
SLALOM: a Language for
SLA Specification and Monitoring

Anacleto Correia2,1, Fernando Brito e Abreu3,1, Vasco Amaral1

1 CITI/FCT/UNL, 2829-516 Caparica, Portugal
2 IPS/EST, 2910-761 Setúbal, Portugal

3 DCTI, ISCTE-IUL, 1649-026 Lisboa, Portugal
accorreia@fct.unl.pt, fba@iscte.pt, vasco.amaral@di.fct.unl.pt

Abstract. IT services provisioning is usually underpinned by service
level agreements (SLAs), aimed at guaranteeing services quality. How-
ever, there is a gap between the customer perspective (business ori-
ented) and that of the service provider (implementation oriented) that
becomes more evident while defining and monitoring SLAs. This paper
proposes a domain specific language (SLA Language for specificatiOn
and Monitoring - SLALOM) to bridge the previous gap. The first step in
SLALOM creation was factoring out common concepts, by composing
the BPMN metamodel with that of the SLA life cycle, as described in
ITIL. The derived metamodel expresses the SLALOM abstract syntax
model. The second step was to write concrete syntaxes targeting differ-
ent aims, such as SLA representation in process models. An example of
SLALOM’s concrete syntax model instantiation for an IT service sup-
ported by self-service financial terminals is presented.

Keywords: domain specific languages, DSL, metamodel, service level
agreements, ITIL, IT service management.

1. Introduction

Most organizations rely on Information Technology (IT) services to support
their business services. IT services are built upon the technical infrastructure
(servers and network devices) as well as on systems and application software.
Examples of IT services are a corporate email service, an order entry service
or those provided to clients of financial institutions by ATMs.

Likewise business services, IT services are nowadays mostly driven by a
customer-focused approach [1]. IT service providers usually offer standard
service levels or, alternatively, negotiate particular terms by settling a service
level agreement (SLA). The process that addresses SLAs definition and moni-
toring is called Service Level Management (SLM) [1] and is usually part of a
broader framework for IT Service Management (ITSM), such as ITIL v3 [2].

In the absence of an SLM process, IT management would be performed by
trial and error, leading to over (or under) capacity and inadequate performance
and end-users requirements and expectations would be based in desires
rather than feasibility or affordability. SLM implementation has several benefits
such as the mutual agreement on which are the relevant IT service quality
attributes (e.g. availability, performance, and security), the definition of ex-
pected service levels (i.e. thresholds) for those quality attributes) and the clari-
fication of the consequences (e.g. penalties for the provider) if service levels
are not met. Service level specification and monitoring requires that customer
and provider agree (and express unambiguously in the SLA) on the set of
metrics for the IT service quality attributes and how will the data required to
compute them be collected.

SLA definition and monitoring are open issues [3] in the ITSM domain,
mainly due to the following reasons: (1) SLAs are informally specified [4], (2)
SLAs specifications are not grounded on process models and (3) SLAs moni-
toring uses implementation level metrics (e.g. packet collisions, dropped
packets, or page faults) instead of using metrics from an higher abstraction
level (e.g. service availability, end-to-end response time, or service afforda-
bility).

A concept is said to be at a higher abstraction level when its definition and
usage is made independently of implementation constraints or specific techno-
logical platform. Abstraction should allow us to convey information for different
actors (e.g. end-user, service level manager or system administrator) using an
adequate representation (e.g. graphical or textual models, with more or less
detail).

Working at higher abstraction levels (e.g. models and metamodels) and
mapping the resulting levels, was the aim of OMG’s initiative named Model
Driven Architecture (MDA) [5]. MDA is a framework for software development,
where models are pivotal artifacts used for conveying and documenting re-
quirements and design decisions as well as the basis for performing transfor-
mations (e.g. to generate executable artifacts). MDA defines four layers, from
M0 (instance layer) to M3 (meta-metamodel layer). The metamodel layer (M2)
includes the language constructs (aka grammar) used to describe models (M1
layer).

Our objective in this paper is to introduce the abstract and concrete syntax
models (both expressed as metamodels, as proposed in [6]) of SLALOM, a
domain-specific language (DSL) that is expected to facilitate SLA specification
and monitoring. Since, assessing components execution in isolation does not
enable the measurement of service quality at a business-level perspective, we
intend to use this DSL to support the composition of measurements from a
variety of data sources in order to present and justify observed compound
measurements (e.g. the contribution of indicators such as dropped packets,
page faults, or queries response time, to explain the metric, end-to-end re-
sponse time of an IT service).

SLALOM’s abstract syntax model will restrict the number of valid models to
the ones that conform to it, while SLALOM’s concrete syntax model will restrict
the number of valid models to the ones that have a valid concrete representa-
tion [6]. Thus, if process models were chosen to express SLAs contracts, the

representation of IT services, should conform to the metamodel that defines
the concrete syntax of process models.

In section 2 we will present the DSL that was the source of metamodel
composition, as well as the final result: the metamodel that is the abstract
syntax model of the SLALOM language. In section 3 the concrete syntax
models derived for different purposes are presented: SLAs monitoring and
compliance checking SLAs depicted in process models, and validation & veri-
fication of properties of SLAs process models. In section 4 we present an illus-
trative example with concrete syntax metamodels instantiation. In section 5 we
overview previous related works regarding SLAs, and finally in section 6 we
discuss future work regarding the integration of concrete syntax methods in
the process for SLAs specification and monitoring.

2. Abstract syntax model

The abstract syntax of a language takes a central position in a language
specification since it is the pivot between various concrete syntaxes of the
same language, as well as between the syntactical structure of a model and
its semantics [6]. The first step in creating the SLALOM language was to iden-
tify the concepts to express in its abstract syntax model. For each concept, the
semantics was clarified and the relationships with other concepts were elic-
ited.

We have adopted the UML class diagram notation [7] enriched with OCL
constraints [8] for abstract syntax model definition. OCL was also used to
specify the static semantics of the DSL, that is, the set of rules that specify
whether domain models are well formed. Later, this will enable to check con-
crete syntax models well-formedness against the abstract syntax model.

When we have different DSLs that capture and model a shared set of con-
cepts, those constructs can be joined, by a metamodel composition technique
[9], to stitch the two languages together into a unified whole. As such, the new
language benefits from previously documented domain knowledge since it
reuses, at least partly, the concepts expressed in existing metamodels. We
followed this approach to derive the SLALOM abstract syntax model, by com-
posing a metamodel of the SLA life-cycle in the context of SLM process with a
BPMN metamodel, as described henceforth.

2.1. SLA life cycle metamodel

Fig. 1 depicts a metamodel of the SLA Life Cycle, an improved version of the
metamodel presented in [10]. Beside the metaclasses in the diagram, there
are also OCL rules underlying the model to enforce static semantics (e.g. the
metrics assigned to a service are the same that are assigned to goals of ser-
vices), not presented due to the lack of space. This metamodel is described in
the next paragraphs.

An organization generally refers to any division or department of an organi-
zation that is either engaged in providing or consuming the service. The term
customer is reserved for organizations which are consumers of IT services
provided by another entity (the service provider).

Customer

- numberOfUsers: int
Organization

- name: String
- location: String

Role

- name: String

Provider

ITService

- priority: Priority

SLAContract

- beginDate: Date
- endDate: Date
- level: LevelOfService

ProcessElement

Component

- location: String

Clause

- description: String
- typeOfClause: TypeOfClause

QualityAttribute

Availability

Performance

Recoverability

Accuracy

Security

Parameter

- name: String
- value: String
- supplementData: String

Process

Service

- name: String
- importance: Importance

Goal

- value: String

BusinessService

«enumeration»
Unit

 percentage
 minutes
 bps
 transactionsPerSecond

Metric

- name: String
- definition: String
- expression: String
- unit: Unit
- dataType: String
- qualifier: StatisticalQualifier

«enumeration»
Priority

 critical
 hight
 medium
 low

Capacity

Affordability

«enumera...
Importance

 critical
 hight
 regular
 lower

Person

- name: String

Responsiveness

Satisfactoriness

EndUserWorker

Network

Server

Application

Database

Middleware

«enumeration»
LevelOfService

 platinum
 gold
 silver
 bronze
 customized

«enumeration»
StatisticalQualifier

 minimum
 maximum
 frequency
 mean
 range
 percentile
 standardDeviation
 sum

«enumeration»
TypeOfClause

 objective
 limitation
 compensation
 bonus

Observation

- value: String
- date: Datetime
- status: String
- source: String

Escalation

- level: int

agreedService
1

*

consumer 1

contract

*

participation *

*

1

infrastructure

*

subgoal *
0..1

target

*

deliverable *

implementation
*

characteristic
1

*

mesurement
*

0..1

*

source
1

1

quantifier

*

correlatedAttribute *

0..1
underpinning

*

1

constituent
*

detail

*

dependentUnit *

headUnit
0..1

suppl ier
1

contract
*

jobFunction*

organizationalUnit
1

event *

1

provider
0..1

*

classifier 1

*

depents *

manager
0..1

subcontractor *

0..1

swimlane*

*

subpart *

mainPart
0..1

customer 0..1
*

constraint *

mainParameter
0..1

*

measurement

0..1

group

*
assigned
*

employee
*

employer

serviceComponent *

mainService
0..1

measurement *

1

service

1

*

Fig. 1. SLAs life cycle metamodel

A customer can be internal or external to the company that provides the IT

service. Likewise, service providers can be the own company’s internal IT
department, or external service providers such as communications service
providers (telcos), application service providers (ASPs), internet service pro-
viders (ISPs), outsourcing companies or other service providers. The IT de-
partment of a company can also be seen as a customer of an external service
provider. Therefore, all principles set forth to IT internal customers, will equally
apply to IT in its role as a user of external IT services, looking for ways to con-
trol costs and achieve consistent service levels.

A customer is the organization responsible for delivering one or more busi-
ness services. Each service targets one or more predefined goals (with possi-
ble sub-goals), which is measured using appropriate metrics (e.g. number of
items dispatched for time unit). A service may need the contribution of other
services (depicted by the recursive association in service).

Consumers and providers have their own internal organizational structure.
The hierarchical dependency among internal organizational units is depicted
as a recursive association in the organization entity. The location of each par-
ticipant in the SLA contract is relevant when planning where IT services should
be provided.

Both customer and provider have persons involved in service delivery
(mainly end-users in the case of business services and IT workers for IT ser-
vices) each one with its specific role (e.g. order entry clerk, network operator).

Business services and IT services are kinds of services realized by mean of
processes, whose elements (e.g. task, data object) are underpinned by com-
ponents (network, servers, applications, databases, and middleware) individu-
ally considered or brought together in systems.

An SLA contract, signed between customer and provider, consists of a set
of clauses, each one addressing an IT service. For each IT service, a set of
parameters define the quality attributes’ thresholds agreed between customer
and provider (e.g., availability in the work period should be 99.99%).

Quality attributes are non-functional requirements of IT services that cus-
tomers expect be fulfilled and providers are compromised to accomplish. As
goals in business services, parameters have metrics associated. Some of the
types of quality attributes are availability, security, recoverability, and perform-
ance, each of one has its own metric. The thresholds established by the SLA
contract can be measured through observations in order to monitor the degree
of accomplishment or possible violations of SLAs.

The components involved in the realization of each IT service are known. In
addition, it is also known which IT services contribute for parameters thresh-
olds achievement of each clause of SLA contract. Therefore, one could esti-
mate the contribution of each component for the achievement of agreed ser-
vices’ quality attributes and how component fault can impact those qualities.
Ultimately, one can relate the quality of IT services to business value (the re-
cursive association depicted in service class relates IT services to business
services).

2.2. Process notation metamodel

Fig. 2 depicts a BPMN metamodel extract [11]. The full metamodel includes
well-formedness rules in OCL (e.g. a message flow can only connect ele-
ments in two distinct pools). The BPMN process modeling language was cho-
sen because it is well suited for services representation and allows adding
SLAs additional information. Furthermore, it is widely used by practitioners, as
well as in the scientific community interested in process modeling [12], since
academic search engines (Google Scholar, Microsoft Research and ISI WoK),
as well as regular search engines (Google, Bing, and Yahoo), returned almost
identical number of hits for “petri net” and BPMN techniques, since 2004, the
year of BPMN’s inception.

Swimlane

- name: String

Pool

- collapsed: boolean

Lane

Conversation

FlowObject

- name: String
- direction: Direction

SequenceFlow

MessageFlow

DataAssociation

- type: AssociationType

Activity

- name: String
- marker: ActivityMarker

Process

- name: String

Task

- type: TaskType
- resource: String
- cost: String
- role: String
- status: TaskStatus

Transaction

SubProcess

- collapsed: boolean
- type: TypeSubprocess
- status: TaskStatus

Call

EventSubProcess

Default

Conditional

Gateway

Exclusive

EventBased

Parallel

Inclusive

Complex

ExclusiveEventBased

ParallelEventBased

ConversationLink

ForkedConversationLink

Communication

Event

Start

- marker: EventMarkerStart
- type: TypeEventStart

Intermediate

- marker: EventMarkerIntermediate
- type: TypeEventIntermediate

End

- marker: EventMarkerEnd

Data

Input

Output

Object

Collection

Store

Message

Documentation

Group

TextAnnotation

Association

LinkEventPair

- label: String

destination

1
source

1

*

group1

0..1

connection0..1

connection
*

0..1

1

connector
0..2

1

connector
0..2

1

intervenient
2..*

group

1

*

SubConversation *

0..1

source 1

destination

1

1

part

*

participant*

Fig. 2. BPMN metamodel

BPMN encompasses five main concepts (Activity, Event, Flow Object,
Swimlane, Data Object), represented as metaclasses, from which all other are
specialized. The elicitation of the concepts and relationships of BPMN, allowed
the detection of junctions with service level management, as detailed in the

next section, in order to build the abstract syntax model of SLALOM.

2.3. Metamodel composition

Since the two previous metamodels include modeling concepts abstracting the
same real world entities (see Table 1), we used those concepts as junctions to
connect and unify the two languages. The metamodel composition technique
allows, through the equivalence operator [9], the full union between two UML
classes that are converted into a single class. The resulting class includes all
attributes and relationships (including associations, generalization, specializa-
tion, and containment) from the composed classes.

The resulting abstract syntax will be the hook for semantics to be added to
the language specification.

3. Concrete syntax models

It is common for languages to have multiple concrete representations: textual,
graphical or a combination of both. The abstract syntax model is what unifies
the apparently diverse representations, which means that the same abstract
syntax model can be presented concretely in either a graphical or a textual
format.

In the following sections we introduce some of the concrete syntax models
that were considered for SLALOM, addressing aspects such as SLA compli-
ance checking, SLA representation in process models and SLA models valida-
tion and verification.

3.1. SLA compliance checking

One of the concrete syntax models of SLALOM is used for SLA compliance
checking. The model, in textual form, can be fed as input to the USE tool (an
OCL specification and validation environment) [13]. This way, it is possible to
analyze the model behavior using either actual / diachronic data, collected
from system management tools, or simulating different scenarios using the
Monte Carlo method for sampling generation. Service level manager and IT
staff can now formally check constraints (invariants, pre, post-conditions)
against specified thresholds.

After instantiating the model with objects representing the provisioning of
resources and consuming of IT services, USE makes possible to query quality
attributes of IT services, by evaluating OCL expressions, and discovering pos-
sible SLAs non-compliance.

Table 1. Common concepts to SLAs and BPMN

 Concept SLAs BPMN
1. A role is a set of integrated and coherent

activities assigned to an entity (e.g. per-
son, worker, end-user, system or device)
inside an organization, which contribute
to a global process. A single entity may
play several roles and, conversely, a
given role may be played by multiple
entities.

Role Lane

2. An institution that groups fully differenti-
ated structural and functional units with a
common purpose. The organization sup-
plier of IT services is the Provider. The
organization that acquires IT services is
the Consumer.

Organization Pool

3. Services are the outcome of organiza-
tion’s activities. The outcome of pro-
vider’s activities are IT services, whereas
consumer’s produce business services.
Services are underpinned by Processes.

Service Process

4. To accomplish a process implementa-
tion, a set of elements must be join to-
gether, and treated as a unit, for the pur-
pose of process’s outcome.

Process Ele-
ment

Activity,
Data, Event,
Gateway,
Flow Object

5. Some system components (applications,
middleware, and servers) fulfill specific
task in the context of processes that
realize IT services.

Application,
Middleware,
Server

Task

6. Network infrastructure is fundamental to
allow connectivity among process partici-
pants in disparate locations.

Network Flow Object

7. The component database ensures ac-
cess to actual and diachronic data from
process instances.

Database Data Object

Table 2. Conceptual Mapping between the SLAs Life Cycle and BPMN Metamodels

SLAs concept BPMN implementation
Metric Rule Event
SLA Contract, Clause Process
Goal Rule Event
Parameter Rule Event
Quality Attribute Data Object
SLA violation Signal, Conditional or Timer Event
Observation Data Object

3.2. SLA representation in process models

A concrete syntax model of SLALOM intends to graphically represent SLAs in
process models of IT services. Table 2 matches the SLAs concepts with
BPMN concepts. We can figure out, for instance, that Rule Events contain the
rules included in SLA clauses (metrics, goals and parameters), and SLA viola-
tions are denoted by throwing signal events, which will be captured and proc-
essed according to a workflow defined in the SLA contract (e.g. penalty com-
putation, escalation procedure).

Some BPMN modeling elements can be used to represent SLA concepts,
thus leading to an easier inclusion of SLA rules in the IT service process
model (as will be explained in Section 4. and depicted in Fig. 3). This is ex-
pected to facilitate SLA specification in the design phase of IT service, as well
as the interpretation of events during SLA monitoring.

Since this representation intends to target different stakeholders (e.g. end-
user, service level manager or system administrator), it is possible by trans-
formation to raise (or lower) the level of abstraction, by release (or include)
detail in the model to adapt it to the specific public, although maintaining the
validity and coherence of the model.

3.3. IT services validation and verification

This concrete syntax model of SLALOM is concerned with the verification and
validation of properties of IT services in process models, with support of the
ProM tool [14]. In this context, the models used are graphs where nodes rep-
resent the concepts in SLALOM and edges represent relationships among
these concepts.

Model checking of graphs consists in performing verifications and automati-
cally proving that a property is satisfied. Some common properties of IT ser-
vice models that can be checked are: reachability (some particular situation
can be reached), safety (under certain conditions, an event never occurs),
liveness (under certain conditions, some event will ultimately occur), fairness
(under certain conditions, an event will occur - or will fail to occur - infinitely
often), deadlock-freeness (the system can never be in a situation in which no
progress is possible) [15].

Since SLA violation involves the notion of order in time, temporal logic is
used, since this is a form of logic specifically tailored for reasoning with this
kind of statements.

4. Illustrative example

Due to a space constraint the example introduces only the SLALOM concrete
syntax regarding process models, mentioned in section 3.2. We have chosen
an ATM example where customers access IT based financial services such as

cash withdraw and deposit.
A typical clause of a SLA contract for a set of ATMs, between the financial

institution operations department and the IT department, would be: the ser-
vice must be available 99% of the time from 02:00 to 00:00, Monday to
Sunday. Any individual outage in excess of 30 minutes or sum of outages
exceeding 1.5 hours per month will constitute a violation (see Fig. 3).

Availabil ity drops
below 99%

SLA Violation

Outage Time Exceed

Monitoring SLAs

Outage Time Exceed

Observation

End

SLA violation

SLa violation

Fig. 3. ATM IT service (service level manager perspective)

«
P

oo
l»

 A
TM

«
P

o
ol

»
 E

n
d

U
se

r

Start

Display Ads Ask for Card Validate Customer

End

Prompt Operations

Option

Choose Operation

Proceed

No

Fig. 4. ATM IT service (end-user perspective)

«
P

o
o

l»
 A

T
M

«
P

oo
l»

 E
n

d
 U

se
r

Start

Display Ads

Card Inserted

Ask for Card

Card Inserted
Operation Canceled

Time Limi t

Validate Customer

Operation Canceled
Time Limi t

Insert Card

Card Inserted
Start

End

Operation Canceled
Time Limit

Prompt Operations

Operation Canceled
Time Limit

Choose Operation

Option

Option

Time Limi t Operation Canceled

Choose Operation

Time Limi t Operation Canceled

Proceed

No

Fig. 5. ATM IT service (service level manager perspective)

The concrete syntax model can coherently represent different levels of ab-
straction: from the end-user perspective (Fig. 4) to a more detailed view of the

service level manager (Fig. 5), or even a system administrator view showing
interactions with system components or periphericals (e.g. card reader, cash
drawer).

5. Related work

The field of computer science where SLA specification has gained more atten-
tion is in SOAs and in particular web services [16].

One relevant example of a language for SLAs in the context of SOA is
SLAng [17]. SLAng was defined by using a metamodeling approach with a
high degree of precision in the specification of its semantics, traceability from
SLA to language specification, and the testing of the language and SLAs to
ensure they capture stakeholders’ intents. SLAng supports the expression of
mutually-monitorable SLAs, for which the determination of compliance de-
pends only on events visible to both service client and provider. Other exam-
ples of SLAs in SOA are, among others, WSLA [18], WS-Agreement [19] and
RBSLA [20]. In SOAs and web services the focus are in policies and exchang-
ing messages among machines. However, this is not the context of SLAs in
ITSM, due to relevance of human intervention, which must be considered in
the models.

6. Conclusions and future work

In IT service management, service level agreements (SLAs) are essential to
guarantee the quality of provided services. However, there is a gap between
the customer business perspective of SLAs and service provider SLAs imple-
mentation and monitoring. This paper tries to address this issue, by proposing
a domain specific language (SLA Language for specificatiOn and Monitoring -
SLALOM). An abstract syntax model of SLALOM was derived based in the
composition of metamodels from BPMN and SLA life cycle. The concrete syn-
tax models of SLALOM have different aims, such as SLA compliance check-
ing, SLA representation in process models and models validation and verifica-
tion. We are planning to build an environment to support those concrete syn-
tax models, including generation tools and tool interoperability.

Acknowledgments

This work was partly sponsored by the CITI research center at FCT/UNL.

References

[1] Sturm, R., Morris, W., and Jander, M.: Foundations of service level management,
Sams, Indianapolis, Ind., 0585309337, 2000.

[2] ITIL3Sm, OGC-Office of Government Commerce: Summary, ITIL Version 3,
ITSMF- IT Service Management Forum2007.

[3] Correia, A., and Brito e Abreu, F.: ‘Model-Driven Service Level Management ’, PhD
Research Plan Setptember, 2010, 2010.

[4] Hiles, A.: The Complete Guide to IT Service Level Agreements - Aligning IT Ser-
vices to Business Needs, The Rothstein Catalog on Service Level Books,
1931332134, 2010.

[5] MDA, OMG: ‘Model Driven Architecture (MDA)’, No. ormsc/2001-07-01, July 9,
2001, 2001.

[6] Kleppe, A.: Software Language Engineering: Creating Domain-Specific Languages
Using Metamodels, Addison-Wesley Professional, 1st edn, 0-321-55345-4, 2009.

[7] UML: ‘UML-Unified Modeling Language (OMG UML), Infrastructure, V2.1.2’, OMG-
Object Management Group, 2007.

[8] OCL, OMG-Object Management Group: ‘Object Constraint Language (OCL)’,
OMG Available Specification, 2006, Version 2.0.

[9] Ledeczi, A., Nordstrom, G., Karsai, G., Volgyesi, P., and Maroti, M.: ‘On Meta-
model Composition’, Proc. of Proceedings of the 2001 IEEE International Confer-
ence on Control Applications, 2001. (CCA '01), Mexico City, Aug. 06, 2002, 2001.

[10] Freitas, J., Correia, A., and Brito e Abreu, F.: ‘An Ontology for IT Services’,
Proc. of 13th Conference on Software Engineering and Databases (JISBD'2008),
Gijón, Spain, 2008.

[11] BPMN, OMG: ‘Business Process Model and Notation (BPMN) ’, dtc/2009-08-
14, 2009.

[12] Weske, M.: Business Process Management - Concepts, Languages, Archi-
tectures, Springer-Verlag Berlin Heidelberg, 978-3-540-73521-2, 2007.

[13] Gogolla, M., Buttner, F., and Richters, M.: ‘Use: A UML-based specification
environment for validating UML and OCL’, Science of Computer Programming,
2007, pp. 69:27-34.

[14] http://www.processmining.org/prom/start, accessed 30-06-2010.
[15] Berard, B., Bidoit, M., Finkel, A., Laroussinie, F., Petit, A., Petrucci, L.,

Schnoebelen, P., and McKenzie, P.: Systems and Software Verification - Model-
Checking Techniques and Tools, Springer, Berlin, 3-540-41523-8, 2001.

[16] Bianco, P., Lewis, G.A., and Merson, P.: ‘Service Level Agreements in Ser-
vice-Oriented Architecture Environments’, No. CMU/SEI-2008-TN-021, Software
Engineering Institute - Carnegie Mellon University, 2008.

[17] Skene, J., Lamanna, D., and Emmerich, W.: ‘Precise Service Level Agree-
ments’, Proc. of the 26th International Conference on Software Engineering
(ICSE'04), Edinburgh, Scotland, May 2004, 2004.

[18] IBM: ‘WSLA Language Specification, version 1.0’, 2001.
[19] OGF, Alain Andrieux, Czajkowski, K., Dan, A., Keahey, K., Ludwig, H., Na-

kata, T., Pruyne, J., Rofrano, J., Tuecke, S., and Xu, M.: ‘Web Services Agreement
Specification (WS-Agreement)’, Open Grid Forum, 2007.

[20] Paschke, A.: ‘RBSLA - A Declarative Rule-based Service Level Agreement
Language based on RuleML’, Proceedings of the International Conference on
Computational Intelligence for Modelling, Control and Automation and International
Conference on Intelligent Agents, Web Technologies and Internet Commerce,
2005, 02, pp. 308 - 314.

