, Zurich, Switzerland, 2007.

[51] D. A. Sadielek, ―Prototyping Domain-Specific Languages for Wireless Sensor

Networks,‖ in Workshop on Software Language Engineering, Nashville,

Tennessee, USA, 2007.

http://www.iso.org/

BIBLIOGRAPHY

105

[52] N. Bencomo, P. Grace, C. Flores et al., ―Genie: Supporting the Model Driven

Developmnt of Reflective, Component-based Adaptative Systems,‖ in ICSE,

Leipzig, Germany, 2008, pp. 811-814.

[53] B. Mora, F. García, F. Ruiz et al., ―SMML: Software Measurement Modeling

Language,‖ in OOPSLA Workshop on Domain-Specific Modeling, Nashville,

Tennessee, USA, 2008.

[54] M. A. V. N. Marcos Rodrigo Sol Souza, ―A Domain-Specific Language for

Interoperability Between Object-Oriented and Mainframe Systems,‖ in

Workshop on Domain-Specific Program Development (DSPD), Nashville,

Tennessee, USA, 2008.

[55] J. Hosking, N. Mehandjiev, and J. Grundy, ―A Domain Specific Visual

Language for Design and Coordination of Supply Networks,‖ IEEE Symposium

on Visual Languages and Human-Centric Computing, pp. 109-112, 2008.

[56] Y. Teiken, and S. Floring, ―A Common Meta-Model for Data Analysis based on

DSM,‖ in OOPSLA Workshop on Domain-Specific Modeling, Nashville,

Tennessee, USA, 2008.

[57] J. Merilinna, ―Domain-Specific Modelling Language for Navigation

Applications on S60 Mobile Phones,‖ in OOPSLA Workshop on Domain-

Specific Modeling, Nashville, Tennessee, USA, 2008.

[58] T. Patki, H. Al-Helal, J. Gulotta et al., ―Using Integrative Modeling for

Advanced Heterogeneous System Simulation,‖ in OOPSLA Workshop on

Domain-Specific Modeling, Nashville, Tennessee, USA, 2008.

[59] T. Reichert, E. Klaus, W. Schoch et al., ―A Language for Advanced Protocol

Analysis in Automotive Networks,‖ in ICSE, Leipzig, Germany, 2008, pp. 593-

602.

[60] Z. Hemel, R. Verhaaf, and E. Visser, ―WebWorkFlow: An Object-Oriented

Workflow Modeling Language for Web Applications,‖ in MoDELS '08:

International conference on Model Driven Engineering Languages and Systems,

Toulouse, France, 2008, pp. 113-127.

[61] R. Tairas, S.-H. Liu, F. Jouault et al., ―CoCloRep: A DSL for Code Clones,‖ in

Workshop on Software Language Engineering, Nashville, Tennessee, USA,

2007.

[62] M. Barbero, J. Bézivin, and F. Jouault, ―Building a DSL for Interactive TV

Applications with AMMA,‖ in Model-Driven Development Tool Implementers

Forum, Zurich, Switzerland, 2007.

BIBLIOGRAPHY

106

[63] R. Pohjonen, and S. Kelly, ―Interactive Television Applications using

MetaEdit+,‖ in Model-Driven Development Tool Implementers Forum, Zurich,

Switzerland, 2007.

[64] D. Correal, and R. Casallas, ―Using Domain Specific Languages for Software

Process Modeling,‖ in OOPSLA Workshop on Domain-Specific Modeling,

Montréal, Canada, 2007.

[65] J. Merilinna, and J. Pärssinen, ―Comparison Between Different Abstraction

Level Programming: Experiment Definition and Initial Results,‖ in OOPSLA

Workshop on Domain-Specific Modeling, Montréal, Canada, 2007.

[66] F. Jouault, J. Bézivin, C. Consel et al., ―Building DSLs with AMMA/ATL a

Case Study on SPL and CPL Telephony Languages,‖ in ECOOP Workshop on

Domain-Specific Program Development (DSPD), Nantes, France, 2006.

[67] J. Zeng, C. Mitchell, and S. A. Edwards, ―A Domain-Specific Language for

Generating Dataflow Analyzers,‖ in Workshop on Language Descriptions, Tools

and Applications, Vienna, Austria, 2006.

[68] H. Prähofer, D. Hurnaus, and H. Mössenböck, ―Building End-User

Programming Systems Based on a Domain-Specific Language,‖ in OOPSLA

Workshop on Domain-Specific Modeling, Portland, Oregon, USA, 2006.

[69] N. Bencomo, and G. Blair, ―Genie: a Domain-Specific Modeling Tool for the

Generation of Adaptative and Reflective Middleware Families,‖ in OOPSLA

Workshop on Domain-Specific Modeling, Portland, Oregon, USA, 2006.

[70] K. Bierhoff, E. S. Liongosari, and K. S. Swaminathan, ―Incremental

Development of a Domain-Specific Language That Supports Multiple

Application Styles,‖ in OOPSLA Workshop on Domain-Specific Modeling,

Portland, Oregon, USA, 2006.

[71] A. W. B. Furtado, and A. L. M. Santos, ―Using Domain-Specific Modeling

towards Computer Games Development Industrialization,‖ in OOPSLA

Workshop on Domain-Specific Modeling, Portland, Oregon, USA, 2006.

[72] J. Luoma, S. Kelly, and J.-P. Tolvanen, ―Defining Domain-Specific Modeling

Languages: Collected Experiences,‖ in OOPSLA Workshop on Domain-

Specific Modeling, Vancouver, British Columbia, Canada, 2004.

[73] J. Sprinkle, and G. Karsai, ―A domain-specific visual language for domain

model evolution,‖ Journal of Visual Languages & Computing, vol. 15, no. 3-4,

pp. 291-307, June-August, 2004.

BIBLIOGRAPHY

107

[74] J. C. Grundy, J. G. Hosking, R. W. Amor et al., ―Domain-specific visual

languages for specifying and generating data mapping systems,‖ Journal of

Visual Languages & Computing, vol. 15, no. 3-4, pp. 243-263, June-August,

2004.

[75] L. Howard, ―CAPE: A Visual Language for Courseware Authoring,‖ in

OOPSLA Workshop on Domain-Specific Visual Languages, Seattle,

Washington, USA, 2002.

[76] J. Bettin, ―Measuring the potencial of domain-specific modelling techniques,‖ in

OOPSLA Workshop on Domain-Specific Visual Languages, Seattle,

Washington, USA, 2002.

[77] J. Gray, T. Bapty, and S. Neema, ―An Example of Constraint Weaving in

Domain- Specific Modeling,‖ in OOPSLA Workshop on Domain-Specific

Visual Languages, Tampa-Bay, Florida, USA, 2001.

[78] F. Shull, V. Basili, J. Carver et al., ―Replicating software engineering

experiments: addressing the tacit knowledge problem,‖ International Symposium

on Empirical Software Engineering, vol. 0, pp. 7-16, 2002.

[79] F. Shull, M. G. Mendonça, V. Basili et al., ―Knowledge-sharing issues in

experimental software engineering,‖ Empirical Software Engineering,

International Symposium on, vol. 9, pp. 111-137, 2004.

[80] J.-P. Tolvanen. "Domain-Specific Modeling: How to Start Defining Your Own

Language," 2006; http://www.devx.com/enterprise/Article/30550.

[81] R. G. Sargent, ―Validation and verification of simulation models,‖ in Winter

Simulation Conference, Los Alamitos, CA, USA, 2004.

[82] J. Aranda, N. Ernst, J. Horkoff et al., ―A Framework for Empirical Evaluation of

Model Comprehensibility,‖ in International Workshop on Modeling in Software

Engineering, 2007.

[83] A. E. Bobkowska, ―A Framework for Methodologies of visual Modeling

Language Evaluation,‖ in MIS '05: Proceedings of the 2005 symposia on

Metainformatics, Esbjerg, Denmark, 2005, pp. 2.

[84] J. Nielsen, ―Usability Inspection Methods,‖ in Conference on Human Factors in

Computing Systems, Boston, Massachusetts, United States, 1994, pp. 413 - 414.

[85] B. A. Kitchenham, ―Evaluating software engineering methods and tool part 1:

The evaluation context and evaluation methods,‖ SIGSOFT Software

Engineering Notes, vol. 21, pp. 11--14, 1996.

http://www.devx.com/enterprise/Article/30550

BIBLIOGRAPHY

108

[86] J. D. Gould, and C. Lewis, ―Designing for Usability: Key Principles and What

Designers Think,‖ Communications of the ACM, vol. 28, pp. 300-311, 1985.

[87] J. L. Mathe, J. B. Martin, P. Miller et al., ―A Model-Integrated, Guideline-

Driven, Clinical Decision-Support System,‖ IEEE Software, vol. 26, pp. 54-61,

2009.

[88] J.-P. Tolvanen. "Speak the Language," 2009; http://www.medicaldevice-

network.com/features/feature59141/.

[89] J.-P. Tolvanen, and C. Giese. "Modeling for Full Code Generation? Modeling

for Software Development in the Automotive Industry," 2007;

http://www.metacase.com/papers/Eclipse_Magazine_Volume12.pdf.

[90] A. Hulshout, and J.-P. Tolvanen. "Modeling for full code generation," 2007;

http://www.embedded-computing.com/pdfs/MetaCase.Aug07.pdf.

[91] M. Y. Ivory, and M. A. Hearst, ―The state of the art in automating usability

evaluation of user interfaces,‖ ACM Computing Surveys, vol. 33, pp. 470-516,

2001.

[92] V. Sugumaran, S. Park, and K. C. Kang, ―Software Product Line Engineering,‖

Communications of the ACM, vol. 49, December, 2006.

[93] J. White, J. H. Hill, J. Gray et al., ―Improving Domain-specific Language Reuse

with Software Product-line Techniques,‖ IEEE Software, vol. 26, pp. 47-53,

2009.

[94] G. Karsai, H. Krahn, C. Pinkernell et al., ―Design Guidelines for Domain

Specific Languages,‖ in OOPSLA Workshop on Domain-Specific Modeling,

Orlando, Florida, 2009.

[95] J. Kärnä, J.-P. Tolvanen, and S. Kelly, ―Evaluating the Use of Domain-Specific

Modeling in Practice,‖ in OOPSLA Workshop on Domain-Specific Modeling,

Orlando, Florida, 2009.

[96] A. Seffah, M. Donyaee, R. B. Kline et al., ―Usability measurement and metrics:

A consolidated model,‖ Software Quality Journal, vol. 14, pp. 159-178, June,

2006.

[97] F. Hermans, M. Pinzger, and A. v. Deursen, ―Domain-Specific Languages in

Practice: A user Study on the Success Factors,‖ in International Conference on

Model Driven Engineering Languages and Systems (MODELS), Denver, CO,

USA, 2009, pp. 423-437.

[98] M. Jimenez, F. Rosique, P. Sanchez et al., ―Habitation: A Domain-Specific

Language for Home Automation,‖ IEEE Software, vol. 26, pp. 30-38, 2009.

http://www.medicaldevice-network.com/features/feature59141/
http://www.medicaldevice-network.com/features/feature59141/
http://www.metacase.com/papers/Eclipse_Magazine_Volume12.pdf
http://www.embedded-computing.com/pdfs/MetaCase.Aug07.pdf

BIBLIOGRAPHY

109

[99] R. B. Kieburtz, L. McKinney, J. M. Bell et al., ―A software engineering

experiment in software component generation,‖ International Conference on

Software Engineering, vol. 0, pp. 542, 1996.

[100] C. Schmidt, B. Cramer, and U. Kastens, ―Usability Evaluation of a System for

Implementation of Visual Languages,‖ in VLHCC '07: Proceedings of the IEEE

Symposium on Visual Languages and Human-Centric Computing, 2007, pp.

231-238.

[101] N. G. Trillo, ―The Cultural Component of Designing and Evaluating

International User Interfaces,‖ in Hawaii International Conference on System

Sciences, Hawaii, 1999.

[102] J. Caldwell, ―Safety Icons and Usability: a Peircean Reanalysis,‖ International

Professional Communication Conference, vol. 0, pp. 1-8, 2009.

[103] J. Rumbaugh, ―Notation notes: Principles for choosing notation,‖ Journal of

Object-Oriented Programming, vol. 9, pp. 11-14, 1996.

[104] A. F. Blackwell, ―Metaphor in Diagrams,‖ PhD thesis, Darwin College, Univ. of

Cambridge, 1998.

[105] M. Ciolkowski, O. Laitenberger, and S. Biffl, ―Software Reviews: The State of

the Practice,‖ IEEE Software, vol. 20, pp. 46-51, 2003.

[106] A. Blackwell, and T. Green. "A Cognitive Dimensions Questionnaire," 2007;

http://www.cl.cam.ac.uk/~afb21/CognitiveDimensions/CDquestionnaire.pdf.

[107] J. Nielsen. "Why You Only Need to Test with 5 Users,"

http://www.useit.com/alertbox/20000319.html.

[108] F. P. Brooks, The Mythical Man-Month: Addison-Wesley Longman Publishing

Co., Inc., 1995.

[109] S. L. Pfleeger, and B. A. Kitchenham, ―Principles of survey research,‖ ACM

SIGSOFT Software Engineering Notes, vol. 26, pp. 16-18, 2001.

[110] M. Höst, B. Regnell, and C. Wohlin, ―Using Students as Subjects—A

Comparative Study of Students and Professionals in Lead-Time Impact

Assessment,‖ Empirical Software Engineering, vol. 5, pp. 201-214, 2000.

http://www.cl.cam.ac.uk/~afb21/CognitiveDimensions/CDquestionnaire.pdf
http://www.useit.com/alertbox/20000319.html

	Introduction
	Motivation
	Description and Context
	Scope of the problem
	Main Contributions
	Document Structure

	Domain-Driven Development
	Domain-Specific Languages
	Summary

	Experimental Software Engineering
	Empirical Methods
	Quantitative Methods
	Qualitative Methods
	Qualitative Methods Description
	Ethnographies
	Action Research
	Case Study

	Data Collection Methods
	Subject Observation
	Interviews and Questionnaires
	Eye Tracking
	Log Analysis

	Coding Qualitative Data

	Mixed Methods
	Survey Research

	Threats to Validity
	Construct Validity
	Internal Validity
	External Validity
	Conclusion Validity

	Reliability/Replication
	Summary

	Usability Engineering
	Usability
	Usability Lifecycle
	Know the User
	Competitive Analysis
	Goal Setting
	Parallel Design
	Participatory Design
	Coordinating the Total Interface
	Heuristic Evaluation
	Prototyping
	Empirical Tests
	Iterative Design
	Feedback from Field

	Summary

	A Domain Specific Languages Survey
	Introduction
	Research Questions
	Review Methods
	Data Analysis
	Threats to Survey Validity
	Summary

	Systematic Evaluation Methodology
	Introduction
	Motivation
	Stakeholders
	Evaluation Methodology
	Domain Analysis
	Competitive Analysis

	Design
	Prototyping
	Visual Elements
	Scenarios
	Conducted Tests
	Amendments

	Implementation
	Evaluation
	Subject Recruitment
	Task Preparation
	Pilot Session
	Training Session
	Exam
	Results Analysis

	Summary

	Systematic Evaluation Methodology Validation
	Introduction
	Experiment Design
	Subjects
	Questionnaire
	Results of the Case Study
	DSL Producers’ Decisions
	Checklist Based Validation
	Evaluation Process

	Threats to Validity
	Summary

	Conclusions
	Summary
	Future Work

	Appendix 1 – Group Results for each Scenario and their General Impressions

