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Resumo 

 

A erradicação de cheiros no código é frequentemente apontada como uma forma de 

melhorar a legibilidade, extensibilidade e desenho do software. Contudo, a detecção de 

cheiros no código continua a ser uma actividade consumidora de muito tempo e 

propensa a erros, parcialmente devido à inerente subjectividade do processo de detecção 

correntemente usado. Para mitigar este problema de subjectividade, esta dissertação 

apresenta uma ferramenta que automatiza uma técnica para a detecção e avaliação de 

cheiros no código fonte em Java, desenvolvida como um plugin Eclipse. A técnica é 

baseada num modelo de Regressão Logística Binária que usa métricas de complexidade 

como variáveis independentes e que é calibrado pelo conhecimento de peritos. É 

fornecida uma visão geral da técnica, a ferramenta é descrita e a sua utilização é 

validada por um caso de estudo de exemplo. 

 

 

Palavras-Chave: Engenharia de Software Automatizada, Refabricações, Cheiros no 

Código, Avaliação Empírica, Métricas 
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Abstract  

 

Eradication of code smells is often pointed out as a way to improve readability, 

extensibility and design in existing software. However, code smell detection remains 

time consuming and error-prone, partly due to the inherent subjectivity of the detection 

processes presently available. In view of mitigating the subjectivity problem, this 

dissertation presents a tool that automates a technique for the detection and assessment 

of code smells in Java source code, developed as an Eclipse plugin. The technique is 

based upon a Binary Logistic Regression model that uses complexity metrics as 

independent variables and is calibrated by expert‟s knowledge. An overview of the 

technique is provided, the tool is described and validated by an example case study. 

 

 

Keywords: Automated Software Engineering, Refactoring, Code Smells, Empirical 

Evaluation, Metrics 
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1.1  Motivation 

As advocated by the agile XP methodology [1], refactoring techniques are sought to 

reduce costs associated with software life cycle at both the construction phase [2]  and 

the production phase [2] by supporting iterative and incremental activities and also by 

improving software extensibility, understandability and reusability [3]. Taking into 

account that software maintenance activities are the most costly in the software life 

cycle [4], [5],[6],  tangible benefits are expected from regularly performing refactoring. 

Empirical evidence showing the dire consequences of code infested with smells, seems 

to concur [7]. 

Even with an approach based on guidelines offered by Beck [1] and Fowler [3], the 

need of informed human assistance is still felt, to decide where refactoring is worth 

applying [8]. It is here that the concept of code smells makes a contribution [3]. 

Nevertheless, we have found, in the context of post-graduate courses, that the manual 

detection of code smells is an excessively time-consuming activity (therefore costly) 

and is error-prone, as it depends on the developer‟s degree of experience and intuition. 

Empirical studies on the effectiveness of code smells detection techniques are still 

scarce, but there is some evidence that their eradication is not being achieved to a 

satisfactory degree, often because developers are not aware of their presence [9]. This is 

due to the lack of adequate tool support, which requires sound techniques for code 

smells diagnosis. The subjective nature of code smells definition hinders that soundness 

[3, 10]. 

Currently used code smells detection techniques come in two flavours. The first 

concerns qualitative detection using (inevitably biased) expert-based heuristics. The 

latter uses thresholds on software metrics obtained from the source code under analysis 

and seems more appealing for supporting automation due to its repeatability. However, 

it has two important preconditions for effective use. First, the same set of metrics cannot 

be used to detect all smells of a catalog such as the one in [3] since code smells are very 

distinct in nature. Second, even with a customized set of metrics chosen by an expert for 

detecting a particular smell, the resulting model must be calibrated, i.e., its internal 

values must be determined to reduce false positives and false negatives. That entails an 

empirical validation based on existing classification data. Mantyla et al. [11] confirm 

the difficulty of assessing code smells by using metric sets and the hard task of defining 

a detection model. 
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Even worse, studies of refactoring essentials such as smells detection and quality effects 

upon refactoring are still scarce, with little empirical evidence on both ends [9].   

The main point is that even the most mature activity of the refactoring process (e.g. 

refactoring mechanics) is not fully automatic. Noting that the remaining activities of the 

process are considerably more debatable, much research is necessary for more 

systematic refactoring usage [8]. 

1.2  Context 

The design and development process has a lot to gain by using assessment techniques to 

help effectively identify code smells, as well as helping to know when refactoring can 

be beneficial. Code smell identification can be used through intuition, according to the 

programmer or designer‟s degree of experience, but it is desirable to better support it 

through more objective and precise means (using metrics). 

It is of paramount importance the usage of the right software metrics, since these 

represent the most effective way to supply empirical evidence, contributing to our 

understanding of the different dimensions of the software quality concerns. But the 

refinement of metrics to use for a particular code smell can only be obtained with 

experienced expert‟s knowledge and it is even suggested it might be impossible for 

some cases [3, 12]. 

1.3  Solution 

This work contributes to the field of code smells detection by providing an automated 

process, supported by a tool (an Eclipse plugin), capable of code smell assessment in 

Java source code in an objective and automatic way. In contrast with existing proposals 

that rely purely on the opinion of a single expert, we propose a statistical based 

detection algorithm that will go through progressive calibration based upon a 

developers‟ community. The detection algorithm, based on Binary Logistic Regression, 

was initially calibrated by using a moderately large set of pre-classified methods (by 

human experts) and validated for the Long Method code smell, as depicted in Bryton et 

al. [10]. The larger the set, the better is expected to be the detection. This approach 

relies on the community of users to perform continuous recalibration of the code smells 

detection models (one per each smell). 
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A prototype version of  the Smellchecker tool is presented: an Eclipse plugin for 

detecting code smells in Java code. This prototype allows smell tagging, visualization 

and detection. The assessment of this automatic process validity will be made using the 

Long Method code smell. On a second phase the process will be pushed further to test 

the same analysis process with other code smells to see if it is extendable. 

1.4  Expected Contributions 

The expected contributions of this work are the following: 

 

 Automate an objective and semi-automatic technique for code smells 

detection based on Binary Logistic Regression; 

 Further validate the soundness of that process for the detection of th 

Long Method code smell; 

 Validate the process with other code smells detection; 

 Improve metrics for code smells assessment; 

 Extend the Eclipse IDE with a code smell detector tool. 

 

1.5  Document Structure 

This document has a chapter on a brief notion of Software Quality, followed by a 

detailing chapter about Refactoring. The description of our automated solution follows. 

Then the Smellchecker plugin is explained. A case study is presented next. Concluding 

the document with conclusions and future work and the bibliographical references.  



5 | P a g e  

 

 

2 Quality 

 

 

 

Contents 

2.1 Quality Models ............................................................................................... 6 

2.2 Software Metrics ............................................................................................. 6 

2.3 Empirical Evaluation ...................................................................................... 6 

2.4 ISO 9126/IEC ................................................................................................. 7 

 

 

  



6 | P a g e  

 

Software development methodologies are used to enhance the quality of software 

products and to reduce its production costs [13]. Software quality assessment is a 

process in software development. Depending of the software development methodology 

in use, different aspects of the source code can be evaluated. 

2.1  Quality Models 

Quality models convey an overview of the set of characteristics that are indicative of 

product quality and the way of measuring them. These models are usually constructed 

in a tree-like structure with the main quality factors divided into a set of quality sub-

factors or criteria that are easier to understand, quantify and measure. Actual metrics are 

proposed for the criteria [14]. 

2.2  Software Metrics 

In Software Engineering metrics are used to collect data of entities regarding: the 

process of software production, its products and resources required [14]. Software 

metrics can measure internal or external attributes. Internal attributes of a product, 

process or resource can be measured solely on its own, separately from its behavior. 

External attributes, on the other hand, are measured taking into account how the 

product, process or resource relates to its environment. Its behavior is the focus. 

Examples of internal attributes are the size of a software module in terms of lines of 

code; the complexity in terms of how many decision points exist in the code; or the 

dependencies among modules. This kind of attributes can be statically measured. 

The number of failures experienced by the user, or the time it takes to retrieve an 

information from a database, are examples of external attributes and can only be 

measured at runtime. 

2.3  Empirical Evaluation 

Empirical evaluation is a key activity to enable us to obtain evidence and learn about the 

quality of our software artifacts. Empirical evaluation is a deep concern to researchers 

and practitioners in the area of software development.  

Systematic assessment of software development techniques is imperative through all the 

software lifecycle phases, from requirements engineering to implementation and 

maintenance. For example, estimation models and measures of software internal 
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attributes are assessment techniques that can assist software developers, managers, 

customers, and users to characterize and improve the quality of code and products. As a 

consequence, assessment is a central issue to enable the effective transfer of new 

construction techniques to the mainstream of software development and to gain 

industrial attention for the new techniques. In [9] Bennett et al. point out to the need of a 

code smell assessment strategy and means to apply it. The work in this dissertation 

contributes to that end, since it aims at improving the code smell detection process by 

means of a quantitative based decision process, based on complexity metrics collected 

from source code. 

2.4  ISO 9126/IEC 

ISO/IEC 9126 [42] is an international standard for the evaluation of software. It builds 

on previous work done by McCall [15] and Boehm [16].   

It defines a quality model which includes a set of primary characteristics under which 

the software should be evaluated. These characteristics are further refined in sub-

characteristics comprising the totality of the internal and external quality model [43]. 

According to the standard, source code quality can be characterized by the following 

main characteristics: functionality, reliability, usability, efficiency, maintainability and 

portability. 

ISO 9126 also addresses guidelines for the measurement of the characteristics of the 

quality model by using external metrics [45], internal metrics [44], and quality in use 

metrics [46]. 
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Fig. 1: ISO 9126 Quality Model 
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3.1  Refactoring: Meaning and Context   

As the evolution of a software system causes continuous readjustments to its code base, 

its internal structure becomes more complex and the initial design may become 

progressively cluttered [3]. In that perspective Martin Fowler formalized a systematic 

approach to cleaning up, maintaining and expanding the design in a controlled way he 

defined refactoring [3]. 

The term refactoring was first introduced by Opdyke, meaning the process of applying 

code transformations to improve code‟s structure, style and design without altering its 

external behaviour [17]. Refactoring also stands for the sequence of steps in which a 

behaviour preserving transformation can be made possible. 

For enforcing refactorings behavior preserving nature, Opdyke [17] introduced the 

notion of refactoring pre-conditions: invariants that must be true before applying a 

refactoring, with Roberts [18] extending the concept to refactorings post-conditions: 

invariants that remain true after refactoring application. 

Since manual refactor is error-prone refactoring operates in small changes to guarantee 

preservation of behaviour. To this end every alteration should be carefully tested before 

being validated, hence the importance of good tests coverage and the need of a 

systematic approach for their use. Common tests associated with refactoring are unit 

tests. These tests concern single modules. In the context of refactoring, unit tests serve 

as regression tests.  

Regression testing is a software testing practice that seeks to uncover bugs in existing 

functionality that may occur after functional or structural enhancements. Ensuring that 

code modifications do not invalidate previously accepted tests [19]. 

Fowler advises systematic use of refactoring whenever it facilitates the introduction of a 

new functionality, when bad design arises, and at code reviews [3]. Fowler and Kent 

Beck further evolved the concept with application guidelines and introduced the code 

smell notion which is the description of a symptom that might indicate a potential 

problem of poor structure or style in source code aimed for refactoring [3]. Eradication 

of code smells is known to improve code readability, improved implementation of 

Object Oriented concepts, improved code maintainability, changeability and improved 

extensibility [3]. 

Refactoring origins are linked to Object Oriented Development and an initial catalogue 

of refactorings for source code transformation can be found in Fowler‟s seminal work 
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on refactoring [3]
1
. Kerievsy [20], fusing concepts of Gang Of Four‟s Design Patterns 

[21], extended Fowler‟s catalogue with specific code smells and refactorings to evolve 

the code to make use of design patterns. 

Refactoring also found use by evolutionists occupied with a paradigm shift, Laddad [22] 

suggested refactorings to migrate Objected-Oriented systems into Aspect Oriented ones. 

Opening way to Monteiro and Fernandes initial catalogue [23]  of refactorings and 

smells proper to evolve Object-Oriented source code to its Aspect aware counterpart. 

Refactoring is also advocated by Beck as one of the founding design practices in the 

Extreme Programming (XP) agile methodology [1]. 

More recently, architectural refactoring focused in higher level design emerged as 

further prove to refactorings vitality [24]. In the reverse engineering field, experimental 

studies suggested that refactorings may help identify how and why a system changes 

over time [25]. 

3.2  Refactoring Process 

To prepare the refactoring process for an automate reasoning we adapted Mens and 

Tourwé‟s refactoring process activities [8] to five main activities
2
: 

1. Detect refactoring opportunities (Code Smells Detection); 

2. Determine appropriate refactorings concerning each one of those 

opportunities;   

3. Select refactoring(s) to apply; 

4. Assess the effect of the refactoring in software or process quality 

characteristics; 

5. Repeat the previous steps until no more opportunities to improve are 

detected. 

                                                
1 A revised and actualized source for this refactoring catalogue can be found in 

http://www.refactoring.com/catalog/index.html [6 September 2011]. 
2
 Note that every refactor is a behavior preserving operation by definition, so the activity of guaranteeing 

that the system remains functional unchanged is implied on the above steps. Also, the purpose of applying 

the refactoring process is to improve code‟s quality so the checks to guaranteeing that the quality was in 

fact improved are in the model. 

 

http://www.refactoring.com/catalog/index.html
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This process is presented in Fig. 2. Note that a list of refactoring opportunities is 

produced as output from the first phase. The second phase associates a list of 

appropriate refactorings to each entry of the previous list. In phase three, a refactoring 

or a set of refactorings are selected from that list and applied. Next the quality is 

assessed based on precise criteria and a quantitative result is produced. The process 

iterates itself until no more refactoring opportunities arise. 

 

 

Fig. 2: The refactoring process 

 

The process described is generic enough to be applied to different software artefacts - 

mainly design diagrams and source code. 

The process can be analyzed at different levels of abstraction. At a higher level, 

refactoring opportunities are described as generalized code smells. Selected refactorings 

to remove these kind of smells are applied in a generalized way to every intervenient 

artefact on the process (e.g. at this level of abstraction artefact covers classes, methods 

or variables depending of the aim of the refactoring operation).  

For example, considering the refactoring Rename Method aimed to remove a code 

smell
3
 we could define as Long Name (i.e. symptom of an artefact name that may be too 

long). In this context various occurrences of the referred code smell may be presented 

throughout the code. The refactoring action must rename each one of them, resulting in 

the application of several instances of Rename Method to several instances of Long 

Name code smell. 

At a lower level of abstraction more detail is specified and every particular instance of a 

code smell is identified. Regaining the previous example, the aim is not to remove the 

Long Name code smell from every artefact but instead remove a particular instance of 

that smell pertaining to a single artefact. 

                                                
3 In the context of chapter 4, code smell is used to identify a symptom of a design problem that may be 

present in any software artefact, source code or other.  
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For the purpose of this work a code smell is always an identifier for a refactoring 

opportunity. Refactoring is always a solution to a problem or at least a perceived 

problem. Refactoring opportunities are from here on referred interchangeably with the 

term code smells. The appropriate refactorings suggested to remove such smells can be 

derived from catalogues. Various authors identify code smells and propose appropriate 

refactorings to deal with them. The process of selecting which refactoring to apply from 

the list of different possibilities is the most problematic phase of the process. It is not 

yet clear how to accomplish that objective although works in the area have tackled the 

problem [26].  

The assessment phase is dependent of the evaluation criteria used to measure the quality 

objectives for the system. In any case it should be formal and quantitatively based. The 

criteria used to measure the quality of the system under refactoring should also guide 

phase 3 of the refactoring process, aiding in choosing the best possible refactoring 

solution. 

3.3  Code Smells 

A code smell is the description of a symptom that might indicate a potential problem of 

poor structure in source code [3]. From the point of view of a programmer code smells 

are heuristics to indicate when and what to refactor.  

One example of a bad smell identified by Fowler is Duplicated Code. The simpler 

refactoring for eliminating it is Fowler‟s Extract Method, where the Duplicated Code 

goes in a method of his own and it is invoked where is needed [3]. The procedures for 

dealing with such code smell are summarized by Fowler [3] in the following way: 

 Identify where occurrences of the Duplicated Code are.  

 If Duplicated Code is in different methods of the same class apply Extract 

Method and invoke the new created method from the places where the 

replicated code originally appeared. 

 If Duplicated Code appears in sibling subclasses, apply Extract Method 

followed by Pull Up Method to parent class. 

 If code is duplicated in unrelated classes, then the code belongs to only one 

of them and should be invoked by the others, or it may belong to neither of 
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the classes and should belong to a third class, either a pre-existing class or a 

entirely new one. 

 

This process of Duplicated Code smell identification, provided by Fowler and Beck, 

simple amounts to: when you have identical expressions, either in the same class or 

some other class, probability suggests the Duplicated Code smell is in evidence and you 

should apply the respective refactoring. 

In their seminal work Fowler and Beck announced 22 original bad code smells [3]. 

Coupled with guidelines distilling the context where they might constituted a problem 

they become symptoms for bad structuring of the source code. Refactorings suggestions 

were then presented to mitigate or completely resolve the stink. Although refactoring 

mechanics were meticulously explained, code smells suffered from the vague aesthetic 

its fancy name tried to hide. Expressed in natural language,  the qualitative heuristics 

served as ambiguous, confusion-prone torches set to blaze the minds afire of 

practitioners, developers and common people alike as seen in the previous example. 

In his book [12], Bill Wake revolved around resolving code smell problems. Providing a 

set of practical examples and the first glimpse of order, Fowler‟s proposed code smells 

were unequivocally divided in Smells Within Classes and Smells Between Classes. At 

the same year of 2003, as part of his Master Thesis [27], Mäntylä fathered in May a 

taxonomy to further expose smell‟s relationships, providing a better understanding of 

the concepts evolved to five groups. 

 

Table 1: Mäntylä Bloaters 

The Bloaters 

Long Method 

Large Class 
Primitive Obsession 

Long Parameter List 

DataClumps 

 

Represents something that has grown so large that it cannot be effectively handled. Primitive 

Obsession and Data Clumps are actually more of a symptom that causes bloats. When a 
Primitive Obsession exists, there are no small classes for small entities. Thus, the 

functionality is added to some other class 
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Table 2: Mäntylä Abusers 

The Object-Orientation Abusers 

Switch Statements 

Temporary Field 

Refused Bequest 

Alternative Classes with Different Interfaces 

The common denominator for the smells in the Object-Orientation Abuser category is that they 
represent cases where the solution does not fully exploit the possibilities of object-oriented 

design 

 

 

Tables Table 1, Table 2, Table 3, Table 4 and Table 5 detail Mäntylä code smells 

taxonomy. Respectively, from top to base: group name, smells in the group and 

reasoning behind the  grouping. Note that all Fowler‟s original smells are represented 

except Comments and Incomplete Library Class that aren‟t included in any grouping. A 

new code smell named Dead Code is introduced by Mäntylä and it represents code 

fragments left behind. Pieces that were once used but currently not. 

 

Table 3: Mäntylä Preventers 

The Change Preventers 

Divergent Change 
Shotgun Surgery 

Parallel Inheritance Hierarchies 

Are smells that hinder changing or further developing the software. These smells violate the rule 

suggested by Fowler and Beck which says that classes and possible changes should have a one-
to-one relationship. For example, changes to the database only affect one class, while changes to 

calculation formulas only affect the other class 

 

Table 4: Mäntylä Dispensables 

The Dispensables 

Lazy Class 

Data Class 

Duplicate Code 
Dead Code 

Speculative Generality 

The common thing for the Dispensable smells is that they all represent something unnecessary 
that should be removed from the source code 
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Table 5: Mäntylä Couplers 

The Couplers 

Feature Envy 

Inappropriate Intimacy 

Message Chains 
Middle Man 

This group has four coupling-related smells. This group has 3 smells that represent high 
coupling. Middle Man smell on the other hand represent a problem that might be created when 

trying to avoid high coupling with delegation. Middle Man is a class that is doing too much 

simple delegation instead of really contributing to the application 

 

Kerievsky [20] introduced the concept of refactoring source code to patterns. Updating 

Fowler‟s original catalogue with new code smells that possible indicate the introduction 

of patterns as a possible refactoring solution. Kerievsky also extended some of Fowlers 

smells to take in account that a possible pattern could be a solution. In Table 6 are all 

the code smells Kerievsky worked.    

 

Table 6: Kerievsky Code Smells 

Kerievsky Code smells 

Duplicated Code Indecent Exposure 

Long Method Solution Sprawl 

Conditional Complexity Alternative Classes with Different Interfaces, 

Primitive Obsession Lazy Class 

Large Class Switch Statements 

Combinatorial Explosion Oddball Solution 

 

Literature has various evidences of new code smells beeing suggested. In most cases 

they are merely reashes of Fowlers smells adapted to a particular domain: Van Emden 

and Moonen produced a new set of code smells qualitative heuristics specific to deal 

with test code [28], and suggesting not conformance to particular coding rules to be 

identified as code smells so as specific concrete language constructs (i.e. Typecast and 

Instanceof in Java) [29]. Another example is Dudziak and Wloka [30] with the 

definition of two new smells: Shared Collection (a field of a collection is modified via 
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getter and setter methods when the access to a collection field should be encapsulated) 

and Unnecessary Openness (a class has public and package-visible features that aren´t 

use outside of its scope). 

A domain example specific to a paradigm jump is the work of Monteiro e Fernandes 

[23] where the concept of code smells is extended to support Aspect Oriented 

constructs. 

An indicator for the presence of code smells in the source code could come from a 

higher perspective. Code smells as detailed by Fowler were suggested [31] to indicate 

the presence of anti-patterns [32]. Proposing that code smells could function as 

symptoms for the presence of design smells and the presence of anti-patterns the 

possibility of encountering Fowler‟s code smells at the source code level.   

 

3.4  Refactorings Format 

Fowler described the code transformations known as refactorings using the following 

format: name of the refactoring, summary that includes typical situations where the 

refactoring is needed and what it does, motivation that indicates why the refactoring is 

needed, mechanics that include a concise series of steps on how to apply the refactoring 

and examples that show a code example of the refactoring usage [3].  

Two different refactorings are mentioned on the above solution for resolving the bad 

smell of Duplicated Code: Extract Method and Pull Up Method. Fowler provided a 

detailed description on the mechanics to perform Extract Method [3]: 

 Select the code fragment to be extracted. 

 Create a new method with a suggestive name indicating what it‟s responsible 

for. 

 Copy the extracted code fragment from the source to the newly created 

method body. 

 Inspect the extracted fragment for variables that are local in scope to the 

source method and make them parameters to the method or temp variables if 

they are only use within the extracted code. 

  If any of those local variables are modified by the extracted code and 

needed outside of it they may be passed as return values. 
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 In the source method, replace the extracted fragment with a call to the new 

created method. 

 Test the new solution. 

 

The motivation for the usage of this refactoring is driven by the possibility of 

aggregating code that will be simpler to understand on its own method. It also increases 

the potential for its reuse and makes the higher-level methods more readable, providing 

a simple and descriptive naming convention for the new method is followed. 

Another refactoring often used is Move Method and it is characterized by moving a 

method from one class to another. This type of action is indicated when a method uses, 

or will be using, more features of another class than the features of the class where it 

actually is. 

 

3.5  Illustrative Example of a Refactoring Application 

Symptom of the code smell Duplicated Code is observable in Figure 1 since the first 

three instructions from the methods „void hopOverLong()‟ and „void showOff()‟ are the 

same (left area code).  

In Fig. 3, the result of applying the Extract Method refactoring to the duplicated 

instructions is displayed in the right code square. A method „void popWheelie()‟ was 

created and the Duplicated Code moved to this new method. Calls to the new method 

replace the old Duplicated Code fragments. 

 

 

Fig. 3: Extract Method Example (adapted from[33] ) 
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3.6  Refactoring Tools 

Initial refactoring tools serve the main purpose of guarantying safe transformations to 

the code so the programmer don‟t have to retest the program at every single refactoring 

step [3]. 

The origins of systematic refactoring as a practice are linked to Smalltalk [3]. So it‟s no 

surprise the first proper tool for that end erupted in that niche circle. Known as the 

Refactoring Browser, the tool permitted a series of automatic refactorings interactively, 

in a safe and fast manner [33]. The tool gained wide acceptance once its functionalities 

were integrated in conjunction with the Integrated Development Environment (IDE) for 

Smalltalk the Smalltalk Browser [3]. 

Refactoring tools now cover all activities of the refactoring process.  From smell 

detection tools to prototypes developed to discover the best refactoring when more than 

one can be of use [8]. Currently well known IDEs provide some refactoring support 

(e.g. Eclipse, NetBeans, IntelliJ, Visual Studio). However, this support is limited to 

semi-automatically applying a refactoring [8], with the developer still responsible for 

selecting the area of code he wishes to refactor and assist with additional information 

depending on the particular refactor the developer whishes to apply. IntelliJ is graced 

with extra functionalities when compared with other IDEs since it is capable of software 

inspection capabilities such as a code duplicates detection and visualization mechanism, 

and a Dead Code detection system. 

Automated tools base their decisions on specific metrics oriented to detect structural 

bad designs or smells. Some tools use inside information (via metrics) to inspect for 

code smells evidence, leaving for the user the responsibility to decide which refactor to 

apply. Additionally more powerful tools try to indicate which refactor is the most 

indicated to eliminate the detect  code smell [34].  

Simmond and Mens [35] identified one fully automatic tool, named Guru, capable of 

restructuring inheritance hierarchies and refactoring methods of SELF programs [36].  

 A category of tools of software visualization exists to support developers identification 

of code smells [37-38]. 
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4.1  BLR Model 

This work main objective is the contribution of an automatic process capable of code 

smells assessment. The process here proposed is based on a technique first introduced  

in 2010 by Bryton et al.[10]. The authors suggested and demonstrated the validity of a 

process adjusted for code smells detection that is objective, deterministic and possible 

of automation. The process was built around the idea of utilizing the power of statistical 

techniques to obtain a mathematical model able to detect Long Method instances upon  

source code analysis. 

The approach relied on a statistical regression technique, where the independent 

variables that explained the model could be drawn automatically, thus providing an 

opening for automation. The dependant variable was in turn gained by directly 

accessing expert‟s knowledge.  

Before covering any more details on the process an explanation of the Binary Logistic 

Regression Model ensues. 

 

Binary Logistic Regression 

Binary logistic regression (BLR) is used for estimating the probability of occurrence of 

an event (here, the existence of a code smell) by fitting data to a logistic curve. It is a 

generalized linear model where the dependent (aka outcome) variable has two possible 

values (code smell present or absent) and an arbitrary set of numeric independent (aka 

explanatory) variables can be used (a set of code complexity metrics). The general 

equation of the logistic function used to estimate the percentage of probability of a 

particular code smell is the following: 

 

      
 

      
                                         . 

 

Where z is called the logit,    are the regressors or explanatory variables (code 

complexity metrics collected from the source code) and    are the regression 

coefficients calculated during the calibration process. The usefulness of the BLR model 

is that allows the ranking its results by probability.  

To perform BLR calibration with a statistical tool such as SPSS or R, a sample with 

values for all variables (explanatory and outcome) is needed. Table 7 presents an extract 
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of such a sample, corresponding to four methods on the org.apache.commons.cli 

package from Apache Commons CLI 1.2. The collected metrics are MLOC (method 

lines of code), NBD (nested block depth), VG (cyclomatic complexity), and PAR 

(number of parameters). These are the explanatory variables in the BLR model. Long 

Method is the dependent variable: an expert indication of the presence of the Long 

Method code smell on the particular method. 

After calibration and validation of the regression coefficients, the instantiated model is 

used to predict the possible presence of a particular code smell. 

 

Table 7: Sample extract for calibrating a Long Method code smell estimation model 

Application ApacheCommonsCLI1.2 

Package org.apache.commons.cli 

Class GnuParser Parser HelpFormatter PosixParser 

Method Flatten parse renderOptions burstToken 

MLOC 69 67 59 46 

NBD 5 5 4 4 

VG 11 14 10 6 

PAR 3 4 5 2 

Long Method 0 1 1 0 

 

 

Process Details 

To use the BLR model, first we have to calibrate it to fit the data to a logistic curve that 

mimics real occurrences. So a sample collecting all variables for the model is the first 

step of the process.sda 

The explanatory variables to be used are code complexity metrics and can be obtained 

automatically by means of software applications. The choice of the adequate metrics to 

select for each code smell estimation model based on BLR can be performed by using 

the Wald or the Likelihood-Ratio tests. 

The outcome variable is added to the model by domain experts (code smells 

connoisseurs). The quality of these assessments and the quantity of data provided will 

contribute for the model accuracy. 
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Next is the proper calibration of the BLR model using mathematical calculus to derive 

the regression coefficients for the model. This can be done by a statistical engine (SPSS 

or R for instance). Final step is testing the model for goodness-of-fit, and the application 

of its estimations to predict code smell instances in selected code bases. 

The described logic is the platform on which the process proposed in this work builds 

up. Developments required for its automation and the model of use expected to 

guarantee results and usability of the concept are unveiled in the following sections. 

4.2  Automation 

Fig. 4 outlines how the BLR model approach to code smells detection can be sequenced 

to evolve it to automatic processing. Note the necessity of input by domain experts at 

the start of the cycle. Although it is a limitation for automation purposes, its necessity 

can be reduced and favorable conditions can be offered to ease this action, not 

dismissing the fact that the power of this process and expected quality improvements to 

the model rely on human effort.  

 

 

Fig. 4: Code smells detection process 

 

Since one of the goals is to provide tool support of the activities in Fig. 4, we start by 

grounding this approach to more concrete terms, narrowing its scope the following way: 

 

Code Annotation. In the first iteration, experts must tag the code sample for the 

presence of code smells in methods, classes or interfaces. So to yield an adequate 

1. Code Annotation 
(Manual)

2. BLR Variables 
Collection

(Automatic)

3. Model Calibration 
(Automatic)

4. Smells

Detection 

(Automatic)

5. Smells Visualization 
(Automatic)
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sample for the initial calibration of the models. In subsequent iterations those 

developers will only tag false positives (developer disagrees with a detected smell) and 

false negatives (developer identifies a non-detected code smell). These cases are 

expected to decrease over time as more data results in more finely calibrated models 

that produce more precise results (and more in sync with the user tastes). The finer the 

results less is the necessity for the users to calibrate the model. It is expected that the 

quantity of calibrations decrease over time, with the necessity for recalibration efforts 

only being called for when the user starts perceiving the model as inaccurate. 

BLR Variables Collection. Automatic process that requires a parser-enabled tool that 

computes metrics on the target source code (the one annotated by domain experts). 

More metrics means more predictable variables for the BLR model, and better chances 

at estimating valid code smells predictions models. Because not all code smells are 

created equal, so is the need for different metrics to evaluate each of them. Information 

on code smell presence are taken from the annotations. 

Models Calibration. Calibration of the BLR models by calculating and validating the 

regression coefficients. It is an automatic process performed by a statistical processor. 

Note that there will be one model for each code smell. Each model may have different 

explanatory variables (metrics) and it is up to the end user to give the final call about 

their validity, providing feedback to better attune it to his needs.  

Smells Detection. Application of the calibrated BLR models to selected source code 

elements. This estimates the probability of presence of the corresponding code smell in 

the selected artifact. 

Smells Visualization. Identification of the source code artifacts where code smells are 

estimated to be present. Developers can set the threshold probability (e.g. see only the 

code smells above 90% probability) for each code smell. Detected code smells will vary 

depending on the selected probability threshold. Increasing the probability too much 

will cause more false negatives, while decreasing it in excess will cause more false 

positives. It will be up to the developer to fine tune the threshold to get the adequate 

level of advice (let us call it “sensitivity”) regarding the presence of code smells. It will 

also be up to the developer to decide on the adequacy of applying a given refactoring to 

remove a detected code smell. 
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The described process can have two different usage patterns. The first concerns a single 

user with a single machine. The second, a remote usage for more than one user. Next 

section exemplifies them. 

4.3  Models of Use 

 

Local Usage 

In this case the process (including the calibration) is completely local (Fig. 5). The user 

is responsible for tagging an initial source code base to calibrate the models. Then, the 

user can apply the models to detect the occurrence of code smells in all code bases of 

his choice. It is also possible to refine the calibration of the model by providing 

additional code smell tagging information. 

The usefulness of this option is one of practical value: tuning the models, through 

progressive calibrations, to personal user preferences, thus matching the models to the 

user notions of where a code smell might be present. 

 

 

Fig. 5: Local usage 

 

Remote Usage 

The process has a remote central server responsible for storing, on its own data base, the 

code smells tagging and metrics values provided by several users (Fig. 6). With the 

calibration and validation of the BLR model being performed on the server, users can 

remotely query the server for the most recent model parameters. This model is 

calculated from the aggregated data provided by all users, augmenting the statistical 

significance of the BLR estimates and thus providing a more accurate detection of the 

code smells. 
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One of the simpler updates the user can make is to provide feedback on false 

positives and false negatives detected, thus contributing for the models‟ progressive 

enhancement. 

 
Fig. 6: Remote usage 

 

We will further define the boundaries and scope of our detection process by providing a 

concrete tool to exemplify its usage. The tool, called Smellchecker, will be described in 

the next section.  
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5 Smellchecker 
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This chapter describes the development and implementation of the code smells 

detection tool Smellchecker. Developed as an Eclipse plugin it was designed to bring 

code smells detection capability to Eclipse‟s Java Development Tools (JDT). 

This chapter gives details of Smellchecker‟s architecture and implementation and 

examples of use. First it starts with a description of the Eclipse Software Development 

Environment (IDE), its plugin architecture and the concepts behind JDT‟s source code 

manipulation with Java Model and the Abstract Syntax Tree. Because Smellchecker‟s 

extensively use Metrics Plugin 1.3.8 functionalities a section detailing it precedes a 

Smellchecker‟s plugin overview. Detailed architecture and implementation 

specifications are given next. Ending this chapter is an exploratory example of 

Smellchecker‟s usage. 

5.1  Eclipse 

Eclipse is an open platform. It was designed to be extensible. At the core is the Eclipse 

Software Development Kit (SDK), with which we can build various tools. These 

products or tools can further be extended by other tools. For example, a simple text 

editor can be extended to create a XML editor. Eclipse‟s extensibility is achieved by 

creating these products/tools in form of plugins. Fig. 7 shows the principle components 

within Eclipse´s SDK. 

 

 

Fig. 7 Eclipse Software Development Kit 

 



29 | P a g e  

 

Rich Client Platform (RCP) provides the architecture and framework to build any rich 

client application. Integrated Development Environment (IDE) is a tools platform and a 

rich client application in itself. It is possible to build various kinds of  tools by using the 

Eclipse IDE. Plugin Development Environment (PDE) provides all tools necessary to 

develop plugins and RCP applications. Java Development Tools (JDT) is a complete 

Java IDE that provides APIs to access and manipulate Java source code. It also permits 

the creation of new projects and handles modifications to existing ones, providing the 

tools to build and launch Java programs. 

 

Plugins 

Eclipse is built upon the OSGI framework (Equinox) . The OSGi framework provides a 

dynamic modular architecture in which bundles can be deployed (Eclipse  uses the term 

plugins). Eclipse plugins are the same as OSGi bundles and are used to extend the 

Eclipse framework. Eclipse isn‟t a single Java program, but a small program which 

provides the functionality of typical loader called plugin loader. 

A plugin is a Java program which extends the functionality of Eclipse in some way. 

Each Eclipse plugin can either consume services provided by other plugin or can extend 

its functionality to be consumed by other plugins. These plugin are dynamically loaded 

by Eclipse at run time on an on-demand basis. 

When a plugin wants to allow other plugins to extend or customize portions of its 

functionality, it will declare an extension point. The extension point declares a contract 

(typically a combination of XML markup and Java interfaces), that extensions must 

conform to. Plugins that want to connect to that extension point must implement that 

contract in their extension. The key attribute is that the plug-in being extended knows 

nothing about the plug-in that is connecting to it beyond the scope of that extension 

point contract. This allows plug-ins built by different individuals or companies to 

interact seamlessly, without their knowing much about one another besides the 

extension point contract. 

A plugin consists of a bundle manifest file: MANIFEST.MF that provides important 

details about the plug-in, such as its name, ID, and version number. The manifest tells 

also what Java code it supplies and what other plug-ins it requires. A plugin may 

provide code, documentation, resources bundles, or data to be used for other plugin. 



30 | P a g e  

 

A plugin can also provide a plugin manifest file: plugin.xml. It describes how it extends 

other plugins, or what capabilities it exposes to be extended by others (extensions and 

extension points). 

 

Java Model and Abstract Syntax Tree 

Java‟s JDT allows accessing Java source code in two different ways: either by using  the 

Java Model or by using the Abstract Syntax Tree (AST). Where Java Model is a light-

weight and fault tolerant representation of the Java project. It does not contain as many 

information as the AST (e.g. it does not contain the main body of a method) but is fast to 

re-created in case of changes. Eclipse‟s outline view uses the Java model for its 

representation, this way the information in it can quickly be updated.  

The AST is a detailed tree representation of Java source code. The AST defines API to 

modify, create, read and delete source code. Each element in the Java source file is 

represented as a subclass of ASTNode. Each specific AST node provides specific 

information about the object it represents. For example you have MethodDeclaration 

(for methods), VariableDeclarationFragment (for variable declarations) and 

SimpleName (for any string which is not a Java keyword). Fig. 8 shows the overall AST 

workflow and how it relates to file source code. 

 

 

Fig. 8: AST workflow [adapted from http://www.eclipse.org] 

 

 

 

http://www.eclipse.org/
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5.2  Metrics Plugin 

Java Metrics 1.3.8 provides metrics calculation and a dependency analyzer plugin for 

the Eclipse platform. Our main interest is on the metrics provided. Yet, we decided to 

keep all Metrics Plugin functionalities because they provide for a good analysis. Even if 

Smellchecker‟s cannot understand the dependency analyzer visioning, still 

Smellchecker‟s users may find it useful to check dependencies between modules. 

 

 

Listing 1: Java method example 

 

Metrics resources provide a good compliment to code smells tagging operation. Users 

can check metrics of a particular software element while annotating the code, this may 

provide useful to make more informed decisions. For example, when wondering if the 

code on Listing 1 should be annotated for the Long Method presence, the user may 

check for metrics values to assist him by looking at the Metrics view on Fig. 9. 

 

Fig. 9: Metrics view of a method metrics 
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Metrics provides summarized information on metrics calculated at the level of the 

components: package and system. This measures are shown with average and standard 

deviation calculation. This is important because the aggregated info can be drilled down 

within the view to decompose it to its basic elements. For instance, it means that the 

Method Lines Of Code (MLOC) metric is summarized (sum aggregation) at the package 

level and with a click on the metric name within the view, information of MLOC of all 

classes within the package will show. Information we can further drill down in the same 

view by choosing to see the methods metrics.  

An example is seen in Fig. 10, where the metric MLOC at package level is drilled down 

to the compounding classes information. This can facilitate code inspection for code 

smells, allowing the user to check metrics organized by their value. Spotting on the 

example given in Fig. 10 the classes with more MLOC within a package/system 

component for further analysis. 

 

 

Fig. 10: Summarized metrics at package level 

 

Metrics provide other views and visualization capacities, more information on the 

Metrics Plugin may be found online
4
. 

Most important for Smellchecker is the capacity of calculus of various metrics types for 

Java source code elements. 

                                                
4 Metrics Plugin: http://metrics2.sourceforge.net/   

http://metrics2.sourceforge.net/
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Table 8 displays all the metrics available on Metrics Plugin, and this is the ones 

Smellchecker will use. Details of the metrics names, with the kind of element of a Java 

project they can be measured on, are in the table. 

 

Table 8: Metrics Plugin 1.3.8 metrics 

Metric Acronym Type Method Package/System 

Number of Methods NOM X  X 

Number of Fields NOF X  X 

Total Lines Of Code TLOC X  X 

Method Lines Of Code MLOC X X X 

Number of Parameters PAR  X  

Specialization Index SIX X   

McCabe Cyclomatic Complexity VG X X  

Weighted Methods per Class WMC X X  

Lack of Cohesion of Methods LCOM X   

Afferent Coupling Ca   X 

Instability I   X 

Abstractness A   X 

Normalized Distance from Main Sequence Dn   X 

 

5.3  Smellchecker Overview 

Java was the language chose for the tool implementation, and it is also upon Java source 

code that the tool will detect code smells instances. That is because Java is a modern, 

well known, all purpose programming language, with many open source available 

software solutions we could use for aiding in implementing the Smellchecker tool.  

Eclipse framework was selected as the target platform to support Smellchecker‟s 

development due to its advanced Java support, available refactoring features, along with 

its plugin development facility. Eclipse is also a stylish and appropriate choice for our 

tool deployment (as a plugin) since its architecture by components supports integration 

of virtually any component within its architecture. And yet, despite its advanced support 

for Java source code refactoring, as part of its standard JDT toolkit, code smells 

detection is by and large completely lacking (2005‟s Code Nose Plugin[39] is the 

known exception, although a version of it seems to not be available online for testing or 

using purposes). 



34 | P a g e  

 

Smellchecker was developed as an Eclipse plugin using Eclipse‟s Plugin Development 

Environment (PDE). The Smellchecker prototype architecture uses Java 1.6 and it was 

built upon Eclipse platform 3.5. 

In order to concentrate our efforts on the specialization aspects of the code smells 

detection process a mechanism that provided code metrics calculations was necessary. 

Although there are various tools that perform metrics calculations on Java source code, 

few of them provided the capability of exporting its calculations in a way that could be 

used for automation. So we focused on open source projects that provided free access to 

their source. We tried CyVis
5
 0.9.0, Dependenct Finder

6
 1.2.1, State of Flow Eclipse 

Metrics
7
 3.14,  and Eclipse Metrics

8
 1.3.8. 

The combination of quality and quantity of metrics, combined with its nature as an 

Eclipse plugin, made Eclipse Metrics Plugin 1.3.8 the natural and most appropriated 

choice for incorporation within our tool. And comparing with State of Flow Eclipse 

Metrics 3.14, Metrics 1.3.8 was the best documented version of the two.  

Smellchecker‟s extends the source code of the Eclipse Metrics 1.3.8 plugin for the 

purpose of supporting the functionalities required for the code smells detection activity. 

It leaves Metrics components almost unchanged, only making a minor modification to 

its activator class. All other contributions are on Smellchecker‟s own packages and the 

only resource used at source level from Metrics is a static class that returns the metrics 

calculations for a Java element passed as input. 

There were two main reasons why the choice was made for directly extending Metrics 

Plugin source code. First of them is that the plugin does not implement an extension 

point that provides access to elements metrics. It only provides extensions to add new 

metrics and to add new export type files. The other is that it would not be desirable to 

burden the user with the necessity of exporting the metrics calculations from Metrics 

and feed them to Smellchecker. Also, the computational burden would be elevated by 

the necessity of parsing an entire file every time metrics were needed. Even if we started 

by reading Metrics entire project metrics calculations only once in the beginning of the 

process, every time any change occurred in the project‟s source code would mean the 

repetition of the process (and a heavy one). A better solution is to make the necessary 

                                                
5 http://cyvis.sourceforge.net/ 
6 http://depfind.sourceforge.net/ 
7 http://eclipse-metrics.sourceforge.net/ 
8 http://metrics2.sourceforge.net/ 
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modifications to the Metrics Plugin source code (that is why the project‟s source code is 

made available) and make the process automatic.  

The cleaner and transparent way of giving Smellchecker‟s plugin direct access to 

Metrics‟ metrics calculations, would be by adding to Metrics an extension point to 

permit direct metrics access, and then making Smellchecker implement an extension for 

it. This was not our solution however. Ours was to directly change Metrics and add the 

new behavior to the source code itself. This decision comes from the fact that in the 

future, new metrics must be added to Smellchecker‟s. And as it is, Metrics extension 

point that permits adding new metrics, makes restrictions on the type of calculations it 

does, namely that they must be numeric. So, Metrics core code itself must be updated to 

achieve higher flexibility on the metrics it processes. Also, to deal with Metrics source 

code was to have a good head start to know how it operates and how to modify it.  

The metrics supported by Smellchecker are the ones Metrics provides. Was behind the 

scope of this work to extend them, so the BLR explanatory variables we can use are 

confined to Metrics measurements. Which constraints the number and efficiency of 

code smells that can be detected. For instance, we could test to relate Lines of Code 

(LOC) with the Duplicated Code smell. In fact one could argue that Long Methods have 

a high probability of having Duplicated Code in them. That may be true. But it is also 

true that even a method with one line of code could be duplicated. I happens all the time 

when different classes implement the same basic functionality because they are unaware 

of other classes implementations. So for Duplicated Code more efficient methods 

already exist [40] than trying to support their detection with Smellchecker‟s current 

available metrics. That is not saying that the BLR approach Smellchecker uses is not 

powerful enough for some smells, but metrics should be adjustable to a specific code 

smell, and for the current moment we only can use in Smellchecker‟s a restricted subset 

of them.  

Smellchecker‟s is fully integrated on the Eclipse IDE. Source code annotation will be 

permitted by accessing the appropriate option of code smell tagging on the context 

menu for both classes and methods entities. The tagging will be evident on the source 

code in the form of Java annotations. Java annotations were the choice for marking the 

code because they are native to the Java language. Although they are not guaranteed to 

always have support (some java compilers may delete annotations information), 

Eclipse‟s JDT makes sense of them and they are the only way to express outside 

information on Java source code using the standard Java language. The other choice at 
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our disposable was by using Eclipse‟s Markers, but that way it would be confined to the 

Eclipse framework and the annotation information would have to be saved outside the 

Java files to guarantee persistence. Java annotations are visible in the source code and 

the files can be parsed by another tool to get the annotation information. 

In terms of statistical processing Smellchecker‟s first and only choice was R
9
. R‟s 

powerful statistical engine was even more appealing because of its open source nature. 

BLR coefficients model calculation activity will be dynamic and to the user is required  

have the statistical R tool installed. Following sections will detail the components 

development and integration and it will be clear what is expected from R and how the 

communication between Smellchecker and R will proceed. 

Interaction with Smellchecker‟s users is made trough Eclipse‟s Workbench facilities  

and main Java text editor. 

Details of Smellchecker‟s architecture and implementation solutions follow in the next 

section. 

5.4  Smellchecker Architecture and Implementation 

The development of the proposed code smells detection solution can be agruppated by 

functionalities (traceable to the activities described in Fig. 4) that support: 

 Source Code Annotation (Java annotations) 

 BLR Variables Collection (Eclipse Metrics Plugin) 

 BLR Calibration (R communication) 

 Code Smells Detection (source code parsing) 

 Code Smells Visualization (Eclipse JDT) 

An overview of all the major components comprising Smellchecker is provided in Fig. 

11. 

                                                
9 R: http://www.r-project.org/  

http://www.r-project.org/
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Fig. 11: Smellchecker‟s component diagram 

 

User‟s interactions with the application are made through Eclipse‟s workbench elements 

and they are associated with three main user interaction components: Code Smells 

Tagging «UI», BLR Calibration «UI» and Code Smells Detection «UI». This are all 

associated with the JFace UI «Eclipse» component that is responsible for the actual UI 

interaction. 

To each of this components corresponds a action phase of the detection process that 

requires user interaction. Code Smells Tagging «UI»  deals with the Source Code 

Annotation, BLR Calibration «UI» calibrates the BLR model, and Code Smells 

Detection «UI» is associated with the Code Smells Detection and Visualization 

functionalities previous stated. In order to perform each action  required by users, 

internal components are responsible for the dynamics of the process.  

The Code Smells Tagging «UI» interacts with the Tag Source Code «Smellchecker» 

component to write annotations to the code. Code Smells Tagging «UI» is comprised of 

a set of Eclipse‟s user interface environment (UI) workbench popup menus actions 

necessary to annotated the code. It also receives the appropriated action events raised by 

the user and calls the appropriate function reasoning on the Tag Source Code 

«Smellchecker» component that is responsible for updating the source code. Being this 

last component responsible for writing or deleting annotations to the code. 
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BLR Calibration «UI» has a set of menu choices responsible for receiving user calls for 

retrieving the variables necessary to the BLR model and its calibration. When the action 

is to retrieve the BLR variables call to the component Parse Code Variables 

«Smellchecker» are made. When it is for the proper BLR model calibration it interacts 

with the component RIntegration «JRI» that is responsible for communicating with R 

application (R «Statistical Engine» for statistical processing and the retrieval of the 

calibrated coefficients. Parse Code Variables «Smellchecker» is responsible to parse 

the code and get the information from the Java code smells Annotations and the metrics 

calculations from the Metrics 1.3.8 «Metrics» component. 

The Code Smell Detection «UI» is called when the user gives order to detect the code 

smells in the code with the BLR calibrated model. It deals with component Detect Code 

Smells «Smellchecker» responsible for applying the BLR estimation to the code 

elements in search for smells confirmation and then annotate the code when applied. 

Common to all «Smellchecker» components is the Persistence«DB» component. Where 

the global information is stored and retrieved. 

Now we will detail each of the components, separating them in sections regarding their 

actions: UI construction, Source Code Annotation, Metrics Integration, BLR calibration, 

Code Smells Detection, and Code Smells Visualization. 

 

Code structure 

Smellchecker‟s source code are organized in seven different packages: 

package com.tp.refactoring.smellchecker.persistence; 

package com.tp.refactoring.smellchecker.codesmells; 

package com.tp.refactoring.smellchecker.regression; 

package com.tp.refactoring.smellchecker.rinterface; 

package com.tp.refactoring.smellchecker.smellsupdater; 

package com.tp.refactoring.smellchecker.ui; 

package com.tp.refactoring.smellchecker.ui.preferences; 

 

Persistence package has the SmellcheckerFileManager() Class that mediates the 

creation of files and reads and writes in order to preserve metrics information. While 

most files are created dynamically during the plugin operation, two files keep persistent 

data regarding all variables calculated to the moment for classes or methods. This 

package also comprises a Class (Initializer()) responsible for keeping all symbolic data 

information during run time, for instance the code smells identifiers, metrics names and 
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other constants that Smellchecker classes need to utilize and that it can obtain only from 

the Initializer() Class. 

Code smells package has the classes that represent the annotated elements in the code, 

as well as the metrics values for classes and methods. The regression package has the 

classes that comprise the BLR model, its coefficients and calculation. Package 

rinterface communicates with the R engine and it is responsible for feeding it with the 

appropriated commands and retrieve the BLR model coefficients. The smellsupdater is 

the set of classes that transverse the code and retrieves metrics and source code 

annotations and call the appropriated function in persistence to record the variables. The 

ui package has all the elements that comprise the views of the system and the elements 

for their updates. Package preferences is capable of setting the plugin preferences and 

property pages. 

 

UI construction 

Graphic elements on the Eclipse are constructed when the workbench is first created (on 

Eclipse loading). When Eclipse‟s reads Smellchecker‟s plugin manifest file (plugin.xml) 

it knows that this plugin contributes to the UI and that its contributions to the 

workbench rely on a entry to the menu bar („Smellchecker‟ menu), a toolbar with 

actions specific to Smellchecker, popup menus that are element context sensitive, and a 

set of views for visualization purposes. When Eclipse first loads only the graphical 

display of the contributions is added to the workbench. The entries taking the form of a 

proxy object that are only initialized upon user action on them. 

Extensions to the popUpMenus are elements of the Code Smells Tagging «UI» 

component. One of Smellchecker‟s contribution to Eclipse‟s popupMenu is detailed in  

Listing 2. 
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<extension point="org.eclipse.ui.popupMenus"> 

<objectContribution  

objectClass="org.eclipse.jdt.core.IMethod" 

  id="...method"> 

 <menu 

  label="Tag Smell" 

  path="...menu" 

 (...) 

<action label="Long Method" 

menubarPath="..." 

class="...CodeSmellsTag" 

id="LongMethod"> 

</action> 

Listing 2: Plugin.xml Eclipse‟s popupMenus contribution 

 

This extension point is element sensitive and contributes only to objects of the type 

IMethod, meaning that wherever there is an IMethod object in Eclipse‟s UI, the entry 

„Tag Smell‟ will be present and an example of its elements is the action with the label 

„Long Method‟ that creates the Smellchecker‟s Class “CodeSmellsTag”(from the 

package codesmells)  upon selection. Entries for other code smells are added here, each 

of the code smells being described not by the object they create (all create element of 

the same “CodeSmellsTag” Class) but by their id in Smellchecker‟s internal processing 

and by their label in the UI. 

Other contributions to Eclipse‟s workbench that are extension points to graphical 

elements are actions (“org.eclipse.ui.actionSets”) and views ("org.eclipse.ui.views"). 

The actions represent menu and toolbar entries (the same actions in both) of three 

actions. They are the „Retrieve Variables‟ representing the component Parse Code 

Variables «Smellchecker» and activating the Smellchecker‟s Class „GetCodeMetrics‟ 

from the package smellsupdater. Other action is „RIntegration‟ regarding the 

component RIntegration «JRI» (Class RIntegration), And the action „SmellsDetector‟ 

(Class „SmellsDetector‟) represents the component  Detect Code Smells 

«Smellchecker». 

 

Source Code Annotation 

Eclipse‟s SWT/JFace UI Framework provides user interface resources that allow the 

code smells annotations assistance. That is the case of the previous described 

contributions to Eclipse‟s popupMenus. They make tagging actions contributions to 

methods and types on the Eclipse workbench via a popup  menu. 
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Each action is the representation of a code smell. The Class called (when a smell is 

selected) is “CodeSmellsTag”, and within the Class the different smells are identified by 

the id of the action that created the Class (each time a code smell is selected, an object 

of the class it references is created). The class now checks the element (IMethod or 

IType representing methods and types on the Java JDT Model) for the presence of a 

Java Annotation for the specified smell. The JDT´s Java Model is in most practical 

respects “read only”. JDT‟s Java Model do not present any functionality to change the 

code. So the changes are made directly to the Java source file with the IBuffer interface 

using the representation of the java class: the compilation unit. Changes with IBuffer are 

similar to StringBuffer, with the added difference that changing an IBuffer associated 

with a compilation unit propels the resulting changes throughout the Java Model. So, if 

the annotation for the particular code smell is already in the code it will be erased by 

deleting it using the IBuffer. If the code smell is not there it is added with IBuffer. 

The annotation operation may be performed manually by annotating the code directly in 

the Eclipse text editor. Java annotations used for the code smells tagging are defined as 

in  Listing 3 and Listing 4. 

 

public @interface Smells {  

 Smell[] type(); 

 String author(); 

} 

Listing 3: Smell annotation type 

 

 

public enum Smell { 

LongMethod, LongParameterList, 

LargeClass, LazyClass,DuplicatedCode 

} 

Listing 4: Smell enum type 

 

The annotations information stays only in the java source file. When is time to access to 

them it must be through the JDT‟s Java Model. 

  

BLR Variables Collection 

When the user selects „Retrieve Variables‟ action either from the Smellchecker toolbar 

or from the Smellchecker‟s menu the action will create the Class „GetCodeMetrics‟. 

This class is responsible for athwart the project elements, getting the metrics for each 
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class and each type, as well as their annotation information regarding code smells. The 

function Dispatcher.getAbstractMetricSource(JavaElement) from the Eclipse Metrics 

project returns the metrics for the element. Annotation information is accessed through 

the JDT‟s Java Model. 

Metrics calculation is accomplished by the Eclipse Metrics 1.3.8 plugin, and since we  

are extending its source code we have direct access to its functions. Metrics calculations 

are done in build time and persisted with JDBM
10

 (is a transactional persistence engine 

for JavaJDBM). 

All variables data are collected to four files. A set of four files for each project the user 

tries to collect variables for the BLR model from.  

The Class SmellcheckerFileManager(), in the Smellchecker persistense package, 

manages the files. One file gathers all metrics collected for code smells methods 

(including the smell presence variable). The other gathers the  metrics collected for all 

classes and its annotations. The two other files are formatted versions of the other ones 

that can be load to R for the BLR calculation.  

 

Models calibration 

Calibration and validation of the BLR models is performed by the R statistical engine. 

Interaction between the plugin and R is made with JRI, a Java/R Interface that allows 

running an instance of R as a process that responds to command line type commands 

and outputs back to Java the data resulting from its computations.  

R is dynamically loaded with the Java JRI jar Class Rengine(). Calls to its function 

eval(String) permit to feed R with commands like its command line interface from the 

standalone version. 

The function that calculates the coefficients for the BLR model is from the form: 

 

“logit<- glm(LongMethod~ MLOC + NBD + VG + PAR, family=binomial 

 (link="logit"), na.action=na.pass)” 

 

Where LongMethod is the dependant variable and MLOC, NBD, VG and PAR the 

independent variables. The call coefficients(logit) gets the coeficients from the model in 

a String format that needs to be parsed.  

                                                
10 http://jdbm.sourceforge.net/ 
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There is only one calculation at each time for a particular code smell selected by the 

user. 

 

Smells Detection 

The code will be passed through for each method or class. Depending of what smell is 

selected the BLR estimation will be applied to the corresponding element. It is here that 

the value of the estimation is tested against the threshold value selected by the user. If 

the value of the estimation is higher or equal to the threshold a code annotation (similar 

to the ones previously described) is inserted in the code using the principles already 

described. If the node is considered to have a code smell, then a JDT Marker is used to 

mark it as problematic and it will rise a warning the same way as Eclipse‟s compilation 

warnings appear. 

 

Smells Visualization 

Since nodes identified by the model have been marked, they will appear in the error log 

view and they will have the same properties as compiler errors. So a jump to the smelly 

section of the code can be performed upon a click. Also the code annotated from the 

previous action. 

5.5  Smellchecker Usage 

Smellchecker makes several contributions to Eclipse‟s workbench Java integrated 

development environment. Relying on Eclipse‟s Java editor and Java Development 

Tools (JDT), added support is presented for source code tagging, processing and 

visualization of Code Smells related information.  

Fig. 12 shows the user perspective with main components for Smellchecker operation. 

Smellchecker plugin consists of a specialized toolbar. A „Smellchecker‟ menu on 

Eclipse‟s menu bar providing the same actions presented in the toolbar. A set of views. 

A collection of actions contributions appearing in the context of Java element types. 

And properties and preference pages to assist configurations. 

The following sections will explain all components in the context of their usage. 
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Fig. 12: Smellchecker Perspective
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Annotating 

Fig. 12 shows the user perspective with main components for Smellchecker operation. 

One of its components is a collection of actions contributions appearing in the context 

of Java element types. The „Tag Smell‟ context menu is presented for both classes 

(IType Java Elements to be exact) and methods declarations. Within this menu the code 

smells names are representative of the type of annotation to be made for the selected 

element.  

The context menu „Tag Smell‟ is sensitive to the kind of code smell to be associated 

with the class or method elements, presenting two different sets adequate to each nature. 

Methods can be tagged for the presence of: Long Method, Large Parameter List, 

Duplicated Code, Dead Code, Speculative Generality, Temporary Field, and the rest of 

Fowler‟s catalogue of code smells [3]. Classes can be annotated for: Large Class, Lazy 

Class, Data Class, Duplicated Code, Speculative Generality, as well as the rest of 

Fowler‟s catalogue of Class code smells. 

Upon action selection a Java CodeSmells annotation will be seen in the editor. In the 

case of Fig. 12 the code smell tagging citation assumes the form: 

 

@Smells(type = {Smell.LongMethod}, author="TP") 

     

Listing 5: Long Method annotation 

The annotation refers to the method arrangeOptions( Collection<String>)and denotes 

the presence of the Long Method code smell has perceived by the user. Further selection 

of the same action will delete the code smell Long Method annotation from source code. 

In short, if the method or class does not have an annotation for the perceived Code 

Smell the corresponding annotation will be inserted, otherwise it will be deleted. Has in 

all updates to the source code via Eclipse‟s Text Editor, the changes will only be 

committed to file with Eclipse‟s save command. 

The annotation operation may be performed manually within the Text Editor by 

Smellchecker users, obliged they respect the Code Smells annotation syntax. 

Classes and methods can be inflicted by more than one Code Smell at a time. For 

instance, in the previous example, arrangeOptions(Collection<String>) - annotated for 

the Long Method code smell - can be extended to include the Duplicated Code smell.  

Selection of this new smell symptom from the method‟s „Tag Smell‟ context menu will 

update the annotation in@Smells(type = {Smell.LongMethod}, author="TP") 
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Listing 5 to the one in  

Listing 6 : 

@Smells(type = {Smell.LongMethod, Smell.DuplicatedCode }, author="TP") 

Listing 6 - Long Method and Duplicated Code annotation 

 

Further selection of the method‟s context menu Duplicated Code action will delete the 

smell annotation. 

. When the indication of no code smell is signaled to the element (e.g. selecting Long 

Method again) the CodeSmells annotation is removed altogether.  

There is no restrictions to the number of code smells an element can have. Annotations 

tagging via the „Tag Smell‟ menu actions will account for the non occurrence of 

duplicated entries and misspelling of code smells.  

Note that manual insertions are less restrict and duplicated entries or the misspelling of  

a method code smell for one of a class are not warned by the Java compiler. If a code 

smell indication do not conform to its right usage it will be ignored by the parser later. 

Smellchecker users just need to be accountable for annotation of code smells presence 

within the code. All other elements will be perceived has free of code smell symptoms. 

For a most accurate calibration of the Binary Logistic Regression Model (BLR), is 

imperative that all elements not annotated, are assured by the user as representatives of 

code free of smell symptoms. If the user is unsure if a particular method or class is 

indicative of a particular code smell, then the element can be tagged to skip the parsing 

process so that its information is not fed to the BLR coefficients model calibration.     

A view - context sensitive to the element selected – presents metrics calculations for all 

methods and classes. Its information can be used as guidance during the code smells 

annotation process aiding in an informed decision. This view (as all particular to the 

Smellchecker plugin), if not visualized in Eclipse‟s workbench, is accessed via 

Eclipse‟s Menu bar option „Window‟, then option „Show View‟, option „Other…‟, 

Smellchecker separator and „Smellchecker: Code Metrics‟ selection.  

Presented in Fig. 12, the Smellchecker: Code Metrics view can be seen in more detail in 

Fig. 13. 
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The example showing code metrics for the arrangeOptions(Collection<String)method. 

Metrics of Method Lines of Code, Nested Block Depth, Cyclomatic Complexity and 

Number of Parameters are present.  

Metrics in this view are the explanatory variables for the BLR model when predicting a 

code smell at the method level. The view is context aware so a class, package, or 

method must be selected. 

If a class was selected instead of a method, a different set of metrics would be presented 

by the Smellchecker: Code Metrics view. 

 

Fig. 13: 'Smellchecker: Code Metrics' view 

 

Setting Properties and Preferences 

For the metrics process collection to occur an option must be enabled in the Java project 

Properties page. In the „Smellchecker‟ separator of the Java project Properties page, the 

„Enable Metrics‟ option must be checked, permitting project metrics calculation during 

build cycle (Fig. 14). 



48 | P a g e  

 

 

Fig. 14:  Smellchecker properties page 

 

Although the metrics calculation must be enabled for each desired project, 

Smellchecker‟s preferences are transversal to open projects and to Eclipse‟s work 

sessions. Fig. 15 shows Smellchecker‟s Preferences page: 

 

 

Fig. 15: Smellchecker preferences page 

 

Smellchecker‟s users may tag for the occurrence of various code smells types and 

instances throughout the code. Yet, when is time for the BLR model regression 

coefficients calculation, the model accepts only one dependent variable at a time. In this 

page the user is responsible for choosing which of the supported code smells will serve 
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as that variable. A default value is provided in the form of Long Method selection. 

Value that users can modify at any time. 

Smellchecker‟ users can  set the sensibility threshold for the BLR model estimations. 

Only estimations above or equal the threshold are considered indicative of a code smell 

presence. The threshold can be any Real number between 0,00 and 1,00.  

If the user fails to provide a threshold indication or provides a value not conforming to  

specifications, a warning will be presented (Fig. 16) and the default threshold value will 

be set to the Smellchecker default of 0.8. 

In the last of the Smellchecker‟s preferences to be set, a field can also be edited to 

identify the author of the annotations. If not specified the Operating System login (if 

available) will serve that purpose. 

 

 

Fig. 16: Warning Invalid threshold setting 

 

Collecting Data 

When code smells tagging is done and metrics are enabled for the project, the assisted 

part of the code smells detection process is complete. Smellchecker can now retrieve all 

the necessary information for the BLR model calibration, calculation, and application. 

To this task a Smellchecker toolbar provides the actions necessary to proceed with the 

code smells detecting process (Fig. 17). Description of the actions as provided by the 

entries in the „Smellchecker‟ menu are in Fig. 18. 

 

 

Fig. 17: Smellchecker toolbar 
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First action after the code smells tagging process is retrieving source code information 

on metrics values for all methods and classes, as well as the information of the code 

smells annotations. 

Action „Retrieve Variables‟ is responsible for collecting to two different files the 

information of code elements (methods and classes), metrics values, and indications of 

code smells presence as tagged. One file gathers information for classes metrics and 

corresponding code smells, while the other does the same for method metrics and its 

code smells. 

 

 

 

Retrieve Variables 

 

Calculate BLR Regression Coefficients 

 

Smellchecker 

Fig. 18: Smellchecker menu actions 

 

One necessary step by Smellchecker‟s users, is the selection of an element of the project 

in Eclipse‟s workbench prior the „Retrieve Variables‟ call, so the plugin knows in what 

project should it retrieve information from. Failure in compliance is pointed out by an 

warning advice, vide Fig. 19. 

 

 

Fig. 19: Warning No project element selected 

 

Although Eclipse permits various Java projects to be open simultaneously, and 

Smellchecker‟s tagging facilities the option to annotate any of them. Still, when the 
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retrieval of data process begins, it does so, for only one project, the one of the element 

selected. 

Retrieval of data runs with the internal parser ignoring malformed values, failure in 

metrics retrieval or other inconsistencies that may occur for an element or other. These 

kind of elements will be skipped and not added to the variables table.  

When the parser finishes processing the source code elements, it informs the user of the 

total tagged code smells instances (Fig. 20). 

 

Fig. 20: Information of the total of annotations found in the code 

 

Calibrating the BLR model 

Next, is required by Smellchecker‟s users the order to calibrate the BLR model. The 

data provided and collected in previous steps will now be used for calculating the 

regression coefficients necessary to the model.  

It is now, that the information provided by the Smellchecker „Preferences‟ page comes 

in handy. Remembering Fig. 15, and the indication of what code smell should be used 

as the dependant variable (it can be modified at any time).  

Metrics values collected (restricted to method or classes metrics) will function as the 

predictable variables, and the indication of presence of a particular code smell (gathered 

from the CodeSmells annotations tags) as the outcome variable. 

Action „Calculate BLR Regression Coefficients‟ is responsible for taking the correct 

data variables from the files produced in the previous process. And feed them to R 

statistical engine. Retrieving then the coefficients of the BLR model. 
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Fig. 21: Warning Database not populated 

 

The outcome of the process is passed to the user using information messages. Fig. 21 

means that no proper data base of metrics values and code smells tagging information 

exists („Retrieve Variables‟ action must run).  

 

 

Fig. 22: Error R is offline 

 

 

Fig. 23: Error R could not compute BLR coefficients 

 

Fig. 22 and Fig. 23 are error signals. The former informs that R statistical engine is 

offline while the latter informs that R could not estimate the coefficients for the BLR 

model. Either because of R internals, or because bad input data. Fig. 24 has the formula 

for success. Indication that the BLR regression coefficients are computed and the model 

proper to use. 
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Fig. 24: Success BLR model calibrated 

 

Smellchecking 

Smellchecker‟s users can now analyze the performance of the estimated BLR model. 

Upon selection of the „Smellchecker‟ action the calibrated BLR model will be applied 

to all elements of the source code. Depending if it was calibrated for a method or a class 

code smell, so will be the kind of source code elements processed.  

The calibrated BLR model will give an estimate value of the probability for a code 

smell presence. Users sensibility threshold gives the element of decision on whether or 

not a an element should be marked as „smelly‟. Estimations above or equal to the 

threshold will be marked as code smells problematic.  

Smellchecker will annotate the code in a similar way to the users annotations. Java 

CodeSmells annotations will be automatically inserted when needed. 

An estimation of the validity of the process will be given to the user. It is a summary 

consisting of the total of detections made by the BLR estimation model. The number of 

false positives detected and the number of false negatives will be shown to the use.  
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Two open source Java systems were used to validate the BLR process presented in this 

work. The case study presented in this section also serves the purpose of collecting 

information data to draw an analysis and discussion for the validity, extensibility and 

usefulness of the Smellchecker‟s approach. First in the chapter we present the context of 

the problem  and what objectives our solution will explore.  

6.1  Objectives 

 

Problem Statement 

The eradication of source code smells is known to improve the design, readability and 

extensibility of software. Code smells indications for when to apply specific 

refactorings have been devised, yet they are not objective and when they are, they are 

not consensual. For example there is no threshold or collection of metrics settings  that 

indicate when a method should be considered long. From experience and from literature 

we know that many faults are associated with methods that are too long. But what is 

long? Is long related to a specific domain? Maybe with a project? Or with a developer 

taste? And there is some way to derive some metrics or setting of the already existing 

ones that can indicate where is the long problem? 

Through empirical experimentation with the proposed BLR we will try to shed some 

light on this questions defining objectives for the study presented in this chapter. 

 

Objectives Definition 

The main objective of this dissertation is reducing the subjectivity in code smells 

detection. Such an ambitious and generic goal is refined in several research objectives 

that facilitate its assessment achievement. 

Research Objectives (RO): 

 RO 1: Determine if the proposed BLR automate process is valid for Long 

Method detections; 

 RO 2: Determine if the quality of the detection is crosscutting to different 

projects; 

 RO 3: Determine if aggregated data from various projects sources makes for a 

more balanced and precise BLR model.   
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Design Planning 

Through the study of two software projects hypothesis will be formulated about the 

presence of Long Method instances. This hypothesis will provide the grounding for the 

BLR experimentation detection mechanism. Long method is the code smell that at first 

instance may be better suited for the complexity metrics Smellchecker has. Long 

method is traditionally linked to Lines Of Code and other complexity measurements 

related to size [27, 39]. 

Obtained results will provide the ground for refinement of the defined objectives (RO1, 

RO2 and RO3). And different data sets in the form of annotated projects by a domain 

expert will provide the basis for empirical validation and validity of the process. 

Next section describes the projects this study uses as sample. 

6.2  Source Code Projects 

Source code data is necessary for calibration and verifiability of validation of the results 

provided by Smellchecker. The criteria for selecting the Software projects used in this 

case study was that they be open source (providing availability), written in Java (for 

Smellchecker‟s parser to work), relatively small (because of the necessity of manual 

identification of the code smells), from the same application domain (for studying BLR 

generalization over a project), and in number not inferior to two for intertwining BLR 

model estimations. JOpt Simple and Apache Commons CLI projects are examples of the 

established criteria. Info on the projects follows. 

 

JOpt Simple 

JOpt Simple
11

 is a Java library for parsing command line options. It attempts to honor 

the command line option syntaxes of POSIX getopt() and GNU getopt_long() in the 

interest of striving for simplicity. It also aims to make option parser configuration and 

retrieval of options and their arguments simple and expressive. 

Version used: 

• JOpt Simple 3.2 (08-Dec-2009) 

 

                                                
11 http://jopt-simple.sourceforge.net/  
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Apache Commons CLI 

The Apache Commons CLI
12

 library provides an API for parsing command line options 

passed to programs. It's also able to print help messages detailing the options available 

for a command line tool. 

Version used: 

• Apache Commons CLI 1.2 

6.3  Data collection and descriptive statistics 

With the projects selected and the BLR metrics defined by Smellchecker‟s we can 

summarize the following information for our study: 

Population: Java Software Projects (Object Oriented Projects) 

Sample: Apache CommonsCLI 1.2 and JOpt Simple 3.2 ( Java Applications) 

Variables: MLOC, NBD, VG, PAR (Software Metrics) 

Dependent Variables: Long Method Present 

With the variables for our BLR model already decided (with Long Method Present 

being defined as true or false for a given method) we start analyzing the projects for 

clues on what measurements to make that could validate the defined research objectives.  

Size metrics for the two selected projects are presented in Table 9. Apache Commons 

CLI (Apache) Total Lines Of Code (TLOC) doubles the value obtained from JOpt 

Simple (JOpt), and it has less classes and fewer methods. One hypothesis could be 

raised for the probability of Long Method instances in Apache to be higher that of JOpt. 

 

Table 9: JOpt and Apache descriptive statistics 

 JOptSimple ApacheCommonsCli 

Number Of Classes 40 23 

Number Of Methods 217 184 

Number of Interfaces 3 1 

Number of Packages 3 1 

Total Lines of Code 1603 3345 

                                                
12 Link: http://commons.apache.org/cli/ 
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Before any BLR estimation to occur let‟s analyze some descriptive statistics for both 

projects to see if our hypotheses still hold. 

 

Table 10: JOpt MLOC statistics 

 Min. 1st Qu. Median Mean 3rd Qu. Max. 

JOpt 0 1 2 3.586 5 20 

Apache 0    5    6    11 13   77 

 

 

Table 10 shows MLOC descriptions for both projects. Differences exist in their 

distribution. Fig. 25 and Fig. 26 show both projects‟ MLOC boxplot side by side. 

 

 

 

Fig. 25: JOpt MLOC boxplot 

 

 

 

Fig. 26: Apache MLOC boxplot 

 

Apache‟s boxplot shows more outliers and more extreme values while JOpt‟s boxplot 

indicate that 75% of the values are within the 5 MLOC reach. MLOC is not the only 

predictor for the Long Method code smell, nevertheless methods with as few as 5 lines 

of code or less rarely are problematic. Everything indicates that in fact the presence of 

the Long Method code smell is higher for Apache commons. 

 

Next step of the process is annotating the code of the two projects for occurrences of the 

Long Method code smell.   
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Concerning the Long Method code smell, Fowler[3] defined signals of its presence with 

the following: 

 The longer the method the more difficult it is to understand; 

 Semantic distance occurs when there is a difference between what the method 

does and how it does it; 

 Comments are indications that procedures are not clear; 

 Conditionals and loops instances are good signs for extraction. 

 

McConnell[41], explained his insights on Bad Routines and Routine Size with: 

 Accessor routines should be short; 

 Depth of nesting, number of variables, and other complexity related 

considerations should dictate the length of the routine rather than imposing 

length restrictions;  

 Complex algorithms can grow up to 100 – 200 Lines Of Code (LOC); 

 Routines longer than 200 LOC decrease understandability; 

 If an a method or procedure is not invoked for a single purpose is an example of 

a Bad Routine;  

 The upper limit for an understandable number of parameters of a routine is 7. 

 

Since I do not have acquaintance with the projects, my analysis for Long Method 

presences will be from the point of view of someone who first  has to understand the 

software before making changes to it. So in light of the previous definitions presented I 

follow the guidelines that express more clarity, classifying methods for Long Method 

presences with the following heuristics: 

 if it is not understandable what it does; 

 if it is long and tackles different concerns; 

 if its name is not a clear indication of what it does; 

 if it does more than indicated by the name; 

 if conditionals and loops could be expressed by a method call; 

 and if it has comments to clarify what the code does. 

 

Results from the tagging process are expressed in Table 11. Results are a confirmation 

of the expectations formed during the data analysis. More than the double of Long 

Method instances were identified in the Apache Project comparing to JOpt. 
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Table 11: Long Method tagged instances 

 Number of Long Method identifications 

JOpt 9 (of 217 methods) 

Apache 24 (of 184 methods) 

 

Now, it is important to compare correlations between the variables, specially how they 

behave when compared to the presence of Long Method instances.  

 

 

Table 12 and Table 13 represent data from the Spearman Rho test for JOpt and Apache 

collected variables. The correlation values for JOpt variables expressed in 

 

Table 12, indicate a low level of correlation between metrics and the Long Method 

instances prediction. Indication they may not result in a good estimation when applied 

to the BLR model. The results also express a reasonable correlation between MLO, 

NBD, and VG. With PAR metric being the least related not only to each other, but also 

to the Long Method instances. 

 

Table 12: Spearman Rho correlation test for JOpt 

 

 

This results may be explained by the fact that, since the main factor of identification of 

Long Method instances was my understandability of the code, similar methods in terms 

of the metrics readings were tagged differently based on my comprehension of the 

nature of the computation. 

For the Apache project correlation results are much better (Table 13) but still not as 

high as expected to be a good fit. 
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Table 13: Spearman Rho correlation test for Apache 

 

 

Smellchecker‟s do not test the validity of the model through statistical analysis tough. 

The coefficients for the BLR model are calculated without automatic measuring 

correlation, checking for multicollinearity in the independent variables, or the goodness-

of-fit analysis for the variables. Instead, it calculates the BLR coefficient models and are 

up to the users the responsibility of recalibrating the model if they see fit. Next section 

shows the results of applying the BLR estimation with the given data. 

Now, in order to accomplish our first research objective: 

RO 1: Determine if the proposed BLR automate process is valid for Long Method 

detections. 

The BLR model must be calibrated and evaluated for each project and the measurement 

of the quality of its estimation will be the percentage of correct instances the model can 

predict. 

6.4  BLR Estimation 

With the data input provided, Smellchecker‟s has calibrated two BLR models for the 

Long Method estimation. JOpt calibrated model is the following: 

 

      
 

      
                                                             

 

Applying the model to the same project, results in 6 detections of Long Method instances with the threshold 

value of 0,8. All 6 detections coincide with previous annotated smells, while 3 are false negatives, and there is 
no false positives.  

 

Table 14 indicates the results of the BLR prediction in terms of the annotated smells. 
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Table 14: BLR prediction JOpt (Threshold=0,8) 

 Smellchecker BLG Estimation: Long Method 

Long Method Annotated 0 1 Correct % 

0 208 0 100% 

1 3 6 33% 

Overall % 98,62% 

 

Although the overall percentage was good, the detections concerning actual instances of 

Long Methods is slightly above average. The Spearman analysis done previous was an 

indication that this was to be expected. The very low number of annotations of Long 

Methods may explain why the model does not give a better estimation. In order to gain a 

better idea of what the BLR model may be expressing we need to vary its sensibility. 

Table 15 summarizes the results.  

 

Table 15: JOpt BLR estimations on JOpt 

JOpt BLR estimations on JOpt 

Threshold 

Sensibility 

False 

Positives 

False 

Negatives 

Negative 

Correct (%) 

Positive 

Correct (%) 

Overall 

Correct (%) 

0,9 0 6 100% 33,3% 97,2% 

0,8 0 3 100% 66,7% 98,6% 

0,7 0 3 100% 66,7% 98,6% 

0,6 0 3 100% 66,7% 98,6% 

0,5 2 3 99,0% 66,7 97,7 

0,4 3 2 98,6% 77,8 97,7 

0,3 4 2 98,1% 77,8% 97,2 

0,2 5 2 97,6% 77,8% 96,8 

0,1 7 0 96,6% 100% 96,8% 
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We can see that although the number of overall correctness is high, the percentage in 

terms of the total estimation of the cases where existed the Long Method (positives 

corrected estimation) is lower. But overall the BLR model calculated do not refute our 

first research objective (RO1). 

We will now repeat the same process for Apache Commons data. Here is the result of 

the calibration effort: 

 

      
 

      
                                                            

 

 

When applied to Apache Commons source code the results are the ones shown in  

Table 16.  

 

Table 16: BLR prediction Apache (Threshold=0,8) 

 Smellchecker BLG Estimation: Long Method 

Long Method Annotated 0 1 Correct % 

0 157 3 98,13% 

1 12 12 50% 

Overall % 91,85% 

 

Note that the probability of detection was lower in every account if we compare it with 

the JOpt model. Estimations for other sensitivities are presented in  

 

 

 

 

Table 17. 
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Table 17: Apache BLR estimations on Apache 

Apache BLR estimations on Apache 

Threshold 

Sensibility 

False 

Positives 

False 

Negatives 

Negative 

Corrected % 

Positive 

Corrected 

Overall 

Correct % 

0,9 1 15 99,49% 37,5% 92,63% 

0,8 3 12 98,45% 50,00% 93,01% 

0,7 3 11 98,45% 54,17% 93,55% 

0,6 4 9 97,93% 62,50% 94,01% 

0,5 4 8 97,93% 66,67% 94,47% 

0,4 6 6 96,90% 75,00% 94,47% 

0,3 6 4 96,90% 83,33% 95,39% 

0,2 8 2 95,85% 91,67% 95,40% 

0,1 16 0 91,71% 92,63% 92,63% 

 

Not that this estimations again confirm our RO1 that it is possible to predict Long 

Method instances with the calibrated BLR model. What we can see is that the quality of 

the estimation of the Long Method depends upon the sensibility of the  threshold. If the 

sensibility is lower more Long Methods are detected (less false negatives) but more are 

the rate of false positives. 

 

So now that we have the BLR model from two different projects, we will move to RO2: 

 

 RO 2: Determine if the quality of the detection is crosscutting to different 

projects. 
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To see if RO2 is valid, the BLR model calibrated from one application will be used to 

estimate Long Methods on the other, and then the results will be analyzed to see if the 

model is still valid or its validity depends entirely of the input data it receive and is not 

possible to detach it from it. Table 18 depicts the results of applying the JOpt BLR 

model to Apache and Table 19 the inverse. Apache BLR model estimating values on 

JOpt Source. 

Table 18: JOpt BLR estimations on Apache 

JOpt BLR estimations on Apache 

Threshold 

Sensibility 

False 

Positives 

False 

Negatives 

Negative 

Corrected % 

Positive 

Corrected 

Overall 

Correct % 

0,9 9 3 95,34% 87,50% 94,47% 

0,8 9 2 95,34% 91,67% 94,93% 

0,7 11 1 94,30% 95,83% 94,47% 

0,6 14 1 92,75% 95,83% 93,09% 

0,5 15 1 92,23% 95,83% 92,63% 

0,4 15 1 92,23% 95,83% 92,63% 

0,3 16 1 91,71% 95,83% 92,17% 

0,2 16 1 91,71% 95,83% 92,17% 

0,1 19 0 90,16% 100% 91,24% 

 

Table 19: Apache BLR estimations on JOpt 

Apache BLR estimations on JOpt 

Threshold 

Sensibility 

False 

Positives 

False 

Negatives 

Negative 

Corrected % 

Positive 

Corrected 

Overall 

Correct % 

0,9 0 9 100,00% 0,00% 95,85% 

0,8 0 9 100,00% 0,00% 95,85% 

0,7 0 9 100,00% 0,00% 95,85% 

0,6 0 9 100,00% 0,00% 95,85% 

0,5 0 9 100,00% 0,00% 95,85% 
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0,4 0 9 100,00% 0,00% 95,85% 

0,3 0 9 100,00% 0,00% 95,85% 

0,2 1 8 99,52% 11,11% 95,85% 

0,1 2 5 99,04% 44,44% 96,78% 

0,05 6 3 97,125 66,67% 95,85% 

Although the estimations of Apache BLR did not bring good results on the JOpt project 

(it is not strange if we remember that even for the own project the values were a bit off), 

The JOpt BLR model performed even better in Apache that the native apache BLR 

model on itself. This is a great evidence that proves our RO2. We see that not all models 

can be translated well to other projects (Apache BLR case) but we proved that some can 

even exceed the expectations and improve the estimations. 

This leads to our last research objective: 

 RO 3: Determine if aggregated data from various projects sources makes for a 

more balanced and precise BLR model.   

 

The data from the two projects will be combined into one BLR mode estimation and we 

will analyze if it feats the two project simultaneously well. Table 20 shows the 

Spearman test for the aggregated data. It shows a medium relation, but as we learned 

from the Apache project this do not mean better estimations. 

 

Table 20: Spearman correlation test on aggregated data of the two projects 

 

 

Here is the BLR model for the aggregated data from the two projects (Apache and JOpt)  
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Table 21 shows the results table of applying the new BLR model to JOpt project. Only 

for high tolerance discrepancies between the estimation and the real value does the 

model stars to detecting the present Long Method instances. Let‟s compare now the 

results with the model´s estimation to the Apache project in Table 22. 

 

 

 

 

Table 21: Aggregated BLR estimations on JOpt 

Aggregated BLR estimations on JOpt 

Threshold 

Sensibility 

False 

Positives 

False 

Negatives 

Negative 

Corrected % 

Positive 

Corrected 

Overall 

Correct % 

0,9 0 9 100% 0,0% 95,9% 

0,8 0 9 100% 0,0% 95,9% 

0,7 0 9 100% 0,0% 95,9 

0,6 0 9 100% 0,0% 95,8% 

0,5 0 8 100% 11,1% 96,3% 

0,4 0 7 100% 22,2% 96,8% 

0,3 0 6 100% 33,3% 97,2% 

0,2 2 5 44,4% 99,0% 96,8% 

0,1 2 5 44,4% 99,0% 96,8% 
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Table 22: Aggregated BLR estimations on Apache 

Aggregated BLR estimation on Apache 

Threshold 

Sensibility 

False 

Positives 

False 

Negatives 

Negative 

Corrected % 

Positive 

Corrected 

Overall 

Correct % 

0,9 3 13 98,1% 45,8% 91,3% 

0,8 4 10 97,5% 58,3% 92,4%    

0,7 4 8 97,5% 66,6% 93,5% 

0,6 5 7 96,8 70,8 93,5 

0,5 6 6 96,25% 75,0% 93,5% 

0,4 6 5 96,3 79,2 94,0 

0,3 7 1 95,6 95,8 95,7 

0,2 11 1 93,1 95,8 93,5 

0,1 20 0 87,5 100 89,1 

 

We can see that the new BLR model is still useful, but it is hard to say that it better and 

that improves significantly the model. From this example more conclusions we cannot 

tell, despite the fact that it is still applicable. But prove of any improvements is not 

clear. 

6.5  Conclusions 

We proved that the BLR model approach is a sound technique to evaluate code smells. 

Evidence of that was achieved through an example concerning the Long Method code 

smell. We proved soundly our fist two research objectives. The BLR method can predict 
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Long Method instances and that the model can be used with efficiency in different 

source projects. For the third objective, it is proved that the model do not lose validity, 

but his efficiency is to question and only this example is not enough to make any 

substantial claim.  
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7.1  Papers and Articles 

The focus of this work is on source code smells detection. Architectural code smells and 

refactorings [24], so as the ones applied to higher abstraction diagrams such as UML, 

are not covered. The same goes for Duplicated Code detection mechanisms, which is an 

active research area at this moment more than capable of sustaining a work study by its 

own. However, sparingly and not exhaustive, references to Duplicated Code detection 

mechanisms and tools may occur, particularly in the context of more ample code smell 

detection suites. 

Code smells identification in source code can be approached from two distinct angles. 

The first concerns detection methods of pure qualitative nature, making use of biased 

heuristics that pertain to the expert‟s opinion that voices his choice. The second presents 

a more formal approach using software metrics calculations but relying in subjective 

thresholds, lacking strong empirical evidence or any sign of empirical proof at all.  

A account of the advances on code smell detection and characterization follows in a 

brief survey.  

        

Fowler and Kent Beck introduced the concept of code smells and produced an original 

catalogue of twenty-two smells providing heuristics of qualitative nature for their 

detection [3]. Kerievsky extended Fowler‟s work with new code smells heuristics in the 

vein of his predecessor,  but aimed at introducing design patterns through refactorings 

[20]. 

Simon et al. [42] proposed an approach to code smells detection  based on  a  generic 

similarity measure of code entities (cohesion), and developed a prototype - extension of 

the metrics tool Crocodile - to visualize those distances in space, which then could serve 

as indication for applying four of Fowler‟s refactorings. With proximity in space 

indicating the relative affinity between entities, the developer aimed with knowledge of 

the code‟s design could then make an informed choice on which entities to reallocate so 

that the principle of cohesion denoted visual could be expressed more directly by the 

design. 

Making use of static analysis to gather simple code metrics over the program abstract 

syntax tree Dudziak and Wloka  implemented the prototype add-in J/Art for NetBeans 

IDE [30]. Providing developers with ad-hoc support for detecting code structural 

weaknesses (smells) and for choosing which refactor to perform. This tool identifies 12 
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of the 22 code smells proposed by fowler in a very straightforward way and adds two 

new smells: Shared Collection and Unnecessary Openness. The detection process is 

simplified by assuming subjective thresholds in order to test smells presence. 

Van Emden and Moonen produced a new set of code smells qualitative heuristics 

specific to deal with test code for which they created a set of new refactorings [28]. 

They ventured further and continued expanding the concept of code smells to domain 

specific interests. Namely, not conformance to coding rules and concrete Java 

constructs (i.e. Typecast and Instanceof), could be understood as code smells as well 

[29]. Also proposed was a set of design considerations for code smell detection tools 

based on static analysis, upon which they developed a prototype tool jCOSMO 

responsible for collecting primitive smell aspects (aspects visible in source code 

entities) through code parsing [29]. The primitive smell aspects collected where the 

presence of Java constructs Instanceof and Typecast. 

Tourwé and Mens first significant contribution to the field, come in the form of logic 

meta programming [43] applied to code smells identification and subsequent 

refactorings proposal [34]. With direct access to object-oriented source code entities 

(Java or Smalltalk) by a metalevel interface representational mapping, the authors, 

through the power of declarative meta language SOUL, with elegantly concise logic 

rules were able to detect presence of code smells Obsolete Parameter and Inappropriate 

Interfaces. The same principle was further extended so to dynamically update 

refactoring proposals. Same authors followed work with a comprehensive survey on 

refactoring [8] where a generic refactoring process involving quality assessments after 

each refactoring step was defined. 

The technique of critical pair-analysis was used by Mens, Taentzar et al [26] to gain 

insight on refactorings implicit dependencies. By representing refactorings as graph 

transformations suggestion of an order for refactoring usage was demonstrated. 

Marinescu defined in more proper quantitative terms, metrics with which to derive 

evidences of code smells presence [44]. 

Apart of creating a code smells taxonomy, Mäntylä [27] evaluated each one of Fowler‟s 

code smells (and his own Dead Code smell detailed in the Code smells chapter) 

according to a measure he introduced named Measurability. This measure  was 

subjectively rated, between 0 (impossible to measure) and 5 (easy and correct to 

predict), according to his expert knowledge of the willingness of measurability of each 

smell. For example, he rated Long Method as a 5 on Measurability and proposed a 
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polynomial metric that combined Number of Lines of Code (NLOC), Cyclomatic 

Complexity and Halstead metrics to do the measurement. 

Mäntylä and Lassenius‟ first Finnish empirical findings showed evidence of conflicting 

smell evaluations calls when judged by experts [11]. Second exposition [45] confirmed 

first findings and corroborate the difficulty of setting code metrics to predict even the 

simplest code smells (i.e. Large Class as an example). 

Recently, Moha et al. [31] introduced new functionalities to the code smells method 

DÉCOR that embodies and defines the specification and detection of code and design 

smells, that when instantiated, is capable of detecting design smells: the antipatterns 

Blob, Functional Decomposition, Spaghetti Code, and Swiss Army Knife, and 15 

underlying low level code smells. 

 

A taxonomy for comparing between different code smells detection methodologies (or 

code smells detection approaches) and tools was created to help position this work 

detection process within available research. A guideline followed was that each 

methodology was analyzed from the smell detection capabilities point of view, not 

caring for the processes underlining those detection. Because for a smell detection point 

of view is irrelevant how the methodology is implemented, just its results and 

functionalities are of interest. 

An explanation of the not trivial identifiers follows: 

 Assessment: Type of assessment followed by the methodology. It can be of two 

values: Quantitative or Qualitative, depending if it the heuristic in use can be 

quantified or not, respectively. 

 Smells: Code smells supported by the heuristics. 

 Tool: Name of the tool that instantiates the methodology if it exists. 

 Language:  It is tool oriented in the sense that relates to code languages the tool 

support. 

 Functionalities: Types of functionalities supported: (Code smells) Detection, 

mechanisms of Visualization (of the code smell after detection), Proposal of 

appropriate refactorings, automatic Refactorings application, and code smells 

Extensible (if it permits extending the list of code smells detected). 

 Heuristic: automatic if  it supports a fully automatic detection system under 

some condition. Manual, if manual calibration of some sort is expected every 

single time the detection process runs. 
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 Automation: as in process Automation. Values: automatic if the process do not 

need any kind of users or developers input. Semi-automatic if needs some sort of 

minimal user or developer input. 

 

Tables Table 24, Table 25 and Table 25 compare some of the methodologies that were 

studied with ours. 

 

Table 23: Smells Detection Comparison Part 1 

Methodologies Fowler Simon et al. Emden & Moonen Smellchecker 

Year 1999 2001 2003 2011 

Assessment Qualitative Quantitative Quantitative Quantitative 

Smells Fowlers 22 

Smells 

Feature Envy, 

Inappropriate Intimacy, 

Large Class, Lazy Class 

Instanceof, Typecast 

(Language specific 

Java) 

Undifferentiated13 

Tool - Crocodile (Enhanced) jCOSMO Smellchecker 

Language  Integrated in a CASE 

tool 

Java Java 

Functionalities - Detection, 

Visualization 

Detection, 

Visualization, 

Extensible 

Detection, 

Visualization 

Heuristic  Automatic Automatic Automatic 

Process 

Automation 

- Semi-automatic Semi-automatic Semi-automatic 

 

The idea of automating code smells detection by using metrics and tools is not new as 

seen by the previous survey. The technique that this work proposes to automate [10] is 

in contrast with all other works because of its implementation of a dynamic statistical 

process that relies on expert‟s knowledge that can be applied, theoretically
14

, to any 

smell. 

 

 

 

                                                
13 In theory all code smells that current metrics and a polynomial aproximation can derive 
14 Empirical studies are necessary to validate that assumption. For now only Long Method Smell is 

validated 
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Table 24: Smells Detection Comparison Part 2 

Methodologies Dudziak &Wloka Tourwé & Mens Smellchecker  

Year 2002 2003 2011  

Assessment Quantitative Quantitative Quantitative  

Smells 12 Fowler Smells15, Shared 

Collection, Unnecessary Openness 

Obsolete Parameter, 

Inappropriate Interfaces 

Undifferentiated16  

Tool J/Art (NetBeans Add-in) Refactoring Brower 

(extended with SOUL) 

Smellchecker  

Language Java SOUL over Smalltalk/Java Java  

Functionalities Detection, 

Visualization, proposal 

Detection, Visualization, 

Proposal, Extensible 

Detection, 

Visualization 

 

Heuristic Automatic  Automatic Automatic  

Automation Semi-automatic Semi-automatic Semi-automatic  

 

Table 25: Smells Detection Comparison Part 3 

Methodologies CodeNose Smellchecker  

Year 2005 2011  

Assessment Quantitative Quantitative  

Smells Half of Fowlers Smells Undifferentiated17  

Tool Eclipse Plugin Smellchecker  

Language Java Java  

Functionalities Detection, 

Visualization, proposal 

Detection, 

Visualization 

 

Heuristic Automatic  Automatic  

Automation Semi-automatic Semi-automatic  

 

Classifications for the different methodologies seem similar, without any factor that 

stands out and making this work‟s approach obvious better than all rest. This was 

                                                
15 Fowler smells supported: Duplicated Code, Long Method, Large Class, Long Parameter List, Feature 

Envy, Lazy Class, Speculative Generality, Temporary Field, Inappropriate Intimacy, Data Class, Refused 

Bequest, Comments. 

 
16 In theory all code smells that current metrics and a polynomial aproximation can derive 
17 In theory all code smells that current metrics and a polynomial aproximation can derive 
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intended and to be expected. And serves to stress the real meaning behind this work‟s 

methodology. This is not, at least primary, a methodology for end user usage, what we 

have here is the unique proposal of  automate the methodology described by Bryton et 

al. [10]  so that code smells metrics can be derived, refined and continuous improved. 

As seen by the survey, most code smells detection approaches use some kind of metrics 

to identify where on the source code the smell could be. And the process that it is used 

by the researchers is always the same: “Let‟s look at the Code Smell intuitive 

definition”, “Let‟s look at code metrics that I think could express this Smell”, and “This 

is it”. But the it they refer is not always a hit, more of a miss more. So to gather some 

sort of understanding, of the relation between metrics and code smells, one must step 

out of the box and let the associative process of relating metrics and smells be guided 

externally, so to relations and affinities we have not suspected yet can be made known 

and then, the intuitive human process begins again choosing what of this relations 

should be consciously  put inside the box. 

7.2  Open Source Tools 

A few open-source tools exist for detecting code smells in Java code. Most of them use 

static analysis, that is, they do not require executing the program, such as the one 

presented in this paper. 

PMD (http://pmd.sourceforge.net/). This widely used tool uses static analysis 

techniques to scan Java source code and look for potential problems like possible bugs 

(empty try/catch/finally/switch statements), Dead Code (unused local variables, 

parameters and private methods), suboptimal code (wasteful String/StringBuffer usage), 

overcomplicated expressions (unnecessary if statements, for loops that could be while 

loops) and duplicate code (copied/pasted code means copied/pasted bugs). PMD is 

integrated with JDeveloper, Eclipse, JEdit, JBuilder, BlueJ, CodeGuide, NetBeans, 

IntelliJ IDEA, TextPad, Maven, Ant, Gel, JCreator, and Emacs. 

FindBugs (http://findbugs.sourceforge.net). This tool is also widely used and integrated 

with Eclipse, using the static analysis capabilities of Apache‟s Byte Code Engineering 

Library (BCEL) to inspect Java bytecode for occurrences of bug patterns. The latter are 

code idioms that are often errors. Bug patterns arise for a variety of reasons such as: 

difficult language features, misunderstood API methods, misunderstood invariants when 

http://pmd.sourceforge.net/
http://findbugs.sourceforge.net/
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code is modified during maintenance, or garden variety mistakes as typos or use of the 

wrong boolean operator. Their authors report that its analysis is sometimes imprecise 

since many false positives (up to 50% of identified bugs) can be risen. 

SISSy (http://sissy.fzi.de). According to its authors, the Structural Investigation of 

Software Systems tool can detect some well-known code smells and the violation of 

over 50 typical OO design principles, heuristics and patterns, such as bottleneck classes, 

god classes, Data Classes or cyclical dependencies between classes or packages. SISSy 

can analyze systems written in Java, C++ or Delphi but, as far as we could ascertain, is 

not integrated with any IDE. 

Smelly (http://smelly.sourceforge.net). Is an Eclipse plugin that, according to its 

authors, is able to detect the following code smells in Java code: Data Class, God Class, 

God Method, High Comment Density, Long Parameter List and Switch. Only the one in 

bold matches the original name in the original code smells catalog [3]. 

Code Bad Smell Detector (http://cbsdetector.sourceforge.net/). This tool claims to 

detect five of Fowler et al. [3] code smells: Data Clumps, Switch Statements, 

Speculative Generality, Message Chains, and Middle Man, from Java source code. It 

has no recent downloads and appears to be associated with an ongoing PhD work. It is 

also not integrated with an IDE. 

 

  

http://sissy.fzi.de/
http://smelly.sourceforge.net/
http://cbsdetector.sourceforge.net/
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8.1  Closing Remarks 

The idea of automating code smells detection by using metrics and tools is not new. 

However, the detection technique used in the Smellchecker tool is in contrast with all 

other known proposals due to the usage of a dynamic statistical process that relies on 

expert‟s knowledge that can be applied, theoretically
18

, to any smell.  

 

The main contributions of this dissertation are: 

 A process for supporting the prediction of code smells occurances, based upon a 

logistic regression model, that allows progressive calibration either by a single 

user or by a user community; 

 The proposal of an open source software architecture to support the 

aforementioned process for pratitioners using the Eclipse plugin architecture; 

 A prototype based on the aforesaid architecture, for standalone Java developers 

using the Eclipse Environment; 

 Validation of the process for the Long Method code smell. 

 

8.2  Threats to Validity 

Recalling Mäntylä‟s taxonomy, we expect that some code smells categories like the 

Bloaters or the Couplers will be much easier to detect than the others, using the 

proposed BLR based approach, simply because existing metric sets cover aspects such 

as code complexity and coupling between software components, that will act as good 

predictors. In other words, we cannot claim that it will be possible to find appropriate 

BLR based models capable to detect with a considerable degree of confidence,  all the 

22 Code Smells described by Fowler. Other detection techniques will probably be more 

suited in those cases. For example, Duplicated Code is an active area of research with 

sophisticated mechanisms already derived to identify code clones [46], which do not 

rely on source code metrics.  

We have only collected evidence of the adequacy of the Long Method predictor 

presented herein for some software systems / components. Further evidence must be 

                                                
18 Further empirical studies are required to validate this assumption. 
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collected to calibrate our regression model before we can claim some sort of generality 

(applicability beyond our samples).  

Metrics selected for the Smellchecker tool derive from their availability in a prior 

existing Eclipse Plugin and only represent a small subset of the available collection of 

metrics in literature [47]. These concern classic complexity measurements that are not 

suited to detect all code smells. 

8.3  Future Work 

The developed tool and its underlying process, rises different working opening 

opportinities. Concerning the Long Method code smell: 

 Continuous refinement of the Long Method prediction model with extended 

calibration data, 

 Validation of the regressors with different data sets, 

 Refinement of the Long Method code smell detection model by adding and 

validating new predictors (more metrics), 

 Studies of the sensibility of the model to bad data inputs, 

 Experimentation with software from different domains to check if the 

mathematical prediction model of the Long Method code smell can be 

transferred across projects, 

 Openings for more evolved regression techniques. 

To further validate the regression process herein presented, an effort must be made to:  

 Replicate the process for  other code smells, deriving new prediction models for 

the remaining smells, 

 Which implies adding, and the subsequent testing for correlation and validation, 

of new sets of metrics appropriated for each smell. 

 To minimize the sensibility of the model to one experts opinion and over fitting 

issues Smellchecker‟s architecture must be distributed, so that a large set of 

participants can mitigate the natural bias that exists within small sets. 

And to close the circle -  further down the line - the mandatory integration with the 

proper refctoring techniques and tools that mitigate the code smells problem. 
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 According to [3, 12], a given code smell can be mitigated/removed by applying 

one out of a set of refactoring transformations. Since Eclipse supports several of 

those transformations, we envision that upon code smells identification, 

adequate refactorings could be suggested to remove the smell. 

 

 In the future, we will look at ways of computing the expected quality improvements 

attained by applying each of the refactoring alternatives. Hopefully that will allow to 

provide some advice for the developer. 
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