

Universidade Nova de Lisboa

Faculdade de Ciências e Tecnologia

Departamento de Informática

A Semi-automatic Approach to Code Smells Detection

Tiago Alexandre Simões Pessoa

Dissertação para obtencão do Grau de Mestre em Engenharia Informática

Orientadores: Prof. Doutor Fernando Brito e Abreu

 Prof. Doutor Miguel Pessoa Monteiro

Setembro de 2011

ii

(Page intentionally left blank)

iii

Universidade Nova de Lisboa

Faculdade de Ciências e Tecnologia

Departamento de Informática

Dissertação de Mestrado em Engenharia Informática

2º Semestre, 2010/2011

A Semi-automatic Approach to Code Smells Detection

Tiago Alexandre Simões Pessoa

Orientadores: Prof. Doutor Fernando Brito e Abreu

 Prof. Doutor Miguel Pessoa Monteiro

Setembro de 2011

iv

(Page intentionally left blank)

v

Acknowledgements

Fernando Brito e Abreu

Miguel Pessoa Monteiro

Sérgio Bryton

Mãe

Pai

Tanya

Sushi

vi

(Page intentionally left blank)

vii

Resumo

A erradicação de cheiros no código é frequentemente apontada como uma forma de

melhorar a legibilidade, extensibilidade e desenho do software. Contudo, a detecção de

cheiros no código continua a ser uma actividade consumidora de muito tempo e

propensa a erros, parcialmente devido à inerente subjectividade do processo de detecção

correntemente usado. Para mitigar este problema de subjectividade, esta dissertação

apresenta uma ferramenta que automatiza uma técnica para a detecção e avaliação de

cheiros no código fonte em Java, desenvolvida como um plugin Eclipse. A técnica é

baseada num modelo de Regressão Logística Binária que usa métricas de complexidade

como variáveis independentes e que é calibrado pelo conhecimento de peritos. É

fornecida uma visão geral da técnica, a ferramenta é descrita e a sua utilização é

validada por um caso de estudo de exemplo.

Palavras-Chave: Engenharia de Software Automatizada, Refabricações, Cheiros no

Código, Avaliação Empírica, Métricas

viii

(Page intentionally left blank)

ix

Abstract

Eradication of code smells is often pointed out as a way to improve readability,

extensibility and design in existing software. However, code smell detection remains

time consuming and error-prone, partly due to the inherent subjectivity of the detection

processes presently available. In view of mitigating the subjectivity problem, this

dissertation presents a tool that automates a technique for the detection and assessment

of code smells in Java source code, developed as an Eclipse plugin. The technique is

based upon a Binary Logistic Regression model that uses complexity metrics as

independent variables and is calibrated by expert‟s knowledge. An overview of the

technique is provided, the tool is described and validated by an example case study.

Keywords: Automated Software Engineering, Refactoring, Code Smells, Empirical

Evaluation, Metrics

x

(Page intentionally left blank)

xi

Table of Contents

1 Introduction ... 1

1.1 Motivation .. 2

1.2 Context ... 3

1.3 Solution .. 3

1.4 Expected Contributions ... 4

1.5 Document Structure .. 4

2 Quality .. 5

2.1 Quality Models ... 6

2.2 Software Metrics ... 6

2.3 Empirical Evaluation .. 6

2.4 ISO 9126/IEC ... 7

3 Refactoring ... 9

3.1 Refactoring: Meaning and Context .. 10

3.2 Refactoring Process .. 11

3.3 Code Smells .. 13

3.4 Refactorings Format.. 17

3.5 Illustrative Example of a Refactoring Application ... 18

3.6 Refactoring Tools ... 19

4 Automated Code Smells Detection .. 20

4.1 BLR Model ... 21

4.2 Automation ... 23

4.3 Models of Use ... 25

5 Smellchecker ... 27

5.1 Eclipse .. 28

5.2 Metrics Plugin .. 31

xii

5.3 Smellchecker Overview .. 33

5.4 Smellchecker Architecture and Implementation .. 36

5.5 Smellchecker Usage .. 43

6 Case study ... 54

6.1 Objectives ... 55

Problem Statement .. 55

Design Planning .. 56

6.2 Source Code Projects .. 56

6.3 Data collection and descriptive statistics ... 57

6.4 BLR Estimation .. 61

6.5 Conclusions .. 68

7 Related Work .. 69

7.1 Papers and Articles ... 70

7.2 Open Source Tools.. 75

8 Conclusions and Future Work ... 77

8.1 Closing Remarks ... 78

8.2 Threats to Validity .. 78

8.3 Future Work ... 79

9 Bibliography ... 81

xiii

List of Figures

FIG. 1: ISO 9126 QUALITY MODEL .. 8

FIG. 2: THE REFACTORING PROCESS ... 12

FIG. 3: EXTRACT METHOD EXAMPLE (ADAPTED FROM[33]) .. 18

FIG. 4: CODE SMELLS DETECTION PROCESS .. 23

FIG. 5: LOCAL USAGE .. 25

FIG. 6: REMOTE USAGE .. 26

FIG. 7 ECLIPSE SOFTWARE DEVELOPMENT KIT .. 28

FIG. 8: AST WORKFLOW [ADAPTED FROM HTTP://WWW.ECLIPSE.ORG]...................................... 30

FIG. 9: METRICS VIEW OF A METHOD METRICS ... 31

FIG. 10: SUMMARIZED METRICS AT PACKAGE LEVEL ... 32

FIG. 11: SMELLCHECKER‟S COMPONENT DIAGRAM .. 37

FIG. 12: SMELLCHECKER PERSPECTIVE ... 44

FIG. 13: 'SMELLCHECKER: CODE METRICS' VIEW ... 47

FIG. 14: SMELLCHECKER PROPERTIES PAGE .. 47

FIG. 15: SMELLCHECKER PREFERENCES PAGE .. 48

FIG. 16: WARNING INVALID THRESHOLD SETTING ... 49

FIG. 17: SMELLCHECKER TOOLBAR ... 49

FIG. 18: SMELLCHECKER MENU ACTIONS ... 50

FIG. 19: WARNING NO PROJECT ELEMENT SELECTED ... 50

FIG. 20: INFORMATION OF THE TOTAL OF ANNOTATIONS FOUND IN THE CODE 51

FIG. 21: WARNING DATABASE NOT POPULATED .. 51

FIG. 22: ERROR R IS OFFLINE ... 52

FIG. 23: ERROR R COULD NOT COMPUTE BLR COEFFICIENTS ... 52

FIG. 24: SUCCESS BLR MODEL CALIBRATED .. 52

FIG. 25: JOPT MLOC BOXPLOT .. 58

FIG. 26: APACHE MLOC BOXPLOT ... 58

xiv

(PAGE INTENTIONALLY LEFT BLANK)

xv

LIST OF TABLES

TABLE 1: MÄNTYLÄ BLOATERS .. 14

TABLE 2: MÄNTYLÄ ABUSERS .. 15

TABLE 3: MÄNTYLÄ PREVENTERS ... 15

TABLE 4: MÄNTYLÄ DISPENSABLES .. 15

TABLE 5: MÄNTYLÄ COUPLERS... 16

TABLE 6: KERIEVSKY CODE SMELLS ... 16

TABLE 7: SAMPLE EXTRACT FOR CALIBRATING A LONG METHOD CODE SMELL ESTIMATION

MODEL .. 22

TABLE 8: METRICS PLUGIN 1.3.8 METRICS ... 33

TABLE 9: JOPT AND APACHE DESCRIPTIVE STATISTICS .. 57

TABLE 10: JOPT MLOC STATISTICS ... 58

TABLE 11: LONG METHOD TAGGED INSTANCES ... 60

TABLE 12: SPEARMAN RHO CORRELATION TEST FOR JOPT .. 60

TABLE 13: SPEARMAN RHO CORRELATION TEST FOR APACHE ... 61

TABLE 14: BLR PREDICTION JOPT (THRESHOLD=0,8) ... 62

TABLE 15: JOPT BLR ESTIMATIONS ON JOPT .. 62

TABLE 16: BLR PREDICTION APACHE (THRESHOLD=0,8) .. 63

TABLE 17: APACHE BLR ESTIMATIONS ON APACHE .. 64

TABLE 18: JOPT BLR ESTIMATIONS ON APACHE ... 65

TABLE 19: APACHE BLR ESTIMATIONS ON JOPT ... 65

TABLE 20: SPEARMAN CORRELATION TEST ON AGGREGATED DATA OF THE TWO PROJECTS...... 66

TABLE 21: AGGREGATED BLR ESTIMATIONS ON JOPT .. 67

TABLE 22: AGGREGATED BLR ESTIMATIONS ON APACHE ... 68

TABLE 23: SMELLS DETECTION COMPARISON PART 1 ... 73

TABLE 24: SMELLS DETECTION COMPARISON PART 2 ... 74

TABLE 25: SMELLS DETECTION COMPARISON PART 3 ... 74

xvi

(PAGE INTENTIONALLY LEFT BLANK)

xvii

Code Listings

LISTING 1: JAVA METHOD EXAMPLE .. 31

LISTING 2: PLUGIN.XML ECLIPSE‟S POPUPMENUS CONTRIBUTION ... 40

LISTING 3: SMELL ANNOTATION TYPE ... 41

LISTING 4: SMELL ENUM TYPE .. 41

LISTING 5: LONG METHOD ANNOTATION ... 45

LISTING 6 - LONG METHOD AND DUPLICATED CODE ANNOTATION ... 46

xviii

(Page intentionally left blank)

1 | P a g e

1 Introduction

Contents

1.1 Motivation .. 2

1.2 Context ... 3

1.3 Solution .. 3

1.4 Expected Contributions ... 4

1.5 Document Structure .. 4

2 | P a g e

1.1 Motivation

As advocated by the agile XP methodology [1], refactoring techniques are sought to

reduce costs associated with software life cycle at both the construction phase [2] and

the production phase [2] by supporting iterative and incremental activities and also by

improving software extensibility, understandability and reusability [3]. Taking into

account that software maintenance activities are the most costly in the software life

cycle [4], [5],[6], tangible benefits are expected from regularly performing refactoring.

Empirical evidence showing the dire consequences of code infested with smells, seems

to concur [7].

Even with an approach based on guidelines offered by Beck [1] and Fowler [3], the

need of informed human assistance is still felt, to decide where refactoring is worth

applying [8]. It is here that the concept of code smells makes a contribution [3].

Nevertheless, we have found, in the context of post-graduate courses, that the manual

detection of code smells is an excessively time-consuming activity (therefore costly)

and is error-prone, as it depends on the developer‟s degree of experience and intuition.

Empirical studies on the effectiveness of code smells detection techniques are still

scarce, but there is some evidence that their eradication is not being achieved to a

satisfactory degree, often because developers are not aware of their presence [9]. This is

due to the lack of adequate tool support, which requires sound techniques for code

smells diagnosis. The subjective nature of code smells definition hinders that soundness

[3, 10].

Currently used code smells detection techniques come in two flavours. The first

concerns qualitative detection using (inevitably biased) expert-based heuristics. The

latter uses thresholds on software metrics obtained from the source code under analysis

and seems more appealing for supporting automation due to its repeatability. However,

it has two important preconditions for effective use. First, the same set of metrics cannot

be used to detect all smells of a catalog such as the one in [3] since code smells are very

distinct in nature. Second, even with a customized set of metrics chosen by an expert for

detecting a particular smell, the resulting model must be calibrated, i.e., its internal

values must be determined to reduce false positives and false negatives. That entails an

empirical validation based on existing classification data. Mantyla et al. [11] confirm

the difficulty of assessing code smells by using metric sets and the hard task of defining

a detection model.

3 | P a g e

Even worse, studies of refactoring essentials such as smells detection and quality effects

upon refactoring are still scarce, with little empirical evidence on both ends [9].

The main point is that even the most mature activity of the refactoring process (e.g.

refactoring mechanics) is not fully automatic. Noting that the remaining activities of the

process are considerably more debatable, much research is necessary for more

systematic refactoring usage [8].

1.2 Context

The design and development process has a lot to gain by using assessment techniques to

help effectively identify code smells, as well as helping to know when refactoring can

be beneficial. Code smell identification can be used through intuition, according to the

programmer or designer‟s degree of experience, but it is desirable to better support it

through more objective and precise means (using metrics).

It is of paramount importance the usage of the right software metrics, since these

represent the most effective way to supply empirical evidence, contributing to our

understanding of the different dimensions of the software quality concerns. But the

refinement of metrics to use for a particular code smell can only be obtained with

experienced expert‟s knowledge and it is even suggested it might be impossible for

some cases [3, 12].

1.3 Solution

This work contributes to the field of code smells detection by providing an automated

process, supported by a tool (an Eclipse plugin), capable of code smell assessment in

Java source code in an objective and automatic way. In contrast with existing proposals

that rely purely on the opinion of a single expert, we propose a statistical based

detection algorithm that will go through progressive calibration based upon a

developers‟ community. The detection algorithm, based on Binary Logistic Regression,

was initially calibrated by using a moderately large set of pre-classified methods (by

human experts) and validated for the Long Method code smell, as depicted in Bryton et

al. [10]. The larger the set, the better is expected to be the detection. This approach

relies on the community of users to perform continuous recalibration of the code smells

detection models (one per each smell).

4 | P a g e

A prototype version of the Smellchecker tool is presented: an Eclipse plugin for

detecting code smells in Java code. This prototype allows smell tagging, visualization

and detection. The assessment of this automatic process validity will be made using the

Long Method code smell. On a second phase the process will be pushed further to test

the same analysis process with other code smells to see if it is extendable.

1.4 Expected Contributions

The expected contributions of this work are the following:

 Automate an objective and semi-automatic technique for code smells

detection based on Binary Logistic Regression;

 Further validate the soundness of that process for the detection of th

Long Method code smell;

 Validate the process with other code smells detection;

 Improve metrics for code smells assessment;

 Extend the Eclipse IDE with a code smell detector tool.

1.5 Document Structure

This document has a chapter on a brief notion of Software Quality, followed by a

detailing chapter about Refactoring. The description of our automated solution follows.

Then the Smellchecker plugin is explained. A case study is presented next. Concluding

the document with conclusions and future work and the bibliographical references.

5 | P a g e

2 Quality

Contents

2.1 Quality Models ... 6

2.2 Software Metrics ... 6

2.3 Empirical Evaluation .. 6

2.4 ISO 9126/IEC ... 7

6 | P a g e

Software development methodologies are used to enhance the quality of software

products and to reduce its production costs [13]. Software quality assessment is a

process in software development. Depending of the software development methodology

in use, different aspects of the source code can be evaluated.

2.1 Quality Models

Quality models convey an overview of the set of characteristics that are indicative of

product quality and the way of measuring them. These models are usually constructed

in a tree-like structure with the main quality factors divided into a set of quality sub-

factors or criteria that are easier to understand, quantify and measure. Actual metrics are

proposed for the criteria [14].

2.2 Software Metrics

In Software Engineering metrics are used to collect data of entities regarding: the

process of software production, its products and resources required [14]. Software

metrics can measure internal or external attributes. Internal attributes of a product,

process or resource can be measured solely on its own, separately from its behavior.

External attributes, on the other hand, are measured taking into account how the

product, process or resource relates to its environment. Its behavior is the focus.

Examples of internal attributes are the size of a software module in terms of lines of

code; the complexity in terms of how many decision points exist in the code; or the

dependencies among modules. This kind of attributes can be statically measured.

The number of failures experienced by the user, or the time it takes to retrieve an

information from a database, are examples of external attributes and can only be

measured at runtime.

2.3 Empirical Evaluation

Empirical evaluation is a key activity to enable us to obtain evidence and learn about the

quality of our software artifacts. Empirical evaluation is a deep concern to researchers

and practitioners in the area of software development.

Systematic assessment of software development techniques is imperative through all the

software lifecycle phases, from requirements engineering to implementation and

maintenance. For example, estimation models and measures of software internal

7 | P a g e

attributes are assessment techniques that can assist software developers, managers,

customers, and users to characterize and improve the quality of code and products. As a

consequence, assessment is a central issue to enable the effective transfer of new

construction techniques to the mainstream of software development and to gain

industrial attention for the new techniques. In [9] Bennett et al. point out to the need of a

code smell assessment strategy and means to apply it. The work in this dissertation

contributes to that end, since it aims at improving the code smell detection process by

means of a quantitative based decision process, based on complexity metrics collected

from source code.

2.4 ISO 9126/IEC

ISO/IEC 9126 [42] is an international standard for the evaluation of software. It builds

on previous work done by McCall [15] and Boehm [16].

It defines a quality model which includes a set of primary characteristics under which

the software should be evaluated. These characteristics are further refined in sub-

characteristics comprising the totality of the internal and external quality model [43].

According to the standard, source code quality can be characterized by the following

main characteristics: functionality, reliability, usability, efficiency, maintainability and

portability.

ISO 9126 also addresses guidelines for the measurement of the characteristics of the

quality model by using external metrics [45], internal metrics [44], and quality in use

metrics [46].

8 | P a g e

Fig. 1: ISO 9126 Quality Model

9 | P a g e

3 Refactoring

Contents

3.1 Refactoring: Meaning and Context .. 10

3.2 Refactoring Process .. 11

3.3 Code Smells .. 13

3.4 Refactorings Format.. 17

3.5 Illustrative Example of a Refactoring Application ... 18

3.6 Refactoring Tools ... 19

10 | P a g e

3.1 Refactoring: Meaning and Context

As the evolution of a software system causes continuous readjustments to its code base,

its internal structure becomes more complex and the initial design may become

progressively cluttered [3]. In that perspective Martin Fowler formalized a systematic

approach to cleaning up, maintaining and expanding the design in a controlled way he

defined refactoring [3].

The term refactoring was first introduced by Opdyke, meaning the process of applying

code transformations to improve code‟s structure, style and design without altering its

external behaviour [17]. Refactoring also stands for the sequence of steps in which a

behaviour preserving transformation can be made possible.

For enforcing refactorings behavior preserving nature, Opdyke [17] introduced the

notion of refactoring pre-conditions: invariants that must be true before applying a

refactoring, with Roberts [18] extending the concept to refactorings post-conditions:

invariants that remain true after refactoring application.

Since manual refactor is error-prone refactoring operates in small changes to guarantee

preservation of behaviour. To this end every alteration should be carefully tested before

being validated, hence the importance of good tests coverage and the need of a

systematic approach for their use. Common tests associated with refactoring are unit

tests. These tests concern single modules. In the context of refactoring, unit tests serve

as regression tests.

Regression testing is a software testing practice that seeks to uncover bugs in existing

functionality that may occur after functional or structural enhancements. Ensuring that

code modifications do not invalidate previously accepted tests [19].

Fowler advises systematic use of refactoring whenever it facilitates the introduction of a

new functionality, when bad design arises, and at code reviews [3]. Fowler and Kent

Beck further evolved the concept with application guidelines and introduced the code

smell notion which is the description of a symptom that might indicate a potential

problem of poor structure or style in source code aimed for refactoring [3]. Eradication

of code smells is known to improve code readability, improved implementation of

Object Oriented concepts, improved code maintainability, changeability and improved

extensibility [3].

Refactoring origins are linked to Object Oriented Development and an initial catalogue

of refactorings for source code transformation can be found in Fowler‟s seminal work

11 | P a g e

on refactoring [3]
1
. Kerievsy [20], fusing concepts of Gang Of Four‟s Design Patterns

[21], extended Fowler‟s catalogue with specific code smells and refactorings to evolve

the code to make use of design patterns.

Refactoring also found use by evolutionists occupied with a paradigm shift, Laddad [22]

suggested refactorings to migrate Objected-Oriented systems into Aspect Oriented ones.

Opening way to Monteiro and Fernandes initial catalogue [23] of refactorings and

smells proper to evolve Object-Oriented source code to its Aspect aware counterpart.

Refactoring is also advocated by Beck as one of the founding design practices in the

Extreme Programming (XP) agile methodology [1].

More recently, architectural refactoring focused in higher level design emerged as

further prove to refactorings vitality [24]. In the reverse engineering field, experimental

studies suggested that refactorings may help identify how and why a system changes

over time [25].

3.2 Refactoring Process

To prepare the refactoring process for an automate reasoning we adapted Mens and

Tourwé‟s refactoring process activities [8] to five main activities
2
:

1. Detect refactoring opportunities (Code Smells Detection);

2. Determine appropriate refactorings concerning each one of those

opportunities;

3. Select refactoring(s) to apply;

4. Assess the effect of the refactoring in software or process quality

characteristics;

5. Repeat the previous steps until no more opportunities to improve are

detected.

1 A revised and actualized source for this refactoring catalogue can be found in

http://www.refactoring.com/catalog/index.html [6 September 2011].
2
 Note that every refactor is a behavior preserving operation by definition, so the activity of guaranteeing

that the system remains functional unchanged is implied on the above steps. Also, the purpose of applying

the refactoring process is to improve code‟s quality so the checks to guaranteeing that the quality was in

fact improved are in the model.

http://www.refactoring.com/catalog/index.html

12 | P a g e

This process is presented in Fig. 2. Note that a list of refactoring opportunities is

produced as output from the first phase. The second phase associates a list of

appropriate refactorings to each entry of the previous list. In phase three, a refactoring

or a set of refactorings are selected from that list and applied. Next the quality is

assessed based on precise criteria and a quantitative result is produced. The process

iterates itself until no more refactoring opportunities arise.

Fig. 2: The refactoring process

The process described is generic enough to be applied to different software artefacts -

mainly design diagrams and source code.

The process can be analyzed at different levels of abstraction. At a higher level,

refactoring opportunities are described as generalized code smells. Selected refactorings

to remove these kind of smells are applied in a generalized way to every intervenient

artefact on the process (e.g. at this level of abstraction artefact covers classes, methods

or variables depending of the aim of the refactoring operation).

For example, considering the refactoring Rename Method aimed to remove a code

smell
3
 we could define as Long Name (i.e. symptom of an artefact name that may be too

long). In this context various occurrences of the referred code smell may be presented

throughout the code. The refactoring action must rename each one of them, resulting in

the application of several instances of Rename Method to several instances of Long

Name code smell.

At a lower level of abstraction more detail is specified and every particular instance of a

code smell is identified. Regaining the previous example, the aim is not to remove the

Long Name code smell from every artefact but instead remove a particular instance of

that smell pertaining to a single artefact.

3 In the context of chapter 4, code smell is used to identify a symptom of a design problem that may be

present in any software artefact, source code or other.

13 | P a g e

For the purpose of this work a code smell is always an identifier for a refactoring

opportunity. Refactoring is always a solution to a problem or at least a perceived

problem. Refactoring opportunities are from here on referred interchangeably with the

term code smells. The appropriate refactorings suggested to remove such smells can be

derived from catalogues. Various authors identify code smells and propose appropriate

refactorings to deal with them. The process of selecting which refactoring to apply from

the list of different possibilities is the most problematic phase of the process. It is not

yet clear how to accomplish that objective although works in the area have tackled the

problem [26].

The assessment phase is dependent of the evaluation criteria used to measure the quality

objectives for the system. In any case it should be formal and quantitatively based. The

criteria used to measure the quality of the system under refactoring should also guide

phase 3 of the refactoring process, aiding in choosing the best possible refactoring

solution.

3.3 Code Smells

A code smell is the description of a symptom that might indicate a potential problem of

poor structure in source code [3]. From the point of view of a programmer code smells

are heuristics to indicate when and what to refactor.

One example of a bad smell identified by Fowler is Duplicated Code. The simpler

refactoring for eliminating it is Fowler‟s Extract Method, where the Duplicated Code

goes in a method of his own and it is invoked where is needed [3]. The procedures for

dealing with such code smell are summarized by Fowler [3] in the following way:

 Identify where occurrences of the Duplicated Code are.

 If Duplicated Code is in different methods of the same class apply Extract

Method and invoke the new created method from the places where the

replicated code originally appeared.

 If Duplicated Code appears in sibling subclasses, apply Extract Method

followed by Pull Up Method to parent class.

 If code is duplicated in unrelated classes, then the code belongs to only one

of them and should be invoked by the others, or it may belong to neither of

14 | P a g e

the classes and should belong to a third class, either a pre-existing class or a

entirely new one.

This process of Duplicated Code smell identification, provided by Fowler and Beck,

simple amounts to: when you have identical expressions, either in the same class or

some other class, probability suggests the Duplicated Code smell is in evidence and you

should apply the respective refactoring.

In their seminal work Fowler and Beck announced 22 original bad code smells [3].

Coupled with guidelines distilling the context where they might constituted a problem

they become symptoms for bad structuring of the source code. Refactorings suggestions

were then presented to mitigate or completely resolve the stink. Although refactoring

mechanics were meticulously explained, code smells suffered from the vague aesthetic

its fancy name tried to hide. Expressed in natural language, the qualitative heuristics

served as ambiguous, confusion-prone torches set to blaze the minds afire of

practitioners, developers and common people alike as seen in the previous example.

In his book [12], Bill Wake revolved around resolving code smell problems. Providing a

set of practical examples and the first glimpse of order, Fowler‟s proposed code smells

were unequivocally divided in Smells Within Classes and Smells Between Classes. At

the same year of 2003, as part of his Master Thesis [27], Mäntylä fathered in May a

taxonomy to further expose smell‟s relationships, providing a better understanding of

the concepts evolved to five groups.

Table 1: Mäntylä Bloaters

The Bloaters

Long Method

Large Class
Primitive Obsession

Long Parameter List

DataClumps

Represents something that has grown so large that it cannot be effectively handled. Primitive

Obsession and Data Clumps are actually more of a symptom that causes bloats. When a
Primitive Obsession exists, there are no small classes for small entities. Thus, the

functionality is added to some other class

15 | P a g e

Table 2: Mäntylä Abusers

The Object-Orientation Abusers

Switch Statements

Temporary Field

Refused Bequest

Alternative Classes with Different Interfaces

The common denominator for the smells in the Object-Orientation Abuser category is that they
represent cases where the solution does not fully exploit the possibilities of object-oriented

design

Tables Table 1, Table 2, Table 3, Table 4 and Table 5 detail Mäntylä code smells

taxonomy. Respectively, from top to base: group name, smells in the group and

reasoning behind the grouping. Note that all Fowler‟s original smells are represented

except Comments and Incomplete Library Class that aren‟t included in any grouping. A

new code smell named Dead Code is introduced by Mäntylä and it represents code

fragments left behind. Pieces that were once used but currently not.

Table 3: Mäntylä Preventers

The Change Preventers

Divergent Change
Shotgun Surgery

Parallel Inheritance Hierarchies

Are smells that hinder changing or further developing the software. These smells violate the rule

suggested by Fowler and Beck which says that classes and possible changes should have a one-
to-one relationship. For example, changes to the database only affect one class, while changes to

calculation formulas only affect the other class

Table 4: Mäntylä Dispensables

The Dispensables

Lazy Class

Data Class

Duplicate Code
Dead Code

Speculative Generality

The common thing for the Dispensable smells is that they all represent something unnecessary
that should be removed from the source code

16 | P a g e

Table 5: Mäntylä Couplers

The Couplers

Feature Envy

Inappropriate Intimacy

Message Chains
Middle Man

This group has four coupling-related smells. This group has 3 smells that represent high
coupling. Middle Man smell on the other hand represent a problem that might be created when

trying to avoid high coupling with delegation. Middle Man is a class that is doing too much

simple delegation instead of really contributing to the application

Kerievsky [20] introduced the concept of refactoring source code to patterns. Updating

Fowler‟s original catalogue with new code smells that possible indicate the introduction

of patterns as a possible refactoring solution. Kerievsky also extended some of Fowlers

smells to take in account that a possible pattern could be a solution. In Table 6 are all

the code smells Kerievsky worked.

Table 6: Kerievsky Code Smells

Kerievsky Code smells

Duplicated Code Indecent Exposure

Long Method Solution Sprawl

Conditional Complexity Alternative Classes with Different Interfaces,

Primitive Obsession Lazy Class

Large Class Switch Statements

Combinatorial Explosion Oddball Solution

Literature has various evidences of new code smells beeing suggested. In most cases

they are merely reashes of Fowlers smells adapted to a particular domain: Van Emden

and Moonen produced a new set of code smells qualitative heuristics specific to deal

with test code [28], and suggesting not conformance to particular coding rules to be

identified as code smells so as specific concrete language constructs (i.e. Typecast and

Instanceof in Java) [29]. Another example is Dudziak and Wloka [30] with the

definition of two new smells: Shared Collection (a field of a collection is modified via

17 | P a g e

getter and setter methods when the access to a collection field should be encapsulated)

and Unnecessary Openness (a class has public and package-visible features that aren´t

use outside of its scope).

A domain example specific to a paradigm jump is the work of Monteiro e Fernandes

[23] where the concept of code smells is extended to support Aspect Oriented

constructs.

An indicator for the presence of code smells in the source code could come from a

higher perspective. Code smells as detailed by Fowler were suggested [31] to indicate

the presence of anti-patterns [32]. Proposing that code smells could function as

symptoms for the presence of design smells and the presence of anti-patterns the

possibility of encountering Fowler‟s code smells at the source code level.

3.4 Refactorings Format

Fowler described the code transformations known as refactorings using the following

format: name of the refactoring, summary that includes typical situations where the

refactoring is needed and what it does, motivation that indicates why the refactoring is

needed, mechanics that include a concise series of steps on how to apply the refactoring

and examples that show a code example of the refactoring usage [3].

Two different refactorings are mentioned on the above solution for resolving the bad

smell of Duplicated Code: Extract Method and Pull Up Method. Fowler provided a

detailed description on the mechanics to perform Extract Method [3]:

 Select the code fragment to be extracted.

 Create a new method with a suggestive name indicating what it‟s responsible

for.

 Copy the extracted code fragment from the source to the newly created

method body.

 Inspect the extracted fragment for variables that are local in scope to the

source method and make them parameters to the method or temp variables if

they are only use within the extracted code.

 If any of those local variables are modified by the extracted code and

needed outside of it they may be passed as return values.

18 | P a g e

 In the source method, replace the extracted fragment with a call to the new

created method.

 Test the new solution.

The motivation for the usage of this refactoring is driven by the possibility of

aggregating code that will be simpler to understand on its own method. It also increases

the potential for its reuse and makes the higher-level methods more readable, providing

a simple and descriptive naming convention for the new method is followed.

Another refactoring often used is Move Method and it is characterized by moving a

method from one class to another. This type of action is indicated when a method uses,

or will be using, more features of another class than the features of the class where it

actually is.

3.5 Illustrative Example of a Refactoring Application

Symptom of the code smell Duplicated Code is observable in Figure 1 since the first

three instructions from the methods „void hopOverLong()‟ and „void showOff()‟ are the

same (left area code).

In Fig. 3, the result of applying the Extract Method refactoring to the duplicated

instructions is displayed in the right code square. A method „void popWheelie()‟ was

created and the Duplicated Code moved to this new method. Calls to the new method

replace the old Duplicated Code fragments.

Fig. 3: Extract Method Example (adapted from[33])

19 | P a g e

3.6 Refactoring Tools

Initial refactoring tools serve the main purpose of guarantying safe transformations to

the code so the programmer don‟t have to retest the program at every single refactoring

step [3].

The origins of systematic refactoring as a practice are linked to Smalltalk [3]. So it‟s no

surprise the first proper tool for that end erupted in that niche circle. Known as the

Refactoring Browser, the tool permitted a series of automatic refactorings interactively,

in a safe and fast manner [33]. The tool gained wide acceptance once its functionalities

were integrated in conjunction with the Integrated Development Environment (IDE) for

Smalltalk the Smalltalk Browser [3].

Refactoring tools now cover all activities of the refactoring process. From smell

detection tools to prototypes developed to discover the best refactoring when more than

one can be of use [8]. Currently well known IDEs provide some refactoring support

(e.g. Eclipse, NetBeans, IntelliJ, Visual Studio). However, this support is limited to

semi-automatically applying a refactoring [8], with the developer still responsible for

selecting the area of code he wishes to refactor and assist with additional information

depending on the particular refactor the developer whishes to apply. IntelliJ is graced

with extra functionalities when compared with other IDEs since it is capable of software

inspection capabilities such as a code duplicates detection and visualization mechanism,

and a Dead Code detection system.

Automated tools base their decisions on specific metrics oriented to detect structural

bad designs or smells. Some tools use inside information (via metrics) to inspect for

code smells evidence, leaving for the user the responsibility to decide which refactor to

apply. Additionally more powerful tools try to indicate which refactor is the most

indicated to eliminate the detect code smell [34].

Simmond and Mens [35] identified one fully automatic tool, named Guru, capable of

restructuring inheritance hierarchies and refactoring methods of SELF programs [36].

 A category of tools of software visualization exists to support developers identification

of code smells [37-38].

20 | P a g e

4 Automated Code

Smells Detection

Contents

4.1 BLR Model ... 21

4.2 Automation ... 23

4.3 Models of Use ... 25

21 | P a g e

4.1 BLR Model

This work main objective is the contribution of an automatic process capable of code

smells assessment. The process here proposed is based on a technique first introduced

in 2010 by Bryton et al.[10]. The authors suggested and demonstrated the validity of a

process adjusted for code smells detection that is objective, deterministic and possible

of automation. The process was built around the idea of utilizing the power of statistical

techniques to obtain a mathematical model able to detect Long Method instances upon

source code analysis.

The approach relied on a statistical regression technique, where the independent

variables that explained the model could be drawn automatically, thus providing an

opening for automation. The dependant variable was in turn gained by directly

accessing expert‟s knowledge.

Before covering any more details on the process an explanation of the Binary Logistic

Regression Model ensues.

Binary Logistic Regression

Binary logistic regression (BLR) is used for estimating the probability of occurrence of

an event (here, the existence of a code smell) by fitting data to a logistic curve. It is a

generalized linear model where the dependent (aka outcome) variable has two possible

values (code smell present or absent) and an arbitrary set of numeric independent (aka

explanatory) variables can be used (a set of code complexity metrics). The general

equation of the logistic function used to estimate the percentage of probability of a

particular code smell is the following:

 .

Where z is called the logit, are the regressors or explanatory variables (code

complexity metrics collected from the source code) and are the regression

coefficients calculated during the calibration process. The usefulness of the BLR model

is that allows the ranking its results by probability.

To perform BLR calibration with a statistical tool such as SPSS or R, a sample with

values for all variables (explanatory and outcome) is needed. Table 7 presents an extract

22 | P a g e

of such a sample, corresponding to four methods on the org.apache.commons.cli

package from Apache Commons CLI 1.2. The collected metrics are MLOC (method

lines of code), NBD (nested block depth), VG (cyclomatic complexity), and PAR

(number of parameters). These are the explanatory variables in the BLR model. Long

Method is the dependent variable: an expert indication of the presence of the Long

Method code smell on the particular method.

After calibration and validation of the regression coefficients, the instantiated model is

used to predict the possible presence of a particular code smell.

Table 7: Sample extract for calibrating a Long Method code smell estimation model

Application ApacheCommonsCLI1.2

Package org.apache.commons.cli

Class GnuParser Parser HelpFormatter PosixParser

Method Flatten parse renderOptions burstToken

MLOC 69 67 59 46

NBD 5 5 4 4

VG 11 14 10 6

PAR 3 4 5 2

Long Method 0 1 1 0

Process Details

To use the BLR model, first we have to calibrate it to fit the data to a logistic curve that

mimics real occurrences. So a sample collecting all variables for the model is the first

step of the process.sda

The explanatory variables to be used are code complexity metrics and can be obtained

automatically by means of software applications. The choice of the adequate metrics to

select for each code smell estimation model based on BLR can be performed by using

the Wald or the Likelihood-Ratio tests.

The outcome variable is added to the model by domain experts (code smells

connoisseurs). The quality of these assessments and the quantity of data provided will

contribute for the model accuracy.

23 | P a g e

Next is the proper calibration of the BLR model using mathematical calculus to derive

the regression coefficients for the model. This can be done by a statistical engine (SPSS

or R for instance). Final step is testing the model for goodness-of-fit, and the application

of its estimations to predict code smell instances in selected code bases.

The described logic is the platform on which the process proposed in this work builds

up. Developments required for its automation and the model of use expected to

guarantee results and usability of the concept are unveiled in the following sections.

4.2 Automation

Fig. 4 outlines how the BLR model approach to code smells detection can be sequenced

to evolve it to automatic processing. Note the necessity of input by domain experts at

the start of the cycle. Although it is a limitation for automation purposes, its necessity

can be reduced and favorable conditions can be offered to ease this action, not

dismissing the fact that the power of this process and expected quality improvements to

the model rely on human effort.

Fig. 4: Code smells detection process

Since one of the goals is to provide tool support of the activities in Fig. 4, we start by

grounding this approach to more concrete terms, narrowing its scope the following way:

Code Annotation. In the first iteration, experts must tag the code sample for the

presence of code smells in methods, classes or interfaces. So to yield an adequate

1. Code Annotation
(Manual)

2. BLR Variables
Collection

(Automatic)

3. Model Calibration
(Automatic)

4. Smells

Detection

(Automatic)

5. Smells Visualization
(Automatic)

24 | P a g e

sample for the initial calibration of the models. In subsequent iterations those

developers will only tag false positives (developer disagrees with a detected smell) and

false negatives (developer identifies a non-detected code smell). These cases are

expected to decrease over time as more data results in more finely calibrated models

that produce more precise results (and more in sync with the user tastes). The finer the

results less is the necessity for the users to calibrate the model. It is expected that the

quantity of calibrations decrease over time, with the necessity for recalibration efforts

only being called for when the user starts perceiving the model as inaccurate.

BLR Variables Collection. Automatic process that requires a parser-enabled tool that

computes metrics on the target source code (the one annotated by domain experts).

More metrics means more predictable variables for the BLR model, and better chances

at estimating valid code smells predictions models. Because not all code smells are

created equal, so is the need for different metrics to evaluate each of them. Information

on code smell presence are taken from the annotations.

Models Calibration. Calibration of the BLR models by calculating and validating the

regression coefficients. It is an automatic process performed by a statistical processor.

Note that there will be one model for each code smell. Each model may have different

explanatory variables (metrics) and it is up to the end user to give the final call about

their validity, providing feedback to better attune it to his needs.

Smells Detection. Application of the calibrated BLR models to selected source code

elements. This estimates the probability of presence of the corresponding code smell in

the selected artifact.

Smells Visualization. Identification of the source code artifacts where code smells are

estimated to be present. Developers can set the threshold probability (e.g. see only the

code smells above 90% probability) for each code smell. Detected code smells will vary

depending on the selected probability threshold. Increasing the probability too much

will cause more false negatives, while decreasing it in excess will cause more false

positives. It will be up to the developer to fine tune the threshold to get the adequate

level of advice (let us call it “sensitivity”) regarding the presence of code smells. It will

also be up to the developer to decide on the adequacy of applying a given refactoring to

remove a detected code smell.

25 | P a g e

The described process can have two different usage patterns. The first concerns a single

user with a single machine. The second, a remote usage for more than one user. Next

section exemplifies them.

4.3 Models of Use

Local Usage

In this case the process (including the calibration) is completely local (Fig. 5). The user

is responsible for tagging an initial source code base to calibrate the models. Then, the

user can apply the models to detect the occurrence of code smells in all code bases of

his choice. It is also possible to refine the calibration of the model by providing

additional code smell tagging information.

The usefulness of this option is one of practical value: tuning the models, through

progressive calibrations, to personal user preferences, thus matching the models to the

user notions of where a code smell might be present.

Fig. 5: Local usage

Remote Usage

The process has a remote central server responsible for storing, on its own data base, the

code smells tagging and metrics values provided by several users (Fig. 6). With the

calibration and validation of the BLR model being performed on the server, users can

remotely query the server for the most recent model parameters. This model is

calculated from the aggregated data provided by all users, augmenting the statistical

significance of the BLR estimates and thus providing a more accurate detection of the

code smells.

User

Code

Annotation

User

data

User System

User

Metrics

Calculation

User

data

User

Calibrate

Model

User

data

26 | P a g e

One of the simpler updates the user can make is to provide feedback on false

positives and false negatives detected, thus contributing for the models‟ progressive

enhancement.

Fig. 6: Remote usage

We will further define the boundaries and scope of our detection process by providing a

concrete tool to exemplify its usage. The tool, called Smellchecker, will be described in

the next section.

User 1

Calibrate

Model

User 1

data

Code Smells DB

User 2

Calibrate

Model

User 2

data

User 3

Calibrate

Model

User 3

data

Model Calibration

(Using Data From All Users)

R

E

M

O

T

E

27 | P a g e

5 Smellchecker

Contents

5.1 Eclipse .. 28

5.2 Metrics Plugin .. 31

5.3 Smellchecker Overview .. 33

5.4 Smellchecker Architecture and Implementation .. 36

5.5 Smellchecker Usage .. 43

28 | P a g e

This chapter describes the development and implementation of the code smells

detection tool Smellchecker. Developed as an Eclipse plugin it was designed to bring

code smells detection capability to Eclipse‟s Java Development Tools (JDT).

This chapter gives details of Smellchecker‟s architecture and implementation and

examples of use. First it starts with a description of the Eclipse Software Development

Environment (IDE), its plugin architecture and the concepts behind JDT‟s source code

manipulation with Java Model and the Abstract Syntax Tree. Because Smellchecker‟s

extensively use Metrics Plugin 1.3.8 functionalities a section detailing it precedes a

Smellchecker‟s plugin overview. Detailed architecture and implementation

specifications are given next. Ending this chapter is an exploratory example of

Smellchecker‟s usage.

5.1 Eclipse

Eclipse is an open platform. It was designed to be extensible. At the core is the Eclipse

Software Development Kit (SDK), with which we can build various tools. These

products or tools can further be extended by other tools. For example, a simple text

editor can be extended to create a XML editor. Eclipse‟s extensibility is achieved by

creating these products/tools in form of plugins. Fig. 7 shows the principle components

within Eclipse´s SDK.

Fig. 7 Eclipse Software Development Kit

29 | P a g e

Rich Client Platform (RCP) provides the architecture and framework to build any rich

client application. Integrated Development Environment (IDE) is a tools platform and a

rich client application in itself. It is possible to build various kinds of tools by using the

Eclipse IDE. Plugin Development Environment (PDE) provides all tools necessary to

develop plugins and RCP applications. Java Development Tools (JDT) is a complete

Java IDE that provides APIs to access and manipulate Java source code. It also permits

the creation of new projects and handles modifications to existing ones, providing the

tools to build and launch Java programs.

Plugins

Eclipse is built upon the OSGI framework (Equinox) . The OSGi framework provides a

dynamic modular architecture in which bundles can be deployed (Eclipse uses the term

plugins). Eclipse plugins are the same as OSGi bundles and are used to extend the

Eclipse framework. Eclipse isn‟t a single Java program, but a small program which

provides the functionality of typical loader called plugin loader.

A plugin is a Java program which extends the functionality of Eclipse in some way.

Each Eclipse plugin can either consume services provided by other plugin or can extend

its functionality to be consumed by other plugins. These plugin are dynamically loaded

by Eclipse at run time on an on-demand basis.

When a plugin wants to allow other plugins to extend or customize portions of its

functionality, it will declare an extension point. The extension point declares a contract

(typically a combination of XML markup and Java interfaces), that extensions must

conform to. Plugins that want to connect to that extension point must implement that

contract in their extension. The key attribute is that the plug-in being extended knows

nothing about the plug-in that is connecting to it beyond the scope of that extension

point contract. This allows plug-ins built by different individuals or companies to

interact seamlessly, without their knowing much about one another besides the

extension point contract.

A plugin consists of a bundle manifest file: MANIFEST.MF that provides important

details about the plug-in, such as its name, ID, and version number. The manifest tells

also what Java code it supplies and what other plug-ins it requires. A plugin may

provide code, documentation, resources bundles, or data to be used for other plugin.

30 | P a g e

A plugin can also provide a plugin manifest file: plugin.xml. It describes how it extends

other plugins, or what capabilities it exposes to be extended by others (extensions and

extension points).

Java Model and Abstract Syntax Tree

Java‟s JDT allows accessing Java source code in two different ways: either by using the

Java Model or by using the Abstract Syntax Tree (AST). Where Java Model is a light-

weight and fault tolerant representation of the Java project. It does not contain as many

information as the AST (e.g. it does not contain the main body of a method) but is fast to

re-created in case of changes. Eclipse‟s outline view uses the Java model for its

representation, this way the information in it can quickly be updated.

The AST is a detailed tree representation of Java source code. The AST defines API to

modify, create, read and delete source code. Each element in the Java source file is

represented as a subclass of ASTNode. Each specific AST node provides specific

information about the object it represents. For example you have MethodDeclaration

(for methods), VariableDeclarationFragment (for variable declarations) and

SimpleName (for any string which is not a Java keyword). Fig. 8 shows the overall AST

workflow and how it relates to file source code.

Fig. 8: AST workflow [adapted from http://www.eclipse.org]

http://www.eclipse.org/

31 | P a g e

5.2 Metrics Plugin

Java Metrics 1.3.8 provides metrics calculation and a dependency analyzer plugin for

the Eclipse platform. Our main interest is on the metrics provided. Yet, we decided to

keep all Metrics Plugin functionalities because they provide for a good analysis. Even if

Smellchecker‟s cannot understand the dependency analyzer visioning, still

Smellchecker‟s users may find it useful to check dependencies between modules.

Listing 1: Java method example

Metrics resources provide a good compliment to code smells tagging operation. Users

can check metrics of a particular software element while annotating the code, this may

provide useful to make more informed decisions. For example, when wondering if the

code on Listing 1 should be annotated for the Long Method presence, the user may

check for metrics values to assist him by looking at the Metrics view on Fig. 9.

Fig. 9: Metrics view of a method metrics

32 | P a g e

Metrics provides summarized information on metrics calculated at the level of the

components: package and system. This measures are shown with average and standard

deviation calculation. This is important because the aggregated info can be drilled down

within the view to decompose it to its basic elements. For instance, it means that the

Method Lines Of Code (MLOC) metric is summarized (sum aggregation) at the package

level and with a click on the metric name within the view, information of MLOC of all

classes within the package will show. Information we can further drill down in the same

view by choosing to see the methods metrics.

An example is seen in Fig. 10, where the metric MLOC at package level is drilled down

to the compounding classes information. This can facilitate code inspection for code

smells, allowing the user to check metrics organized by their value. Spotting on the

example given in Fig. 10 the classes with more MLOC within a package/system

component for further analysis.

Fig. 10: Summarized metrics at package level

Metrics provide other views and visualization capacities, more information on the

Metrics Plugin may be found online
4
.

Most important for Smellchecker is the capacity of calculus of various metrics types for

Java source code elements.

4 Metrics Plugin: http://metrics2.sourceforge.net/

http://metrics2.sourceforge.net/

33 | P a g e

Table 8 displays all the metrics available on Metrics Plugin, and this is the ones

Smellchecker will use. Details of the metrics names, with the kind of element of a Java

project they can be measured on, are in the table.

Table 8: Metrics Plugin 1.3.8 metrics

Metric Acronym Type Method Package/System

Number of Methods NOM X X

Number of Fields NOF X X

Total Lines Of Code TLOC X X

Method Lines Of Code MLOC X X X

Number of Parameters PAR X

Specialization Index SIX X

McCabe Cyclomatic Complexity VG X X

Weighted Methods per Class WMC X X

Lack of Cohesion of Methods LCOM X

Afferent Coupling Ca X

Instability I X

Abstractness A X

Normalized Distance from Main Sequence Dn X

5.3 Smellchecker Overview

Java was the language chose for the tool implementation, and it is also upon Java source

code that the tool will detect code smells instances. That is because Java is a modern,

well known, all purpose programming language, with many open source available

software solutions we could use for aiding in implementing the Smellchecker tool.

Eclipse framework was selected as the target platform to support Smellchecker‟s

development due to its advanced Java support, available refactoring features, along with

its plugin development facility. Eclipse is also a stylish and appropriate choice for our

tool deployment (as a plugin) since its architecture by components supports integration

of virtually any component within its architecture. And yet, despite its advanced support

for Java source code refactoring, as part of its standard JDT toolkit, code smells

detection is by and large completely lacking (2005‟s Code Nose Plugin[39] is the

known exception, although a version of it seems to not be available online for testing or

using purposes).

34 | P a g e

Smellchecker was developed as an Eclipse plugin using Eclipse‟s Plugin Development

Environment (PDE). The Smellchecker prototype architecture uses Java 1.6 and it was

built upon Eclipse platform 3.5.

In order to concentrate our efforts on the specialization aspects of the code smells

detection process a mechanism that provided code metrics calculations was necessary.

Although there are various tools that perform metrics calculations on Java source code,

few of them provided the capability of exporting its calculations in a way that could be

used for automation. So we focused on open source projects that provided free access to

their source. We tried CyVis
5
 0.9.0, Dependenct Finder

6
 1.2.1, State of Flow Eclipse

Metrics
7
 3.14, and Eclipse Metrics

8
 1.3.8.

The combination of quality and quantity of metrics, combined with its nature as an

Eclipse plugin, made Eclipse Metrics Plugin 1.3.8 the natural and most appropriated

choice for incorporation within our tool. And comparing with State of Flow Eclipse

Metrics 3.14, Metrics 1.3.8 was the best documented version of the two.

Smellchecker‟s extends the source code of the Eclipse Metrics 1.3.8 plugin for the

purpose of supporting the functionalities required for the code smells detection activity.

It leaves Metrics components almost unchanged, only making a minor modification to

its activator class. All other contributions are on Smellchecker‟s own packages and the

only resource used at source level from Metrics is a static class that returns the metrics

calculations for a Java element passed as input.

There were two main reasons why the choice was made for directly extending Metrics

Plugin source code. First of them is that the plugin does not implement an extension

point that provides access to elements metrics. It only provides extensions to add new

metrics and to add new export type files. The other is that it would not be desirable to

burden the user with the necessity of exporting the metrics calculations from Metrics

and feed them to Smellchecker. Also, the computational burden would be elevated by

the necessity of parsing an entire file every time metrics were needed. Even if we started

by reading Metrics entire project metrics calculations only once in the beginning of the

process, every time any change occurred in the project‟s source code would mean the

repetition of the process (and a heavy one). A better solution is to make the necessary

5 http://cyvis.sourceforge.net/
6 http://depfind.sourceforge.net/
7 http://eclipse-metrics.sourceforge.net/
8 http://metrics2.sourceforge.net/

35 | P a g e

modifications to the Metrics Plugin source code (that is why the project‟s source code is

made available) and make the process automatic.

The cleaner and transparent way of giving Smellchecker‟s plugin direct access to

Metrics‟ metrics calculations, would be by adding to Metrics an extension point to

permit direct metrics access, and then making Smellchecker implement an extension for

it. This was not our solution however. Ours was to directly change Metrics and add the

new behavior to the source code itself. This decision comes from the fact that in the

future, new metrics must be added to Smellchecker‟s. And as it is, Metrics extension

point that permits adding new metrics, makes restrictions on the type of calculations it

does, namely that they must be numeric. So, Metrics core code itself must be updated to

achieve higher flexibility on the metrics it processes. Also, to deal with Metrics source

code was to have a good head start to know how it operates and how to modify it.

The metrics supported by Smellchecker are the ones Metrics provides. Was behind the

scope of this work to extend them, so the BLR explanatory variables we can use are

confined to Metrics measurements. Which constraints the number and efficiency of

code smells that can be detected. For instance, we could test to relate Lines of Code

(LOC) with the Duplicated Code smell. In fact one could argue that Long Methods have

a high probability of having Duplicated Code in them. That may be true. But it is also

true that even a method with one line of code could be duplicated. I happens all the time

when different classes implement the same basic functionality because they are unaware

of other classes implementations. So for Duplicated Code more efficient methods

already exist [40] than trying to support their detection with Smellchecker‟s current

available metrics. That is not saying that the BLR approach Smellchecker uses is not

powerful enough for some smells, but metrics should be adjustable to a specific code

smell, and for the current moment we only can use in Smellchecker‟s a restricted subset

of them.

Smellchecker‟s is fully integrated on the Eclipse IDE. Source code annotation will be

permitted by accessing the appropriate option of code smell tagging on the context

menu for both classes and methods entities. The tagging will be evident on the source

code in the form of Java annotations. Java annotations were the choice for marking the

code because they are native to the Java language. Although they are not guaranteed to

always have support (some java compilers may delete annotations information),

Eclipse‟s JDT makes sense of them and they are the only way to express outside

information on Java source code using the standard Java language. The other choice at

36 | P a g e

our disposable was by using Eclipse‟s Markers, but that way it would be confined to the

Eclipse framework and the annotation information would have to be saved outside the

Java files to guarantee persistence. Java annotations are visible in the source code and

the files can be parsed by another tool to get the annotation information.

In terms of statistical processing Smellchecker‟s first and only choice was R
9
. R‟s

powerful statistical engine was even more appealing because of its open source nature.

BLR coefficients model calculation activity will be dynamic and to the user is required

have the statistical R tool installed. Following sections will detail the components

development and integration and it will be clear what is expected from R and how the

communication between Smellchecker and R will proceed.

Interaction with Smellchecker‟s users is made trough Eclipse‟s Workbench facilities

and main Java text editor.

Details of Smellchecker‟s architecture and implementation solutions follow in the next

section.

5.4 Smellchecker Architecture and Implementation

The development of the proposed code smells detection solution can be agruppated by

functionalities (traceable to the activities described in Fig. 4) that support:

 Source Code Annotation (Java annotations)

 BLR Variables Collection (Eclipse Metrics Plugin)

 BLR Calibration (R communication)

 Code Smells Detection (source code parsing)

 Code Smells Visualization (Eclipse JDT)

An overview of all the major components comprising Smellchecker is provided in Fig.

11.

9 R: http://www.r-project.org/

http://www.r-project.org/

37 | P a g e

Fig. 11: Smellchecker‟s component diagram

User‟s interactions with the application are made through Eclipse‟s workbench elements

and they are associated with three main user interaction components: Code Smells

Tagging «UI», BLR Calibration «UI» and Code Smells Detection «UI». This are all

associated with the JFace UI «Eclipse» component that is responsible for the actual UI

interaction.

To each of this components corresponds a action phase of the detection process that

requires user interaction. Code Smells Tagging «UI» deals with the Source Code

Annotation, BLR Calibration «UI» calibrates the BLR model, and Code Smells

Detection «UI» is associated with the Code Smells Detection and Visualization

functionalities previous stated. In order to perform each action required by users,

internal components are responsible for the dynamics of the process.

The Code Smells Tagging «UI» interacts with the Tag Source Code «Smellchecker»

component to write annotations to the code. Code Smells Tagging «UI» is comprised of

a set of Eclipse‟s user interface environment (UI) workbench popup menus actions

necessary to annotated the code. It also receives the appropriated action events raised by

the user and calls the appropriate function reasoning on the Tag Source Code

«Smellchecker» component that is responsible for updating the source code. Being this

last component responsible for writing or deleting annotations to the code.

38 | P a g e

BLR Calibration «UI» has a set of menu choices responsible for receiving user calls for

retrieving the variables necessary to the BLR model and its calibration. When the action

is to retrieve the BLR variables call to the component Parse Code Variables

«Smellchecker» are made. When it is for the proper BLR model calibration it interacts

with the component RIntegration «JRI» that is responsible for communicating with R

application (R «Statistical Engine» for statistical processing and the retrieval of the

calibrated coefficients. Parse Code Variables «Smellchecker» is responsible to parse

the code and get the information from the Java code smells Annotations and the metrics

calculations from the Metrics 1.3.8 «Metrics» component.

The Code Smell Detection «UI» is called when the user gives order to detect the code

smells in the code with the BLR calibrated model. It deals with component Detect Code

Smells «Smellchecker» responsible for applying the BLR estimation to the code

elements in search for smells confirmation and then annotate the code when applied.

Common to all «Smellchecker» components is the Persistence«DB» component. Where

the global information is stored and retrieved.

Now we will detail each of the components, separating them in sections regarding their

actions: UI construction, Source Code Annotation, Metrics Integration, BLR calibration,

Code Smells Detection, and Code Smells Visualization.

Code structure

Smellchecker‟s source code are organized in seven different packages:

package com.tp.refactoring.smellchecker.persistence;

package com.tp.refactoring.smellchecker.codesmells;

package com.tp.refactoring.smellchecker.regression;

package com.tp.refactoring.smellchecker.rinterface;

package com.tp.refactoring.smellchecker.smellsupdater;

package com.tp.refactoring.smellchecker.ui;

package com.tp.refactoring.smellchecker.ui.preferences;

Persistence package has the SmellcheckerFileManager() Class that mediates the

creation of files and reads and writes in order to preserve metrics information. While

most files are created dynamically during the plugin operation, two files keep persistent

data regarding all variables calculated to the moment for classes or methods. This

package also comprises a Class (Initializer()) responsible for keeping all symbolic data

information during run time, for instance the code smells identifiers, metrics names and

39 | P a g e

other constants that Smellchecker classes need to utilize and that it can obtain only from

the Initializer() Class.

Code smells package has the classes that represent the annotated elements in the code,

as well as the metrics values for classes and methods. The regression package has the

classes that comprise the BLR model, its coefficients and calculation. Package

rinterface communicates with the R engine and it is responsible for feeding it with the

appropriated commands and retrieve the BLR model coefficients. The smellsupdater is

the set of classes that transverse the code and retrieves metrics and source code

annotations and call the appropriated function in persistence to record the variables. The

ui package has all the elements that comprise the views of the system and the elements

for their updates. Package preferences is capable of setting the plugin preferences and

property pages.

UI construction

Graphic elements on the Eclipse are constructed when the workbench is first created (on

Eclipse loading). When Eclipse‟s reads Smellchecker‟s plugin manifest file (plugin.xml)

it knows that this plugin contributes to the UI and that its contributions to the

workbench rely on a entry to the menu bar („Smellchecker‟ menu), a toolbar with

actions specific to Smellchecker, popup menus that are element context sensitive, and a

set of views for visualization purposes. When Eclipse first loads only the graphical

display of the contributions is added to the workbench. The entries taking the form of a

proxy object that are only initialized upon user action on them.

Extensions to the popUpMenus are elements of the Code Smells Tagging «UI»

component. One of Smellchecker‟s contribution to Eclipse‟s popupMenu is detailed in

Listing 2.

40 | P a g e

<extension point="org.eclipse.ui.popupMenus">

<objectContribution

objectClass="org.eclipse.jdt.core.IMethod"

 id="...method">

 <menu

 label="Tag Smell"

 path="...menu"

 (...)

<action label="Long Method"

menubarPath="..."

class="...CodeSmellsTag"

id="LongMethod">

</action>

Listing 2: Plugin.xml Eclipse‟s popupMenus contribution

This extension point is element sensitive and contributes only to objects of the type

IMethod, meaning that wherever there is an IMethod object in Eclipse‟s UI, the entry

„Tag Smell‟ will be present and an example of its elements is the action with the label

„Long Method‟ that creates the Smellchecker‟s Class “CodeSmellsTag”(from the

package codesmells) upon selection. Entries for other code smells are added here, each

of the code smells being described not by the object they create (all create element of

the same “CodeSmellsTag” Class) but by their id in Smellchecker‟s internal processing

and by their label in the UI.

Other contributions to Eclipse‟s workbench that are extension points to graphical

elements are actions (“org.eclipse.ui.actionSets”) and views ("org.eclipse.ui.views").

The actions represent menu and toolbar entries (the same actions in both) of three

actions. They are the „Retrieve Variables‟ representing the component Parse Code

Variables «Smellchecker» and activating the Smellchecker‟s Class „GetCodeMetrics‟

from the package smellsupdater. Other action is „RIntegration‟ regarding the

component RIntegration «JRI» (Class RIntegration), And the action „SmellsDetector‟

(Class „SmellsDetector‟) represents the component Detect Code Smells

«Smellchecker».

Source Code Annotation

Eclipse‟s SWT/JFace UI Framework provides user interface resources that allow the

code smells annotations assistance. That is the case of the previous described

contributions to Eclipse‟s popupMenus. They make tagging actions contributions to

methods and types on the Eclipse workbench via a popup menu.

41 | P a g e

Each action is the representation of a code smell. The Class called (when a smell is

selected) is “CodeSmellsTag”, and within the Class the different smells are identified by

the id of the action that created the Class (each time a code smell is selected, an object

of the class it references is created). The class now checks the element (IMethod or

IType representing methods and types on the Java JDT Model) for the presence of a

Java Annotation for the specified smell. The JDT´s Java Model is in most practical

respects “read only”. JDT‟s Java Model do not present any functionality to change the

code. So the changes are made directly to the Java source file with the IBuffer interface

using the representation of the java class: the compilation unit. Changes with IBuffer are

similar to StringBuffer, with the added difference that changing an IBuffer associated

with a compilation unit propels the resulting changes throughout the Java Model. So, if

the annotation for the particular code smell is already in the code it will be erased by

deleting it using the IBuffer. If the code smell is not there it is added with IBuffer.

The annotation operation may be performed manually by annotating the code directly in

the Eclipse text editor. Java annotations used for the code smells tagging are defined as

in Listing 3 and Listing 4.

public @interface Smells {

 Smell[] type();

 String author();

}

Listing 3: Smell annotation type

public enum Smell {

LongMethod, LongParameterList,

LargeClass, LazyClass,DuplicatedCode

}

Listing 4: Smell enum type

The annotations information stays only in the java source file. When is time to access to

them it must be through the JDT‟s Java Model.

BLR Variables Collection

When the user selects „Retrieve Variables‟ action either from the Smellchecker toolbar

or from the Smellchecker‟s menu the action will create the Class „GetCodeMetrics‟.

This class is responsible for athwart the project elements, getting the metrics for each

42 | P a g e

class and each type, as well as their annotation information regarding code smells. The

function Dispatcher.getAbstractMetricSource(JavaElement) from the Eclipse Metrics

project returns the metrics for the element. Annotation information is accessed through

the JDT‟s Java Model.

Metrics calculation is accomplished by the Eclipse Metrics 1.3.8 plugin, and since we

are extending its source code we have direct access to its functions. Metrics calculations

are done in build time and persisted with JDBM
10

 (is a transactional persistence engine

for JavaJDBM).

All variables data are collected to four files. A set of four files for each project the user

tries to collect variables for the BLR model from.

The Class SmellcheckerFileManager(), in the Smellchecker persistense package,

manages the files. One file gathers all metrics collected for code smells methods

(including the smell presence variable). The other gathers the metrics collected for all

classes and its annotations. The two other files are formatted versions of the other ones

that can be load to R for the BLR calculation.

Models calibration

Calibration and validation of the BLR models is performed by the R statistical engine.

Interaction between the plugin and R is made with JRI, a Java/R Interface that allows

running an instance of R as a process that responds to command line type commands

and outputs back to Java the data resulting from its computations.

R is dynamically loaded with the Java JRI jar Class Rengine(). Calls to its function

eval(String) permit to feed R with commands like its command line interface from the

standalone version.

The function that calculates the coefficients for the BLR model is from the form:

“logit<- glm(LongMethod~ MLOC + NBD + VG + PAR, family=binomial

 (link="logit"), na.action=na.pass)”

Where LongMethod is the dependant variable and MLOC, NBD, VG and PAR the

independent variables. The call coefficients(logit) gets the coeficients from the model in

a String format that needs to be parsed.

10 http://jdbm.sourceforge.net/

43 | P a g e

There is only one calculation at each time for a particular code smell selected by the

user.

Smells Detection

The code will be passed through for each method or class. Depending of what smell is

selected the BLR estimation will be applied to the corresponding element. It is here that

the value of the estimation is tested against the threshold value selected by the user. If

the value of the estimation is higher or equal to the threshold a code annotation (similar

to the ones previously described) is inserted in the code using the principles already

described. If the node is considered to have a code smell, then a JDT Marker is used to

mark it as problematic and it will rise a warning the same way as Eclipse‟s compilation

warnings appear.

Smells Visualization

Since nodes identified by the model have been marked, they will appear in the error log

view and they will have the same properties as compiler errors. So a jump to the smelly

section of the code can be performed upon a click. Also the code annotated from the

previous action.

5.5 Smellchecker Usage

Smellchecker makes several contributions to Eclipse‟s workbench Java integrated

development environment. Relying on Eclipse‟s Java editor and Java Development

Tools (JDT), added support is presented for source code tagging, processing and

visualization of Code Smells related information.

Fig. 12 shows the user perspective with main components for Smellchecker operation.

Smellchecker plugin consists of a specialized toolbar. A „Smellchecker‟ menu on

Eclipse‟s menu bar providing the same actions presented in the toolbar. A set of views.

A collection of actions contributions appearing in the context of Java element types.

And properties and preference pages to assist configurations.

The following sections will explain all components in the context of their usage.

44 | P a g e

Fig. 12: Smellchecker Perspective

Text EditorSmellchecker Toolbar
Long Method

Annotation
Code Smell Tags Method Context Menu

Multiple

Stacked

Views

Metrics View

Smellchecker Menu

45 | P a g e

Annotating

Fig. 12 shows the user perspective with main components for Smellchecker operation.

One of its components is a collection of actions contributions appearing in the context

of Java element types. The „Tag Smell‟ context menu is presented for both classes

(IType Java Elements to be exact) and methods declarations. Within this menu the code

smells names are representative of the type of annotation to be made for the selected

element.

The context menu „Tag Smell‟ is sensitive to the kind of code smell to be associated

with the class or method elements, presenting two different sets adequate to each nature.

Methods can be tagged for the presence of: Long Method, Large Parameter List,

Duplicated Code, Dead Code, Speculative Generality, Temporary Field, and the rest of

Fowler‟s catalogue of code smells [3]. Classes can be annotated for: Large Class, Lazy

Class, Data Class, Duplicated Code, Speculative Generality, as well as the rest of

Fowler‟s catalogue of Class code smells.

Upon action selection a Java CodeSmells annotation will be seen in the editor. In the

case of Fig. 12 the code smell tagging citation assumes the form:

@Smells(type = {Smell.LongMethod}, author="TP")

Listing 5: Long Method annotation

The annotation refers to the method arrangeOptions(Collection<String>)and denotes

the presence of the Long Method code smell has perceived by the user. Further selection

of the same action will delete the code smell Long Method annotation from source code.

In short, if the method or class does not have an annotation for the perceived Code

Smell the corresponding annotation will be inserted, otherwise it will be deleted. Has in

all updates to the source code via Eclipse‟s Text Editor, the changes will only be

committed to file with Eclipse‟s save command.

The annotation operation may be performed manually within the Text Editor by

Smellchecker users, obliged they respect the Code Smells annotation syntax.

Classes and methods can be inflicted by more than one Code Smell at a time. For

instance, in the previous example, arrangeOptions(Collection<String>) - annotated for

the Long Method code smell - can be extended to include the Duplicated Code smell.

Selection of this new smell symptom from the method‟s „Tag Smell‟ context menu will

update the annotation in@Smells(type = {Smell.LongMethod}, author="TP")

46 | P a g e

Listing 5 to the one in

Listing 6 :

@Smells(type = {Smell.LongMethod, Smell.DuplicatedCode }, author="TP")

Listing 6 - Long Method and Duplicated Code annotation

Further selection of the method‟s context menu Duplicated Code action will delete the

smell annotation.

. When the indication of no code smell is signaled to the element (e.g. selecting Long

Method again) the CodeSmells annotation is removed altogether.

There is no restrictions to the number of code smells an element can have. Annotations

tagging via the „Tag Smell‟ menu actions will account for the non occurrence of

duplicated entries and misspelling of code smells.

Note that manual insertions are less restrict and duplicated entries or the misspelling of

a method code smell for one of a class are not warned by the Java compiler. If a code

smell indication do not conform to its right usage it will be ignored by the parser later.

Smellchecker users just need to be accountable for annotation of code smells presence

within the code. All other elements will be perceived has free of code smell symptoms.

For a most accurate calibration of the Binary Logistic Regression Model (BLR), is

imperative that all elements not annotated, are assured by the user as representatives of

code free of smell symptoms. If the user is unsure if a particular method or class is

indicative of a particular code smell, then the element can be tagged to skip the parsing

process so that its information is not fed to the BLR coefficients model calibration.

A view - context sensitive to the element selected – presents metrics calculations for all

methods and classes. Its information can be used as guidance during the code smells

annotation process aiding in an informed decision. This view (as all particular to the

Smellchecker plugin), if not visualized in Eclipse‟s workbench, is accessed via

Eclipse‟s Menu bar option „Window‟, then option „Show View‟, option „Other…‟,

Smellchecker separator and „Smellchecker: Code Metrics‟ selection.

Presented in Fig. 12, the Smellchecker: Code Metrics view can be seen in more detail in

Fig. 13.

47 | P a g e

The example showing code metrics for the arrangeOptions(Collection<String)method.

Metrics of Method Lines of Code, Nested Block Depth, Cyclomatic Complexity and

Number of Parameters are present.

Metrics in this view are the explanatory variables for the BLR model when predicting a

code smell at the method level. The view is context aware so a class, package, or

method must be selected.

If a class was selected instead of a method, a different set of metrics would be presented

by the Smellchecker: Code Metrics view.

Fig. 13: 'Smellchecker: Code Metrics' view

Setting Properties and Preferences

For the metrics process collection to occur an option must be enabled in the Java project

Properties page. In the „Smellchecker‟ separator of the Java project Properties page, the

„Enable Metrics‟ option must be checked, permitting project metrics calculation during

build cycle (Fig. 14).

48 | P a g e

Fig. 14: Smellchecker properties page

Although the metrics calculation must be enabled for each desired project,

Smellchecker‟s preferences are transversal to open projects and to Eclipse‟s work

sessions. Fig. 15 shows Smellchecker‟s Preferences page:

Fig. 15: Smellchecker preferences page

Smellchecker‟s users may tag for the occurrence of various code smells types and

instances throughout the code. Yet, when is time for the BLR model regression

coefficients calculation, the model accepts only one dependent variable at a time. In this

page the user is responsible for choosing which of the supported code smells will serve

49 | P a g e

as that variable. A default value is provided in the form of Long Method selection.

Value that users can modify at any time.

Smellchecker‟ users can set the sensibility threshold for the BLR model estimations.

Only estimations above or equal the threshold are considered indicative of a code smell

presence. The threshold can be any Real number between 0,00 and 1,00.

If the user fails to provide a threshold indication or provides a value not conforming to

specifications, a warning will be presented (Fig. 16) and the default threshold value will

be set to the Smellchecker default of 0.8.

In the last of the Smellchecker‟s preferences to be set, a field can also be edited to

identify the author of the annotations. If not specified the Operating System login (if

available) will serve that purpose.

Fig. 16: Warning Invalid threshold setting

Collecting Data

When code smells tagging is done and metrics are enabled for the project, the assisted

part of the code smells detection process is complete. Smellchecker can now retrieve all

the necessary information for the BLR model calibration, calculation, and application.

To this task a Smellchecker toolbar provides the actions necessary to proceed with the

code smells detecting process (Fig. 17). Description of the actions as provided by the

entries in the „Smellchecker‟ menu are in Fig. 18.

Fig. 17: Smellchecker toolbar

50 | P a g e

First action after the code smells tagging process is retrieving source code information

on metrics values for all methods and classes, as well as the information of the code

smells annotations.

Action „Retrieve Variables‟ is responsible for collecting to two different files the

information of code elements (methods and classes), metrics values, and indications of

code smells presence as tagged. One file gathers information for classes metrics and

corresponding code smells, while the other does the same for method metrics and its

code smells.

Retrieve Variables

Calculate BLR Regression Coefficients

Smellchecker

Fig. 18: Smellchecker menu actions

One necessary step by Smellchecker‟s users, is the selection of an element of the project

in Eclipse‟s workbench prior the „Retrieve Variables‟ call, so the plugin knows in what

project should it retrieve information from. Failure in compliance is pointed out by an

warning advice, vide Fig. 19.

Fig. 19: Warning No project element selected

Although Eclipse permits various Java projects to be open simultaneously, and

Smellchecker‟s tagging facilities the option to annotate any of them. Still, when the

51 | P a g e

retrieval of data process begins, it does so, for only one project, the one of the element

selected.

Retrieval of data runs with the internal parser ignoring malformed values, failure in

metrics retrieval or other inconsistencies that may occur for an element or other. These

kind of elements will be skipped and not added to the variables table.

When the parser finishes processing the source code elements, it informs the user of the

total tagged code smells instances (Fig. 20).

Fig. 20: Information of the total of annotations found in the code

Calibrating the BLR model

Next, is required by Smellchecker‟s users the order to calibrate the BLR model. The

data provided and collected in previous steps will now be used for calculating the

regression coefficients necessary to the model.

It is now, that the information provided by the Smellchecker „Preferences‟ page comes

in handy. Remembering Fig. 15, and the indication of what code smell should be used

as the dependant variable (it can be modified at any time).

Metrics values collected (restricted to method or classes metrics) will function as the

predictable variables, and the indication of presence of a particular code smell (gathered

from the CodeSmells annotations tags) as the outcome variable.

Action „Calculate BLR Regression Coefficients‟ is responsible for taking the correct

data variables from the files produced in the previous process. And feed them to R

statistical engine. Retrieving then the coefficients of the BLR model.

52 | P a g e

Fig. 21: Warning Database not populated

The outcome of the process is passed to the user using information messages. Fig. 21

means that no proper data base of metrics values and code smells tagging information

exists („Retrieve Variables‟ action must run).

Fig. 22: Error R is offline

Fig. 23: Error R could not compute BLR coefficients

Fig. 22 and Fig. 23 are error signals. The former informs that R statistical engine is

offline while the latter informs that R could not estimate the coefficients for the BLR

model. Either because of R internals, or because bad input data. Fig. 24 has the formula

for success. Indication that the BLR regression coefficients are computed and the model

proper to use.

53 | P a g e

Fig. 24: Success BLR model calibrated

Smellchecking

Smellchecker‟s users can now analyze the performance of the estimated BLR model.

Upon selection of the „Smellchecker‟ action the calibrated BLR model will be applied

to all elements of the source code. Depending if it was calibrated for a method or a class

code smell, so will be the kind of source code elements processed.

The calibrated BLR model will give an estimate value of the probability for a code

smell presence. Users sensibility threshold gives the element of decision on whether or

not a an element should be marked as „smelly‟. Estimations above or equal to the

threshold will be marked as code smells problematic.

Smellchecker will annotate the code in a similar way to the users annotations. Java

CodeSmells annotations will be automatically inserted when needed.

An estimation of the validity of the process will be given to the user. It is a summary

consisting of the total of detections made by the BLR estimation model. The number of

false positives detected and the number of false negatives will be shown to the use.

54 | P a g e

6 Case study

Contents

6.1 Objectives ... 55

6.2 Source Code Projects .. 56

6.3 Data collection and descriptive statistics ... 57

6.4 BLR Estimation .. 61

6.5 Conclusions .. 68

55 | P a g e

Two open source Java systems were used to validate the BLR process presented in this

work. The case study presented in this section also serves the purpose of collecting

information data to draw an analysis and discussion for the validity, extensibility and

usefulness of the Smellchecker‟s approach. First in the chapter we present the context of

the problem and what objectives our solution will explore.

6.1 Objectives

Problem Statement

The eradication of source code smells is known to improve the design, readability and

extensibility of software. Code smells indications for when to apply specific

refactorings have been devised, yet they are not objective and when they are, they are

not consensual. For example there is no threshold or collection of metrics settings that

indicate when a method should be considered long. From experience and from literature

we know that many faults are associated with methods that are too long. But what is

long? Is long related to a specific domain? Maybe with a project? Or with a developer

taste? And there is some way to derive some metrics or setting of the already existing

ones that can indicate where is the long problem?

Through empirical experimentation with the proposed BLR we will try to shed some

light on this questions defining objectives for the study presented in this chapter.

Objectives Definition

The main objective of this dissertation is reducing the subjectivity in code smells

detection. Such an ambitious and generic goal is refined in several research objectives

that facilitate its assessment achievement.

Research Objectives (RO):

 RO 1: Determine if the proposed BLR automate process is valid for Long

Method detections;

 RO 2: Determine if the quality of the detection is crosscutting to different

projects;

 RO 3: Determine if aggregated data from various projects sources makes for a

more balanced and precise BLR model.

56 | P a g e

Design Planning

Through the study of two software projects hypothesis will be formulated about the

presence of Long Method instances. This hypothesis will provide the grounding for the

BLR experimentation detection mechanism. Long method is the code smell that at first

instance may be better suited for the complexity metrics Smellchecker has. Long

method is traditionally linked to Lines Of Code and other complexity measurements

related to size [27, 39].

Obtained results will provide the ground for refinement of the defined objectives (RO1,

RO2 and RO3). And different data sets in the form of annotated projects by a domain

expert will provide the basis for empirical validation and validity of the process.

Next section describes the projects this study uses as sample.

6.2 Source Code Projects

Source code data is necessary for calibration and verifiability of validation of the results

provided by Smellchecker. The criteria for selecting the Software projects used in this

case study was that they be open source (providing availability), written in Java (for

Smellchecker‟s parser to work), relatively small (because of the necessity of manual

identification of the code smells), from the same application domain (for studying BLR

generalization over a project), and in number not inferior to two for intertwining BLR

model estimations. JOpt Simple and Apache Commons CLI projects are examples of the

established criteria. Info on the projects follows.

JOpt Simple

JOpt Simple
11

 is a Java library for parsing command line options. It attempts to honor

the command line option syntaxes of POSIX getopt() and GNU getopt_long() in the

interest of striving for simplicity. It also aims to make option parser configuration and

retrieval of options and their arguments simple and expressive.

Version used:

• JOpt Simple 3.2 (08-Dec-2009)

11 http://jopt-simple.sourceforge.net/

57 | P a g e

Apache Commons CLI

The Apache Commons CLI
12

 library provides an API for parsing command line options

passed to programs. It's also able to print help messages detailing the options available

for a command line tool.

Version used:

• Apache Commons CLI 1.2

6.3 Data collection and descriptive statistics

With the projects selected and the BLR metrics defined by Smellchecker‟s we can

summarize the following information for our study:

Population: Java Software Projects (Object Oriented Projects)

Sample: Apache CommonsCLI 1.2 and JOpt Simple 3.2 (Java Applications)

Variables: MLOC, NBD, VG, PAR (Software Metrics)

Dependent Variables: Long Method Present

With the variables for our BLR model already decided (with Long Method Present

being defined as true or false for a given method) we start analyzing the projects for

clues on what measurements to make that could validate the defined research objectives.

Size metrics for the two selected projects are presented in Table 9. Apache Commons

CLI (Apache) Total Lines Of Code (TLOC) doubles the value obtained from JOpt

Simple (JOpt), and it has less classes and fewer methods. One hypothesis could be

raised for the probability of Long Method instances in Apache to be higher that of JOpt.

Table 9: JOpt and Apache descriptive statistics

 JOptSimple ApacheCommonsCli

Number Of Classes 40 23

Number Of Methods 217 184

Number of Interfaces 3 1

Number of Packages 3 1

Total Lines of Code 1603 3345

12 Link: http://commons.apache.org/cli/

58 | P a g e

Before any BLR estimation to occur let‟s analyze some descriptive statistics for both

projects to see if our hypotheses still hold.

Table 10: JOpt MLOC statistics

 Min. 1st Qu. Median Mean 3rd Qu. Max.

JOpt 0 1 2 3.586 5 20

Apache 0 5 6 11 13 77

Table 10 shows MLOC descriptions for both projects. Differences exist in their

distribution. Fig. 25 and Fig. 26 show both projects‟ MLOC boxplot side by side.

Fig. 25: JOpt MLOC boxplot

Fig. 26: Apache MLOC boxplot

Apache‟s boxplot shows more outliers and more extreme values while JOpt‟s boxplot

indicate that 75% of the values are within the 5 MLOC reach. MLOC is not the only

predictor for the Long Method code smell, nevertheless methods with as few as 5 lines

of code or less rarely are problematic. Everything indicates that in fact the presence of

the Long Method code smell is higher for Apache commons.

Next step of the process is annotating the code of the two projects for occurrences of the

Long Method code smell.

0

20

40

60

80

0

5

10

15

20

59 | P a g e

Concerning the Long Method code smell, Fowler[3] defined signals of its presence with

the following:

 The longer the method the more difficult it is to understand;

 Semantic distance occurs when there is a difference between what the method

does and how it does it;

 Comments are indications that procedures are not clear;

 Conditionals and loops instances are good signs for extraction.

McConnell[41], explained his insights on Bad Routines and Routine Size with:

 Accessor routines should be short;

 Depth of nesting, number of variables, and other complexity related

considerations should dictate the length of the routine rather than imposing

length restrictions;

 Complex algorithms can grow up to 100 – 200 Lines Of Code (LOC);

 Routines longer than 200 LOC decrease understandability;

 If an a method or procedure is not invoked for a single purpose is an example of

a Bad Routine;

 The upper limit for an understandable number of parameters of a routine is 7.

Since I do not have acquaintance with the projects, my analysis for Long Method

presences will be from the point of view of someone who first has to understand the

software before making changes to it. So in light of the previous definitions presented I

follow the guidelines that express more clarity, classifying methods for Long Method

presences with the following heuristics:

 if it is not understandable what it does;

 if it is long and tackles different concerns;

 if its name is not a clear indication of what it does;

 if it does more than indicated by the name;

 if conditionals and loops could be expressed by a method call;

 and if it has comments to clarify what the code does.

Results from the tagging process are expressed in Table 11. Results are a confirmation

of the expectations formed during the data analysis. More than the double of Long

Method instances were identified in the Apache Project comparing to JOpt.

60 | P a g e

Table 11: Long Method tagged instances

 Number of Long Method identifications

JOpt 9 (of 217 methods)

Apache 24 (of 184 methods)

Now, it is important to compare correlations between the variables, specially how they

behave when compared to the presence of Long Method instances.

Table 12 and Table 13 represent data from the Spearman Rho test for JOpt and Apache

collected variables. The correlation values for JOpt variables expressed in

Table 12, indicate a low level of correlation between metrics and the Long Method

instances prediction. Indication they may not result in a good estimation when applied

to the BLR model. The results also express a reasonable correlation between MLO,

NBD, and VG. With PAR metric being the least related not only to each other, but also

to the Long Method instances.

Table 12: Spearman Rho correlation test for JOpt

This results may be explained by the fact that, since the main factor of identification of

Long Method instances was my understandability of the code, similar methods in terms

of the metrics readings were tagged differently based on my comprehension of the

nature of the computation.

For the Apache project correlation results are much better (Table 13) but still not as

high as expected to be a good fit.

61 | P a g e

Table 13: Spearman Rho correlation test for Apache

Smellchecker‟s do not test the validity of the model through statistical analysis tough.

The coefficients for the BLR model are calculated without automatic measuring

correlation, checking for multicollinearity in the independent variables, or the goodness-

of-fit analysis for the variables. Instead, it calculates the BLR coefficient models and are

up to the users the responsibility of recalibrating the model if they see fit. Next section

shows the results of applying the BLR estimation with the given data.

Now, in order to accomplish our first research objective:

RO 1: Determine if the proposed BLR automate process is valid for Long Method

detections.

The BLR model must be calibrated and evaluated for each project and the measurement

of the quality of its estimation will be the percentage of correct instances the model can

predict.

6.4 BLR Estimation

With the data input provided, Smellchecker‟s has calibrated two BLR models for the

Long Method estimation. JOpt calibrated model is the following:

Applying the model to the same project, results in 6 detections of Long Method instances with the threshold

value of 0,8. All 6 detections coincide with previous annotated smells, while 3 are false negatives, and there is
no false positives.

Table 14 indicates the results of the BLR prediction in terms of the annotated smells.

62 | P a g e

Table 14: BLR prediction JOpt (Threshold=0,8)

 Smellchecker BLG Estimation: Long Method

Long Method Annotated 0 1 Correct %

0 208 0 100%

1 3 6 33%

Overall % 98,62%

Although the overall percentage was good, the detections concerning actual instances of

Long Methods is slightly above average. The Spearman analysis done previous was an

indication that this was to be expected. The very low number of annotations of Long

Methods may explain why the model does not give a better estimation. In order to gain a

better idea of what the BLR model may be expressing we need to vary its sensibility.

Table 15 summarizes the results.

Table 15: JOpt BLR estimations on JOpt

JOpt BLR estimations on JOpt

Threshold

Sensibility

False

Positives

False

Negatives

Negative

Correct (%)

Positive

Correct (%)

Overall

Correct (%)

0,9 0 6 100% 33,3% 97,2%

0,8 0 3 100% 66,7% 98,6%

0,7 0 3 100% 66,7% 98,6%

0,6 0 3 100% 66,7% 98,6%

0,5 2 3 99,0% 66,7 97,7

0,4 3 2 98,6% 77,8 97,7

0,3 4 2 98,1% 77,8% 97,2

0,2 5 2 97,6% 77,8% 96,8

0,1 7 0 96,6% 100% 96,8%

63 | P a g e

We can see that although the number of overall correctness is high, the percentage in

terms of the total estimation of the cases where existed the Long Method (positives

corrected estimation) is lower. But overall the BLR model calculated do not refute our

first research objective (RO1).

We will now repeat the same process for Apache Commons data. Here is the result of

the calibration effort:

When applied to Apache Commons source code the results are the ones shown in

Table 16.

Table 16: BLR prediction Apache (Threshold=0,8)

 Smellchecker BLG Estimation: Long Method

Long Method Annotated 0 1 Correct %

0 157 3 98,13%

1 12 12 50%

Overall % 91,85%

Note that the probability of detection was lower in every account if we compare it with

the JOpt model. Estimations for other sensitivities are presented in

Table 17.

64 | P a g e

Table 17: Apache BLR estimations on Apache

Apache BLR estimations on Apache

Threshold

Sensibility

False

Positives

False

Negatives

Negative

Corrected %

Positive

Corrected

Overall

Correct %

0,9 1 15 99,49% 37,5% 92,63%

0,8 3 12 98,45% 50,00% 93,01%

0,7 3 11 98,45% 54,17% 93,55%

0,6 4 9 97,93% 62,50% 94,01%

0,5 4 8 97,93% 66,67% 94,47%

0,4 6 6 96,90% 75,00% 94,47%

0,3 6 4 96,90% 83,33% 95,39%

0,2 8 2 95,85% 91,67% 95,40%

0,1 16 0 91,71% 92,63% 92,63%

Not that this estimations again confirm our RO1 that it is possible to predict Long

Method instances with the calibrated BLR model. What we can see is that the quality of

the estimation of the Long Method depends upon the sensibility of the threshold. If the

sensibility is lower more Long Methods are detected (less false negatives) but more are

the rate of false positives.

So now that we have the BLR model from two different projects, we will move to RO2:

 RO 2: Determine if the quality of the detection is crosscutting to different

projects.

65 | P a g e

To see if RO2 is valid, the BLR model calibrated from one application will be used to

estimate Long Methods on the other, and then the results will be analyzed to see if the

model is still valid or its validity depends entirely of the input data it receive and is not

possible to detach it from it. Table 18 depicts the results of applying the JOpt BLR

model to Apache and Table 19 the inverse. Apache BLR model estimating values on

JOpt Source.

Table 18: JOpt BLR estimations on Apache

JOpt BLR estimations on Apache

Threshold

Sensibility

False

Positives

False

Negatives

Negative

Corrected %

Positive

Corrected

Overall

Correct %

0,9 9 3 95,34% 87,50% 94,47%

0,8 9 2 95,34% 91,67% 94,93%

0,7 11 1 94,30% 95,83% 94,47%

0,6 14 1 92,75% 95,83% 93,09%

0,5 15 1 92,23% 95,83% 92,63%

0,4 15 1 92,23% 95,83% 92,63%

0,3 16 1 91,71% 95,83% 92,17%

0,2 16 1 91,71% 95,83% 92,17%

0,1 19 0 90,16% 100% 91,24%

Table 19: Apache BLR estimations on JOpt

Apache BLR estimations on JOpt

Threshold

Sensibility

False

Positives

False

Negatives

Negative

Corrected %

Positive

Corrected

Overall

Correct %

0,9 0 9 100,00% 0,00% 95,85%

0,8 0 9 100,00% 0,00% 95,85%

0,7 0 9 100,00% 0,00% 95,85%

0,6 0 9 100,00% 0,00% 95,85%

0,5 0 9 100,00% 0,00% 95,85%

66 | P a g e

0,4 0 9 100,00% 0,00% 95,85%

0,3 0 9 100,00% 0,00% 95,85%

0,2 1 8 99,52% 11,11% 95,85%

0,1 2 5 99,04% 44,44% 96,78%

0,05 6 3 97,125 66,67% 95,85%

Although the estimations of Apache BLR did not bring good results on the JOpt project

(it is not strange if we remember that even for the own project the values were a bit off),

The JOpt BLR model performed even better in Apache that the native apache BLR

model on itself. This is a great evidence that proves our RO2. We see that not all models

can be translated well to other projects (Apache BLR case) but we proved that some can

even exceed the expectations and improve the estimations.

This leads to our last research objective:

 RO 3: Determine if aggregated data from various projects sources makes for a

more balanced and precise BLR model.

The data from the two projects will be combined into one BLR mode estimation and we

will analyze if it feats the two project simultaneously well. Table 20 shows the

Spearman test for the aggregated data. It shows a medium relation, but as we learned

from the Apache project this do not mean better estimations.

Table 20: Spearman correlation test on aggregated data of the two projects

Here is the BLR model for the aggregated data from the two projects (Apache and JOpt)

67 | P a g e

Table 21 shows the results table of applying the new BLR model to JOpt project. Only

for high tolerance discrepancies between the estimation and the real value does the

model stars to detecting the present Long Method instances. Let‟s compare now the

results with the model´s estimation to the Apache project in Table 22.

Table 21: Aggregated BLR estimations on JOpt

Aggregated BLR estimations on JOpt

Threshold

Sensibility

False

Positives

False

Negatives

Negative

Corrected %

Positive

Corrected

Overall

Correct %

0,9 0 9 100% 0,0% 95,9%

0,8 0 9 100% 0,0% 95,9%

0,7 0 9 100% 0,0% 95,9

0,6 0 9 100% 0,0% 95,8%

0,5 0 8 100% 11,1% 96,3%

0,4 0 7 100% 22,2% 96,8%

0,3 0 6 100% 33,3% 97,2%

0,2 2 5 44,4% 99,0% 96,8%

0,1 2 5 44,4% 99,0% 96,8%

68 | P a g e

Table 22: Aggregated BLR estimations on Apache

Aggregated BLR estimation on Apache

Threshold

Sensibility

False

Positives

False

Negatives

Negative

Corrected %

Positive

Corrected

Overall

Correct %

0,9 3 13 98,1% 45,8% 91,3%

0,8 4 10 97,5% 58,3% 92,4%

0,7 4 8 97,5% 66,6% 93,5%

0,6 5 7 96,8 70,8 93,5

0,5 6 6 96,25% 75,0% 93,5%

0,4 6 5 96,3 79,2 94,0

0,3 7 1 95,6 95,8 95,7

0,2 11 1 93,1 95,8 93,5

0,1 20 0 87,5 100 89,1

We can see that the new BLR model is still useful, but it is hard to say that it better and

that improves significantly the model. From this example more conclusions we cannot

tell, despite the fact that it is still applicable. But prove of any improvements is not

clear.

6.5 Conclusions

We proved that the BLR model approach is a sound technique to evaluate code smells.

Evidence of that was achieved through an example concerning the Long Method code

smell. We proved soundly our fist two research objectives. The BLR method can predict

69 | P a g e

Long Method instances and that the model can be used with efficiency in different

source projects. For the third objective, it is proved that the model do not lose validity,

but his efficiency is to question and only this example is not enough to make any

substantial claim.

70 | P a g e

7 Related Work

Contents

7.1 Papers and Articles ... 70

7.2 Open Source Tools.. 75

71 | P a g e

7.1 Papers and Articles

The focus of this work is on source code smells detection. Architectural code smells and

refactorings [24], so as the ones applied to higher abstraction diagrams such as UML,

are not covered. The same goes for Duplicated Code detection mechanisms, which is an

active research area at this moment more than capable of sustaining a work study by its

own. However, sparingly and not exhaustive, references to Duplicated Code detection

mechanisms and tools may occur, particularly in the context of more ample code smell

detection suites.

Code smells identification in source code can be approached from two distinct angles.

The first concerns detection methods of pure qualitative nature, making use of biased

heuristics that pertain to the expert‟s opinion that voices his choice. The second presents

a more formal approach using software metrics calculations but relying in subjective

thresholds, lacking strong empirical evidence or any sign of empirical proof at all.

A account of the advances on code smell detection and characterization follows in a

brief survey.

Fowler and Kent Beck introduced the concept of code smells and produced an original

catalogue of twenty-two smells providing heuristics of qualitative nature for their

detection [3]. Kerievsky extended Fowler‟s work with new code smells heuristics in the

vein of his predecessor, but aimed at introducing design patterns through refactorings

[20].

Simon et al. [42] proposed an approach to code smells detection based on a generic

similarity measure of code entities (cohesion), and developed a prototype - extension of

the metrics tool Crocodile - to visualize those distances in space, which then could serve

as indication for applying four of Fowler‟s refactorings. With proximity in space

indicating the relative affinity between entities, the developer aimed with knowledge of

the code‟s design could then make an informed choice on which entities to reallocate so

that the principle of cohesion denoted visual could be expressed more directly by the

design.

Making use of static analysis to gather simple code metrics over the program abstract

syntax tree Dudziak and Wloka implemented the prototype add-in J/Art for NetBeans

IDE [30]. Providing developers with ad-hoc support for detecting code structural

weaknesses (smells) and for choosing which refactor to perform. This tool identifies 12

72 | P a g e

of the 22 code smells proposed by fowler in a very straightforward way and adds two

new smells: Shared Collection and Unnecessary Openness. The detection process is

simplified by assuming subjective thresholds in order to test smells presence.

Van Emden and Moonen produced a new set of code smells qualitative heuristics

specific to deal with test code for which they created a set of new refactorings [28].

They ventured further and continued expanding the concept of code smells to domain

specific interests. Namely, not conformance to coding rules and concrete Java

constructs (i.e. Typecast and Instanceof), could be understood as code smells as well

[29]. Also proposed was a set of design considerations for code smell detection tools

based on static analysis, upon which they developed a prototype tool jCOSMO

responsible for collecting primitive smell aspects (aspects visible in source code

entities) through code parsing [29]. The primitive smell aspects collected where the

presence of Java constructs Instanceof and Typecast.

Tourwé and Mens first significant contribution to the field, come in the form of logic

meta programming [43] applied to code smells identification and subsequent

refactorings proposal [34]. With direct access to object-oriented source code entities

(Java or Smalltalk) by a metalevel interface representational mapping, the authors,

through the power of declarative meta language SOUL, with elegantly concise logic

rules were able to detect presence of code smells Obsolete Parameter and Inappropriate

Interfaces. The same principle was further extended so to dynamically update

refactoring proposals. Same authors followed work with a comprehensive survey on

refactoring [8] where a generic refactoring process involving quality assessments after

each refactoring step was defined.

The technique of critical pair-analysis was used by Mens, Taentzar et al [26] to gain

insight on refactorings implicit dependencies. By representing refactorings as graph

transformations suggestion of an order for refactoring usage was demonstrated.

Marinescu defined in more proper quantitative terms, metrics with which to derive

evidences of code smells presence [44].

Apart of creating a code smells taxonomy, Mäntylä [27] evaluated each one of Fowler‟s

code smells (and his own Dead Code smell detailed in the Code smells chapter)

according to a measure he introduced named Measurability. This measure was

subjectively rated, between 0 (impossible to measure) and 5 (easy and correct to

predict), according to his expert knowledge of the willingness of measurability of each

smell. For example, he rated Long Method as a 5 on Measurability and proposed a

73 | P a g e

polynomial metric that combined Number of Lines of Code (NLOC), Cyclomatic

Complexity and Halstead metrics to do the measurement.

Mäntylä and Lassenius‟ first Finnish empirical findings showed evidence of conflicting

smell evaluations calls when judged by experts [11]. Second exposition [45] confirmed

first findings and corroborate the difficulty of setting code metrics to predict even the

simplest code smells (i.e. Large Class as an example).

Recently, Moha et al. [31] introduced new functionalities to the code smells method

DÉCOR that embodies and defines the specification and detection of code and design

smells, that when instantiated, is capable of detecting design smells: the antipatterns

Blob, Functional Decomposition, Spaghetti Code, and Swiss Army Knife, and 15

underlying low level code smells.

A taxonomy for comparing between different code smells detection methodologies (or

code smells detection approaches) and tools was created to help position this work

detection process within available research. A guideline followed was that each

methodology was analyzed from the smell detection capabilities point of view, not

caring for the processes underlining those detection. Because for a smell detection point

of view is irrelevant how the methodology is implemented, just its results and

functionalities are of interest.

An explanation of the not trivial identifiers follows:

 Assessment: Type of assessment followed by the methodology. It can be of two

values: Quantitative or Qualitative, depending if it the heuristic in use can be

quantified or not, respectively.

 Smells: Code smells supported by the heuristics.

 Tool: Name of the tool that instantiates the methodology if it exists.

 Language: It is tool oriented in the sense that relates to code languages the tool

support.

 Functionalities: Types of functionalities supported: (Code smells) Detection,

mechanisms of Visualization (of the code smell after detection), Proposal of

appropriate refactorings, automatic Refactorings application, and code smells

Extensible (if it permits extending the list of code smells detected).

 Heuristic: automatic if it supports a fully automatic detection system under

some condition. Manual, if manual calibration of some sort is expected every

single time the detection process runs.

74 | P a g e

 Automation: as in process Automation. Values: automatic if the process do not

need any kind of users or developers input. Semi-automatic if needs some sort of

minimal user or developer input.

Tables Table 24, Table 25 and Table 25 compare some of the methodologies that were

studied with ours.

Table 23: Smells Detection Comparison Part 1

Methodologies Fowler Simon et al. Emden & Moonen Smellchecker

Year 1999 2001 2003 2011

Assessment Qualitative Quantitative Quantitative Quantitative

Smells Fowlers 22

Smells

Feature Envy,

Inappropriate Intimacy,

Large Class, Lazy Class

Instanceof, Typecast

(Language specific

Java)

Undifferentiated13

Tool - Crocodile (Enhanced) jCOSMO Smellchecker

Language Integrated in a CASE

tool

Java Java

Functionalities - Detection,

Visualization

Detection,

Visualization,

Extensible

Detection,

Visualization

Heuristic Automatic Automatic Automatic

Process

Automation

- Semi-automatic Semi-automatic Semi-automatic

The idea of automating code smells detection by using metrics and tools is not new as

seen by the previous survey. The technique that this work proposes to automate [10] is

in contrast with all other works because of its implementation of a dynamic statistical

process that relies on expert‟s knowledge that can be applied, theoretically
14

, to any

smell.

13 In theory all code smells that current metrics and a polynomial aproximation can derive
14 Empirical studies are necessary to validate that assumption. For now only Long Method Smell is

validated

75 | P a g e

Table 24: Smells Detection Comparison Part 2

Methodologies Dudziak &Wloka Tourwé & Mens Smellchecker

Year 2002 2003 2011

Assessment Quantitative Quantitative Quantitative

Smells 12 Fowler Smells15, Shared

Collection, Unnecessary Openness

Obsolete Parameter,

Inappropriate Interfaces

Undifferentiated16

Tool J/Art (NetBeans Add-in) Refactoring Brower

(extended with SOUL)

Smellchecker

Language Java SOUL over Smalltalk/Java Java

Functionalities Detection,

Visualization, proposal

Detection, Visualization,

Proposal, Extensible

Detection,

Visualization

Heuristic Automatic Automatic Automatic

Automation Semi-automatic Semi-automatic Semi-automatic

Table 25: Smells Detection Comparison Part 3

Methodologies CodeNose Smellchecker

Year 2005 2011

Assessment Quantitative Quantitative

Smells Half of Fowlers Smells Undifferentiated17

Tool Eclipse Plugin Smellchecker

Language Java Java

Functionalities Detection,

Visualization, proposal

Detection,

Visualization

Heuristic Automatic Automatic

Automation Semi-automatic Semi-automatic

Classifications for the different methodologies seem similar, without any factor that

stands out and making this work‟s approach obvious better than all rest. This was

15 Fowler smells supported: Duplicated Code, Long Method, Large Class, Long Parameter List, Feature

Envy, Lazy Class, Speculative Generality, Temporary Field, Inappropriate Intimacy, Data Class, Refused

Bequest, Comments.

16 In theory all code smells that current metrics and a polynomial aproximation can derive
17 In theory all code smells that current metrics and a polynomial aproximation can derive

76 | P a g e

intended and to be expected. And serves to stress the real meaning behind this work‟s

methodology. This is not, at least primary, a methodology for end user usage, what we

have here is the unique proposal of automate the methodology described by Bryton et

al. [10] so that code smells metrics can be derived, refined and continuous improved.

As seen by the survey, most code smells detection approaches use some kind of metrics

to identify where on the source code the smell could be. And the process that it is used

by the researchers is always the same: “Let‟s look at the Code Smell intuitive

definition”, “Let‟s look at code metrics that I think could express this Smell”, and “This

is it”. But the it they refer is not always a hit, more of a miss more. So to gather some

sort of understanding, of the relation between metrics and code smells, one must step

out of the box and let the associative process of relating metrics and smells be guided

externally, so to relations and affinities we have not suspected yet can be made known

and then, the intuitive human process begins again choosing what of this relations

should be consciously put inside the box.

7.2 Open Source Tools

A few open-source tools exist for detecting code smells in Java code. Most of them use

static analysis, that is, they do not require executing the program, such as the one

presented in this paper.

PMD (http://pmd.sourceforge.net/). This widely used tool uses static analysis

techniques to scan Java source code and look for potential problems like possible bugs

(empty try/catch/finally/switch statements), Dead Code (unused local variables,

parameters and private methods), suboptimal code (wasteful String/StringBuffer usage),

overcomplicated expressions (unnecessary if statements, for loops that could be while

loops) and duplicate code (copied/pasted code means copied/pasted bugs). PMD is

integrated with JDeveloper, Eclipse, JEdit, JBuilder, BlueJ, CodeGuide, NetBeans,

IntelliJ IDEA, TextPad, Maven, Ant, Gel, JCreator, and Emacs.

FindBugs (http://findbugs.sourceforge.net). This tool is also widely used and integrated

with Eclipse, using the static analysis capabilities of Apache‟s Byte Code Engineering

Library (BCEL) to inspect Java bytecode for occurrences of bug patterns. The latter are

code idioms that are often errors. Bug patterns arise for a variety of reasons such as:

difficult language features, misunderstood API methods, misunderstood invariants when

http://pmd.sourceforge.net/
http://findbugs.sourceforge.net/

77 | P a g e

code is modified during maintenance, or garden variety mistakes as typos or use of the

wrong boolean operator. Their authors report that its analysis is sometimes imprecise

since many false positives (up to 50% of identified bugs) can be risen.

SISSy (http://sissy.fzi.de). According to its authors, the Structural Investigation of

Software Systems tool can detect some well-known code smells and the violation of

over 50 typical OO design principles, heuristics and patterns, such as bottleneck classes,

god classes, Data Classes or cyclical dependencies between classes or packages. SISSy

can analyze systems written in Java, C++ or Delphi but, as far as we could ascertain, is

not integrated with any IDE.

Smelly (http://smelly.sourceforge.net). Is an Eclipse plugin that, according to its

authors, is able to detect the following code smells in Java code: Data Class, God Class,

God Method, High Comment Density, Long Parameter List and Switch. Only the one in

bold matches the original name in the original code smells catalog [3].

Code Bad Smell Detector (http://cbsdetector.sourceforge.net/). This tool claims to

detect five of Fowler et al. [3] code smells: Data Clumps, Switch Statements,

Speculative Generality, Message Chains, and Middle Man, from Java source code. It

has no recent downloads and appears to be associated with an ongoing PhD work. It is

also not integrated with an IDE.

http://sissy.fzi.de/
http://smelly.sourceforge.net/
http://cbsdetector.sourceforge.net/

78 | P a g e

8 Conclusions and

Future Work

Contents

8.1 Closing Remarks ... 78

8.2 Threats to Validity .. 78

8.3 Future Work ... 79

79 | P a g e

8.1 Closing Remarks

The idea of automating code smells detection by using metrics and tools is not new.

However, the detection technique used in the Smellchecker tool is in contrast with all

other known proposals due to the usage of a dynamic statistical process that relies on

expert‟s knowledge that can be applied, theoretically
18

, to any smell.

The main contributions of this dissertation are:

 A process for supporting the prediction of code smells occurances, based upon a

logistic regression model, that allows progressive calibration either by a single

user or by a user community;

 The proposal of an open source software architecture to support the

aforementioned process for pratitioners using the Eclipse plugin architecture;

 A prototype based on the aforesaid architecture, for standalone Java developers

using the Eclipse Environment;

 Validation of the process for the Long Method code smell.

8.2 Threats to Validity

Recalling Mäntylä‟s taxonomy, we expect that some code smells categories like the

Bloaters or the Couplers will be much easier to detect than the others, using the

proposed BLR based approach, simply because existing metric sets cover aspects such

as code complexity and coupling between software components, that will act as good

predictors. In other words, we cannot claim that it will be possible to find appropriate

BLR based models capable to detect with a considerable degree of confidence, all the

22 Code Smells described by Fowler. Other detection techniques will probably be more

suited in those cases. For example, Duplicated Code is an active area of research with

sophisticated mechanisms already derived to identify code clones [46], which do not

rely on source code metrics.

We have only collected evidence of the adequacy of the Long Method predictor

presented herein for some software systems / components. Further evidence must be

18 Further empirical studies are required to validate this assumption.

80 | P a g e

collected to calibrate our regression model before we can claim some sort of generality

(applicability beyond our samples).

Metrics selected for the Smellchecker tool derive from their availability in a prior

existing Eclipse Plugin and only represent a small subset of the available collection of

metrics in literature [47]. These concern classic complexity measurements that are not

suited to detect all code smells.

8.3 Future Work

The developed tool and its underlying process, rises different working opening

opportinities. Concerning the Long Method code smell:

 Continuous refinement of the Long Method prediction model with extended

calibration data,

 Validation of the regressors with different data sets,

 Refinement of the Long Method code smell detection model by adding and

validating new predictors (more metrics),

 Studies of the sensibility of the model to bad data inputs,

 Experimentation with software from different domains to check if the

mathematical prediction model of the Long Method code smell can be

transferred across projects,

 Openings for more evolved regression techniques.

To further validate the regression process herein presented, an effort must be made to:

 Replicate the process for other code smells, deriving new prediction models for

the remaining smells,

 Which implies adding, and the subsequent testing for correlation and validation,

of new sets of metrics appropriated for each smell.

 To minimize the sensibility of the model to one experts opinion and over fitting

issues Smellchecker‟s architecture must be distributed, so that a large set of

participants can mitigate the natural bias that exists within small sets.

And to close the circle - further down the line - the mandatory integration with the

proper refctoring techniques and tools that mitigate the code smells problem.

81 | P a g e

 According to [3, 12], a given code smell can be mitigated/removed by applying

one out of a set of refactoring transformations. Since Eclipse supports several of

those transformations, we envision that upon code smells identification,

adequate refactorings could be suggested to remove the smell.

 In the future, we will look at ways of computing the expected quality improvements

attained by applying each of the refactoring alternatives. Hopefully that will allow to

provide some advice for the developer.

82 | P a g e

9 Bibliography

1. Beck, K. and C. Andres, Extreme programming explained: embrace change.

2004: Addison-Wesley Professional.

2. Ambler, S., J. Nalbone, and M. Vizdos, Enterprise unified process, the:

extending the rational unified process. 2005: Prentice Hall Press Upper Saddle

River, NJ, USA.

3. Fowler, M. and K. Beck, Refactoring: improving the design of existing code.

1999: Addison-Wesley Professional.

4. Lientz, B. and E. Swanson, Software maintenance management: a study of the

maintenance of computer application software in 487 data processing

organizations. Vol. 4. 1980: Addison-Wesley Reading MA.

5. Guimaraes, T., Managing application program maintenance expenditures.

Communications of the ACM, 1983. 26(10): p. 739-746.

6. Bennett, K. and V. Rajlich. Software maintenance and evolution: a roadmap.

2000: ACM.

7. Khomh, F., M. Di Penta, and Y. Guéhéneuc. An exploratory study of the impact

of code smells on software change-proneness. 2009: IEEE.

8. Mens, T. and T. Tourwé, A survey of software refactoring. Software

Engineering, IEEE Transactions on, 2005. 30(2): p. 126-139.

9. Counsell, S., et al., Is a strategy for code smell assessment long overdue?, in

Proceedings of the 2010 ICSE Workshop on Emerging Trends in Software

Metrics. 2010, ACM: Cape Town, South Africa. p. 32-38.

10. Bryton, S., F. e Abreu, and M. Monteiro. Reducing Subjectivity in Code Smells

Detection: Experimenting with the Long Method. 2010: IEEE.

11. Mantyla, M., J. Vanhanen, and C. Lassenius. Bad smells-humans as code critics.

2004: IEEE.

12. Wake, W., Refactoring workbook. 2003: Addison-Wesley Longman Publishing

Co., Inc. Boston, MA, USA.

13. Harter, D., M. Krishnan, and S. Slaughter, Effects of process maturity on quality,

cycle time, and effort in software product development. Management Science,

2000. 46(4): p. 451-466.

14. Fenton, N. and S. Pfleeger, Software metrics: a rigorous and practical

approach. 1998: PWS Publishing Co. Boston, MA, USA.

15. McCall, J., et al., Factors in software quality. 1977: General Electric, National

Technical Information Service.

16. Boehm, B., et al., Characteristics of software quality. 1978.

17. Opdyke, W., Refactoring object-oriented frameworks. 1992, Citeseer.

18. Roberts, D. and R. Johnson, Practical analysis for refactoring. 1999: University

of Illinois at Urbana-Champaign.

19. Rothermel, G. and M. Harrold, A safe, efficient regression test selection

technique. ACM Transactions on Software Engineering and Methodology

(TOSEM), 1997. 6(2): p. 173-210.

20. Kerievsky, J., Refactoring to patterns. 2005: Pearson Education.

83 | P a g e

21. Gamma, E., et al., Design patterns: elements of reusable object-oriented

software. Vol. 206. 1995: Addison-wesley Reading, MA.

22. Laddad, R., AspectJ in action. Vol. 512. 2003: Manning.

23. Monteiro, M. and J. Fernandes. Towards a catalog of aspect-oriented

refactorings. 2005: ACM.

24. Garcia, J., et al., Toward a catalogue of architectural bad smells. Architectures

for Adaptive Software Systems, 2009: p. 146-162.

25. Demeyer, S., S. Ducasse, and O. Nierstrasz. Finding refactorings via change

metrics. 2000: ACM.

26. Mens, T., G. Taentzer, and O. Runge, Analysing refactoring dependencies using

graph transformation. Software and Systems Modeling, 2007. 6(3): p. 269-285.

27. Mäntylä, M., Bad smells in software–a taxonomy and an empirical study. 2003.

28. Deursen, A., et al., Refactoring test code. 2001.

29. Van Emden, E. and L. Moonen. Java quality assurance by detecting code

smells. 2003: IEEE.

30. Dudziak, T. and J. Wloka, Tool-supported discovery and refactoring of

structural weaknesses in code. 2002, February.

31. Moha, N., et al., DECOR: A method for the specification and detection of code

and design smells. Software Engineering, IEEE Transactions on, 2010. 36(1): p.

20-36.

32. Brown, W. and I. Books24x7, AntiPatterns: refactoring software, architectures,

and projects in crisis. Vol. 20. 1998: Wiley Chichester.

33. Roberts, D., J. Brant, and R. Johnson, A refactoring tool for Smalltalk. Theory

and Practice of Object systems, 1997. 3(4): p. 253-263.

34. Tourwé, T. and T. Mens. Identifying refactoring opportunities using logic meta

programming. 2003.

35. Simmonds, J. and T. Mens, A comparison of software refactoring tools. Reporte

Técnico. URL: ftp://prog. vub. ac. be/tech_report/2002/vub-prog-tr-02-15. pdf,

2002.

36. Moore, I. Automatic inheritance hierarchy restructuring and method

refactoring. 1996: ACM.

37. Murphy-Hill, E., Improving refactoring with alternate program views. Research

Proficiency Exam, Portland State University, Portland, OR, 2006.

38. Dhambri, K., H. Sahraoui, and P. Poulin. Visual detection of design anomalies.

2008: IEEE.

39. Slinger, S., Code smell detection in Eclipse. Master's thesis. Delft University of

Technology, 2005.

40. Koschke, R., Survey of research on software clones. Duplication, Redundancy,

and Similarity in Software, 2006.

41. McConnell, S., Code complete: a practical handbook of software construction.

2004.

42. Simon, F., F. Steinbrückner, and C. Lewerentz. Metrics based refactoring. 2001:

Published by the IEEE Computer Society.

43. Wuyts, R., A logic meta-programming approach to support the co-evolution of

object-oriented design and implementation. PhD, Vrije yiversity of Brussel,

2001.

44. Marinescu, R., Measurement and quality in object-oriented design. 2005.

45. Mäntylä, M. and C. Lassenius, Subjective evaluation of software evolvability

using code smells: An empirical study. Empirical Software Engineering, 2006.

11(3): p. 395-431.

ftp://prog/

84 | P a g e

46. Kim, M., et al., An empirical study of code clone genealogies. ACM SIGSOFT

Software Engineering Notes, 2005. 30(5): p. 187-196.

47. Henderson-Sellers, B., Object-oriented metrics: measures of complexity. 1996:

Prentice Hall.

