
An IT Infrastructure Patterns Approach To
Improve IT Service Management Quality

Luís Ferreira da Silva

QUASAR / CITI / FCT
Universidade Nova de Lisboa
2829-516 Caparica, Portugal

luis.silva@di.fct.unl.pt

Fernando Brito e Abreu
QUASAR / CITI / FCT

Universidade Nova de Lisboa
2829-516 Caparica, Portugal

fba@di.fct.unl.pt

Abstract — IT services are built on top and are delivered by (and
therefore depend upon) IT infrastructures. The design of the
latter is critical, since it will influence the overall quality of IT
services. However, designing IT infrastructures for large
organizations is a challenge task since it requires knowledge of
existing organization processes, the views of different players, and
the conjunction of technical expertise in different domains, that
rarely reside in a single individual. To improve the design of IT
infrastructures, namely by allowing to reuse proven solutions to
recurrent problems we propose the use of IT infrastructure
patterns. The use of patterns in the design of IT infrastructure
will provide several benefits such as facilitate the communication
among IT design stakeholders, simplify the whole design process
and potentially decrease size and complexity, which all contribute
to increase the quality of IT service management processes. This
paper present the preliminary effort to build supplier-
independent IT infrastructure patterns and we introduce two of
them, covering aspects from its rationale to instantiation that will
hopefully leverage the IT infrastructure design process and create
a positive impact in the quality of IT service management
processes trough proven and better designed IT infrastructures.

Keywords - Information Technology, IT Infrastructure, Design
Patterns

I. INTRODUCTION
In a typical organization the IT Infrastructure (ITI)

represents the foundation in which multiple applications are
deployed to provide IT services [1]. The primary purpose of an
ITI is to support and enhance IT services, so they are the
foundation upon which the business processes that drive an
organization’s success are based [2]. In this context the
infrastructure represents the use of various components of
information technology and is composed with “hardware”,
“software” and “networking” infrastructure. All these
components should work together in order to provide high
quality IT services to the end-users. The quality of IT services
can be defined as “the collective effect of service performances
which determine the level of satisfaction of a user with the
service”. In practical terms IT services quality is the customer’s
perception of a delivered service.

There are many aspects that can influence the quality of IT
services offered to customers. Since ITI is the foundation of IT
services, often problems with ITIs have impact in the services
provided. Most of the problems faced with IT services are

frequently the consequence of poorly designed and
documented ITIs created by non ITI experts such as
consultants, administrators, developers and other individuals
with the only purpose of responding to the requirements of a
particular business application or to quickly support new
technologies or services [3]. The adoption of Enterprise
Architectures methodologies [4-6] in the field of ITIs is also
low. One of the facts that can contribute to this, may be the
existence of more than two dozen frameworks some of which
are view models and others proprietary [7]. The inexistence of
detailed supplier independent solutions to common problems
and the inexistence of infrastructure architects to design ITIs
are other reasons that highly contributes to have poorly design
ITIs what often compromise the delivery of high quality
services [8].

Methodologies such as IT Infrastructure Library (ITIL) [9]
and Common Objectives for Information and related
Technology(COBIT) [10] promote the use of a service centric
vision for IT operations. In this service centric vision the IT
services are measured based upon service models where
services are defined based on the business processes, not based
on a technology or an application. These services are
monitored and maintained to meet the agreed service levels
between organizations and customers. However even using this
approach, poor designed ITIs lead to more problems and
potentially more impact on services provided to customers.

Designing ITIs for large organizations is a challenge task
mainly because it requires knowledge of existing organization
processes, the views of different players, and the coordination
of technical expertise in three ITI domains (hardware,
infrastructure software and networking) that rarely reside in a
single individual.

The design of solutions is achieved in most engineering
fields by using appropriate abstractions. Although often the
devil is in the details, raising the level of abstraction allows
practitioners to find, share and apply standardized solutions to
recurrent phenomena, by only retaining the information which
is relevant for a particular purpose. Wrapping up those
standardized design solutions resulted in what was coined by
design patterns.

The application of the design patterns concept in the area of
ITIs was caught as a business opportunity by several
companies to standardize typical ITI building blocks based on

2010 Seventh International Conference on the Quality of Information and Communications Technology

978-0-7695-4241-6/10 $26.00 © 2010 IEEE

DOI 10.1109/QUATIC.2010.34

171

their commercial components. Some of those companies
developed methodological approaches to ITI pattern-based
design, by proposing design “blueprints” embodying vendor-
specific components [11, 12].

In this paper we will report our preliminary effort to build
supplier-independent infrastructure patterns that can contribute
to (i) improve service management quality trough proven and
better designed ITIs, (ii) contribute to simplify the whole ITI
design process and potentially decrease size and complexity,
(iii) simplify communication among stakeholders [13], provide
better integration among ITI components from different
vendors and contribute to document ITIs and improving
existing ITI knowledge among stakeholders. This effort is
grounded on the hard-won lessons learned by the first author
during several years of full-time work designing ITIs for large
companies, such as banks, telecoms and big wholesale resellers.

II. DESIGN PATTERNS
The work of the famous architect Christopher Alexander and

his colleagues, that created the concept of design patterns,
focused not only in individual patterns, but also in the concept
of pattern language [14]. This term originally was meant to
describe a vocabulary of interacting design strategies that can
be used to develop human-scale, enjoyable and durable spaces,
buildings, landscapes and towns.

Generally speaking, a pattern language is a practical network
of important, related ideas that provides a, as comprehensive as
possible, treatment of a subject, using a common vocabulary
and understanding. Usually, such languages are the result of
accumulated experience and practice [15] and can be used in
various situations such as to facilitate communication, sharing
of ideas, build complex and heterogeneous solutions, identify
recurrent problems, and provide a guided approach to solve
those problems [16], therefore improving design quality and
efficiency [17]. Since we are concerned with a specific
knowledge area, we propose the following definition of a
pattern language for ITIs:

“An interconnected group of IT infrastructure design
patterns that come together to create a secure, reliable,
available, performant and manageable IT infrastructure.”

The use of ITI design patterns can be seen as a process to
simplify the ITI design process, while reducing its risk and cost
through the use of well-known solutions for recurrent problems.
The solutions addressed by design patterns are not intended to
be static and final. In fact, they are templates that can be
customized and extended. Design patterns help breaking ITI
complexity into smaller modules, thus allowing architectural
decisions to be taken at a higher abstraction level. Design of
infrastructures using this approach makes them more robust,
scalable, reliable, and maintainable. Our ITI design patterns
have a further advantage – they are supplier independent. A
pattern should provide information on how a specific problem
can be addressed without focusing on a specific technology or
vendor. Due to space constraints we only include here the
description of two ITI design pattern, named Border Router
Security Lockdown and Fault Tolerant Server, an example
from the network and hardware domain. An example of an

infrastructure software design pattern was presented at
EuroPlop 2010 [18]. The full description of the whole
collection of our ITI design patterns will be made available at
the QUASAR website (http://ctp.di.fct.unl.pt/QUASAR/) as a
technical report.

III. IT INFRASTRUCTURE DESIGN PATTERNS
As stated before the ITI is built of hardware, networking and

infrastructure software and constitutes the foundation upon
which organizations can deliver services to customers, partners
and its employees. This section describes an example of an ITI
network pattern “the Border Router Security Lockdown” and a
hardware pattern Fault Tolerant Server. From the several ways
to organize patterns [19-21] we decided to use a structure
similar to GoF, since it is one of the most structured and well-
known forms.

A. Border Router Security Lockdown

1) Context
This pattern applies to organizations using routers to connect

internal LANs to the internet through a WAN link and intend
to secure routers to minimize the impact of a security violation.
Since all data traffic from and to the internet passes through
these routers, a security violation could lead to network failures
or even theft of data. Routers facing the Internet are typically
known as edge or border routers

2) Problem
How to secure routers that connect internal LANs to the

internet through a WAN link?

3) Forces
The following forces influence the solution:
• Secure Connectivity: The border router should provide

routing traffic and allow both inbound traffic coming
from the internet to the internal network and outbound
traffic coming from the internal network to the internet.

• Authorized access only: The solution should take into
consideration that border routers as well as other
devices are not public devices and should only be
accessed by authorized network engineering staff.

• Extendability: Solution should provide means to allow
future growth through the addition of new devices while
be consistent in terms of security.

• Security: The border zone router provides secure access
to the internet. The solution should take into
consideration that border router is normally the device
more exposed to threats.

4) Solution

Apply tight, extended access control lists (ACLs) on the
border routers to secure the network traffic allowed in the
perimeter network and create and maintain security policy that
identifies management activities.

172

Figure 1: Border Router

The ACLs are important to restrict access from unknown,

untrusted users from the internet into the internal network
(Figure 1). When defining border router ACLs the following
should be considered:

• Turn off unneeded services on the border router.
• Deny Internet Control Message Protocol (ICMP) to

transit the border router because support for the ping
command and similar capabilities can lead to potential
attacks.

• Allow Border Gateway Protocol (BGP) traffic that uses
TCP/179 if there are packets sourced from adjacent
routers.

• Deny all protocols, TCP/UDP ports and IP addresses
through the router except the protocols, ports and IP
addresses corresponding to services in use.

• Block incoming packets that claim to have the same
destination and source address.

• Deny tampered packets structured to appear from a
different location. Anti-spoofing ACLs features ensure
that tampered packets are rejected.

• Allow only internal traffic to enter the router from the
internal network, and allow only internet traffic to enter
the router from the external network.

The management activities should be defined in a security
policy. The security policy should include:

• Change standard users and administrators names and
passwords.

• Define multiple usernames and passwords for different
levels of access. The policy should clearly identify who
is allowed to log in to the router, who is allowed to
configure and update it and who is allowed to read logs
and other statistical information.

• Passwords should be complex by incorporating a mix of
uppercase and lowercase letters and numbers and

having the minimum length standards (for example, six
characters minimum). More flexibility can be achieved
by using centralized secure login system such as
RADIUS or Kerberos.

• Only secure clients that use the SSH protocol and from
a specific network and source IP address can establish
router console sessions.

• Turn on the router’s logging capability ensuring that
includes time information, and use it to log errors and
blocked packets.

• Having offline master copies of border router
configuration files simplifies the process of identifying
changes and the introduction of new devices with
similar configurations.

5) Consequences
The use of BORDER ROUTER SECURITY LOCKDOWN

pattern presents the following benefits:
• Efficiency: Disabling unneeded router services and

restricting of packets passing through the router turn
devices more efficient since they have less packets to
process.

• Access Control: Only well-defined users and
administrators can perform router management
activities.

• Simple configuration: Having offline copies of router
configuration can simplify the process of deployment of
new devices or device reconfiguration due to a
malfunction for example.

• Reduce risk of attack: By locking down border routers
devices and actively control and monitor devices can
minimize the risk of attack.

On the other hand the use of BORDER ROUTER

SECURITY LOCKDOWN pattern carries several liabilities:
• Less flexibility: The deployment of services requiring

new ports or protocols require changes in router
configurations.

• Management activities: Since for security reasons the
administration must be perform from specific locations
the time and effort required to perform a configuration
is higher;

• Denial of service: The process of locking down router
does not minimize the risk of a denial of service attack.

• Expensive: The use of a centralized secure login may
require the acquisition of new systems.

6) Related Patterns
This pattern is related with the following patterns:
• TIERED DISTRIBUTION: Tiered Distribution

organizes the system infrastructure into a set of physical
tiers to optimize server environments for specific
operational requirements and system resource usage.

• BORDER SWITCH SECURITY LOCKDOWN: similar
to border security lockdown this pattern defines the

173

security measures that should be applied to switches in
the border zone to maximize security.

B. Fault Tolerant Server

1) Context

The definition of the required server hardware to support a new
service, application or solution is a common problem for IT
professionals, since it is a challenge to find the right hardware
balance. For instance over-utilized servers result in
performance degradation and loss of end user productivity
while under-utilized servers can cause higher capital and
operations expenses. The problem is even bigger when the
application is critical for business.

2) Problem
Which hardware components should a server has to support

business critical applications?

3) Forces
The following forces influence the solution:
• Failures: The failure of a single component should not

affect server availability. The server should continue
working by support services, applications or solutions.

• Scalability: The server should be designed to allow
scaling up (e.g. adding more resources such as memory).

• Performance: The server should be performant to
support business critical applications.

4) Solution

Use a server with redundant hardware components to
minimize the impact of failures and provide free slots to allow
the addition of new hardware components.

Figure 2: Fault Tolerant Server Hardware Components

The server should have the following hardware components:
• Multiple CPUs: In terms of CPU speed since most

applications are single-threaded the number of CPUs is
less important than the speed of CPUs. The faster the
CPU, the more data will be able to process in a set

period of time. The benefits that faster CPUs can
provide to database systems for instance are obvious,
however if a server has multiple slower processors, the
impact of CPU speed on database systems performance
can often be mitigated.

• Memory: The service, application or solution
requirements are also the main factors to define the right
amount of memory. In what concerns to memory and
despite the fact that there is a correlation between
number of clients to support and the total server
memory, there is no ratio defined to identify the
maximum amount of memory required by a server. For
instance the amount of memory for a database system
depends upon the previous factors and also the demands
of the databases. The best practice is to configure the
server with a reasonable amount of memory (depending
on the requirements), and monitor whether memory is
sufficient to address the server workload.

• Network Adapters Speed: Forgetting to define
requirements for network adapters are a common
mistake in the design of ITI servers since they have a
significant influence on the server performance. Having
the right amount of memory and faster CPUs cannot
eliminate the bottleneck introduced by not having fast
network adapters. Sometimes organizations perform
investments to improve the performance of server
through acquisition of faster processors or more
memory and afterwards they realize that performance is
still poor. Often the performance problems rely in NICs
and not with the amount of memory or CPUs. Having a
Gigabit NIC is normally recommended for most
applications since these cards offer performance gains
that are disproportionately higher than the 10x
throughput for example.

• Multiple Network Adapters: The use of a multihoming
(multiple network adapters) servers permits the use of
teaming’s which represents that a single server can have
two or more network adapter ports, each connected to a
physically different switch as presented in Figure 2. In
case of failure of one adapter the server continues to
work. Other advantages are the higher performance
through the separation of traffic (e.g. traffic to internet
and traffic to internal servers) and increase of security
with each interface connected to a separated network
segment which facilitate for instance port filtering. The
disadvantages of using multihoming servers are the
additional complexity, and cost associated with multiple
network adapters, switches and cables.

• Storage: Most of applications, services or solutions also
require storage to maintain information, images, files,
media among others types of storage. The most
common requirement is database storage. The space
required can normal be segregated into the space
required for database (e.g. client data), space required
for processing and file storage and sometimes spaces
required to backups to disk. When planning disk size,
the plan should also allow for data growth over time.

174

Disks sized only for the initial data may quickly
outgrow. Other important aspect besides space is
performance often measured in throughput. The
throughput can be defined as, how many requests the
server can process per second. More users normally
require higher throughput. In order to handle the
required throughput multiple disks and disk arrays
should be used or multi-channel controller cards. It is
recurrent to have servers with enough memory and
CPUs and with poor performance due to disk
configurations. Since most applications require
databases, there are two main components that a require
attention when discussing disk performance for database
servers, which are the database itself and database logs
that should be in different disks. The common
configuration to address this performance problem is to
have at least three spindles, one for the operating system,
one for database logs, and one for the database itself.

5) Consequences
The use of FAULT TOLERANT SERVER pattern presents

the following benefits:
• Availability: The failure of most components does not

affect business critical application. There are some
server components (e.g. mouse, keyboard, and monitor)
where a failure does not produce any direct effect in
server availability.

• Scalability: There is enough room to scale, since there
are free slots for CPUs, memory, network adapters
among other components.

• Applicability: The unique characteristics of this server
make it well suited for business application front-end
servers, database servers, authentication and
authorization servers among other systems.

On the other hand the use of FAULT TOLERANT SERVER

pattern carries several liabilities:
• Capacity Planning: Depending on the requirements of

the business application, service or solution the number
and speed of hardware components may vary. The
general recommendation is to use recent hardware
components.

• Single Points of Failures: There are certain components
(e.g. motherboards) that are a single point of failures in
a server, since a single server cannot have more than
one of these components.

• Failure impact: The failures of a component degrade
performance.

• Multiple failures: The failure of multiple components
simultaneously could affect server availability.

6) Related Patterns
This pattern is related with the following patterns:
• LOAD-BALANCED CLUSTER: Load-balanced

clusters can improve application performance for the

current number of users by sharing the workload across
multiple servers.

• FAILOVER CLUSTER: Failover clusters can increase
availability by creating redundancy in the infrastructure.

IV. VALIDATION
To validate the results, the plan is to use empirical research in
with ITIs, which calls for the necessity of experimentation and
observation rather than theory. This process consists of the
application of the pattern language to real organizations.
Empirical research in ITIs implies building models such as
application domain or problem solving processes and checking
if our understanding is correct through testing or experimenting
in the real world. The analysis of results involves the ability to
change or refine our models over time. As Singleton and Straits
[22] stated, “appeals to authority, tradition, revelation, intuition,
or other non-empirical ways of knowing, which may be
acceptable in other endeavors such as philosophy, cannot be
used as scientific evidence”. To better understand the impact of
the solutions in ITIs, we defined several experiments and we
plan to conduct these experiments with two groups. We will
ask both groups to design ITIs. The first group will have access
to a set of white papers and blueprints and the second group
will have access to ITI patterns. We will then measure ITIs
based upon the solution achieved.

V. RELATED WORK
As mentioned in section 1, some companies have proposed

customized ITI design patterns, known as “blueprints”, with
the obvious purpose of helping their customers to select the
most adequate ITI configurations based upon their product and
service offerings. Two examples that deserved our attention
were the ones of Sun Microsystems [12] and Microsoft
Corporation [11], which were the only ones we found with
comprehensive related documentation available in the web.

Sun promotes the SDN (Service Delivery Network)
approach to design service optimized network architectures for
customer and in-house implementations. This approach
consists of basic network building blocks, common network
design patterns, integrated network components, and industry
best practices that together are carefully blended in response to
a customer's business and technical goals. SDN provides a set
of network connectivity, routing, load balancing, and security
mechanisms that, when applied in combination, result,
according to [12], in “flexible network infrastructure designs
that provide high performance, scalability, availability, security,
flexibility, and manageability”. As for the patterns themselves,
Sun proposes in the same document a set of so-called
“common SDN patterns”, highlighting which key forces
differentiate each pattern from the others. These patterns are
based on a set of building blocks and include: the Single
Service Module Pattern, the Multi-Service Module Pattern, the
Single Service Module With Integration Security Module
Pattern, the Single Service Module With Domain Security
Module Pattern, the Single Service Module With Integration
Security Module and Domain Security Module Pattern, the

175

Multi-Service Module With Integration Security Module
Pattern, the Multi-Service Module With Service Security
Module Pattern, and the Multi-Service Module With
Integration Security Module and Service Security Module
Pattern.

Meanwhile, Microsoft promotes a related approach, named
IPD (Infrastructure Planning and Design), based on a set of
guides that provide architectural guidance for Microsoft
infrastructure. The current IPD documentation [23] focuses on
helping the reader to plan and design the implementation of
several Microsoft technologies. According to the authors, the
IPD guides are supposed to assist the architect in planning for
complex scenarios requiring multiple infrastructure
technologies. Those guides complement product
documentation by focusing on infrastructure design options
and share a common structure, that includes: (i) defining the
technical decision flow through the planning process, (ii)
listing the decisions to be made and the commonly available
options and considerations, (iii) relating decisions and options
to the business in terms of cost, complexity, and other
characteristics, and (iv) framing decisions in terms of
additional questions to the business to ensure a comprehensive
alignment with the appropriate business landscape. IPD
highlights when service and infrastructure goals should be
validated with the organization and provides additional
questions that should be asked of service stakeholders and
decision makers. Regarding design patterns, Microsoft
organizes its approach in a set of design clusters including:
Web Presentation Patterns, Deployment Patterns, Distributed
Systems Patterns, Performance and Reliability Patterns and
Services Patterns [11].

Both approaches provide methodological guidance along
with ITI design patterns customized with proprietary products.
Although their structure and detail are varied, both approaches
can be seen as proprietary pattern languages for ITI design. We
believe that a non-proprietary pattern language for ITI design
like ours may play an important role in the design of ITIs
comprising multiple source technologies.

VI. CONCLUSIONS
Since IT services are built and delivered on top of IT

infrastructures, the quality of IT services are highly dependent
on the quality of IT infrastructures. The quality of IT
infrastructure starts from the design. Most critical IT
Infrastructures are designed without guidelines and by non-
experts what highly contributes to have complex and less
reliable infrastructures what often compromises the delivery of
high quality IT services. The current proprietary approaches do
not comply with the use of heterogeneous (multiple source)
components and most times do not represent proven knowledge.
We have developed several Infrastructure Patterns as the ones
presented and we are working to consolidate all the design
patterns in a pattern language.

The mid-term future work is the development of tools to
support infrastructure design patterns to enable patterns-driven

ITI design, making the process of designing IT infrastructures
more simple, more robust and providing a positive impact in
the quality of IT services. We will also plan to develop ITI
pattern mining algorithms, supported by a tool, both to help
documenting existing legacy ITIs and to detect which are the
patterns that are more used in combination.

ACKNOWLEDGMENT
The work presented herein was partly supported by the

VALSE project of the CITI research center within the
Department of Informatics at FCT/UNL in Portugal.

REFERENCES
[1] S. Sirkemaa, "IT infrastructure management and standards,"

presented at the Proceedings of the International Conference on
Information Technology: Coding and Computing, Las Vegas, 2002.

[2] A. Gunasekaran, et al., "Performance measurement and costing
system in new enterprise," 2005.

[3] R. Perry and A. Gillen, "Demonstrating Business Value: Selling to
Your C-Level Executives," 2007.

[4] O. Group, TOGAF Version 9 - A Pocket Guide, Ninth ed. Reading -
United Kindom: Van Haren Publishing, 2009.

[5] J. A. Zachman, "A Framework for Information Systems
Architecture," IBM Systems Journal, p. 263, 1987.

[6] Gartner, "Gartner Enterprise Architecture Framework: Evolution
2005," Gartner, October, 25 2006.

[7] G. Booch, "Enterprise Architecture and Technical Architecture,"
IEEE Softw., vol. 27, p. 96, 2010.

[8] R. Sessions, Simple Architectures for Complex Enterprises, 1 ed.
Redmond: Microsoft Press, 2008.

[9] OGC. (2010, February). Core publications for ITIL Version 3
Available: http://www.itil-officialsite.com/Publications/Core.asp

[10] ISACA. (2008, April). Common Objectives for Information and
related Technology (COBIT 4.1). Available:
http://www.isaca.org/cobit

[11] D. Trowbridge, et al., Enterprise Solution Patterns Using
Microsoft .Net: Version 2.0 : Patterns & Practices: Microsoft Press,
2003.

[12] M. Lofstrand and J. Carolan, Sun's Pattern-Based Design
Framework: The Service Delivery Network. Santa Clara, CA, USA:
Sun Microsystems, 2005.

[13] OGC, IT Infrastructure Library (ITIL) - Service Strategy (Version
3). London: The Stationery Office), 2007.

[14] C. Alexander, et al., A Pattern Language: Towns, Buildings,
Construction vol. Vol. 2. New York: Oxford University Press, 1977.

[15] F. Martin and D. Rice, Patterns of entreprise application
architecture. New York: Addison-Wesley Professional, 2003.

[16] W. Cunningham, The CHECKS pattern language of information
integrity. New York: ACM Press/Addison-Wesley Publishing, 1995.

[17] F. Buschmann, et al., Pattern-Oriented Software Architecture: A
Pattern Language for Distributed Computing (Wiley Software
Patterns Series): John Wiley & Sons, 2007.

[18] L. Silva, "Patterns for IT Infrastructure Design," in Proceedings of
EuroPLoP, Irsee Monastery, Bavaria, Germany, 2010.

[19] E. Gamma, et al., Design Patterns: Elements of Reusable Object-
Oriented Software. New York: Addison-Wesley Professional, 1995.

[20] F. Buschmann, et al., A system of patterns: Pattern-oriented
software architecture vol. 1. New York: Wiley, 1996.

[21] M. Fowler. (2006, Writing Software Patterns. Available:
http://martinfowler.com/articles/writingPatterns.html

[22] R. Singleton, et al., Approaches to social research: lavoisier.fr,
1993.

[23] L. Dunham and P. Rytkonen, Infrastructure Planning and Design,
2nd ed.: Microsoft, 2009.

176

