

Proceedings of

SEDES 2012
Fourth Portuguese Software Engineering

Doctoral Symposium

Miguel Goulão, Fernando Brito e Abreu

(Eds.)

Book chapter in Proceedings of the 8th International Conference on the Quality of

Information and Communications Technology (QUATIC’2012), João Pascoal Faria, Alberto

Silva, Ricardo J. Machado (Eds.), IEEE Computer Society, ISBN 978-0-7695-4777-0

http://2012.quatic.org/

SEDES 2012
Fourth Portuguese Software Engineering

Doctoral Symposium

Miguel Goulão1, Fernando Brito e Abreu2,1
1 CITI, Departamento de Informática, Faculdade de Ciências e Tecnologia,

Universidade Nova de Lisboa, Caparica, Portugal
2 Departamento de Ciências e Tecnologias da Informação, Escola de Tecnologias e Arquitectura,

Instituto Universitário de Lisboa (ISCTE-IUL), Lisboa, Portugal
mgoul@fct.unl.pt, fba@iscte-iul.pt

I. INTRODUCTION

HE Fourth edition of the Portuguese Software
Engineering Doctoral Symposium (SEDES 2012)
was held on 3 September 2012 in Lisbon, co-

located with the QUATIC 2012 conference. The aim of
this symposium is to bring together software
engineering PhD students supervised or co-supervised
by faculty members of Portuguese universities in a
constructive environment where they can present and
discuss their ongoing PhD projects. The symposium
aims at selecting PhD students that have already settled
on a specific research topic, but are at least one year
apart from delivering their dissertation, so that they can
still benefit from the symposium discussions. This
symposium is also instrumental as a gathering point for
the Software Engineering researchers in Portugal, with a
tradition of synergies facilitator since its first edition. As
such, an effort has been made to hold this event in
different towns. Previous editions took place in Coimbra
[1], Caparica [2] and Porto [3].
 Regarding scope, the eligible topics for participation
in SEDES include all knowledge areas defined in
SWEBOK [4]. Research work in related fields such as
Computer Science (including formal methods) and
Information Systems (including Information Services
variants) are considered within the scope of SEDES if
they hold an applied perspective on the technological or
methodological issues of software development or
maintenance.

II. ORGANIZATION

Six PhD students were selected for presenting their
work in this edition. Submissions were blind-reviewed
by at least two program committee members focusing
on the quality, maturity and clarity of the ongoing
research work, both in terms of scope delimitation and

problem relevance, adequacy of the adopted
methodology, results significance and their validation,
as well as technical writing style. The reviewers’ panel
included Software Engineering experts from the
majority of the Portuguese public universities, namely
Dulce Domingos (FCUL), João Cachopo (IST-UTL),
João Miguel Fernandes (Univ. do Minho), José Maria
Fernandes (Univ. de Aveiro), José Paulo Leal (FCUP),
Miguel Pessoa Monteiro (FCT-UNL), Pedro Guerreiro
(Univ. do Algarve), Raul Moreira Vidal (FEUP), and
João Varajão (UTAD). The papers presented in the
symposium covered a wide range of topics and were
discussed in depth, both with the symposium
participants and with a set of invited senior
“opponents”, chosen amongst SEDES PC and Steering
Committee members.

The Symposium was organized in 4 sessions. The
first session included a welcome address and an
“elevator pitch session”, where students were invited to
present their work in no more than 2 minutes each. The
session continued with the first student presentation.
The second and third sessions included 2 student
presentations each, while the fourth session featured the
last student’s presentation and a closing discussion.
While the invited senior “opponents” were responsible
for fostering a constructive discussion on the challenges
faced by each of the students, all symposium
participants (and, in particular, the PhD students) were
strongly encouraged to provide feedback to the
presenters.

III. PRESENTATIONS SUMMARY

Luís Alves presented his work on “Experimental
Software Engineering in Educational Context”. In his
PhD research, Luís is dealing with the challenges of
conducting experimentation using students as
participants. Experimentation is a crucial activity in the

T

333

Foreword

evaluation of Software Engineering claims.
Unfortunately, it is hard to find appropriate industry
settings where experimentation is feasible. Luís is
particularly interested in evaluating how the Rational
Unified Process can be made compliant with the
Capability Maturity Model Integration (CMMI)
maturity levels 2 and 3. He is also analyzing the
influence of project management tools in the evolution
of the maturity of development teams. By conducting
his experimentation with students, Luís will assess the
extent to which the results obtained with students are
comparable with those reported in related studies
carried out in industry.

Ankica Barišić presented her work on “Usability
Evaluation of Domain Specific Languages” (DSLs).
DSLs are increasingly being adopted in industry due to
their claimed benefits with respect to software
development productivity. These languages use
concepts from the corresponding application domain,
thus making them potentially suitable for usage not
only by professional software developers, but also by
domain experts and domain users, who can then
develop their own applications. In order for DSLs to
succeed, their quality in use is a key element.
However, there is currently little evidence of serious
DSL evaluation being carried out in a systematic way.
Ankica’s work aims to mitigate this shortcoming by
proposing methods and models to support this
evaluation and promote it to a first class activity in the
DSL development cycle. This work draws influences
from usability engineering to language engineering.

Tiago Boldt Sousa presented his work on “Object-
Functional Patterns: Re-Thinking Development in a
Post-Functional World”. For several years, design
patterns have been primarily presented using the
object-oriented paradigm. More recently, the
development of other paradigms has provided
developers with innovative ways of solving problems.
Tiago focuses his work in the increasingly popular
object-functional paradigm and on how existing
patterns can be migrated to this paradigm and
improved by using its mechanisms. The dissertation’s
contribution includes reference implementations for
these patterns in the Scala programming language, to
be evaluated both in academic and industrial contexts.
The benefits of patterns introduction in this new
paradigm are expected to be a valuable input for
language development, through patterns absorption, as
well as useful for practitioners who can apply these
patterns in their work.

José Martins presented his work on “Ontologies for
Product and Process Traceability at Manufacturing
Organizations: A Software Requirements Approach”.
A traceability business process is a mandatory feature
for organizations acting as product providers, but its
implementation in a sustainable way remains a

challenge, mostly due to difficulties in reaching a
common understanding on the meaning of traceability
concepts, concrete demands and the process nature
itself. José’s work aims to improve the support for
traceability offered by Information Systems solutions.
To this end, José is developing an ontology of the
“traceability business process”, upon which domain
models can then be built. The main targets (from a
software development perspective) are requirements
elicitation and solution validation. The reported work
is being conducted in close cooperation with a large
manufacturing organization partner, which will foster
its validation in a real-world setting.

Manuel Amaro presented is work on “A Software
Framework for Supporting Ubiquitous Business
Processes: An ANSI/ISA-95 Approach”. Ubiquitous
computing is becoming increasingly important, and
has a potentially deep impact in the way business
processes are shaped and monitored. In particular,
monitoring the execution of business processes in real-
time, through ubiquitous computing, enables the
possibility of adapting these business processes to
changes in their environment, as well as to set up alarms
to detect deviations to the planned business processes
(e.g. time deviations). This approach has already been
tested in two projects in the automotive industry and is
currently undergoing a formalization initiative, which
will facilitate the construction of a framework to
monitor the real-time executions of ubiquitous business
properties.

Finally, José Sousa presented his work on “Modeling
Organizational Information Systems Using “Complex
Networks” Concepts”. His work tackles the problem of
understanding the information flows that emerge in the
increasingly more frequent Service Oriented
Architecture (SOA) information systems. José is
particularly interested in defining an approach to
support the adoption of a complex network metamodel
upon which existing organizational information systems
can be defined and later monitored and better
understood. The work is inspired by complex networks
research from other domains, namely physics and is
expected to be instrumental in increasing our
understanding on the co-evolution of enterprise and
socio-technical systems.

IV. CONCLUSIONS

Once again, SEDES was a privileged occasion for
Software Engineering PhD students to get feedback on
their research proposals and on the adequacy and
feasibility of their research plans, as well as for getting
advice on how to improve their scientific presentation
abilities.

Further information on this doctoral symposium can
be found at http://2012.quatic.org/sedes/

334

ACKNOWLEDGMENT

The SEDES 2012 organizing chairs thank QUATIC
2012 organizing chairs for their valuable support in
hosting this SEDES edition.

REFERENCES
[1] SEDES’2004, http://ctp.di.fct.unl.pt/QUASAR/sedes2004/,

Fernando Brito e Abreu (organizer), hosted by the 1o Congresso
Português de Engenharia de Software, Coimbra, Portugal, April
2004.

[2] SEDES'2007,
http://quatic2007.dsi.uminho.pt/workshops.html#SEDES, Paulo
Rupino da Cunha (organizer), hosted by the 6th International
Conference on the Quality of Information and Communication
Technology (QUATIC'2007), Lisbon, Portugal, September 2007.

[3] SEDES'2009,
http://www.iaria.org/conferences2009/SEDES.html, Ricardo J.
Machado and João M. Fernandes (organizers), hosted by the 4rd
International Conference on Software Engineering Advances
(ICSEA'2009), Porto, September 2009.

[4] SWEBOK: Guide to the Software Engineering Body of
Knowledge, http://www.swebok.org, Alain Abran, James W.
Moore, Pierre Bourque, Robert Dupuis (eds), IEEE Computer
Society, 2004.

335

Experimental Software Engineering in Educational Context

Luís M. Alves
Escola de Tecnologia e Gestão

Instituto Politécnico de Bragança
Bragança, Portugal

lalves@ipb.pt

Ricardo J. Machado
Centro ALGORITMI
Universidade do Minho

Guimarães, Portugal
rmac@dsi.uminho.pt

Pedro Ribeiro
Centro ALGORITMI
Universidade do Minho

Guimarães, Portugal
pmgar@dsi.uminho.pt

Abstract — Empirical studies are important in software
engineering to evaluate new tools, techniques, methods and
technologies in a structured way before they are introduced in
the industrial (real) software process. Within this PhD thesis
we will develop a framework of a consistent process for
involving students as subjects of empirical studies of software
engineering. In concrete, our experiences with software
development teams composed of students will analyze how
RUP (Rational Unified Process) processes can be compliant
with the CMMI (Capability Maturity Model Integration),
namely in the context of MLs (maturity levels) 2 and 3.
Additionally, we will also analyze the influence of project
management tools to improve the process maturity of the
teams. Our final goal of carrying out empirical studies with
students is to understand its validity when compared with the
corresponding studies in real industrial settings.

Keywords: software engineering management, software
engineering process, software quality

I. INTRODUCTION
In the early nineties, Basili introduced, for the first time,

the concept of experience factory. As the author refers in [1]
the concept was introduced to "institutionalize the collective
learning of the organization that is at the root of continual
improvement and competitive advantage". Thus, the
experience factory provides an organizational schema for
collecting experiences on reuse of empirical results, for
analyzing them and generalizing the knowledge contained
[2]. This scheme was designed based on many years of the
Software Engineering Laboratory (SEL) work. Over several
years, this well-known laboratory has conducted several
studies and experiments for the purpose of understanding,
assessing, and improving software and software processes
within a production software development environment at
the National Aeronautics and Space Administration/Goddard
Space Flight Center (NASA/GSFC) [1].

With our approach we do not intend to create a new
software engineering laboratory. Instead, we intend to create
a space (virtual or physical) that allows us to conduct
empirical studies in the software engineering area by
involving students that are enrolled in our current software
engineering courses (both at undergraduate and postgraduate
university programmes).

Unlike other mature disciplines, the field of software
engineering continues to lack a research and development
infrastructure that supports systematic testing of novel
software engineering methodologies. Our intention is to
develop a new experience factory approach based on one

explicit educational environment. Initially, we will work just
with students as subjects of our first empirical studies. We
are fully aware that we will face some problems with the
validation of the results that we will be obtained in our
student-based experiments. It is impossible to be sure that
techniques evaluated under such circumstances will scale up
to industrial size systems or very novel software engineering
problems. Even though, Kitchenham says that "students are
the next generation of software professionals and, so, are
relatively close to the population of interest" [3]. In the
opposite, students in psychology studies are not
representatives of the human population as a whole [4].

In this paper, a description of the state-of-the-art related
with the subject of this research is presented in Section 2.
Section 3 describes in detail the research objectives and the
methodological approach. In Section 4, the past work and
preliminary results already done in the context of this
research are briefly described. Section 5 presents the future
work and expected results for the next 2 years of research.
Finally, in Section 6 some conclusions are presented

II. STATE-OF-THE-ART
The state-of-art of this work essentially relates to: ESE

(Empirical Software Engineering), SPI (Software Process
Improvement) and PM (Project Management). We will give
special emphasis to the ESE with students as subjects of
experiments.

A. Empirical Software Engineering
ESE is a sub-field of software engineering which aims at

applying empirical theories and methods for the measuring,
understanding, and improvement of the software
development process in real software companies [5]. This
definition extends the concept for ESE proposed by Basili,
when he said that "experimentation is performed in order to
help us better evaluate, predict, understand, control, and
improve the software development process and product" [6].
In the early nineties, the empirical methods applied in
software engineering were basically restricted to quantitative
studies (mostly controlled experiments). The concept of
experimental software engineering has moved to empirical
software engineering when a range of qualitative methods
have been introduced, from observational to ethnographical
studies. In a broad sense, an empirical investigation
(synonym of empirical study) is a process that aims to
discover something unknown or to validate hypotheses that
can be transformed in generally valid laws [2].

2012 Eighth International Conference on the Quality of Information and Communications Technology

978-0-7695-4777-0/12 $26.00 © 2012 IEEE

DOI 10.1109/QUATIC.2012.29

336

It is important to be able to evaluate new techniques and
methods in a structured way before they are introduced in the
software process [7]. Empirical methods have gained
increased attention in software engineering; there are
dedicated conferences such as the International Conference
on Evaluation and Assessment in Software (EASE), and
there are dedicated journals such as the International Journal
of Empirical Software Engineering.

Controlled experiments are the most commonly used
empirical methods in software engineering. Sjøberg et al.
define controlled experiment in software engineering as a
"randomized experiment or a quasi-experiment in which
individuals or teams (the experimental units) conduct one or
more software engineering tasks for the sake of comparing
different populations, processes, methods, techniques,
languages, or tools (the treatments)" [8]. Sjøberg et al.
analyzed in detail 103 scientific articles published in leading
software engineering journals and conferences in the decade
from 1993 to 2002 that reported controlled experiments in
which individuals or teams performed one or more software
engineering tasks.

Currently, some universities offer courses in the ESE
area, as in the cases of Norwegian University of Science and
Technology [5] and Lund University in Sweden. Both
institutions have worked with students as subjects of
experiments. These institutions run the experiences out of the
courses’ context, whereas in our approach the students
perform the experiments as part of their regular academic
courses. The Department of Computer Science of the
University of Helsinki created an experimental software
laboratory for basic and applied software development
research and education. The name of this laboratory is
Software Factory and they involve researchers, students, and
industry partners in their projects [9].

B. ESE using Students versus Profissionals
In this section, based on literature review we will

describe the strengths/weaknesses of using students versus
professionals in the empirical software engineering context.

In the survey conducted in [8], a total of 5,488 subjects
took part in the 113 experiments investigated, eighty-seven
percent were students and nine percent were professionals.
This survey demonstrates the importance of using students
in this context.

In many studies, students are used instead of
professional software developers, although the objective is
to draw conclusions valid for professional software
developers. The differences are only minor, and it is
concluded that software engineering students may be used
instead of professional software developers under certain
conditions. Höst et al. [10] argue that the main reason to use
students as subjects is often that they are available at
universities and they are willing to participate in studies as
part of courses they attend. In many cases, it is possible to
combine the learning objectives of the courses with the
research objectives of the studies. Tichy refer that software
students are much closer to the world of software
professionals than psychology students are to the general

population [11]. In particular, software graduate students are
so close to professional status that the differences are
marginal. Software graduate students are technically more
up to date than the "average" software developer who may
not even have a degree in computing. Software
professionals, on the other hand, may be better prepared in
the application domain and may have learnt to deal with
systems and organizations of larger scale than a student.

Sjøberg et al. [12] argue that the main reason of most
subjects in software engineering experiments are students is
that they are more accessible and easier to organize, and
hiring them is generally inexpensive. Consequently, it is
easier to run an experiment with students than with
professionals and the risks are low. Jaccheri [13] refers that
empirical studies are often carried out with students because
they are viewed as inexpensive subjects for pilot studies.
Svahnberg [14] refers that the students are readily available,
often willing to participate, and require no or little
compensation. The bad thing is that the variations among
studies conducted with professionals are higher than the
variations among students due to the more varied
educational backgrounds and working experiences in the
professionals [12].

Carver et al. [15] have developed a checklist that
provides guidance for researchers and educators when
planning and conducting studies in university courses. In
our PhD work, we want to specialize this framework to the
software engineering domain, when conducting experiences
related with software process improvement and project
management research questions.

C. Software Process Improvement
According to Humphrey [16], a software process is "the

sequence of steps required to develop or maintain software,
aiming at providing the technical and management
framework for applying methods, tools, and people to the
software task". Therefore, SPI aims at providing software
development companies with mechanisms for evaluating
their existing processes, identifying possibilities for
improving as well as implementing and evaluating the
impact of improvements [17].

SPI is an applied academic field, rooted in the software
engineering and information systems disciplines, which has
been studied for almost twenty years now. It deals primarily
with the professional management of software companies,
and the improvement of their practice, displaying a
managerial focus rather than dealing directly with the
techniques that are used to write software. Classical SPI
techniques relate to software processes, standardization,
software metrics, and process improvement. Many of the
major contributions to SPI are originated from the SEI
(Software Engineering Institute) at Carnegie Mellon
University [18] [36].

SPI is based on process assessment. Most process
improvement models and standards applied in SPI primarily
provide guidance for process assessment. When critical-
mission software is required to demonstrate (often by

337

obtaining certain type of certifications) their ability to
develop and sustain high maturity practices is mandatory.
There are currently some software process models available
for assessing and improving software development and its
related practices.

Empirical studies that we will perform during the PhD
work will concentrate primarily on the software development
process, from the perspective of process improvement. Thus,
we intend to implement experiments involving the suggested
practices in CMMI (Capability Maturity Model Integration)
[19] and RUP (Rational Unified Process) [20].

D. Project Management Approaches
One of the standard models most popular in PM area is

the PMBOK (Project Management Body of Knowledge)
[21]. Thus, in 1996, the first version of the body of
knowledge in PM was published by the Project Management
Institute [22]. According to the PMBOK, projects are
composed of processes. A process is “a set of interrelated
actions and activities performed to achieve a pre-specified
product, result or service. Each process is characterized by
its inputs, the tools and techniques that can be applied, and
the resulting outputs” [21].

Today, one can find several approaches that aim at
collecting PM data in a standardized data model which can
be used to implement PM tools and to exchange project data.
In order to perform PM activities, people use different
methodologies according to their needs and standards.
Instead of creating a project plan manually, companies use
PM tools that support most important PM processes [21]. For
instance, Microsoft Office Project is one of the most often
used PM tools in small teams [34]. Although it is not based
on an official standard, it can surely be considered as a de-
facto standard because of its market position. However, this
tool does not have an open structure since it uses a
proprietary data model, which is not defined by an
independent body.

PROMONT [35] is an ontology-based PM approach that
intends to summarize all major PM standards and tools in
one integrated reference model. It offers extending
definitions of PM issues aimed at supporting interoperability
of PM systems, processes and organizations. In particular,
PROMONT offers a formal approach to define relationships
and conditions between different terms that are used in PM.

III. RESEARCH OBJECTIVES AND
METHODOLOGICAL APPROACH

A. Research objectives
It is common knowledge that software projects have a

high rate of failure [23]. Although various strategies have
been tried (such as structured programming, rapid
prototyping, CASE tools and so forth), there is still no end to
the software crisis.

With the intensification, acceleration in the rate of
change, and expansion in the use of information
technologies, particular attention is being focused on the
opportunities and difficulties associated with sharing
knowledge and transferring "best practices" within and
across organizations [24]. A best practice is public

knowledge, a tactic or method that has been shown through
real-life implementation to be successful [25]. Models and
standards that provide guidance for process improvement
include a set of best practices for product and service
development and maintenance [19].

A typical problem with software engineering research is
that either it is difficult to find companies that provide
reasonable research possibilities or the research is made with
students in “artificial environments”. Our approach provides
a solution for this problem. In our approach we can do
research in a very similar authentic environment. The
participants in our experiments are students but the
environment is very business-like. Teams work constantly
together just like in a real work place. There is always a real
business demand behind the project, which makes the project
context valid for research. Researcher can observe team
members anytime and even participate in projects if it is
considered useful. Face to what we could allow in real
company, our approach has some advantages, namely:
• The ease of research to use their own means of
investigation and, at any time, the ease of the researcher to
ask participants to answer questionnaires (paper or web)
during the semester (within the classes or outside classes);
• All artifacts and documents (e.g. code, models and
reports) provided by the teams are available for research
purposes (we adopt direct analysis of artifacts to assess the
teams process and product maturity);
• Researcher can go to the laboratory and do direct
observation (teams have mandatory meetings in our
laboratories and are available to be observed when
interacting and working in their projects);
• Researcher can take part in the projects and interview
both team members and clients during and after the projects.

This PhD thesis will adopt four main objectives. The first
three correspond to specific software process research
questions that are perfectly pertinent to be addressed when
considering the configuration of process frameworks and PM
tools in small software development teams. The fourth
objective is related with the ESE perspective to assess
empirical results with students; which means that efforts
relative to this fourth objective must run in parallel with the
others. The efforts relative to the first three objectives may
not necessarily be run in a sequential order; we will adopt
spiral approach to deal with the complexity of managing the
complexity relative to all the existing interdependencies
between the variables under study in the first three
objectives:
• The first objective is to analyze the coverage of CMMI
practices that we can expect when adopting the RUP
reference model. To fulfill this objective, we need an
alignment between CMMI and RUP process frameworks, by
selecting the process areas, the specific goals and the specific
practices from CMMI and comparing them with the
coverage we can expect from the execution of the activities
and tasks established by RUP.
• The second objective is to evaluate how CMMI ML2 and
ML3 can be accomplished by particular configurations of
RUP for small software development teams. To fulfill this

338

objective, we need to address the specific configurations of
RUP and understand the implications in the alignment
established in the pursuing of the previous objective. The
outcome of these two first objectives may explain how to
adopt RUP as a process asset to promote CMMI
assessments, taking into account the specific characteristics
of the team’s organization (roles, tasks, activities).
• The third objective is to assess the impact of PM tools in
the performance of software development teams. With this
objective we intend to determine the relationship between the
maturity of the teams and the support they can get from PM
tools. The outcome of this third objective may explain what
kind of key success factors we should look for when
choosing one PM tool taking into account the process
framework (in our case, configurations of RUP for small
teams) and the maturity assessment reference model (in our
case, CMMI ML2 and ML3) we adopt to frame the software
development team.
• Finally, the last and most important objective is to
validate the research results to be produced by the previous
three objectives in an explicit educational context. The
external validity is a major concern in the ESE. The external
validity defines the conditions that limit the ability to
generalize the results of an experiment to industrial practice.
Problems can occur due to the population of participants not
be representative of the population under interest,
instrumentation is not suitable for industrial practice, and the
experiment can be run in a day or special time that will affect
the results. In our case, we will run three sets of experiences
with students, each one dedicated to one the objectives
previously referred. This fourth objective corresponds to an
umbrella research question that will enable the production of
some systematic insight of the advantages and drawbacks of
conducting empirical studies with software students.

B. Methodological approach
An experience should be treated as a process of

formulation or verification of a theory. In order that the
process provides valid results, it must be properly organized
and controlled, or, at least, monitored. In order to achieve
these goals several methods of organization of experiments
have been proposed. In order to compare the experimentation
methodologies we have to consider their different
characteristics, for example, the phases of process
experimentation, the way of the transformation of abstract
concepts of the domain to concrete metrics, the main purpose
of experimentation, tools, etc.

In the sub-field ESE, the most relevant research methods
are the controlled experiments, the surveys, and the case
studies. The selection of methods for a given research project
depends on many local contingencies, including available
resources, access to subjects, opportunity to control the
variables of interest, and, of course, the skills of the
researcher [26]. All the research methods have known flaws
and each can only provide limited, qualified evidence about
the phenomena being studied. However, each method is
flawed differently and viable research strategies use multiple
methods, chosen in such a way that the weaknesses of each

method are addressed by use of complementary methods
[27].

We will adopt surveys as one of the research methods
(specifically, questionnaires) since it is an assessment tool
that can be applied to a considerable number of students, it is
cost effective and non-invasive, provide quantitative data,
and allows the analysis of results with promptness. It has
been argued that the application of questionnaires consumes
less time, effort and financial resources than other methods
of data collection such as interviews and document reviews
[28]. However, at later stages of the research, we will make
some interviews with some students to get additional
information about the team’s organization (mainly related
with the instantiation of RUP configurations).

State-of-the-art will be performed as another research
approach at initial stages of the PhD work. This activity will
complement the brief state-of-the-art presented in this paper.
With the literature review, we intend to acquire knowledge
about the efforts made for similar problems. We intend to
review the following main areas of study:
• Experimental software engineering giving special
attention to studies conducted with students as subjects;
• Software process improvement approaches, in particular
CMMI and RUP configurations for small teams;
• Project management tools and their support to software
development activities.

The three sets of experiences with students will be run as
empirical software engineering studies, framed by all the
recommendations contained in the previously referred
literature. Simultaneously, with the validation of the research
results, we will start the development of a framework that
shows us a consistent process of using students as subjects of
empirical studies. The writing of the thesis will be done
along the realization of the work.

IV. PAST WORK AND PRELIMINARY RESULTS
This PhD work takes place within the Software

Engineering and Management Group (SEMAG) from the
ALGORITMI Research Centre at the University of Minho.
SEMAG research group is devoted to study the development
process of software-based information systems and related
methodologies, focusing on both the engineering and
management aspects.

At the undergraduate level (Bologna 1st cycle), the
teaching staff of the SEMAG is mainly enrolled in the
University of Minho DLic degree in Information Systems
and Technology (LTSI) by running, among others, the
Software Process and Methodologies (PMS) and
Development of Software Applications (DAI) courses. At
the postgraduate level (Bologna 2nd cycle), the teaching staff
of the SEMAG is enrolled both in the DEng degree in
Engineering and Management of Information Systems
(MEGSI) and in the MSc degree in Information Systems
(MSI) by running, among others, the Analysis and Design of
Information Systems (ACSI) and Project Management for
Information Systems (GPSI). The empirical studies planned
for this PhD work will use software engineering materials
and students from PMS, ACSI, DAI, and GPSI courses.

339

During the first academic semester, PMS students
(undergraduation) perform part of the RUP inception phase
relative to one real software application, resulting in a project
proposal to be addressed to one real client. They have three
moments of evaluation and their work focuses on business
modeling, requirement, and project management disciplines.
The existence of a real costumer permits the acquiring of all
the needed information to perform the project proposal.
Simultaneously, some ACSI students (postgraduation) get
involved with PMS students in order to collect information
about the produced business and requirements artifacts and
to perform CMMI assessments.

In the second academic semester, DAI students
(undergraduation) continue to serve the same client of the
first semester and perform the remainder of the RUP
inception phase and execute the elaboration, construction and
transition phases of RUP to deploy the software application
to the real client. Simultaneously, some GPSI students
(postgraduation) get involved with DAI students to collect
information about the produced software artifacts and the
adopted RUP configuration and to perform CMMI
assessments and to analyze the utilization of PM tools.

In our approach, we detain several mechanisms that bring
into the educational context some characteristics of a real
industrial project:
• We have a real client that interacts with the teams and
that opens for them the real organizational environment
where the software application will be explored;
• We adopt a real problem, with the complexity and the
imperfections of any real medium-size software project;
• The inter-relation between PMS and ACSI courses (by
means of the ACSI students that emulate external process
consultants) and between DAI and GPSI courses (by means
of the GPSI students that emulate senior project facilitators)
allow us to recreate a typical industrial environment where
we have outsourcing of consultants and several depths of
professional experiences in the teams;
• The teams compete with each other to sell their software
application to the client, which emulates reasonably well the
real software market.

The two sets of undergraduate and postgraduate courses
(PMS+ACSI and DAI+GPSI) allow us to perform empirical
studies of the controlled experiment type, where teams of
students (subjects) are the experimental units that lead
several software engineering tasks to assess different
software processes (RUP configurations) and PM tools
support.

In the academic year of 2010/2011, a controlled
experiment was performed to assess the reduced model of
RUP [29] [30]. It involved seven development software
teams. The teams had between 13 and 17 students (1 team
with 13, 3 teams with 14, 2 teams with 16 and 1 with 17).
Two teams (team 5 and team 7) were randomly chosen to not
adopting the RUP reduced model (we called these two teams
the "Control Teams"), while the other five teams followed
the guidelines established by the RUP reduced model,
executing the phases of inception, elaboration and
construction. The students elaborated the project proposals

during the first semester and developed the software
applications during the second semester.

The assessment of the RUP reduced model was
conducted by adopting the CMMI-DEV v1.2 ML 2 reference
model. With the exception of SAM (Supplier Agreement
Management), all the other process areas were assessed.
Figure 1 shows the percentage of accomplishment of all
specific practices from all process area analyzed for each
team. Although there is a significant difference between the
various teams, the obtained results show that when the teams
use the RUP reduced model they are able to accomplish
CMMI ML2 adequately [31].

Figure 1. : Coverage of CMMI ML2 Process Areas

In this first experiment, students were suggested to use
Microsoft Project Server 2010 to support their software
development activities. The configuration of this platform
was performed by two GPSI students. The configuration was
extremely difficult to perform. Teams had very little tool
support to perform PM tasks.

In the academic year of 2011/2012, a second controlled
experiment is being performed to assess the mapping
between specific practices of CMMI ML2 and ML3 process
areas and RUP artifacts, activities and tasks. In this second
experiment, students are using Clocking IT [32] and
Teamwork Project Manager [33] to support their software
development activities. ClockingIT is an open source
application hosted for tracking all tasks, issues, projects and
time spent, with a focus on software development and
handling large amounts of tasks. Teamwork Project Manager
is an online application that helps organize and take control
of our current projects, task lists, milestones, files,
notebooks, resources and time. We intent to assess the
influence of these tools in the team’s performance.
Meanwhile, we are gathering information to elaborate our
framework to support the adoption of student teams to
perform industry-valuable empirical software engineering
experiences.

V. FUTURE WORK AND EXPECTED RESULTS
For the next two academic years (2012/13 and

2013/2014), students will get a more stable PM tool support.
With the lessons learned from the two first experiments we
intend to refine our processes of experimentation and start to
explicitly address specific issues related with conceptual
elaboration of our framework. We will also compare the
CMMI maturity of teams that adopt the RUP reduced model

340

with those adopting agile methods. We will also assess
specific PM tools.

VI. CONCLUSIONS
Empirical studies in software engineering are important

to be conducted to evaluate new tools, techniques, methods
and technologies in a structured way before they are
introduced in a real software process. Taking into account
that: (1) software companies are not usually available to
conduct empirical studies; and (2) when, exceptionally, they
decide to do it, they keep the results for themselves;
empirical studies with students are an interesting alternative
to assess software processes and tools and share the results
with the academia and the industry.

The problem with this interesting alternative is that there
is a lack of scientific evidence that empirical studies with
students are valuable for software companies. In our PhD
work we intend to develop a framework that shows us a
consistent process of using students as subjects of empirical
studies. The framework will help to guide new empirical
studies in a way that software companies may get interested
in buying empirical studies to our laboratory. With this
research we hope to contribute to the body of knowledge of
ESE, SPI and PM and also to contribute to the increasing of
the competitiveness of software companies.

REFERENCES
[1] V. Basili, G. Caldiera, F. McGarry, R. Pajerski, G. Page, and S.
Waligora, The Software Engineering Laboratory-an Operational Software
Experience Factory, in ICSE 92, pp. 370-381, 1992.
[2] A.D. Lucia, F. Ferrucci, G. Tortora, and M. Tucci, Emerging Methods,
Technologies and Process Management in Software Engineering. John
Wiley & Sons, 2008.
[3] B.A. Kitchenham, S.L. Pfleeger, L. M. Pickard, P.W. Jones, D.C.
Hoaglin, K. El Emam, and J. Rosenberg, Preliminary Guidelines for
Empirical Research in Software Engineering, in TSE, vol. 28, no. 8, pp.
721-734, 2002.
[4] R. Rosenthal, Science and Ethics in Conducting, Analyzing, and
Reporting Psychological Research, in Psychological Sciense, vol. 5, no. 3,
pp. 127-134, 1994.
[5] L. Jaccheri and T. Osterlie, Can We Teach Empirical Software
Engineering?, in METRICS 2005.
[6] V. Basili, R.W. Selby, and D. H. Hutchens, Experimentation in
Software Engineering, in TSE, vol. 12, no. 7, pp. 733-743, 1986.
[7] M. Höst, Introducing Empirical Software Engineering Methods in
Education, in SEET 2002, pp. 170-179, 2002.
[8] D.I.K. Sjøberg, J.E. Hannay, O. Hansen, V.B. Kampenes, A.
Karahasanovic, N.K. Liborg, and A.C. Rekdal, A Survey of Controlled
Experiments in Software Engineering, in TSE, vol. 31, no. 9, pp. 733-753,
2005.
[9] University of Helsinki. (2012, 2012-5-10). Software Factory. Available:
http://www.softwarefactory.cc/
[10] M. Höst, B. Regnell, and C. Wohlin, Using Students as Subjects—A
Comparative Study of Students and Professionals in Lead-Time Impact
Assessment, in ESE, vol. 5, no. 3, pp. 201-214, 2000.
[11] W.F. Tichy, Hints for Reviewing Empirical Work in Software
Engineering, in ESE, vol. 5, no. 4, pp. 309-312, 2000.

[12] D.I.K. Sjøberg, B. Anda, E. Arisholm, T. Dyba, M. Jorgensen, A.
Karahasanovic, E. F. Koren, and M. Vokac, Conducting Realistic
Experiments in Software Engineering, in ISESE 2002.
[13] L. Jaccheri and S. Morasca, Involving Industry Professionals in
Empirical Studies with Students, in ICESE 2007, Germany, 2007.
[14] M. Svahnberg, A. Aurum, and C. Wohlin, Using Students as Subjects -
An Empirical Evaluation, in ESEM 2008.
[15] J.C. Carver, L. Jaccheri, S. Morasca, and F. Shull, A Checklist for
Integrating Student Empirical Studies with Research and Teaching Goals,
in ESE, vol. 15, no. 1, pp. 35-59, 2010.
[16] W. S. Humphrey, A Discipline for Software Engineering. Addison
Wesley, 1995.
[17] W.A. Florac, A.D. Carleton, and J.R. Barnard, Statistical Process
Control: Analyzing Space Shuttle Onboard Software Process, in IEEE
Software, vol. 17, no. 4, pp. 97-106, 2000.
[18] B. Hansen, J. Rose, and G. Tjørnehøj, Prescription, Description,
Reflection: The Shape of the Software Process Improvement Field, IJIM,
vol. 24, no. 6, pp. 457-472, 2004.
[19] SEI, "CMMI® for Development, Version 1.3, Software Engineering
Institute, CMU/SEI-2010-TR-033, 2010.
[20] P. Kruchten, The Rational Unified Process - An Introduction, 3rd
Edition. Addison-Wesley, 2003.
[21] PMI, A Guide to the Project Management Body of Knowledge, Fourth
Edition, Project Management Institute, 2008.
[22] PMI. Available: http://www.pmi.org
[23] The Standish Group. (2009). Chaos Report. Available:
http://www1.standishgroup.com/newsroom/chaos_2009.php
[24] W.J. Orlikowski, Knowing in Practice: Enacting a Collective
Capability in Distributed Organizing, Organization Sciense, vol. 13, no. 3,
249-273, 2002.
[25] R. G. Cooper, Winning at New Products: Accelerating the Process
from Idea to Launch, third edition, Addison-Wesley, 2001.
[26] S. Easterbrook, J. Singer, M.A. Storey, and D. Damian, Selecting
Empirical Methods for Software Engineering Research, in Guide to
Advanced Empirical Software Engineering, 1st Ed., pp. 285-311, 2008.
[27] J. W. Creswell, Research Design: Qualitative, Quantitative and Mixed
Methods Approaches, 3rd edition,Sage Publications Inc., 2009.
[28] I. Garcia, C. Pacheco, and P. Sumano, Use of Questionnaire-Based
Appraisal to Improve the Software Acquisition Process in Small and
Medium Enterprises, in SERMA, vol. 150, pp. 15-27, 2008.
[29] P. Borges, P. Monteiro, and R. J. Machado, Tailoring RUP to Small
Software Development Teams, in SEAA 2011, pp. 306-309, 2011.
[30] P. Borges, P. Monteiro, and R. J. Machado, Mapping RUP Roles to
Small Software Development Teams, in SWQD 2011, pp. 59-70, 2012.
[31] F. Mandjam, Avaliação do Impacto das Práticas do CMMI no
Desempenho de Equipas de Desenvolvimento de Software no Ensino, MSc
in Engineering and Mangement of Information Systems, Universidade do
Minho, Portugal, 2011.
[32] E. Simonsen and E. Simonsen. (2008, 2012-05-11). Clocking IT
TimeTracking 2.0. Available: http://www.clockingit.com/
[33] Teamwork Project Manager. (2012, 2012-05-11). Teamwork Project
Manager. Available: http://www.teamworkpm.net/
[34] Microsoft. (2012, 2012-05-10). Available:
http://office.microsoft.com/pt-pt/project-help/ CH010362755.aspx
[35] S. Abels, F. Ahlemann, A. Hahn, K. Hausmann, and J. Strickmann,
PROMONT - A project management ontology as a reference for virtual
project organizations, in LNCS, vol. 4277, pp. 813-823, 2006.
[36] M.C. Paulk, “A History of the Capability Maturity Model for
Software,” ASQ Software Quality Professional, vol. 12, no. 1, pp. 5-19,
2009.

341

Usability Evaluation of Domain-Specific Languages

Ankica Barišić, Vasco Amaral, Miguel Goulão
CITI, Departamento de Informática

Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa
2829-516 Caparica, Portugal

a.barisic@campus.fct.unl.pt, vma@fct.unl.pt, mgoul@fct.unl.pt

Abstract—Domain-Specific Languages (DSLs) are claimed to
bring important productivity improvements to developers,
when compared to General-Purpose Languages (GPLs). The
increased Usability is regarded as one of the key benefits of
DSLs when compared to GPLs, and has an important impact
on the achieved productivity of the DSL users. So, it is essential
to build in good usability while developing the DSL. The
purpose of this proposal is to contribute to the systematic
activity of Software Language Engineering by focusing on the
issue of the Usability evaluation of DSLs. Usability evaluation
is often skipped, relaxed, or at least omitted from papers
reporting development of DSLs. We argue that a systematic
approach based on User Interface experimental validation
techniques should be used to assess the impact of new DSLs.
For that purpose, we propose to merge common Usability
evaluation processes with the DSL development process. In
order to provide reliable metrics and tools we should reuse and
identify good practices that exist in Human-Computer
Interaction community.

Keywords: Domain-Specific Languages, Usability
Evaluation, Software Language Engineering

I. INTRODUCTION
An increasing number of people rely on software systems

to perform their daily routines and responsibilities. As such,
systems need to be developed rapidly. Domain-Specific
Languages (DSLs) are claimed to contribute to a productivity
increase in software systems development, while reducing
the required maintenance and programming expertise. The
main purpose of DSLs is to bridge the gap between the
Problem Domain (crucial concepts, domain knowledge,
techniques, and paradigms) and the Solution Domain
(technical space, middleware, platforms and programming
languages). The sooner we fill in this gap, the sooner we
shall increase users’ productivity. However intuitive this idea
may be, we need to have means to assess the Quality and
success of the developed languages. The alternative is to
accept the risk of building inappropriate languages that could
even decrease productivity or increase maintenance costs.

Software Language Engineering (SLE) is the application
of a systematic, disciplined and quantifiable approach to the
development, usage, and maintenance of software languages.
One of the crucial steps in the construction of DSLs is their
validation. However, this step is frequently neglected. The
lack of systematic approaches to evaluation, and the lack of
guidelines and a comprehensive set of tools may explain this
shortcoming in the current state of practice. To assess the
impact of new DSLs we could reuse experimental validation

techniques designed for User Interfaces (UIs) evaluation. The
focus of this research proposal is to build up a conceptual
framework that supports the development process of DSLs
concerning the Usability evaluation. This will include
concepts, methods, languages, processes, implementation of
tools, and metrics proposal.

DSLs can be regarded as communication interfaces
between humans and computers. In that sense, using a DSL
is a form of Human-Computer Interaction (HCI). As such,
DSLs evaluation could benefit from techniques used for
evaluating regular UIs. We reviewed current methodologies
and tools for the evaluation of UIs and General Purpose
Languages (GPLs), in order to identify opportunities for
improving the current state of practice in DSL evaluation.
That brought us closer to providing adequate techniques for
supporting the evaluation process which, we argue, should be
based on methods for assessing user experience and customer
satisfaction, applied to DSL users. By promoting DSL
Usability to a priority in the DSL development, Usability
must be considered from the beginning of the development
cycle. One way of doing this is through user-centered
methods. In order to tailor such methods to DSL
development, we need to establish formal correspondences
for all stages of the DSL development process and the
Usability evaluation process.

This paper is organized as follows. In section II we
discuss the current state of the art in DSL development and
potential contributions from HCI to improve it. In section III
we detail our research objectives and methodology. In
section IV we report on the preliminary results in this
research project, while in section V we outline our plans for
future work and expected results. In section VI we present
the conclusions for this paper.

II. STATE-OF-THE-ART
The immersion of computer technology in a wide range of

domains, leads to a situation where the users’ needs become
increasingly demanding and complex. The Quality of the
users’ interaction with this kind of technology is becoming of
the utmost importance. Consequently, the development of
successful software systems becomes increasingly more
complex.

Software engineers need to cope with the growing of both
essential and accidental complexity [1]. They have to
provide solutions that solve a class of crucial problems in a
given domain, which are sometimes very complex to learn,

2012 Eighth International Conference on the Quality of Information and Communications Technology

978-0-7695-4777-0/12 $26.00 © 2012 IEEE

DOI 10.1109/QUATIC.2012.63

342

such as the rules and technical jargon found in domains like
the Physics, Finance, Medicine, etc. Also, they need to deal
with the accidental complexity of the used technology, e.g.,
the use of low level abstraction programming languages,
while integrating a wide plethora of different tools and
libraries.

The use of the Model Driven Development (MDD)
techniques and tools is seen as a viable approach for dealing
with this accidental complexity[2]. MDD is grounded on the
notion of providing explicit Models, commonly called “first
class artifacts”, that are further translated into other lower
level, more detailed, Models. These translations are also
considered as development artifacts and can be explicitly
modeled by means of transformation models. This approach
has special impact in dealing with the complexity of large
scale problems, while enabling rapid prototyping,
simulation, validation and verification techniques [3], [4].

In direct relation with the MDD approach, we have
modeling languages that are able to express the models with
adequate notations. DSLs provide a notation tailored
towards an application domain as they are based on models
of relevant concepts and features of the domain [5]. As
DSLs are used to describe and generate members of a family
of systems in the application domain, they give the
expressive power to generate the required family members
more easily. As such they separate domain experts’ work
from analysis/transformation experts’ work. DSLs are
claimed to match users’ mental model of the problem
domain by constraining the user to the given problem [6].

In general, the software industry does not report
investment on the evaluation of DSLs, as shown in a recent
systematic literature review [7]. This conveys a perception
that there is an insufficient understanding of the SLE
process which, in our opinion, must include the evaluation
of the produced DSLs. This apparent state of practice
contrasts with the return of investment attributed to usability
improvements reported for other software products [8]. In
general, those benefits span from a reduction of
development and maintenance costs, to increased revenues
brought by an improved productivity by the end users [9].

The end user of the DSL can be a domain expert, a
regular domain user, or a programmer that developing
software systems for a specific domain. Each of these users
has a different background profile and a different role in the
problem solution. Both are expected to impact the way these
users use a DSL. We need comparable validation procedures
to assess user experience with DSLs, in contrast with
whatever was the previous problem solving approach in that
particular context.

Comparing the impact of different languages in the
software development process has some tradition in the
context of GPLs (e.g., [10]). Typically, the popularity of a
language is used as a surrogate for its usability, but this
simplistic approach is not particularly interesting for DSLs,
which often have a well-bounded set of target users (e.g.
people working in a particular organization) Another

shortcoming of the “popularity” approach is that it does not
help identifying the strengths and weaknesses of a language,
be it DSL or GPL. Other sorts of evaluations on GPLs
include benchmarks, feature-based comparisons and
heuristic-based evaluations [10],[11]. Since the end users of
GPLs are usually closer to computation concepts, while the
end users of DSLs are generally closer to domain concepts
of the context of use, these methods cannot be directly
applied for DSLs either.

When usability problems are identified too late in the
language development process, a common approach to
mitigate them is to build tool support that minimizes their
effect on users’ productivity [12], [13]. Better Usability is a
competitive advantage, although evaluating it remains
challenging, because it is hard to interpret existing metrics in
a fair and unbiased way.

When compared to using GPLs, the increased
productivity achieved by using DSLs is the one of the
strongest claims of the DSL community[3],[4],[14]. The
problem is that this claim is mostly based on anecdotal
reports on improvements that lack external validity. Other
reports, present maintainability and extensibility
improvements brought by a combination of DSLs and
Software Product Lines (SPLs) [15]. The usage of DSLs has
been favorably compared to the usage of templates in code
generation, with respect to flexibility, reliability and
usability [16]. In a recent survey DSL users reported that
they achieved noticeable improvements in terms of
reliability, development costs, and time-to-market [6].
Comparisons can also be made among competing DSLs: for
instance, [17] compares a visual DSL against the textual
language for which it is a front-end.

DSLs define a way for human to communicate with
machines. Therefore, DSL evaluation should not be much
different from evaluating a regular UI. We can argue that
any UI is a realization of a language, where a language is
considered as a theoretical object (a.k.a. model) that
describes the allowed terms and how to compose them into
the sentences involved in a particular human-computer
communication. Examples of UIs range from compilers to
command-shell and graphical applications, and in each of
those examples we can deduce the human-computer (H/C)
language that is being used to perform that communication
[29]. The general goal for HCI is that “it should increase
efficiency of humans performing their duties within a
computation infrastructure, without extra organizational
costs, inconveniences, dangers and dissatisfaction, as well
as undesirable impacts on the environment during long
periods of learning, or maintenance, among others” [18].

Usually, there is a broad spectrum of issues to evaluate
Software’s Quality. Looking at the quality standards, and to
the current Software Evaluation techniques we can fit them
to the particular case of DSLs. In the literature, most of the
requirements are actually associated with a qualitative
software characteristic called Usability. The need for
development of Usability definition is discussed in several

343

articles such as [19], [20]. The standards ISO/IEC 9241-11
(2001), ISO/IEC 9126 (2001) and ISO IEC CD 25010.3 [19]
provide several definitions. The ISO IEC 9241-11 (2001)
standard defines Usability as the “extent to which a product
can be used by specified users to achieve specified goals
with effectiveness, efficiency and satisfaction in a specified
context of use”. ISO IEC 9126 (2001) gives us a quality
model for achieving ‘Goal Quality’, i.e., Quality in Use. ISO
IEC CD 250100.3 estimated that model into complete
Quality Model [21], where Usability is considered part of
Quality in Use. In the context of DSL’s evaluation [22],
important notions such as Quality in Use, internal and
external Quality were considered strongly dependent on the
DSLs’ intended context of use [27].

DSLs are built for a more confined context of use, and
they capture one particular set of domain concepts. When
we evaluate these languages, the population of users is
smaller, and the external validity of the result is expected to
be much higher than we would have for a UIs. In the context
of potential language’s optimization procedure, we expect to
find more relevant and accurate interpretations for these
results.

III. RESEARCH OBJECTIVES AND METHODOLOGICAL
APPROACH

Despite the advantages that DSLs might bring to
Software Engineering (by mitigating the accidental
complexity of software), in order to be widely adopted by
Software Engineering professionals, we need to provide the
means to assess their Quality in Use and success of
implemented problem solution when compared to the other
solutions. The alternative is to accept the risk of developing
inappropriate DSLs that can decrease the domain developers’
productivity or even increase maintenance costs.

We need a rigorous collaborative procedure in order to
evaluate DSLs (both during and after their development), as
well as evaluate their sentences (called instance models). For
that it is necessary to:

a) Define the quality criteria to evaluate DSLs;

b) Integrate in an existing IDE support for
development of DSLs with high Quality in Use;
and

c) Define a methodological approach to support the
evolution of a DSL’s design based on user
experience and infer its impact on quality
improvement during its lifecycle (e.g.
traceability of design decisions).

We propose to build a comprehensive methodology that
involves Usability concern in all phases of existing DSLs’
development process. We should research the most suitable
means to provide both reliable DSL evaluation metrics and
iterative suggestions during DSLs’ development and
evolution. This methodology will be based on user-centric
techniques and cope with the DSL’s evolution by assessing
the impact of the changes in the DSL’s design and

implementation on user experience. In order to be able to
build this methodology it is necessary to answer the
following questions:

� What are the relevant quality concerns for DSL’s
evaluation, and associated metrics? How can we take
advantage of these metrics to actually measure the
quality in use of a DSL? Which existing standard
DSLs can we take as a reference for performing
DSLs comparison (or comparison of software
languages in general)?

� How to plan an effective experimental evaluation of
a DSL (i.e., giving statistically significant results
with the minimum effort)?

� How to guide the software language engineer in
order to build a DSL with high level of Quality in
Use? What are the good language design patterns?
How can we foresee the Usability of a DSL while in
an iterative evolution step?

The methodology will be validated by compilations based
on recommendations that emerge from it in the development
of the DSLs and experimental assessment of their impact
trough few case studies on the different DSLs.

We foresee the following main research activities that
need to be applied in each development step of DSL in order
to introduce Usability evaluation into development process:

A. Domain Analysis
The Domain analysis phase is needed in order to

understand the domain in consideration, by collecting
information about it. The output of these phase is a domain
model [23], that represents the common and varying
properties of systems within the domain, the vocabulary used
in the domain and defines concepts, ideas and phenomena,
within the system. Existing systems, their artifacts (such as
design documents, requirement documents and user
manuals), standards, and customers are all potential sources
of domain analysis input.

In this activity, we find it essential to define and model
DSLs target users and intended context of use. Also, we
propose new models, e.g. scenario-based modeling and goal-
oriented modeling, which are based on assessment of users’
previous experience. They should be included into the
existing domain analysis models in order to define the
usability requirements and crucial tasks that should be
supported by the DSL under evaluation. Also, we find it
crucial to relate these requirements to dependent user and
context models. These models should be considered from the
beginning of the DSL’s development process as quality
criteria for the newly designed language. During the
development process these models should be refined
according to results of validation recommendations.

B. Language Design
Designing DSLs remains a difficult and under-explored

problem [31]. Recent work has focused mainly on the
implementation of DSLs and supporting tools. Also, Volter

344

presents a collection of design patterns for describing the
process of MDD. However, there still lacks detail for
language design, development and implementation. We
expect to contribute here with design patterns of Usability
evaluation of DSLs.

In the Language Design activity, we propose to perform
corpus evaluation of DSLs. Here, the main objective is to
identify the means to evaluate the internal quality of a
language, i.e., in the perspective of language’s evolution and
validation. We expect to trace the impact of metamodel
design changes, and collected statistic on the DSLs Usability.

C. Testing – Controlled experiment
The main objective of the testing activity is to identify the

means to evaluate the Quality in Use of a language according
to the requirement models described in the domain analysis
phase. This involves the definition of experimental
procedures/processes, heuristics and questionnaires. In order
to be able to provide proper instrumentation for experimental
evaluation, it is necessary to design support that will log
Quality indicators, and present quantitative metrics result, so
that developer is able to reason about the Quality in Use of
implemented solution.

Designed instrumental support should be integrated into
experimental model, so it can be validated trough controlled
experiments. The quality in use of a language may be
evaluated distinctly according to either its abstract syntax or
concrete syntax which also implies the adoption of a
(arguably) good interaction model. However, that is another
aspect of usability evaluation of DSLs that is not part of this
work. In scope of this work we find it necessary to evaluate
only functional quality of concrete syntax, and not
concentrate on evaluating concrete syntax by itself. Also, we
will distinguish between evaluating a DSL from evaluating
its implementing tool.

D. Deployment and Maintenance - Collect and evaluate the
Quality the Instance Models (sentences)
The objective of this activity is to identify the appropriate

means to qualify the instance models based on the users’
feedback in the production environment. To be able to
compare the (semantically equivalent) instance models
expressed on the same language in a cognitive perspective
we should revisit and improve corpus evaluation
tools/techniques from testing activity. Also we should
monitor the language’s ability to support the evolution of the
instance models without having negative impact of the
languages usability.

E. Validation - Iterative life-cycle
The main objective of this activity is to build a conceptual

framework to reason about the pertinence of the results of
the language’s Quality in Use in the overall language’s life-
cycle. It is important to identify what quality attributes (and
corresponding metrics) have the most relevant impact on
overall Quality in Use. We should evaluate impact of those
quality metrics during following the language development
step, as well as to validate suggestions for further

improvements on the following steps. The framework
should enable us to trace the impact of design changes on
user experience with language and be interactively
connected to the usability models proposed for another
development activity.

By using existing language evaluation case studies we
can compare the decisions from the reasoning framework,
with the conclusions (considered sound by the community)
taken from other language evaluation approaches. The
expected output is a report containing a proof of correctness
(completeness and soundness) of the conclusions taken by
the reasoning framework on the observed case studies.

IV. PAST WORK AND PRELIMINARY RESULTS
There are already many publications about UI Usability

evaluation. However, we find that the Usability evaluation of
a UI is typically superficial when compared to the required
usability evaluation of DSLs. Existing methodologies do not
cover all the relevant aspects and dimensions of usability
evaluation, e.g. learnability, efficiency, effectiveness for all
intended users and features of product. As it is hard to
capture all the intended contexts of use for UIs at once,
supporting tools are developed to support some parts of
methodologies, usually built to provide questionnaires or
collect some quantitative data, and are in most cases too
general. Existing practices have very a low level of external
validity, and sometimes it is hard to interpret what the
collected information means, probably because of the wide
spectrum of contexts of use that they target.

DSLs can have a precise definition of the end user’s
profile and task models, as well as syntactic models, that our
method uses in order to achieve better results from its
Usability evaluation. Moreover, we can rely on these results
in order to validate the claim that DSLs can effectively
narrow the gap between humans and computers, when
compared to regular GPLs.

A. Iterative user-centered design
According to Mernik et al., the Language life cycle

consists of a set of phases [5]: Decision, Domain Analysis,
Design, and Implementation. Visser adds Deployment and
Maintenance to this process [23]. Besides adding Testing (as
in any typical Software Product), we propose to introduce
Language Evaluation just before Deployment [24]. This
Language Evaluation phase is done with language quality
concerns in an incremental and iterative user-centric
approach, with the DSL end users, while crosscutting all of
the involved phases, as suggested in [25].

By allowing significant changes to correct deficiencies
along the development process, instead of just evaluating the
DSL at the end of the process, when it might be too late,
user-centered design can reduce the cost of development and
support. The critical activities required to implement user-
centered design are described in ISO 13407 [20]. Once the
system is released to the users, an user experience assessment
of DSLs and associated IDE may be highly beneficial [19].

345

An Iterative Usability evaluation approach should be
merged with the DSL development cycle, as described in
[22]. This approach supports reasoning about the already
implemented and wished problem domain concepts of DSLs
users. In a first moment, by defining them for the user and
context models in the domain engineering phase, designing
and implementing them in the language. In a later stage, the
language concepts should be validated in the testing phase,
along with the development environment proposed for using
the DSL. Note that the combination of language and tool
support is essential in the evaluation, because language usage
will be significantly impacted by its tool support. As such, it
is essential that the iterative usability evaluation covers both.

B. Context-dependent evaluation
Empirical evaluation with users, is recommended at all

stages of development, or at least in the final stage of
development [26]. To do so, we can use several methods,
with different kinds of measures, where each type of measure
is usually regarded as a separate factor with a relative
importance that depends on the DSL’s context of use [27].
These evaluations can be designed to target specific profiles
of DSL users in order to increase their replicability.

For several predefined groups of DSL users we should
use techniques like questionnaires, and observations to
analyze the tasks involved while using a given DSL.
Observations should include capturing quantitative indicators
related to users’ interaction with the DSL environment (e.g.
mouse movements, keystrokes, heartbeats, or eye tracking).
Experimenters in human factors have developed a list of
tasks that can capture these particular aspects [28]. These
tasks should be designed to capture relevant Usability
concerns, e.g., effectiveness, efficiency or satisfaction. We
propose a systematic approach based on UIs experimental
validation techniques to assess the impact of the introduction
of DSLs on the productivity of its end users. To illustrate this
evaluation approach we have presented a case study of a
DSL for High Energy Physics [29].

C. Experimental Language Evaluation
We argue that the Quality in Use of a DSL should be

assessed experimentally. In Software Engineering, a
controlled experiment can be defined as “a randomized
experiment or quasi-experiment in which individuals or
teams (the experimental units) conduct one or more Software
Engineering tasks for the sake of comparing different
populations, processes, methods, techniques, languages or
tools (the treatments)” [30]. In the case of DSLs, this can be
instantiated in early phases of development with domain
experts that typically have to conduct with software
construction, or evolution tasks. For the sake of comparing
different languages, including the DSL under evaluation and
any existing baseline alternatives to that DSL, representative
user groups should be modeled and involved.

We proposed a general experimental evaluation model,
tailored for DSLs’ experimental evaluation, and its
instantiation with several DSL evaluation examples [24].

These instantiations served as a proof of concept for the
proposed experimental evaluation process. Our evaluation
model can be instantiated for repeated evaluations of a DSL,
thus building up a longitudinal evaluation of the DSL, while
it evolves. This enables us to track and control the impact
and scope of changes in the DSLs. The model also facilitates
reasoning about which Usability levels are achieved for each
user profile population, which can help language engineers in
determining when the desired quality in use level is achieved
(i.e. when additional changes do not have any more
significant impact in the Usability of DSL). The
representation of the evaluation as an instance of our
evaluation model also facilitates the comparison of
alternative DSL solutions, as well as the replication of
previous evaluations, their approaches and decision models.

V. FUTURE WORK AND EXPECTED RESULTS
Our research will follow by proposing metrics and

methodologies for Usability evaluation of DSLs, whose
validity should be supported by real life experiments with
users of existing DSLs. In order to do that, we find it
necessary to define conceptual distance as the distance
between concepts in the users’ mind and the conceptual
domain of a language. If we are able to measure that
distance, and have methods that will minimize it, we can
support the claim that DSLs are able to close the gap between
domain experts and solution domain.

An additional step is to conceptualize models for
performing DSL’s evaluation i.e. quality model, instruments
model, metrics and traceability model of design changes and
their impact. This support should be tailored to internal and
external quality attributes (such as syntactic and semantic
models of the DSL under evaluation) and user’s experience
while using a DSL along several iterative evolution steps.

By providing that kind of support, we can effectively
perform evaluation, whose outcome can be used to help
increasing users’ productivity, and explicitly model all the
process. This evaluation procedure will give us faster
convergence of language development, as we are able to
monitor the impact of language evolution in the efficiency
and effectiveness of practitioners using the language (and its
companion toolset). As a side effect, we expect our
evaluation work to contribute to the validation of the claim
that DSLs are more usable then GPLs.

The impact of an evaluation process for DSLs is expected
to be interesting from an industry point of view. With many
organizations developing their own languages, or hiring
companies to develop such languages for them, this
framework will aid them in reaching more usable languages.

VI. CONCLUSION
Building DSLs is becoming very popular and by that

there are increasing needs of some pointers in topic of their
cognitive congeniality to end user. Although pragmatic,
reactive approaches would not be necessary if domain
experts could develop applications easily. It is necessary to
explore more proactive approaches to improving DSLs’

346

Usability. We need to build a comprehensive methodology
that support all phases of the Usability evaluation process
and indicate ways to provide reliable metrics for supporting
this evaluation. This is expected to enhance the community’s
awareness and recognition of the relevance of this topic in
the process of SLE.

ACKNOWLEDGMENT
The authors would like to acknowledge CITI - PEst -

OE/EEI/UI0527/2011, Centro de Informática e Tecnologias
da Informação (CITI/FCT/UNL) - 2011-2012) - for the
financial support for this work.

REFERENCES

[1] F. P. Brooks, “The Mythical Man-Month: Essays on Software

Engineering”, Addison-Wesley Publishing Company, 3rd Edition,
1995.

[2] M. Volter and T. Stahl, “Model-Driven Software Development”.
Glasgow, UK: Wiley, ISBN: 0-470-02570-0, 2006.

[3] S. Kelly and J.-P. Tolvanen, “Visual domain-specific modelling:
benefits and experiences of using metaCASE tools,” Proc.
International Workshop on Model Engineering, at ECOOP'2000,
2000.

[4] D. M. Weiss and C. T. R. Lai, “Software Product-Line Engineering:
A Family-Based Software Development Process”. Addison Wesley
Longman, Inc., ISBN: 0-201-69438-7, 1999.

[5] M. Mernik, J. Heering, and A. M. Sloane, “When and How to
Develop Domain-Specific Languages,” ACM Computing Surveys,
vol. 37, No. 4, pp. 316-344, December, 2005.

[6] F. Hermans, M. Pinzger, and A. V. Deursen, “Domain-Specific
Languages in Practice: A User Study on the Success Factors,” Proc.
12th International Conference on Model Driven Engineering
Languages and Systems, Lecture Notes in Computer Science, Denver,
Colorado, USA, October, 2009, pp. 423-437, doi: 10.1007/978-3-642-
04425-0.

[7] P. Gabriel, M. Goulão, and V. Amaral, “Do Software Languages
Engineers Evaluate their Languages?,” Proc. XIII Congreso
Iberoamericano en “Software Engineering” (CIbSE'2010), ISBN:
978-9978-325-10-0, Universidad del Azuay, Cuenca, Ecuador, April,
2010, pp. 149-162.

[8] J. Nielsen, and S. Gilutz, “Usability Return on Investment”, Nielsen
Norman Group, 4th edn. 2003.

[9] A. Marcus, “The ROI of Usability”, in Bias, and Mayhew (Eds.):
“Cost-Justifying Usability”, North- Holland, Elsevier, 2004.

[10] L. Prechelt, “An Empirical Comparison of Seven Programming
Languages,” IEEE Computer, vol. 33, No. 10, pp. 23-29, October,
2000, doi: 10.1109/2.876288.

[11] D. L. Moody, “The “physics” of notations: Toward a scientific basis
for constructing visual notations in software engineering”, IEEE
Transactions on Software Engineering, 2009, pp. 756-779.

[12] K. Y. Phang, J. S. Foster, M. Hicks, and V. Sazawal, “Triaging
Checklists: a Substitute for a PhD in Static Analysis”. Proc.
Evaluation and Usability of Programming Languages and Tools
(PLATEAU 2009), 2009.

[13] R. Bellamy, B. John, J. Richards, and J. Thomas, “Using CogTool to
model programming tasks”. Proc. Evaluation and Usability of
Programming Languages and Tools (PLATEAU 2010), 2010.

[14] MetaCase: “EADS Case Study”,
http://www.metacase.com/papers/MetaEditinEADS.pdf, 2007.

[15] D. Batory, C. Johnson, B. MacDonald, and D. v. Heeder, “Achieving
extensibility through product-lines and domain-specific languages: a
case study,” ACM Transactions on Software Engineering and

Methodology, vol. 11, No. 2, pp. 191-214, April, 2002, doi:
http://doi.acm.org/10.1145/505145.505147.

[16] R. B. Kieburtz, L. McKinney, J. M. Bell, J. Hook, A. Kotov, J. Lewis,
D. P. Oliva, T. Sheard, I. Smith, and L. Walton, “A Software
Engineering Experiment in Software Component Generation,” Proc.
18th International Conference on Software Engineering (ICSE'1996),
IEEE Computer Society, Berlin, Germany, March, 1996, pp. 542-552,
doi: 10.1109/ICSE.1996.493448

[17] N. S. Murray, N. W. Paton, C. A. Goble, , and J. Bryce,
“Kaleidoquery--a flow-based visual language and its evaluation”,
Journal of Visual Languages & Computing, 2000, 11, (2), pp. 151-
189.

[18] T. Catarci, “What happened when database researchers met usability”,
Information Systems, 2000, 25, (3), pp. 177-212

[19] H. Petrie, N. Bevan, “The evaluation of accessibility, usability and
user experience”, in C. Stephanidis, (Ed.): “The Universal Access
Handbook”, CRC Press, 2009.

[20] N. Bevan, “Cost benefits framework and case studies”, in “Cost-
Justifying Usability: An Update for the Internet Age”. Morgan
Kaufmann, 2005

[21] N. Bevan, “Extending quality in use to provide a framework for
usability measurement”, Human Centered Design, 2009, pp. 13-22

[22] A. Barišić, V. Amaral, M. Goulão, and B. Barroca, “How to reach a
usable DSL? Moving toward a Systematic Evaluation”, Electronic
Communications of the EASST (MPM), 2011

[23] E. Visser,: “WebDSL: A Case Study in Domain-Specific Language
Engineering”, in Book WebDSL: A Case Study in Domain-Specific
Language Engineering’ (Springer, 2007, edn.), pp. 291-373

[24] A. Barišić, V. Amaral, M. Goulão, and B. Barroca, “Evaluating the
Usability of Domain-Specific Languages”, in M. Mernik, (Ed.):
“Formal and Practical Aspects of Domain-Specific Languages:
Recent Developments”, IGI Global, 2012, in press.

[25] C. Atkinson, and T. Kühne, “Model-Driven Development: A
Metamodeling Foundation’, IEEE Softw., 2003, 20, pp. 36-41

[26] J. Nielsen, and R. Molich, “Heuristic evaluation of user interfaces”.
Proc. SIGCHI Conference on Human Factors in Computing Systems:
Empowering People (CHI'90), Seattle, Washington, United States,
1990.

[27] A. Barišić, V. Amaral, M. Goulão, and B. Barroca, “Quality in Use of
DSLs: Current Evaluation Methods”. Proc. 3rd INForum - Simpósio
de Informática (INForum2011), Coimbra, Portugal, September 2011.

[28] P. Reisner, “Query languages”: in “Handbook of Human-Computer
Interaction”, North-Holland, 1988, pp. 257-280.

[29] A. Barišić, V. Amaral, M. Goulão, and B. Barroca, “Quality in Use of
Domain Specific Languages: a Case Study”. Proc. 3rd ACM
SIGPLAN workshop on Evaluation and Usability of Programming
Languages and Tools (PLATEAU 2011), Portland, USA, October
2011 pp. 65-72

[30] D. I. K. Sjøberg, J. E. Hannay, O. Hansen, V. B. Kampenes, A.
Karahasanovic, N.-K. Liborg, and A. Rekdal, “A survey of controlled
experiments in software engineering,” IEEE Transactions on Software
Engineering, vol. 31, No. 9, pp. 733-753, September, 2005.

[31] M. Pfeiffer, and J. Pichler, “A comparison of tool support for textual
domain-specific languages”, UAP Printing Solutions, 2008, pp. 1-7.

[32] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design Patterns:
Elements of Reusable Object-Oriented Software. Reading, MA, USA:
Addison-Wesley Publishing Company, ISBN, 1995.

347

Object-Functional Patterns:
Re-Thinking Development in a Post-Functional

World

Tiago Boldt Sousa
Department of Informatics Engineering

University of Porto

Faculty of Engineering

INESC TEC (formerly INESC Porto)

Rua Dr. Roberto Frias, s/n

4200-465 Porto Portugal

tiago.boldt@fe.up.pt

Hugo Sereno Ferreira
Department of Informatics Engineering

University of Porto

Faculty of Engineering

INESC TEC (formerly INESC Porto)

Rua Dr. Roberto Frias, s/n

4200-465 Porto Portugal

hugo.sereno@fe.up.pt

Abstract—Programing paradigms define how to think and
design while creating software. Object-Oriented and Functional
paradigms are two of the most adopted for synthesizing it.
Modern languages, attempting to provide higher abstractions,
are increasingly supporting native multi-paradigm programming
styles. The Object-functional approach still uses classes for
information and high-level structure, but allows algorithms to be
implemented functionally. New challenges now exist and there
is a general lack of knowledge on best practices for adopting
this paradigm. This research proposes the systematic usage
of software patterns to capture these new recurring problems
and their solutions, though not discarding the identification
of new algorithms and designs. We will use Scala as a base
language, and will attempt to validate our hypothesis through
multiple methodologies, including quasi-experiments and case
studies. We expect to provide a basis for improvement for
programming languages (through pattern absorption) and for
software engineering professionals.

Index Terms—Software Engineering, Programing Paradigms,
Design Patterns

I. INTRODUCTION

Synthesizing software is a problem that can be approached

through multiple paradigms. Object-Oriented and Functional

are probably the two most adopted currently. Providing differ-

ent thinking styles, they have previously been mutually exclu-

sive. Nevertheless, these two paradigms are not incompatible

with each other and modern languages are now providing

support for them to be used together in a multi-paradigm

approach, referred to as Object-Functional. This new paradigm

provides advantages from both sides, allowing the high-level

structure to be modeled using Classes, while still exploiting a

functional algorithm definition. Adopting such paradigm opens

new research possibilities regarding software engineering best

practices for documenting best practices while combining both

paradigms, avoiding probable mistakes such as users biased

from previous experiences using either of the paradigms. We

believe that such combination can be better than the sum of

its parts, when correctly combined. Software design patterns

are a generally accepted way to share software engineering

knowledge and could be used to document recurring problems

using the object-functional paradigm. Furthermore, we believe

that known patterns, such as the ones introduced by Gamma et

al [1] in the book “Design Patterns” can be tampered with,

with slight adjustments in the forces, resulting in additional

solutions that benefit from the multi-paradigm approach.

This work proposes to evaluate the possibility of evolving

known software patterns, as well as identifying and docu-

menting new ones, in order to adapt them to the object-

functional paradigm. It is the authors belief that such approach

might positively influence the work quality for developers,

with a multitude of measurable advantages through software

engineering metrics, such as: increased production efficiency,

reduced code size, and the production of less error-prone

applications. A reference implementation of such patterns will

be provided using the object-functional language Scala.

This document is organized in seven sections. After the

introduction, section II describes the motivation for this

proposal. In section III a small introduction to the topics

researched is presented, followed by section IV describing the

current state of the art. Our thesis proposal is better described

in section V. Sections VI and VII present the past and future

work, respectively. The document finishes with its conclusions

in section VIII, where final thoughts about this work are

presented.

II. MOTIVATION

Object-functional languages provide a bridge between

two highly adopted programming paradigms: Functional and

Object-Oriented. We believe that this recent paradigm can

improve the quality of code generated by programmers by

avoiding state and mutable data as functional programming

does, while still providing programmers with the intuitive OO

Class-oriented way representing data.

2012 Eighth International Conference on the Quality of Information and Communications Technology

978-0-7695-4777-0/12 $26.00 © 2012 IEEE

DOI 10.1109/QUATIC.2012.43

348

Despite the advantages introduced by object-functional lan-

guages facing its separated composing paradigms, little work

has been found attempting to document patterns in this context.

Regarding such, we can raise the following questions: How

could known software patterns be implemented in a object-

functional language? How would these be improved, while

compared to their more generic, plain OO-based description?

What new patterns could emerge in this context?

This proposal describes an attempt to find answers for such

questions, attempting to provide a positive contribution to the

research area of software engineering. For that, we will aim at

providing novel patterns to be applied in this context, which

can be of use for researchers and professionals working with

these technologies, as well as provide patterns feasible for

being absorbed by programming languages themselves in the

future, increasing their abstraction level, hence, simplifying

programmers’ work.

III. BACKGROUND

A. Programming Paradigms

A programming paradigm defines the thinking style applied

while programing. Different paradigms offer different concepts

and abstraction to represent elements within the program (such

as variables, functions or objects). Programming languages can

adopt simultaneously multiple paradigms, providing develop-

ers with an increased freedom to use the style it best fits them,

or the problem in hand.

1) Object-Oriented Paradigm: The object oriented

paradigm was first introduced as part of Ivan Sutherland’s

PhD thesis [2] but formalized only later in the first version of

the Simula language in 1967 [3] . Soon it was implemented

by Alan Kay in the Smalltalk, a fully Object-Oriented

language. This paradigm allows programmers to model data

as classes, providing an intuitive way to model information

as it is observable in the real world, through the notion

of objects that have properties and perform actions. OO

promotes code reuse as classes are easily portable between

projects that need to model the same information. Mitchell

[4] describes OO as a set of four key features: dynamic

dispatch, abstraction, subtype polymorphism, and inheritance.

2) Functional Paradigm: The Functional paradigm was

introduced by John McCarthy in the 50’s through the Lisp pro-

gramming language [5] . Functional programming languages

model applications with a mathematical stance, promoting

equational reasoning, making them easier to formally proof.

Contrary to other computation models, this paradigm avoids

keeping a state or mutable data in the program, with every

computation being made only regarding the inputs provided to

a function and logic being handled as a composition of func-

tions. It is common for Functional programming languages

to have advanced type and type-inference systems, such as

Hindley-Milner [6] , which not only considerably reduce the

amount of code needed, but also provide a stronger validation

at compile time when compared to other non strongly-typed

languages. Performance improvements are also relevant, with

lazy evaluation being key, computing data only when it is

needed by other computations, hence, providing the ability

to handle concepts such as infinite data streams, as well as

parallelization being freely achieved through the use of the

multiple provided parallel data structures.

3) Object-Functional Paradigm: Languages adopting the

object-functional paradigm are actually multi-paradigm lan-

guages that merge the best of the object-oriented and func-

tional paradigms, providing developers with the ability to rep-

resent data using the classes provided by OO and implement

their algorithms using the more mathematically approach of

functional programing, retaining the features above mentioned.

The improved type systems also reduce the proneness to error.

Several languages have been adopting both these paradigms,

with Scala being one of the most actives.

B. The Scala Programming Language

1) Overview: Scala is a multi-paradigm, general purpose

programming language, designed to express common pro-

gramming patterns in a concise and type-safe way. By joining

the functional and object-oriented paradigm, Scala could en-

able programmers to be more productive at their work when

correctly applying both paradigms together.

2) The Expression Problem and Scala: Originally described

by Wadler [7] , the expression problem is well explained

by Torgersen who formulates it as: “Can your application be

structured in such a way that both the data model and the set of

virtual operations over it can be extended without the need to

modify existing code, without the need for code repetition and

without runtime type errors” [8] . This is a recurring prob-

lem in single paradigm languages, specifically, pure object-

oriented and functional languages. The expressiveness of a

programming language is a relevant factor for guaranteeing

code maintainability. By 2005, Nielsen et al [9] , evaluated

the language’s expressiveness; they considered Scala to be able

to solve the expression problem, a positive influence regarding

our programming language choice.

C. Software Patterns

The concept behind Software Patterns was invented by

Christopher Alexander in the civil architecture domain.

Alexander stated that “Each pattern describes a problem
which occurs over and over again in our environment, and then
describes the core of the solution to that problem, in such a
way that you can use this solution a million times over, without
ever doing it the same way twice” [10] . Software patterns

follow the same principle, with a pattern being a detailed

description of a problem, its context, variating forces and a

proposed solution. Meszaros [11] describes the components

for patterns in detail as follows:

1) Context: You are an experienced practitioner in your

field. You have noticed that you keep using a certain solution

to a commonly occurring problem. You would like to share

your experience with others.

2) Problem: How do you share a recurring solution to a

problem with others so that it may be reused?

349

3) Forces:
• Keeping the solution to yourself doesn’t require any

effort. Sharing the solution verbally helps a few others

but won’t make a big impact in your field.

• Writing down your understanding of the solution is hard

work and requires much reflection on how you solve the

problem.

• Transforming your specific solution into a more widely

applicable solution is difficult.

• People are unlikely to use a solution if you don’t explain

the reasons for using it.

• Writing down the solution may compromise your com-

petitive advantage (either personal or corporate.)

4) Solution: Write down the solution using the pattern

form. Capture both the problem and the solution, as well as

the reasons why the solution is applicable. Ensure that the

necessary information is communicated clearly and include

optional elements when needed to capture any additional use-

ful information. Distribute the resulting pattern to the largest

audience you feel it could help that does not compromise

your competitive advantage. Often, this means publishing your

patterns exclusively within your company via Intranets or

company journals.

IV. STATE OF THE ART

A. Functional Patterns in Object-Oriented

Kuhne in 1999. stated in his PhD thesis that “Design

patterns inspired by functional programming concepts can

advance object-oriented design” [12] . With his thesis, Kuhne

demonstrated the feasibility of porting some concepts from the

functional paradigm to a purely object-oriented language, by

actually implementing functional concepts as usable objects in

a non functional language. In his pattern language, Kuhne de-

scribes and relates the following patterns, which are common

functional concepts:

• Function Object;

• Lazy Object;

• Value Object;

• Transfold;

• Void Value;

• Translator.

Implementing those functional concepts inside a purely object-

oriented language motivated the usage of a functional style

even outside functional languages, which he proves to be

feasible and advantageous for programmers.

B. Design Patterns in Scala

A more recent research was performed by Fredrik Løkke,

with his masters thesis, where he implemented the patterns

described in Design Patterns by the Gang of Four, in the

object-functional language Scala [13] . With his work, Løkke

exploited the functionalities of the language, such as lazy eval-

uations, generics, case-classes amongst others to implement

the patterns in a more functional way. The author states that

there were some patterns absorbed by the language itself, such

as the Singleton pattern, showing how these might influence

the evolution of programming languages. In his conclusion,

the author highlights the relevance of the higher abstraction

models that the language provides and suggests that these

models can be a starting point for the creation of new patterns

that can facilitate the creation of powerful software at lower

costs.

C. Functional Patterns in Scala

In the book “Scala in Depth” [14] , Suereth presents

a review on functional patterns using the (object-functional)

Scala programming language. Described are functors, monads

and applicative functors. Such patterns could pose as starting

ground for research on object-functional patterns, either by

observing natural evolution of these patterns in the wild or by

identifying other patterns that depend on the ones presented

in the book.

D. Design Patterns as Higher-Order Datatype-Generic Pro-
grams

Design pattern solution are usually extra-textually pre-

sented, through prose, pictures or prototypes. Gibbons [15]

believes that this happens due to the lack of expressiveness

from programming languages that, otherwise, could be used by

themselves to describe solutions in patterns, providing directly

reusable library components, presenting multiple benefits: pat-

terns may be reasoned about, type-checked implementation,

applied and reused, just as any other abstractions can. Higher-

order parameterization and datatype-generics would provide

the customization needed to adapt the provided patterns im-

plementation to the specific problem at hand. Considering this,

Gibbons presents a functional implementation in Haskell of

four highly-related GoF patterns (Composite, Iterator, Visi-

tor and Builder), promoting the uptake of higher-order and

datatype-generic techniques, encouraging their incorporation

in mainstream programming languages.

V. THESIS PROPOSAL

A. Problem Description

Considering the lack of documented knowledge regarding

the Object-functional paradigm, we believe that software pat-

terns, as an accepted approach to share knowledge and propose

solutions for solving common software engineering problems,

should be used to collect and disseminate knowledge on the

subject. Considering this, the following questions can then be

raised:

• Is it possible to improve known software patterns follow-

ing the object-functional paradigm?

• What knowledge can we provide to promote more reliable

and less error prone implementations?

• What new patterns can emerge in this context?

• How would Object-functional be an improvement over

the traditional purely object-oriented or functional imple-

mentations in similar contexts?

We believe that documenting best practices for using the

object-functional paradigm could result in less error-prone and

350

more efficient implementations of software artifacts. More-

over, current research let us believe to be possible to document

several new patterns regarding this paradigm, improving both

in algorithm programming style and data organization imposed

by the purely Object-Oriented or functional formalizations.

B. Hypothesis

Assuming (i) that we want to increase the efficiency while

synthesizing software, (ii) that patterns are a proven way

of capturing empirical knowledge on best-practices, and (iii)

that a pattern language empowers a more abstract, general,

and hence powerful way of reasoning, then: If programmers
are provided a pattern language for implementing software
exploiting the object-functional paradigm, when compared to
traditional (either strict OO or Functional) approaches, they
will (i) produce software more efficiently, (ii) produce less
error-prone artifacts, and (iii) object-functional expressiveness
of these patterns will promote higher quality regarding soft-
ware engineering metrics.

C. Research Objectives

This research will focus on researching Software Patterns,

both existing and new ones, using Object-Oriented and Func-

tional programming languages.

1) Object Functional Programming in program synthesis:
Understand how the OFP paradigm changes program synthesis

by comparing software engineering metrics such as code size,

execution time, anti-patterns introduced, amongst others;

2) Improve existing patterns: Research if and how existing

patterns could be reformulated to take advantage from the OF

paradigm;

3) New object-functional patterns: Identify and document

new patterns or pattern languages oriented in this context;

4) Reference Implementation: Provide a reference imple-

mentation of the patterns and pattern language(s) described;

5) Reproducible description of the deliverables: Provide re-

producible experimental packages for the attained deliverables,

namely, the point previously described.

D. Methodological Approach

The validation of this work will be attempted using two

different methodologies: case studies and quasi-experiments.

1) Case Studies: The first form of validation for this work

will consist of case studies performed on industrial partners.

We expect to observe an improvement in their productivity

and overall code quality considering multiple generic software

engineering metrics as a result of the adoption of the object-

functional paradigm, the implemented library and application

of patterns documented in this thesis. We will use data

gathered from other projects from the same team where object-

functional languages are not used to evaluate the performance

increase with the new paradigm.

2) Quasi-Experiments: In order to measure the ability

from developers to adopt the object-functional paradigm and

interpret the documented patterns, quasi-experiments will be

held in a controlled academic environment. We intend to create

homogeneous groups of students and provide them with a

set of problems and corresponding documented patterns to

be solved with one of the three paradigms: object-oriented,

functional or object-functional. Implementations will then be

evaluated regarding efficiency, effectiveness, anti-patterns pro-

duced, amongst other metrics. This data will provide us with

the possibility to evaluate if and in what way is adopting

the object-functional paradigm effective amongst non-biased

developers.

E. Scientific Impact

Scientific contribution from this research can be published

in conferences and journals on general software engineering or

specific conferences on programming paradigms or patterns.

Appendix A lists some of the conferences and journals where

our research is feasible to be published. We believe that

the publication of new patterns, pattern language(s), their

reference implementation and our results can greatly contribute

to both academic researchers working in the same subject or

professionals that might find use in the patterns documented.

VI. PAST WORK AND PRELIMINARY RESULTS

This project is still in its early stage. Currently, research is

being conducted regarding programming languages, patterns

and pattern languages in general, exploring their current state

of the art. Knowledge gathered from this research has been

used to contribute to the European project eCAALYX. In

this context, a paper was accepted in the Cooperative Design,

Visualization and Engineering conference entitled “Scalable

Integration of Multiple Health Sensor Data for Observing

Medical Patterns”. The paper describes the concept of a Time-

line data structure that strongly exploits the object-functional

paradigm, implemented with the Scala programming language.

VII. FUTURE WORK AND EXPECTED RESULTS

A. Patterns and Pattern Language

With this thesis, we intend to document multiple object-

functional patterns and a pattern language relating them. We

expect these patterns to be of use for researchers working

under the same area as starting point for their own research

and to professionals as a source of knowledge for helping them

solve the documented recurring engineering problems.

B. Reference Implementation

For all patterns documented, a reference implementation

will be produced. This will exemplify the usage of the pattern,

as well as provide the artifact used during this research.

351

C. Verification and Validation

Verification and validation of this research, as stated in

section V-D, will be achieved through case studies and quasi-

experiments. Results from both validation methodologies will

allow us to evaluate how the paradigm under study benefits,

or not, the development of software artifacts. We expect to

observe the following results:

• Reduction of code size, achieved due to the higher

abstractions provided by the paradigm;

• Reduction of Anti-Patterns and bugs introduced, through

the strongly-typed system;

• Reduction of development time, enabled by the usage of

the reusable pattern library provided.

VIII. CONCLUSIONS

Patterns and pattern languages have long been accepted

by software engineers as a useful source of information to

solve software problems. Still, modern languages are providing

developers with new paradigms or combinations of paradigms

that allow them to do their work better, with less effort.

This research will focus on the object-functional paradigm

(particularly using the Scala language) and will document best

practices while joining the two well known paradigms (OO and

Functional) as patterns. We expect to either improve existing

patterns in this context, as well as identify new ones, providing

a source of knowledge for developers and researchers working

in the area. We expect to validate this thesis through the

application of case studies with industrial partners and quasi-

experiments in academic environments.

REFERENCES

[1] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design Patterns,
ser. Addison Wesley Professional Computing Series, A.-W. P. Co,
Ed. Addison Wesley, 1995, vol. 47, no. February. [Online]. Available:
http://www.amazon.co.uk/exec/obidos/ASIN/0201633612/citeulike-21

[2] I. E. Sutherland, “Sketch pad a man-machine graphical communication
system,” in Proceedings of the SHARE design automation . . . , 1964.
[Online]. Available: http://dl.acm.org/citation.cfm?id=810742papers2:
//publication/uuid/C4EB193D-8F79-419A-B6E6-143A0D547CD8

[3] J. R. Holmevik, “Compiling SIMULA: A Historical Study of
Technological Genesis,” Ieee Annals Of The History Of Computing,
vol. 16, no. 4, pp. 25–37, 1994. [Online]. Available: http://ieeexplore.
ieee.org/xpls/abs all.jsp?arnumber=329756

[4] J. C. Mitchell, Concepts in Programming Languages. Cambridge
University Press, 2003, vol. 45, no. 2007. [Online]. Available:
http://www.holtsoft.com/books/java concepts.html

[5] J. McCarthy, “History of LISP,” Sigplan Notices, vol. 13, no. 8, pp.
173–185, 1978. [Online]. Available: http://portal.acm.org/citation.cfm?
id=1198360

[6] L. Damas, “Type Assignment in Programming Languages,” Ph.D. dis-
sertation, University of Edinburgh, 1985.

[7] P. Wadler, “The Expression Problem,” pp. 1–4, 1998. [On-
line]. Available: http://homepages.inf.ed.ac.uk/wadler/papers/expression/
expression.txt

[8] M. Torgersen, “The Expression Problem Revisited,” ECOOP 2004–Ob-
jectOriented Programming, vol. 3086, pp. 1–44, 2004. [Online]. Avail-
able: http://www.springerlink.com/index/H73P577R36J8QHMM.pdf

[9] K. A. Larsen, “Types in Object-Oriented Languages The Expression
Problem in Scala,” Knowledge Creation Diffusion Utilization, 2005.

[10] C. Alexander, A pattern language, ser. Center for Environmental
Structure series ; 2, S. Ishikawa and M. Silverstein, Eds. Oxford
University Press, 1977, vol. 21, no. 2. [Online]. Available: http:
//books.google.co.uk/books?id=hwAHmktpk5IC

[11] G. Meszaros, “A pattern language for pattern writing,” Pattern languages
of program design, 1998. [Online]. Available: http://xunitpatterns.
com/∼gerard/plopd3-pattern-writing-patterns-paper.pdfpapers2:
//publication/uuid/420266E9-5BD8-41A3-AA9B-F03763E9E78E

[12] T. Kuhne, “A Functional Pattern System for Object-Oriented Design,”
Ph.D. dissertation, 1999. [Online]. Available: http://citeseerx.ist.psu.edu/
viewdoc/download?doi=10.1.1.92.1134&rep=rep1&type=pdf

[13] F. S. Lø kke, “Scala & Design Patterns,” 2009.
[14] J. D. Suereth, Scala in Depth. Manning Publications, 2012.
[15] J. Gibbons, “Design patterns as higher-order datatype-generic programs,”

Proceedings of the 2006 ACM SIGPLAN workshop on Generic
programming WGP 06, no. December, p. 1, 2006. [Online]. Available:
http://portal.acm.org/citation.cfm?doid=1159861.1159863

APPENDIX

A. Conferences and Journals

There are several conferences and journals to which our

research is of interest:

1) Journals:
• Transactions on Software Engineering (IEEE)

• Transactions on Software Engineering and Methodology

(ACM)

• International Journal of Software Engineering and

Knowledge Engineering

• Journal of Systems and Software (Elsevier)

2) Conferences:
• Conference on Pattern Languages of Programs (PLOP)

(many)

• Systems, Programming, Languages and Applications:

Software for Humanity (SPLASH)

• Object Oriented Programming, Systems, Languages and

Applications (OOPSLA)

• International Conference on Functional Programming

(ICFP)

• European Conference on Object-Oriented Programming

(ECOOP)

352

Ontologies for Product and Process Traceability at Manufacturing Organizations:
A Software Requirements Approach

José C.C. Martins
Centro ALGORITMI

Universidade do Minho
Guimarães, Portugal

joseccmartins@gmail.com

Ricardo J. Machado
Centro ALGORITMI

Universidade do Minho
Guimarães, Portugal
rmac@dsi.uminho.pt

Abstract— A Traceability business process is mandatory and
unavoidable on manufacturing organizations. Customers,
particularly original equipment manufacturers, require it on
contracts, while governments enforce it, through rules and
regulations.
Organizations fail to create and sustain a business process
satisfying traceability demands. IT departments are one of the
main players on efforts to create a solution, as this process is
only manageable when supported by software. This document
presents an approach to improve the understanding of
traceability business process by using ontologies as a
requirements modeling technique.

Keywords- software requirements, computer science related
discipline: information management, management related
discipline: information systems

I. INTRODUCTION
Traceability on a manufacturing organization, aims the

persistence of the relevant information related with the
organization core activities. Nowadays a traceability
business process (BP) is mandatory and unavoidable on any
organization acting as a product provider. Externally, it is
explicitly required on customer contracts, particularly when
established with original equipment manufacturers (OEM).
Governments, also, enforce it through rules and regulations.
Internally, to pursue continuous improvement and answer the
requirements of increased efficiency, it is necessary to track
the manufacturing activities information with high accuracy
and detail.

Organizations face several difficulties to implement and
sustain a business process satisfying traceability demands.
The roots of main difficulties lie on the lack of understanding
and agreement by main players on the meaning of
traceability concepts, concrete demands, and the process
nature itself. Traceability is not a new concern, yet it cannot
be considered well understood and defined.

The relevance of this research topic was already
recognized on academic and business fields. European
Commission's invested €100M on projects TRACE [1] and
PETER [2], to increase research on food traceability. GS1,
an international not-for-profit association composed by
multinationals, retailers and manufacturers, created a Global
Traceability Standard on 2006 [15].

IT departments are one of the main players to provide a
solution, as this process only becomes manageable when
supported by software applications. An organization
possessing a degree of operational complexity that require
software solutions to handle its manufacturing and logistics
activities, cannot cope with traceability on a manual
approach supported solely by paper work [45]. Besides,
higher complexities on operational activities (e.g. raw
material income, lot use, resources parameters) enforce the
support of software solutions [46].

However, the development of these solutions is
compromised, since requirements elicitation, by the lack of
understanding on appropriate support to this process. Current
research aims to facilitate the development of software
solutions to support traceability BP, and along process to
provide artifacts that act as enablers on organizational efforts
to implement this business process. This PhD thesis
addresses the knowledge improvement of traceability BP,
supported by core artifacts, such as an ontology of
traceability BP and respective taxonomy, which are expected
to provide a common and improved understanding to all
players, and become particularly valuable along the
requirements elicitation efforts.

Traceability core activities are deeply connected with
information handling: acquire, relate, persist and provide [35,
43]. Advances on these areas, through new artifacts,
techniques or methods may positively feedback traceability
process, triggering and sustaining its improvement [9].

This manuscript sustains that significant traceability
problems are addressable through software engineering
research, namely, the construction of domain models based
on ontologies. Resulting outputs will benefit software
engineering and business (e.g. Quality, Logistics, and
Operations) fields simultaneously. Also promising is the
potential to create new artifacts to software developers.

Next section provides a summary of relevant literature on
traceability business process (traceability BP) in
manufacturing organizations. Third section addresses the
research objectives and the methodological approach.
Section 4 briefly describes past work and preliminary results.
In Section 5 future work and expected results are presented.
Last Section depicts some conclusions.

2012 Eighth International Conference on the Quality of Information and Communications Technology

978-0-7695-4777-0/12 $26.00 © 2012 IEEE

DOI 10.1109/QUATIC.2012.45

353

II. STATE-OF-THE-ART
This section presents traceability BP state-of-the-art, the

main problems a manufacturing organization encounters to
set it up and how research addresses them so far.

A. Definition and Goals
On this document, traceability is understood as “the

ability to track forward the movement through specified
stage(s) of the extended supply chain and trace backward the
history, application or location of that which is under
consideration” [15].

The traceability responsibilities are the identification and
trace of the history, distribution, location, and application of
products. A traceability system must record and follow the
trail as products that come from suppliers, are processed and
distributed as end products.

Traditionally, its main purpose is linked to product recall:
“... a procedure to withdraw all products with a particular
deficiency from the supply chain” [24].

But traceability may serve many other organization
processes. Töyrylä identified applications that benefit from
traceability data (Table I.). These applications, consumers of
traceability information present the broad range of its usage.

Traceability can protect a producer from product liability
claims, providing the evidences necessary to prove law
requirements were completely fulfilled. It may also serve to
demonstrate a product origin or flow. Proof-of-origin usually
aims to satisfy market demand for information [10, 12].

Traceability data can be the primer input to monitor,
control and manage organizational quality and processes,
also its information may become a solid support for their
improvement [8, 24]. Proof-of-quality implies the ability to
provide evidences on quality assessments realized on
manufacturing process. An organization may reject the
responsibility on failures based on these evidences. Besides,
it may also self-promote a Quality image toward its
customers, becoming quality certified [10, 24]. Traceability
information can provide the basis to identify security
breaches, through the products’ monitoring along its supply
chain, and enable the identification of counterfeit and illegal
items. It may also be used to track moments or locations
along the supply chain where products are prone to suffer
damages or be deviated.

TABLE I. TRACEABILITY CONSUMER APPLICATIONS

Consumer Applications Guard Promote

Recall x

Product -liability-prevention x

Quality- and process-improvement x x

Proof-of-quality and proof-of-origin x x

Logistics x

Security x x

After-sales x

Accounting x

On logistics, traceability information may be used to
optimize material routes and improve planning and
management, mainly due to improved links to the other
organizations with whom there is collaboration.

Warranty data may be handled on Traceability, linked to
a product, and serving as input to after-sales.

Traceability may work with accounting applications to
evaluate inventory or with controlling applications to
identify process inefficiencies.

Traceability information, on a manufacturing
organization, protects or limits the damage and costs if a
problem occur, menacing the organization [14].
Simultaneously it also sustains the organization change
management process and respective improvement efforts as
presented on table A1 [24, 28, 31].

There is another important traceability BP responsibility
that does not specifically fit prior classification. This process
must implement and obey government regulations, laws,
customer requirements and standards (mandatory for
respective certification) that directly address traceability.

B. Relation with Software Solutions
According to Töyrylä, “technical enablers include the

computerization of data processing and the use of automatic
identification in data collection.” The need to ensure “Long-
term availability of data” and “the frequency, quickness and
accuracy of the information collection” address directly data
persistence and recording responsibilities of software
solutions [45].

Software solutions are also enforced by the need of fast
response times, particularly when retrieving data [11]. On
manufacturing environments, traceability activities must be
synchronized with production infrastructure and respective
operations [28]. The automation of manufacturing enforces a
similar approach on related traceability activities. Panetto
[38] suggested that any manufacturing software solution
should have traceability data acquisition embedded.

Neto [35] and Terzi [43] stated that traceability activities
are information management activities, rendering IT
knowledge applicable on the study and improvement of
traceability itself.

Buhr [9] recognizes it is not only the traceability process
that pulls software solutions with supporting needs. The
information technology revolution exemplified by the
Internet and the underlying information-technology hardware
(e.g., increased computer processor speeds, increased data-
storage capacity, electronic data capture and measurement
devices) push and enable traceability process to wide its
scope and detail. Terzi [44] identified new technologies
which applied on product identification leverage traceability
software solutions to more detail and accuracy.

C. Opportunities
Despite their best efforts, manufacturing organizations

face several vicissitudes when implementing a traceability
business process. Some of the difficulties are related with the
support of traceability BP by software solutions, and root
problems specific of IT field. In parallel they also raise
opportunities that are better tackled through software

354

solutions. Main challenges, identified on literature, are
presented hereafter.

Ideally “all information regarding products is recorded”
[38]. However the size of traceability data has an impact on
the respective required management effort. To improve
traceability efficiency or even to render it practicable, the
quantity and quality of the information that should be
collected must be reduced to a manageable and appropriate
amount. This evaluation must be sustained on sound
knowledge of the traceability BP and the relative interest of
subjects to trace [24, 31, 46].

A software supporting traceability must be able to
receive, identify and handle data, regards its type [21, 26, 38,
43, 44, 46]. “The heterogeneity of applications managing
information (ERP, PDM, MES... 1), of users transforming,
using and producing information (different operators), even
of the meaning, the same information may address on
different domains of pertinence (business or manufacturing),
raises difficulties to the information recovery, leading
traceability systems to fail at collecting information” [46].
Interoperability problems are outcomes of the differences
between organizational units and between partner
organizations.

Traceability is deeply interconnected with other business
processes. The product/process data to trace is embedded in
the activities included on other organizational processes [38,
41]. Due to the pervasiveness of traceability activities,
respective responsibility is spread among several
organizational unit, each one with different interests and
approaches [44].

Traceability BP is not limited to a single organization
boundary with a single set of traceability syntax, semantics,
and concepts [16, 26, 27]. Also on the organizations network
traceability requirements must be balanced with security, or
secrets constrains [41].

 As Gampl [14] states the organization' management lack
a clear knowledge of the traceability nature. This lack is
common also among stakeholders giving birth to vague,
fragmented and incomplete requirements [8, 33].

Several efforts were developed to minimize the lack of
knowledge problem. Various enterprises join together and
defined a Traceability Business process standard [15]. ISO
standards refer traceability and certify its implementation [5].
SAP summarized traceability best-practices [42], and
European community issued new regulations [13]. All these
documents contain valuable knowledge to guide the efforts
to implement traceability.

III. RESEARCH OBJECTIVES AND METHODOLOGICAL
APPROACH

A. Research Objectives
The literature review revealed that lack of knowledge, on

traceability BP, besides being a constraint on organization
efforts towards its implementation, also was the root or acted
as an amplifier of other perceived difficulties. Within the

1 Enterprise Resource Planning (ERP),Product Data Management

systems (PDM),Manufacturing Execution Systems (MES)

development of software solutions, the work of several
players, is polluted by misunderstandings and fragments of
traceability concepts. These difficulties have high impact on
developers of software solutions, and interfere on the early
stages of a solution development, on requirements
engineering and design [19].

Traceability BP body of knowledge is currently scattered
among several initiatives such as ISO standards, European
regulations, and best-practices [1, 5, 13, 15, 42]. Regards the
richness of contained knowledge, this documentation is hard
to apprehend and use on the context of IS application
domain. “There is a clear need to make them more abstract
and to define methodologies in order to facilitate
understanding of their defined concepts” [38].

The improvement of traceability understanding from the
software developer’s point of view will reduce lack of
knowledge about what the system should do the
technological options and the future situation [33]. It will
also reduce “misunderstanding of concepts, ideas and
definitions, making use - whenever possible - of shared
standards” [44].

Tursi [46] propose the use of an “Ontology for the
representation of domain’s knowledge, in order to ensure a
non ambiguous understanding of objects and concepts”. A
traceability BP ontology providing the domain concepts and
relationships among them (conceptual relations) provides an
adequate solution to address this difficulty [7].

Gasevic recognized that existing ontology development
methodologies are fairly general and only suggest steps to be
followed [17, pag.65]. Resulting ontologies tend to be very
sensitive to their developers skills, and specificities of the
environment where the knowledge is acquired. For the
purpose of this research the resulting ontology must be
general and independent of any particular organization
characteristics. Thus the development process must be
repeatable and result on similar traceability ontologies
despite their developers or the environment where it occurs.

Therefore, the first research question is:
Q.1. How to create a traceability business process

ontology?
Contained on this ontology, are general characteristics,

recognizable as adequate properties of a software solution,
aiming the support of traceability BP. Characteristics that
refer the purpose, the needs, the goals, the functionalities, the
constraints, the qualities, the behaviors, the services, the
conditions, or the capabilities, and may ground a process to
identify a software solution requirements [25].

The specific needs on the software to support traceability
for a particular organization are only possible to obtain
through requirements elicitation. From this effort, however,
it is also common to collect overlapping or conflicting
requirements, all together with others that are isolated and
that do not make sense on domain.

This ontology, providing a more abstract and global
overview of the domain, may be used to drive and focus the
refinement of requirements, identifying the gaps where
additional requirements should procured or even completing
them. It may also clarify the conflicts between requirements.
Main challenge is how to juxtaposing the detail, specific

355

requirements from organization stakeholders with the
ontology broad domain mapping.

Second research question is brought by this possibility:
Q.2. How to infer and validate the requirements and

models of a Traceability software solution from respective
ontology?

The identification of traceability BP requirements was
also proposed on Terzi [44], Samarasinghe [41], and
Khabbazi [28] studies. On a parallel approach, Ramesh [39,
40] proposed “a framework for a traceability based
knowledge management system to support the design,
customization and delivery of information product and e-
service families”.

B. Methodological Approach
The previous literature review identified, that problems

addressed on current study, were already described and
explained. However they are not yet solved. To reduce their
significance, and simultaneously improve the understanding
of traceability phenomena, an adequate strategy is to
prescribe solutions to these particular problems and create
artifacts that embody those prescriptions [34]. This strategy
belongs to design science paradigm. It is focused on business
needs and in utility. Also the goals aimed by presented
research questions are appropriate to be pursued through
Design Science, as it “seeks to extend the boundaries of
human and organizational capabilities by creating new and
innovative artifacts” [18]. Hevner cleared that these “IT
artifacts are broadly defined as constructs (vocabulary and
symbols), models (abstractions and representations),
methods (algorithms and practices), and instantiations
(implemented and prototype systems)” [18].

An important characteristic of Design Science is its pro-
activeness with respect to technology, attempting to lead the
evolution of software research and not merely react to it [18,
22].

Therefore, the proposed study will be structured
according Design Science Research (DSR) methodology.

 DSR uses an iterative approach (see Fig. 1) beginning
with the Awareness of a Problem, a solution is created,
drawn abductively from existing knowledge. The rigor of
DSR is derived from the effective use of prior research
(existing knowledge base) [18]. Solution and respective
Artifacts are evaluated through metrics that instantiate the
research goals [34]. These steps are repeated until a
satisfactory solution to problem is found.

On research conclusion the knowledge acquired during
process is consolidated, discovered through the detection and
analysis of contradictions, only present on the specific act of
constructing [30].

Figure 1. Design Science Research Cycle (Vaishnavi [30]).

IV. PAST WORK AND PRELIMINARY RESULTS
This research aims the development of new knowledge,

in parallel with artifacts that uphold the development of IS
solutions supporting traceability BP. It pursues Hevner's
principle [18], where “The objective of research in
information systems is to acquire knowledge and
understanding that enable the development and
implementation of technology-based solutions to heretofore
unsolved and important business problems.”

The technological solutions this research pursuit is an
ontology of traceability BP, able to support the development
of software solutions mainly on requirement elicitation and
on solution validation [6].

This PhD work is partially conducted on a manufacturing
organization, Bosch Car Multimedia Portugal S.A.. The first
cycle of the research plan is currently on the development
stage. The awareness of problem was grounded on lessons
learned from past projects to implement traceability on the
enterprise, which confirmed the negative contribution of lack
knowledge to projects success, as literature also identified.

On this first cycle a traceability taxonomy is being
developed. It will be used as input on next Traceability
related project during requirements elicitation. On the design
of current cycle a taxonomy was preferred to an ontology as
the main artifact to reduce study complexity. However this
option may limit study's scope to the Requirements phase of
the project, as we foresee that Architecture and
Verification/Validation project's phases may only be
addressed on this research through the use of an ontology.

V. FUTURE WORK AND EXPECTED RESULTS
Subsequent research cycles will address the development

of a Traceability Ontology and its contribution to Software
Engineering on the knowledge area of Software
Requirements [6]. At end of each cycle we will obtain
constructs (i.e. basic language of concepts to characterize
phenomena), models (i.e. constructs combined in higher
order constructions), and methods (i.e. ways of performing
goal-directed activities) [34]. In the process, this research

356

may contribute on the improvement of theories related with
the methodological construction of the artifacts or, related
with relationships between artifact elements [23, 30].

Through the development of the Traceability Ontology
we will obtain a well-organized body of organizational and
strategic knowledge. To ensure that resulting ontology is
generic, yet complete, major inputs for its creation will come
from existing literature on academic and business field,
namely existing traceability standards. This approach
discards the single and specific knowledge that may exist on
the development environment, in favor of the one with broad
acceptance. Simultaneously, by enforcing the use of similar
inputs it expectable the outcome of similar traceability
ontologies. This knowledge shared across IT department and
other stakeholders, will ground the deepening and sharing on
the understanding [47]. This research vector with main focus
on creating an ontology will use as start-up studies aiming
the development of an enterprise ontology [4, 7] and product
ontology [46], and on its prosecution adjust and improve the
theories, methods and models used. We intend to use the
4SRS (Four Step Rule Set) method on the ontology
development, and also to promote the results uniformity and
quality [48].

Research cycles linked to the installation of traceability
on an organization will also enable to pursue the reuse of
domain knowledge [32] and the prevention of
misunderstandings [20]. These research cycles focus on the
ontology use, as a source of generic requirements to an IS
solution supporting traceability BP, which instantiate the
systematic framework conceived by Yu [47] to help
developers understand what stakeholders want. As Sutcliffe
[3] and Lam [32] endorsed they promote re-usability, even at
later stages, improving software development productivity
and quality.

Another study focus is the use of the ontology to support
the verification and validation of requirements expressed by
stakeholders and of the models on proposed software
solution. The development of techniques that, by
overlapping the ontology and stakeholders' requirements,
base the evaluation of requirements reasonableness,
consistency, completeness, suitability, and lack of defects
[19]. We also expect that the ontology may be used
(translated) as meta-model enabling the quality inspection of
the software solution' models. More than behavioral models,
on traceability, the data models [36] are critical due to the
large volumes of information it uses and generates. Careful
decisions need to be made about what information the
system will need to represent, and how the information held
by the system corresponds to the real world phenomena
being represented.

Also on this research cycle we will study the creation of
the domain model through the traceability ontology
instantiation.

This research will reduce the task of creating application-
specific models and will provide tools for its evaluation [39].

VI. CONCLUSIONS
Literature review enlightened that traceability is

important to the scientific community, and also, that serious
problems are still demanding proper solutions.

Organizations may obtain immediate benefits, if current
difficulties they face when handling this business process are
reduced. The root of main difficulties, lie on the lack of
understanding and agreement, by main players on the
meaning of traceability concepts, concrete demands, and the
process nature itself. Several efforts were developed to
minimize this problem through the creation of standards,
laws, and regulations. Yet, each of them was unable to
produce a complete traceability conceptualization or
implementation guideline. Each one is focused on a strict
range of interests, and scope it addresses.

This document proposes the use of software engineering
methods and techniques (namely, ontologies and models) to
aggregate, disambiguate, and blend existing knowledge.

This research expects to contribute to the body of
knowledge of traceability business process, mainly to the
software requirements community. Main relevance of this
study will come from artifacts conceived and respective
applicability on manufacturing organizations to implement
software solutions.

The analysis and synthesis of literature on ontology
building is also expected to produce a valuable feedback to
respective authors, regarding completeness, coherence, etc.

The development and use of the artifacts, constructs,
models, methods, and theories will be tested, and improved
or adapted. The observation of this development will bring
new knowledge to ontology engineering and requirements
engineering.

REFERENCES

[1] TRACE project, 2005. URL http://trace.eu.org.
[2] PETER project, 2006. URL http://www.eu-peter.org.
[3] a.G. Sutcliffe, N.a.M. Maiden, S. Minocha, and D. Manuel.

“Supporting scenariobased requirements engineering.” IEEE
Transactions on Software Engineering, 24(12):1072-1088, 1998.

[4] Antonia Albani, J. Dietz, and J. Zaha. Identifying Business
Components on the basis of an Enterprise Ontology. Interoperability
of enterprise software and applications, pages 335-347, 2006.

[5] APCER. Guia interpretativo NP EN ISO 9001:2008. 2010.
[6] IEEE Computer society, SWEBOK – Guide to the Software

Engineering Body of Knowledge, 2004 version
[7] P. Bertolazzi, C. Krusich, and M. Missiko. An approach to the

denition of a core enterprise ontology: CEO. In OES-SEO 2001,
International Workshop on Open Enterprise Solutions: Systems,
Experiences, and Organizations, pages 14-15.

[8] Massimo Bertolini, Maurizio Bevilacqua, and Roberto Massini.
FMECA approach to product traceability in the food industry. Food
Control, 17(2):137-145, February 2006.

[9] Brian L. Buhr. Traceability and information technology in the meat
supply chain: implications for rm organization and market structure.
Journal of Food Distribution Research, 34(3):13-26, 2003.

357

[10] J.C. Bureau and Egizio Valceschini. European food-labeling policy:
successes and limitations. Journal of Food Distribution Research,
34(3):70-76, 2003.

[11] Xin Chen. RFID Middleware Design Research. Applied Computing,
Computer Science, and Advanced Communication, pages 50-56,
2009.

[12] Christian Coff, D Barling, and M Korthals. Ethical traceability and
communicating food.Politics, 2008.

[13] European Parliament. Regulation No 1830/2003 of the European
Parliament and of the Council of 22 September 2003 Directive
2001/18/EC, 2003.

[14] Birgit Gampl. Traceability systems in the German food industry -
towards a typology. Schiefer et al2003, (September), 2003.

[15] GS1, GS1 Standards Document GS1 Global Traceability Standard.
Number 1. GS1, 2009.

[16] Gabriel Hermosillo, Julien Ellart, Lionel Seinturier, and Laurence
Duchien. A Traceability Service to Facilitate RFID Adoption in the
Retail Supply Chain. Europe, 2009: 49-58, 2009.

[17] Gasevic, D., D. Djuric, and V. Devedzic, 2006, Model Driven
Architecture and Ontology Development (Spring-Verlag, Berlin, DE).

[18] A.R. Hevner, S.T. March, Jinsoo Park, and Sudha Ram. Design
science in information systems research. Mis Quarterly, 28(1):75-105,
2004.

[19] Ann M. Hickey and Alan M. Davis. Requirements Elicitation and
Elicitation Technique Selection : A Model for Two Knowledge-
Intensive Software Development Processes. In System Sciences,
2003. Proceedings of the 36th Annual Hawaii International
Conference on, page 10, 2003.

[20] Rudy Hirschheim and Heinz K. Klein. Four paradigms of information
systems development. Communications of the ACM, 32(10):1199
1216, October 1989.

[21] Jan Holmström and Kary Främling. Design Ppatterns for Loosely
Coupled Track , Trace ,Conguration , and Check Operations in Multi-
company Environments. In Proceedings of EUROMA'2005
conference ,, number 1, pages 1-10, 2005.

[22] Juhani Iivari. A paradigmatic analysis of information systems as a
design science. Scandinavian Journal of Information Systems,
19(2):5, 2007.

[23] John R. Venable. The role of theory and theorising in design science
research. of the 1st International Conference on Design Science,
2006.

[24] M .Jansen-Vullers, C.A. van Dorp, and A.J.M. Beulens. Managing
traceability information in manufacture. International Journal of
Information Management, 23(5):395-413, October 2003.

[25] I.J. Jureta, John Mylopoulos, and S. Faulkner. Revisiting the core
ontology and problem in requirements engineering. In International
Requirements Engineer-ing, 2008. RE'08. 16th IEEE, volume 2008,
pages 71-80. IEEE, 2008.

[26] Mikko Kärkkäinen, Timo Ala-Risku, and Kary Främling. The product
centric approach: a solution to supply network information
management problems? Computers in Industry, 52(2):147-159,
October 2003.

[27] Mikko Kärkkäinen, Timo Ala-Risku, and Kary Främling. Eficient
tracking for short-term multi-company networks. International
Journal of Physical Distribution & Logistics Management, 34(7):545-
564, 2004.

[28] M.R. Khabbazi, N. Ismail, Md. Yusof Ismail, and S.a. Mousavi. Data
Modeling of Traceability Information for Manufacturing Control
System. In 2009 International Conference on Information
Management and Engineering, pages 633-637.Ieee, April 2009.

[29] M.R. Khabbazi, N. Ismail, Md. Yusof Ismail, and S.A. Mousavi.
Modeling of Traceability Information System for Material Flow
Control Data. Australian Journal of Basic and Applied Sciences,
4(2):208-216, 2010.

[30] B. Kuechler and V. Vaishnavi. On theory development in design
science research: anatomy of a research project. European Journal of
Information Systems, 17(5):489-504, 2008.

[31] Björn Kvarnström. Traceability in Continuous Processes Applied to
Ore Renement Processes. PhD thesis, LuleåUniversity of Technology,
2010.

[32] W. Lam, J. a. McDermid, and a. J. Vickers. Ten steps towards
systematic requirements reuse. Requirements Engineering, 2(2):102-
113,June 1997.

[33] L. Macaulay. Requirements for requirements engineering techniques.
Proceedings of the Second International Conference on Requirements
Engineering, pages 157-164, 1996.

[34] Salvatore T. March and Gerald F. Smith. Design and natural science
research on information technology. Decision Support Systems,
15(4):251-266, December 1995.

[35] Miguel De Castro Neto, Maria Brandão L. Rodrigues, Pedro Aguiar
Pinto, and Isabel Berger. Traceability on the WEB - A Prototype for
the Portuguese Beef Sector. In EFITA, number July, pages 607-611,
2003.

[36] B. Nuseibeh. Weaving together requirements and architectures.
Computer, 34 (3):115-119, March 2001.

[37] Pejman Oghazi. Traceability in continuous grinding circuits. PhD
thesis, LuleåUniversity of Technology, 2008.

[38] Hervé Panetto, S. Bannina, and Gérard Morel. Mapping the IEC
62264 models onto the Zachman framework for analysing products
information traceability: a case study. Journal of Intelligent
Manufacturing, 18(6):679-698, 2007.

[39] B. Ramesh and M. Jarke. Toward reference models for requirements
traceability. IEEE Transactions on Software Engineering, 27 (1):58-
93, 2001.

[40] Balasubramaniam Ramesh, Amrit Tiwana, and Kannan Mohan.
Supporting Information Product and Service Families with
Traceability. SOFTWARE PRODUCT FAMILY ENGINEERING,
2290:353-363, 2002.

[41] Rohan Samarasinghe, Duminda Nishantha, Noriyuki Shutto, and
Manjula Wanniarachchige. Total Traceability System : A Novel
System by Combination of Horizontal and Vertical Traceability
Systems for Food Supply Chains. IJCSNS International Journal of
Computer Science and Network Security, 9(3):148-156, 2009.

[42] Mayank Shridhar and Amit Dilip Deshpande. Supply Chain
Traceability with RFID and SAP. Infosys - White Paper, 2010.

[43] Sergio Terzi, Jacopo Cassina, and Hervé Panetto. Development of a
metamodel to foster interoperability along the product lifecycle
traceability. In Interop-ESA, 2005.

[44] Sergio Terzi, Hervé Panetto, Gerard Morel, and Marco Garetti. A
holonic metamodel for product traceability in Product Lifecycle
Management. International Journal of Product Lifecycle
Management, 2(3):253, 2007.

[45] Ilkka Töyrylä. REALISING THE POTENTIAL OF
TRACEABILITY - A case study research on usage and impacts of
product traceability. Dissertation for the degree of doctor of
technology to, Helsinki University of Technology, 1999.

[46] Angela Tursi, Michele Dassisti, and Hervé Panetto. Products
information interoperability in manufacturing systems. Annual
Reviews in Control, 33(2), 2009.

[47] E.S.K. Yu. Towards modelling and reasoning support for early-phase
requirements engineering. Proceedings of ISRE '97: 3rd IEEE
International Symposium on Requirements Engineering, pages 226-
235, 1997J. Clerk Maxwell, A Treatise on Electricity and Magnetism,
3rd ed., vol. 2. Oxford: Clarendon, 1892, pp.68–73.

[48] Nuno Ferreira, Nuno Santos, Ricardo J. Machado, and Dragan
Gaševi�, “Derivation of Process-Oriented Logical Architectures: An
Elicitation Approach for Cloud Design”, PROFES, Vol.7343 Springer
(2012), p.44-58

358

A Software Framework for Supporting

Ubiquitous Business Processes: An ANSI/ISA-95 Approach

Manuel João Amaro
Centro ALGORITMI

Universidade do Minho
Guimarães, Portugal

manuel.amaro@algoritmi.uminho.pt

Ricardo J. Machado
Centro ALGORITMI

Universidade do Minho
Guimarães, Portugal
rmac@dsi.uminho.pt

Abstract — Nowadays, organizations to survive competitively
they need to be, innovative and efficient. The way the Internet
has been expanding along with other technological changes is
leading us to a future in which all the objects that surround us
will be seamlessly integrated into information networks. The
possibility to implement concepts related with the ubiquitous
computing in the business process-level will influence how they
are designed, structured, monitored, and managed. One of the
most remarkable possibilities of ubiquitous computing can be
the real-time monitoring of a particular business process: it
should be possible to analyze the flow of materials and
information, identify possible points of failure or improve
energetic efficiency with a small delay on they occur in reality.
Currently, there is no direct and automated link between
ubiquitous business processes descriptions and their physical
executions which, frequently, promotes the occurrence of a
discrepancy between the planned modes of operation and the
executed ones. The ubiquitous business processes will enable a
narrowing between the real (objects) and virtual (models)
world and the possibility to create adaptive business processes
that can predict failures, adapting themselves to changes in the
environment is an attractive challenge. In this PhD thesis, we
will propose a new software framework to monitor real-time
executions of ubiquitous industrial business processes.

Keywords: software design, computer science related
discipline: information management, management related
discipline: information systems management

I. INTRODUCTION

The first reference to ubiquitous computing dates from
1993, when Mark Weiser projected the future as he
imagined: “The idea of ubiquitous computing first arose
from contemplating the place of today’s computer in actual
activities of everyday life” [1]. Since then, there have been
tremendous developments in technology, many new
concepts have appeared, others suffer various changes,
however Mark Weiser’s words still hold true. The effort
expended in the study of ubiquitous systems and
technologies that support them has gained considerable
interest and has been the target of several advances, whether
in academic or in industrial fields. In another study [2] is
also noted that “The most profound technologies are those
that disappear. They weave themselves into the fabric of
everyday life until they are indistinguishable from it”.

In addition to the benefits inherent from the technological
advancement and deployment of ubiquitous computing,
users of these systems should be key elements, acting,
interacting and improving these environments. Ubiquitous
computing is more than just allowing the various devices (in
a common environment) to communicate/interact among
them. It also consists in the way they do it, in the way they
interact with users and how they can help users achieving
their goals [3].
 The user satisfaction is a key element for the success of
ubiquitous systems; however, the use of ubiquitous
computing not always aims the satisfaction of a single user,
but the satisfaction of an organization, a group of people, a
value chain or a business. The use of ubiquitous computing
in organizations has been growing, not only for employee
satisfaction, but also to improve work methods, processes,
efficiency, to reduce production costs, etc. Ubiquitous
computing has the capacity to improve the way business
processes are (re)designed and executed, which in turn will
bring more competitive companies and better economy
efficiency by allowing these same companies to invest more
in technology development [3]. It is therefore a win-win
situation, if applied properly.

In organizational contexts, it is frequent the occurrence of
discrepancies between the planned modes of operation of
business processes and the executed ones. As an example, in
an industrial company we may need to monitor and manage
in real-time the production status. This monitoring and
management tends to be difficult when recurring to current
business processes models, because their observation relative
to the real operations is done long after their executions and
thus important data may be missing as well as reaction time
may be surpassed. There is a big time delay in the perception
of problems, by management teams, and also delays in
reacting to them, which can lead to serious problems and
costs that should be avoided. Additionally, the human-
reported data tends to be not so accurate and with lower
scope as data collected directly from the business process
elements. This data gaps endanger the ability for
organization to manage based on concrete and detailed facts.
Without the constant monitoring of business processes, in all
their execution phases, it becomes impossible to manage
them adequately. Hence, it is necessary to investigate how to

2012 Eighth International Conference on the Quality of Information and Communications Technology

978-0-7695-4777-0/12 $26.00 © 2012 IEEE

DOI 10.1109/QUATIC.2012.18

359

benefit from the ubiquitous computing principles to support
the monitoring of business processes. It is expected that this
new approach would influence how business processes are
designed, structured, monitored, and managed. We need to
adequately design all the concepts to trigger, store, and
manage all the data relative to the business process
execution. This design should be a consequence of each
organization requirements and can be materialized on
traceability concerns and policies deployed into the design
and execution of business processes. We need a software
framework to design solutions capable of linking these two
worlds.

II. STATE-OF-THE-ART

To support the ubiquitous computing vision that Mark
Weiser projected in 1993, beyond any technological
evolution, innovation must continue because the paradigm of
ubiquitous computing is different from traditional computing
paradigms. Imagine a closed environment where all objects
present have the ability to communicate; a ubiquitous system
that supports this environment will have to bear not only the
heterogeneity objects but also the possible different forms of
communication. If it is already difficult to conceive the
ubiquitous system for a closed environment, imagine for an
open environment, where the objects appear and disappear
randomly. In these types of systems we now have an
environment not only diverse but also decentralized, where
various types of objects communicate using different
technologies. The benefits inherent in the use of ubiquitous
computing were readily assimilated by organizations that
seek to optimize their processes, to reduce costs, and by
organizations that want to continuously improve and
generate profit. Strassner [4] argues that “when companies
plan to adopt a new technology, they want to know the
business impacts in advance”. This capability allows
companies to better control their processes, avoiding harmful
situations (e.g. the bull-whip effect), thereby improving the
flow of material, the flow of information, eliminating the
production to stock, and excess production. Supply chain
inefficiencies can waste up to 25 percent of a company’s
operating cost [4].

The bull-whip effect is very harmful to any organization,
and the use of “pillows” such as the creation of stocks is not
certainly the best strategy because it increases the company
costs. It is in cases like these that the ubiquitous systems
have a role to play, arming organizations with ubiquitous
processing power, allowing them to create a harmony within
the value chain, and coordination between the flow of
materials and the flow of information.

Recently, Lupiana [5] proposed a taxonomy to
distinguish ubiquitous environments. He categorized
UbiComp environments in two major classes: Interactive and
Smart environments. In turn, Chen proposes an ontology
(SOUPA: Standard Ontology for Ubiquitous and Pervasive

Applications” [6]) for the creation and development of
ubiquitous/pervasive applications.

Regarding the development of applications for pervasive
information systems, it should be noted the article “Model-
Driven Methodologies for Pervasive Information Systems
Development”, where the authors report that “we become
aware of the presence flow and processing of information,
not only by the individual computing devices, but also with a
more deep significance, by the overall system that emerges
from the interactions of all the computing devices, linking
them together in a coherent fashion” [7], which values the
need to have a holistic view.

A. Business Processes

In day-to-day activities, organizations interact with
multiple and distinct entities. These entities can either be part
of the internal organizational structure (e.g. in case of large
organizations) or external agents to the organization, but
playing an important role, such as suppliers, customers, etc.

For all these entities to function properly and in harmony
it is necessary to establish processes, tasks and activities so
that everyone can work with a common goal. Good
communication is a key element to the various entities that
communicate with each other. It was based on these
assumptions that business processes arose. They plan to
serve a set of processes, tasks, and activities that must be
carefully performed by various entities, at indicated times
and in a specific order. The main objective of a business
processes manager is to have a holistic view of the entire
organization (from suppliers and raw material to customers
and finished product) in order to define a set of processes
that aims overall improvement, cost reduction, waste
reduction, reworking, and productivity. The processes of an
organization reflect the way tasks and procedures are
performed, and can (and should) be redesigned whenever
possible in order to ensure continuous improvement.

A business process is triggered by a business event, and
aims to delineate a set of procedures/activities to be
performed by people, machines and/or computers. These
participatory elements have distinct roles and objectives
throughout the process course. A process consists in a
specific order of work activities across time and place with a
beginning, an end and clearly identified inputs and outputs
[8]. When modeling business processes, we need to take care
of several items. Two key issues are how much detail and
how to handle uncertainties. The level of detail will allow us
to know how deeper we want to go when decomposing the
process. The way we expect/control uncertainties, will allow
to have mechanisms to control the process. The uncertainty
is one of the main reasons why the procedures deviate from
what was previously stipulated [9].

Monitoring consists in collection, compilation, analysis
and presentation of data that reflects how a particular
business process is being executed and managed by different
agents (from people to machines). It is easily verifiable that
trough monitoring one can know if a process is or is not
being properly executed, or whether it is well or poorly

360

modeled. The real-time monitoring allows for timely
decisions that can prevent a future malfunction of the
processes. A monitoring system observes the behavior of
other system and checks if it is consistent with what is
expected, with a given specification [10].

The topic of real-time monitoring is very controversial,
starting immediately from the definition of the word “real-
time”.

B. Ubiquitous Business Processes

Again, we emphasize that the ubiquitous systems have a
very important role in monitoring business processes. With
the use of smart items, we can follow the state of the
products. Huang [11] developed and implemented a practical
solution for monitoring business processes using ubiquitous
systems. In this particular case were used RFID tags to easily
monitor the inventory of an organization. He analyzed and
proposed the best places to put the antennas that would read
the RFID tags, where to place the tags, etc, in order to have a
real-time inventory management.

In another research, Zhang [12] describes a smart kanban
system using RFID technologies for shop-floor management
and several relevant real-time manufacturing data capturing
cases using RFID, wireless production lines and wireless
shop-floor inventory management. In this particular case, the
use of RFID tags within kanbans is a very interesting
concept because it allows monitoring a lot of articles along
the chain at a low cost, because the RFID tags are reused
since they are an integral part of the kanban.

A practical example of a monitoring system was
developed and presented by Huang [11], which proposes an
infrastructure to implement RFID for product tracking and
monitoring. They also propose formulas for comparing the
actual state of the process compared with planed one.

III. RESEARCH OBJECTIVES AND

METHODOLOGICAL APPROACHES

A. Research objectives

The everyday work in a large automotive company,
allows us to experience and witness certain events which
sometimes raise doubts and questions that are not easy to
answer. This research proposal follows exactly this
perception from the reality and of the experienced events,
which, inserted into a dense organizational structure,
sometimes becomes so obscure and dissimulated, that are
unnoticed by who has the capacity to take decisions and is
responsible for the design of business processes, which are
so vital to any company.
The ANSI/ISA-95 standard [19] consists of models and
terminology, and addresses the issue of integration of
different information systems, software applications,
Programmable Logic Control(lers) (PLC), etc, in industrial
systems. The ANSI/ISA-95 is divided into 5 parts:

(part 1) models and terminology (published 2000); (part 2)
object models and attributes (published 2001); (part 3)
activity models of manufacturing operations management
(published 2005); (part 4) object models and attributes of
manufacturing operations management (under development);
(part 5) business to manufacturing transactions (under
development).

This standard plays a critical role in our research, since
we will adopt an approach compliant with the part 4. We will
identify which kind of information needs to be exchanged
across the several organizational layers for user requirements
purposes and also for database and software development.
Our software framework will allow the design and execution
of interfaces, assuring the correct flow of information
between the enterprise information system and the
manufacturing operations system.

Fig. 1 illustrates the different structural/hierarchical
levels existing in a typical industrial organization. The
ANSI/ISA-95 standard organizes the different organizational
layers and provides standard protocols for exchanging
information, thus facilitating the flow of information through
the different layers of the organization:

 In level 4 (business related activities), activities are not
directly related to production (long term planning,
marketing, sales, procurement). At this level we can find
ERPs, where business and logistics planning occurs.

Fig 1: ISA Model (adapted from [18])

361

 In level 3 (manufacturing execution system) work flow
activities produce the desired end products. Consists of
several activities that must be executed to prepare, monitor
and complete the production process that is executed in the
lower levels (0 - activities of monitoring, supervisory control
and automated control on the production process; 1 -
activities involved in sensing and manipulating the physical
process; and 2 - actual physical process). Examples are:
detailed scheduling, quality management, maintenance,
production tracking, etc.

The time frame adopted in level 4 can be in days, months
or even years. As long as we go down into the levels, the
time frame changes to days, shifts, hours, minutes or
seconds. At level 2, the time frame can be sub-seconds or
milliseconds. Within this PhD work, we will address levels 3
and 4, which relate to business processes. We will also
address level 2, in order to interoperate ERPs to the PLCs, in
order to decompose the business processes and monitoring
them at level 2. Our research objectives are:
• Based on models of existing business processes
(requirements specifications from the software point of
view), we intend to develop a method to decompose the
business processes allowing the definition of where and how
real-time monitoring should be done. This method will also
enable the formalization of the ubiquitous nature of the
business processes.
• Based on concepts from the ubiquitous computing
paradigm, we intend to develop a software framework to
support the monitoring of the industrial ubiquitous business
processes executions. We will adopt behavioral and
architectural patterns to support the interoperability of
sub-systems.

• To validate the proposed method and framework in real
scenarios of industrial production environments from Bosch
Car Multimedia factory plant.

B. Methodological approach

Design Science Research (DSR) [13] will be adopted as
the main research method. One of the main reasons that led
to the choice of this method is that its main objective resides
in solving real problems. DSR is a normative and
prescriptive method, and the researcher is usually pragmatic.
DSR is elaborated trough the relationship between two main
activities: build/design and evaluate, where researchers
recur to kernel theories in order to develop artifacts and then
demonstrate that they can be built [14]. These kernel
theories frequently derive from disciplines outside of
information systems area, and suggest novel techniques or
approaches to IS design problems [20].

This model (Fig. 2) of “construction” and “evaluation”
has been used in the past to develop new knowledge through
the construction and performance evaluation of new
artifacts.
Development, Evaluation, and Conclusions stages can be
iterative; i.e., the result of each stage can trigger the start of
another cycle. The Circumscription process is especially

important because it generates understanding that could only
be gained from the specific act of construction; it assumes
that every fragment of knowledge is valid only in certain
situations [13].

Fig. 2: The General Design Cycle [13]

Once the artifact is finished, it has to be returned to his
environment in order to be studied and evaluated in their
application domain [15]. For Hevner the development of an
artifact relies on kernel theories, which are applied, tested,
modified, and extended through the creation of artifacts.
Although based on existing theories, DSR also contributes
to the “construction of new theories” or to the improvement
of existing ones [13]. Better theories are one of the possible
outputs of DSR, as shown by Hevner and Chatterjee [16].
DSR always seeks a solution to solve practical real world
problems, and IT artifacts are the end-goal of any design
science research project, and are broadly classified into:
constructs (vocabulary and symbols); models (abstractions
and representations); methods (algorithms and practices);
instantiations (implemented and prototype systems); better
design theories.

Vaishnavi considers constructs as the conceptual
vocabulary of a problem/solution domain and they appear
during the conceptualization of the problem, and models as
a set of propositions or statements expressing relationships
among constructs. Methods are objective oriented, and
consist of a step of steps used to execute a task. Finally,
instantiation is the next step, the accomplishment of the
artifact in an environment [13].

Samuel-Ojo [17] refers that “research in the information
systems field examines more than just the technological
system, or just the social system, or even the two side by
side; in addition, it investigates the phenomenon that
emerges when the two interact”. It is not easy to design
useful artifacts; sometimes the researcher needs to be
creative because existing theories in those specific domains
areas are insufficient. These artifacts have to create direct
impact on organizations and in society in general.

362

IV. PAST WORK AND PRELIMINARY RESULTS

We have already been involved in the creation of
real-time monitoring systems at Bosch Car Multimedia
plant. We have adopted the DSR approach in two projects
whose aim was to develop systems for real-time data
acquisition and information delivery. The acquired data was
also used to trigger alarms and measure real-time reaction
times.

The Milk Run Realtime Information (the first DSR
execution) consisted of a real-time monitoring system for the
supply convoys of the manufacturing (manual and
automatic) production lines. This project meant to monitor
the supply time of production lines, by the convoys.
Monitoring was done upon leaving the warehouses, and
controlling was carried out in various points of the route.
Whenever time deviations occurred in relation to the
planned, alarms were automatically triggered and the
reactions times (by interventions teams) were also calculated
and stored for future use.

In the Realtime ANDON project (the second DSR
execution), a solution for real-time monitoring of manual
insertion lines was developed. These lines worked for 24
hours a day, in 3 shifts. To accomplish this project, several
points of control along the production line were adopted, by
using SOAP protocol to communicate with the central server,
informing the location and identification of the products. We
have used infrared technologies to read the serial number of
the unit. Taking into account: (1) the production time of each
product (a line, during a shift, may produce several types of
products with distinct production times); (2) the production
plan defined, for each shift; and (3) the production pre-
defined breaks; we have been able to calculate, in real-time,
the production rate of the line and also to show, either in time
or units, the delay/advance checked against the
planned/expected production plan.

Both solutions caused impact on the organization, and
helped, not only to find faults, but also to help improve the
production plan. In the second project, it should be noted that
on the beginning, it was received with some reluctance from
the production line workers, because their work was being
monitored and measured constantly, and published in
real-time to everyone in the factory trough big TV screens.
However, we found that the people themselves began to use
the system in order to know, in real-time, the amount of
unities they had to produce to finish the shift, and to compete
with neighboring production lines. Using the data collected
by this monitoring system, it was also possible to recalculate
the production times of several products and automatically
calculate the quick change over (QCO) between products,
and thus improve the production planning.

In both projects open source software (like Apache,
MySQL and Linux) was used. The programming languages
used were Perl and PHP. The communication protocol used
between the control points and the server was SOAP. During
the execution of the first DSRs, the experience with all these
technologies for implementing those two projects has

enabled us to get real knowledge about the problem domain
and also to start the effort to design the software framework
that will be further developed and explored in future projects.

V. FUTURE WORK AN D EXPECTED RESULTS

In the near future, we will start the formalization of the
software framework based on the first two DSR executions
to enable the adoption of new mechanisms in the next
projects to be developed. Only after the formalization of the
first perception of the software framework we will be able to
come-up with some new behavioral and architectural
patterns and also with some technological insights that we
may discover to be innovative and efficient. The process of
literature review will allows us to base the writing of our
scientific contributions on solid arguments. We intend to
publish our contributions in reputed journals/conferences:
EUROMICRO Conference on Software Engineering and
Advanced Applications (SEAA); International Conference
on Information Systems Development (ISD); AIS European
Conference on Information Systems (ECIS); International
Journal of Computer Integrated Manufacturing (IJCIM); and
International Journal of Enterprise Information Systems
(IJEIS). Publication and/acceptance on this set of journals
and conferences aims to validate the research quality, the
quality of the articles, the scientific contribution and the
recognition of the developed work.

VI. CONCLUSION

The importance of modeling business processes in any
company is of utmost importance nowadays. With recent
technological advances, such as the ubiquitous computing,
the potentialities from these advances may come, in some
way, to affect the way business processes are modeled,
monitored, and executed. Ubiquitous computing, and all the
advantages/disadvantages that come with it, are not yet
completely known in the industrial world. Despite not having
much work done in the field, there is already some
knowledge and concern over this issue.

One of the main concerns identified, resides precisely in
the absence of real case scenarios with economic impact in
organizations. This is actually one of the points to improve,
in order to change some existing paradigms in organizations,
opening new horizons and promoting innovation; otherwise
they risk being overtaken by competition.

Ubiquitous computing will then empower organizations
with new resources, which may, when properly used, help to
monitor their industrial processes, providing relevant
information to whom right, in real-time. For it to become
real, it is necessary to cut the existing business processes,
i.e., decompose them, in order to know how and where
monitoring should be done and, more importantly, how and
by whom, by which decision agents. It is necessary to
formalize the ubiquitous nature of the business processes.

This new understanding of formalization of the
ubiquitous nature of the business processes, and how they
must be implemented and executed, allows the creation of a

363

software framework that can monitor real-time executions of
ubiquitous industrial business processes.

This proposal seeks to validate this software framework,
in real settings, by practical application, because its
contributions, if advantageous, could be directly incorporated
into companies’ best practices. The proposed research
method, DSR, fits gracefully in those, which are the
premises of this research. We propose to find a practical
solution to real problems, by building IT artifacts, in this
case, a software framework.

REFERENCES
[1] Weiser, M. (1993). Some Computer-Science issues in Ubiquitous
Computing. Communications of the ACM, 36(7):75–84.

[2] Weiser, M. (1995). The computer for the 21st century. Scientific
American, 272(3):78–89.

[3] Fernandes, J. E. M. (2010). About Model-based Approaches in
pervasive information systems development.. PhD thesis. University of
Minho

[4] Strassner, M. and Schoch, T. (2004). Today’s impact of ubiquitous
computing on business processes. Institute of Information Management of
University of St. Gallen.

[5] Lupiana, D., O’Driscoll, C., and Mtenzi, F. (2009). Taxonomy for
Ubiquitous Computing Environments. ieeexplore.ieee.org, (1).

[6] Chen, H., Perich, F., Finin, T., and Joshi, A. (2004). SOUPA: Standard
ontology for ubiquitous and pervasive applications. The First Annual
International Conference on Mobile and Ubiquitous Systems: Networking
and Services, 2004. MOBIQUITOUS 2004., pages 258–267.

[7] Fernandes, J., Machado, R., and Carvalho, J. (2004). Model-driven
methodologies for pervasive information systems development.
MOMPES’04, page 15.

[8] Lindsay, a. (2003). Business processes—attempts to find a definition.
Information and Software Technology, 45(15):1015–1019.

[9] Kirkwood, C. W. (1998). System Dynamics Methods. College of
Business Arizona State University USA

[10] Peters, D. (2002). Requirements-based monitors for real-time systems.
IEEE Transactions on Software Engineering, 28(2):146–158.

[11] Huang, G. Q., Zhang, Y., and Jiang, P. (2007). RFID-based wireless
manufacturing for real-time management of job shop WIP inventories. The
International Journal of Advanced Manufacturing Technology, 36(7-
8):752–764.

[12] Zhang, Y., Jiang, P., Huang, G., Zhou, G., and Zhao, L. (2010). RFID-
Enabled Real-Time Manufacturing Information Tracking Infrastructure for
Extended Enterprises. In Proceedings of the 6th CIRP-Sponsored
International Conference on Digital Enterprise Technology, pages 1723–
1734. Springer.

[13] Vaishnavi, V., Vaishnavi, V., and Kuechler, W. (2007). Design science
research methods and patterns: innovating information and communication
technology. Auerbach Pub.

[14] Lind, M., Rudmark, D., and Seigerroth, U. (2010). Design Science
Research for Business Process Design: Organizational Transition at
Intersport Sweden. Human Benefit through the Diffusion of Information
Systems Design Science Research, (Matthews 2007):159–176.

[15] Hevner, A. (2007). A three cycle view of design science research.
Scandinavian Journal of Information Systems, 19(2):87–92.

[16] Hevner, A. and Chatterjee, S. (2010). Design Research in Information
Systems. Information Systems Research, 22:9–22.

[17] Samuel-Ojo, O., Shimabukuro, D., Chatterjee, S., Muthui, M.,
Babineau, T., Prasertsilp, P.,Ewais, S., and Young, M. (2010). Meta-
analysis of Design Science Research within the IS Community: Trends,
Patterns, and Outcomes. Global Perspectives on Design Science Research,
pages 124–138.

[18] http://www.intellient.co.za/live/content.php?Item_ID=475

[19] http://www.ansi.org/

[20] Kuechler, B. and Vaishnavi, V. (2008). On theory development in
design science research: anatomy of a research project. European Journal of
Information Systems, 17(5): 489-504

364

Modeling Organizational Information System Architecture Using
“Complex Networks” Concepts

José L.R. Sousa
Sistemas de Informação

IBMC
Porto, Portugal

jsousa@ibmc.up.pt

Ricardo J. Machado
Centro ALGORITMI
Universidade do Minho

Guimarães, Portugal
rmac@dsi.uminho.pt

J.F.F. Mendes
Group of Complex Systems &

Random Networks
Aveiro, Portugal
jfmendes@ua.pt

Abstract — Organizations live in a world where
interdependence, self-organization and emergence are factors
for agility, adaptability and flexibility plunged into networks.
Software-based information systems go into a service oriented
architecture direction and the same goes to Infrastructures
where services are become structures available in networks.
Inspired into empirical studies of networked systems such as
Internet, social networks, and biological networks, researchers
have in recent years developed a variety of techniques and
models to help us structurally understand or predict the
behavior of these systems. Those findings are characterized by
been supported on the “complex networks” concepts. On this
PhD research we present the use of the concepts of complex
networks from physics to develop organizational information
system architectural models, as requirements modeling
technique. The research is about the structure and function of
networks and its use for modeling organizational information
systems architectures by using a combination of empirical
methods, analysis, and computer simulations.

Keywords: software requirements, computer science related
discipline: information management, management related
discipline: information systems management

I. INTRODUCTION
Organizations live in a world where interdependence,

self-organization and emergence are agility, adaptability and
flexibility factors plunged into networks. It is a networked
composed world in the design of collaborative-networked
organizations. This networked structuration comes to the
composition of complex systems, from cells, to society and
enterprises (associations of individuals, technology and
products). In those complex systems, characteristics of
emergence, order and self-organization [1], develop a set of
network interdependent actions not visible in the individual
parts. This is what complex systems are about and networks
concepts are becoming a common approach to describe and
quantify these complex systems structures. A fundamental
concern is to know the anatomy of theses structures in a
relation that structure always affects function [2].

Organizational information system concentrates a set o
elements that due to its role and nature are becoming similar
to energy and raw materials, this is, are fundamental
elements for organizations needs and successful existence.
Developed in order to support the organizations processes,
which are the center of organization efficiency and
effectiveness, but without in-built value [3]. Organizational
information system integrate commodities like computation

power, whose current availability [4], is no longer a
differentiation. In presence of this elements and in
consequence, information systems are each more seen as a
commodity [5] where organizational information systems are
consumed by the idea of not being aligned with the
enterprise information needs [7].

The realm of organizational information systems is the
confluence between context, business and software-based
technology and infrastructures. Organizational information
systems and behavior are not dichotomous but inseparable
[6] building a interdependent techno-social system. The use
of complex network characteristics to model the information
flow in organizational information systems is a tentative to
better understand their techno-social nature and, thus, learn
how to design better software-based organizational
information systems architectures.

Present research is about the structure and function of
complex networks and its use for modeling organizational
information systems, studied using a combination of
empirical methods, analysis, and computer simulations. The
goal is to find the complex network structure for real
organizational information systems architectures and
produce models that can be analyzed and studied to better
understand the information flow in the organizational
techno-social system.

In this paper, a description of the state-of-the-art related
with the subject of this research is presented in Section 2.
Section 3 describes in detail the research objectives and the
methodological approach. In Section 4, past work and
preliminary results, already done in the context of this
research, are briefly described. Section 5 presents future
work and expected results, for the next 2 years of research.
Finally, in Section 6 some conclusions are presented.

II. STATE-OF-THE-ART
 Organizational information systems, are consumed by

the idea of not being aligned with the enterprise information
needs [7], whose existence and development is sustained by
integrating a set of commodities. Organizational information
systems should be planed, design developed and managed
according to the organization strategy [8]. This approach
makes information systems clearly responsive. There is a
real need for information systems, with ability to support
emergence, self-organization that are present and can support
the organizations evolution [9]. Organizations are real world
entities with dynamic elements, users, in space and time.

2012 Eighth International Conference on the Quality of Information and Communications Technology

978-0-7695-4777-0/12 $26.00 © 2012 IEEE

DOI 10.1109/QUATIC.2012.40

365

Information systems must able to support the evolution of
the interdependence between the techno and social systems.
The construction of this techno-social system can be
modeled by complex interactions [9] that develops co-
evolution trough a flexible, adaptable and agile information
systems architecture structure.

A. Information systems

Defined by [10] as an “organizational system that
consists of technical, organizational and semiotic elements
which are all re-organized and expanded during ISD
(information systems development) to serve an
organizational purpose”. According to [11], “information
systems is what emerges, from the usage and adaptation of
the IT (information technology) and the formal and informal
processes of all of its users” .

Information systems must be constantly adapting to
needs as the users change its use and the IT is updated or
extended [11]. Information systems are also seen as
communication system used to support a given human
activity system, processes [12]. Information systems are a
natural consequence of the need for humans to communicate
and coordinate their activities [13][14]. An organizational
information system, on this research proposal, is the complex
network of interactions of software-based information
systems (that are combinations of computation,
communication, technology and processes) developed to
fulfill enterprise goals and integrated in a certain context.
This software-based information system is seen as SaaS
(Software as a Service) anchored in a IaaS (Infrastructure as
a Service) where context is the set of elements (Users) that
interact with information technology. This complex networks
approach to model information systems develops a
architecture umbrella that is a tentative to understand the
intrinsic nature of information flow and allows the design of
better software-based information systems that expectably
fully integrates emergence and self-organizing behaviors.

B. Commodities

Commodities lead to the concept that itself an
information system does not add value. From technology [5],
communications and computation [4, 15], information
technology solutions are seen as a commodity. In this
perspective information technology will be available at the
enterprise ecosystem and can be easily plugged in and out,
like energy. As an example, when a certain active entity
integrates the ecosystem gets energy and everything else,
including information technology. In this sense, service
science is clearly developing this commodities deployment.
So, this development of reality is demanding for a change
that is represented in a particular part of any system, but
emerges or results from a self-organization and
interdependent evolution. It needs a view to develop
information system architecture able to accommodate this
new dynamics.

C. Complex adaptive systems (CAS)

The paradigm used to model and fundament
organizations development has been changing. This change

can be found in a fundamental core of articles and books that
deal with this new organization dynamics [8, 18-20].

In this context, information systems architecture as a
fundamental interdependent structure, develop trough an
reductionist vision, will never have relevance due to its
vision of parts, instead of the hole. Complexity theory and
CAS can represent a response to the paradigm shift in order
to address this new dynamics [21-23].

CAS integrates the concept of emergence from which
adaptability and evolution arise as a result. For modeling
this, complex networks are used to model self-organization,
preferred attachment and fitness. Organization development
is supported, by the ability to use information flow as a
source for unique results, when facing change and
competition along space and time [16, 17].

Complex adaptive systems are systems with great
number of components, sometimes called agents that
interact, adapt and learn. Many contemporary problems are
under the complex adaptive system's theory [22-25]. In this
systems emergence occurs near or in the limit of
thermodynamic equilibrium. Such systems are common on
the physical world and have “emergent” properties that result
from interactions and are global or collective.

Emergence is founded in the existence of a global
behavior that is new when related to all parts that compose
the system, something not understood with the reductionist
vision of the information system architecture.

Information flow then defines emergent patterns that can
lead to adaptation, a familiar form in the biological process.
Reorganizing genetically material, through which organism
evolves to survive in environments that confront them. This
process allows the modulation of non-linearity that comes
from complex interactions [26, 27].

D. Complex networks

There are often cited examples of complexity, such as the
Internet, WWW, immune system, ant colonies, economic
markets or human social networks. Despite this fact, there is
no central definition for complex systems, informally seen as
a large network of relatively simple components with no
central control, in which emergent complex behavior is
exhibited [28]. This behavior is hard to define, and roughly,
emergence refers to the fact of systems global behavior is not
only complex but arises from the collective actions of simple
components to which the notion of non-linearity is
important: the whole is more than the sum of the parts [28].

Networks are everywhere, from brain, to society passing
by organizations. Using Karl Popper [29] approach, in higher
degree, this pervasive presence of networks is a construction
of human mind. Internet and WWW are the most impressive
creation in the information system domain and probably the
most moving creation of our civilization [30]. It is possible
to imagine the past and the future without them; but for the
e-generation it is not [8]. It is an element present in the daily-
life and from which we know little, beginning on their
complex organization structure or global topology. The
understanding of the Internet and WWW inherent problems
is not a topic for social sciences, computer and applied
mathematics but rather of non-equilibrium statistical physics

366

[30-32]. For properties observation of the network data is the
starting point [33, 34] and the same can be argued for
organizational information systems. The study of how
information flows and its support under software-based
information systems interactions should be done with the
same topological approach, which regards the big data that is
stored.

Network’s structure’s study started in the mathematical
study of graph theory [30]. In the beginning this theory
seized to Poisson distributions, resulting from simple random
graphs. Moreover, by definition, random graphs in graph
theory, are graphs with Poisson distribution of connections
[30]. By definition “a network is simply a collection of nodes
(vertices and links (edges) between nodes. The links can be
directed or undirected, and weight or outweighed” [28].

As first stage, all networks seemed random but, along the
development analysis, some different and fundamental key
characteristics were found. Networks are characterized by
the way in which they are created, resulting into constructs
such as, degree of distribution, average path length between
node’s pairs, clustering degree and communities [28,
31].Barabási and Albert (echoing the earlier work by Price
and others) conclude that their simple “growth with a
preferential attachment” mechanism, is what drives the
evolution of real-world networks [28]. Network theory has
been used to characterize a different set of systems. This use
is making network theory a strong tool for using when
emergence, self-organization, dynamic and co-evolution are
characteristics to be analyzed in the systems.

E. Relevant information system architecture planning
models

Due to the increasing in size implementations of
organizational information systems, logical models (or
architecture) for defining and controlling the interfaces and
integration of all the system components were developed.
Following, two of the most relevant are presented and a
discussion is made about its bottlenecks in supporting
organization techno-social systems information flow.

ZACHMAN Framework: It provides a view of the

subjects and models needed for complete developing or/and
documenting of organization architecture [35-37]. This
framework provides a basic structure that supports the
organization, access, integration, development, management
and changing with a set of architectural representations of
organization’s information system. It uses a matrix structure
of 30 cells and five perspectives of the overall architecture
with six classifications of the various artifacts of the
architecture as well as flow diagrams. For each cell of the
matrix the documentation type is suggested, using ER
technique for modeling the data description or using
functional flow diagrams for modeling the process
description [37]. In this framework, an organization has a
whole range of diagrams and documents representing
different aspects or viewpoints that can be developed. In the
extended framework for information systems architecture
there is a meta-model for cell data, and a classification of
data, process or network is made. It has no specific

associated methodologies and only a set of major principles
and rules exist, working as a guide. Nothing is said about
processes development for viewpoints or the associated
order. It represents information technology and not
information systems architecture interdependence in the
organizational techno-social system.

TOGAF: The Open Group Architecture Framework

(commonly known as TOGAF) is an industry standard
architecture framework that may be used freely by any
organization wishing to develop enterprise architecture
descriptions for the use within that organization. It is defined
as a comprehensive architecture framework and
methodology, which enables the design, evaluation and
implementation of the “right” architecture for an enterprise
[38], supported by a set of well-defined tools. It is composed
of three fundamental parts [39]: the ADM, the Enterprise
continuum, and the Resource base. ADM (Architecture
Development Method) forms de core structure for TOGAF,
being able to detail procedural models in order to develop
descriptions of enterprise architectures. It describes the
different type of inputs and outputs but does not show
guidelines; ER – entity relation - is used as a formalization
model [39]. Design for development and not for exploitation
of techno-social systems interdependent interactions in the
road to co-evolution.

III. RESEARCH OBJECTIVES AND
METHODOLOGICAL APPROACH

A. Research Goals
The present research is about the discovery of big data

information flow structured under complex networks, and its
use for modeling organization information systems
architectures, using a combination of empirical methods,
mathematical analysis, and computer simulations. These
computer simulations will address the visual modeling of the
network structure. From its review and results constructs of
the complex network theory such as clustering, path-length,
degree and communities, develop the ability to model
emergence, self-organization, evolution and dynamic
through space and time of the organization techno-social
system

Regarding this, the main goals for PhD work are:
• Define an approach to support the adoption of the

complex network meta-model to analyze models of
already existent organizational information systems,
based on information technology big data information
flow.

• Adopt those models for monitoring the dynamic
execution of existent organizational information
technology systems.

• Based on the monitoring results, analyze the
corresponding characteristics of the organizational
information system architecture.

B. Research Approach

367

In order to validate this approach, is adopted a positivistic
research method trough a quantitative data collection. Later
on, an observing interpretation will be needed and a
qualitative vision will be adopted, supported in the use of
and abductive inference.. All the development phases will be
based on action research theory [40]. The use of action
research theory comes from its use on information systems
research, when there is the need to determine the complex or
diverse nature of information systems. The complexity
support and diversity is clear in the modeling goals of our
research, so the choice for action research is adequate.
Traditional approach to the definition of the action research
methodology is a spiral of interactions through time. At each
cycle a more close set of interaction can be implemented
[40]. For the present research proposal a more simplified
version of action research will be used: the demonstration
cases. This approach adopts a single cycle for data collection
in one selected organization.

Information system architecture is a world of big data
logs and traceable information flow interdependence in the
techno-social organization system. There are many tools for
collecting that information. In this research, standard tools
will be used and it is expectable that a plethora of models
will emerge from big data [41] evaluation using quantitative
modeling within complex networks constructs. A qualitative
approach will also be present in our efforts for the
interpretation of the results obtained from the positivist
construction of models using an abductive inference for its
predictive fitness. Starting from the presented concepts in
this paper, a more profound literature review will be done,
exploring fundamental concepts from theoretical physics that
will be used and also trough the evaluation of users behavior
relating to technology and predictive fitness. This
combination of research methods is a great enrichment for
our research approach. The global research process will be
centered in three main phases, described in Fig. 1.

Figure 1 - Overview of the research process.

This research process starts with a broad question: How
already existent organizational information systems can be
characterized adopting the “complex networks” concepts?

Along our PhD work, three organizations will be
involved for performing data collection and analysis
supporting the construction of “complex networks” models.
Two of these organizations are from two relevant industrial
sectors in Portugal: automotive and textile. This phase will
present modeling results of the application of complex

network concepts to the organizational information systems
using demonstration cases.

IV. PAST WORK AND PRELIMINARY RESULTS
This PhD work takes place within the Software

Engineering and Management Group (SEMAG) from the
ALGORITMI Research Centre at the University of Minho.
SEMAG research group is devoted to study the development
process of software-based information systems and related
methodologies, focusing on both the engineering and
management aspects. We will adopt a three-layer techno-
social approach to regard into the commoditization process
of enterprise information systems architecture in a
foundation of service science (see Fig. 2): [42](1) the user
level; (2) the SaaS (software as a service) level; (3) the IaaS
(infrastructure as a service). We will manage a set of
experiences (real big data collection and analysis) in order to
produce the complex network models for each of the three
levels.

A first data collection experiment was put in place at
IBMC addressing the SaaS level- the level were processes
are translated into software based packages - using a small
link with a volume 40 to 50 connected users and Allot
NetEnforcer Series AC-500 equipment (with the cooperation
of Palo Alto Networks1); a commodity solution that can
collect data flows. The data was collected during a
three-week period and then exported to CSV files through
the use of Netxplorer, to be processed by external software
for complex networks evaluation..This resulted in the
construction of the adjacency list of the networks [33]. The
software used for complex networks structure discovery and
constructs evaluation was Gephi. p

Figure 2 – 3-layer information systems modeling

architecture.
The experienced was conduced with the guarantee of

total confidentiality, since the data flow is only related within
the IP address and additional information is needed to
correlate. The architecture of data-collecting infrastructure is
presented at Fig. 3. It was performed in a five-flours building
in a LAN with a clear DMZ and core switching linking all
the distributed connections. The data collection allowed us to
discover initial structures of the information flow that are the
core element of the “complex network” model.

1 www.paloaltonetworks.com

368

1
Figure 3 - Data collecting ecosystem.

Fig. 4 presents the “complex network” model obtained
and Table I shows numerical characteristics of the model.
Clustering coefficient defines the complex networks
structure as having small-world properties. We are now
studying these values, its relation to the SaaS for which we
have collected data, and what they can mean in that context.

Figure 4 - Complex network structure at the SaaS level.

TABLE I. VALUES OF COMPLEX NETWORK AT THE SAAS LEVEL

Element Value
Average degree (k) 2.869

Average shortest path (l) 3.074
Clustering (C) 0.004

Another experience was conducted within the ISOFIN

project to assess the characteristics of an information system
architecture that is being designed. The ISOFIN project [43]
aims to provide a set of functionalities based on the cloud
paradigm as defined by NIST [44] and enacting the
coordination of independent services relying on private
clouds in a coordinating public-cloud application (the
ISOFIN Platform). The resulting ISOFIN platform will allow
the semantic and application interoperability between
enrolled financial institutions (Banks, Insurance Companies
and others). In the presented real industrial case, the process-
level 4SRS method [45, 46] is used to create the necessary
context to elicit the requirements for designing an

architecture capable to be implemented in the three typical
cloud-layers: IaaS, PaaS (platform as a service), and SaaS.

Figure 7 - Complex network of process-level logical

architecture of ISOFIN in a circular layout with
expansion of packages and relevant edges

Fig. 4 and Table I present the results from the IBMC
experience; they allowed discovering the existence of
“small-world” network properties in the existing information
system. Fig. 5 and Table II present the results from the
ISOFIN experience; they allowed discovering the existence
of communities that are not equal to the packages defined in
the designed architecture for the ISOFIN information
system. A study of the construct communities should also be
addressed in the future work of this PhD.

TABLE II. VALUES OF COMPLEX NETWORK AT THE SAAS LEVEL

Element Value
Average degree (k) 2.735

Average shortest path (l) 4.150
Clustering (C) 0.253

V. FUTURE WORK AND EXPECTED RESULTS
For the next two academic years (2012/13 and

2013/2014), we will address the other two levels (users and
IaaS). With the lessons learned from these three kinds of
experiments we expect to define the main elements for the
complex adaptive information systems architecture.

VI. CONCLUSIONS
Organizational information systems are today faced with

a need for management of information flow through space
and time in order to support organization information needs.
Inspired on the work been done on the definition of WWW
and social relations, this PhD proposal is presenting a new
approach to the modeling of organizational information
systems architectures, by using the “complex networks”
concepts. It adopts the physics concepts of complex
networks and proposes a research agenda for modeling
organizational information systems architectures as a first
step to the engineering of information systems. Although
those concepts have already been used in modeling the
WWW, power grids or air traffic systems, they have never
been tested in the information systems domain. The
collaboration of an enterprise like Palo Alto Networks,

369

making available the last version of a context firewall in
order to be used for data collection, makes a big impact on
what can be collected and on what models that can be
produced.

A special attention was paid to the choice of the selected
organizations for data collection, trying to address relevant
domains in order to give the vision for the fitness of the
“complex networks” concept in different context and
behaviors. This approach addresses the use of physics
concepts that once more shows that information systems
research benefit from the knowledge any area domain. Its
different way of seeing things can be a central research for
the leverage of organizational information systems
architecture to the center of co-evolution of organization
socio-technical systems trough the ability to exploit
architecture for agility, flexibility and adaptability

REFERENCES
[1] Barabási, "The Architecture of Complexity," Control Systems
Magazine, IEEE, vol. 27, pp. 33-42, 2007.
[2] S. H. Strogatz, "Exploring complex networks," Nature, 2001.
[3] T. H. Davenport, "The coming commoditization of processes," Harvard
Business Review, 2005.
[4]N. Carr, "The end of corporate computing," MIT Sloan Management
Review, vol. 46, pp. 67-73, 2005.
[5] N. Carr, "IT doesn't matter," IEEE Engineering Management Review,
2004.
[6] A. R. Hevner, S. T. March, and J. Park, "Design science in information
systems research", MIS Quarterly, 2004.
[7] Y. E. Chan, "Why haven't we mastered alignment? The importance of
the informal organization ," MIS Quarterly Executive, 2002.
[8] A. W. Don Tapscott, Wikinomics - how mass collaboration changes
everything. New York: Portfolio, 2006.
[9] Y. E. Chan and R. Sabherwal, "Antecedents and outcomes of strategic
IS alignment: An empirical investigation," IEEE Transactions , 2006.
[10] K. Lyytinen and M. Newman, "Punctuated equilibrium, process
models and information system development and change: towards a socio-
technical process analysis," Sprouts,, 2006.
[11] R. J. Paul, "Challenges to information systems: time to change,"
European Journal of Information Systems, 2007.
[12] P. Beynon-Davies, "Informatics and the Inca," International Journal
of Information Management, 2007.
[13] P. Beynon-Davies, "Neolithic informatics: The nature of information,"
International Journal of Information Management, 2009.
[14] S. Alter, "Defining information systems as work systems: implications
for the IS field," European Journal of Information Systems, 2008.
[15] M. P. Papazoglou, "Service-oriented computing: Concepts,
characteristics and directions," Fourth International Conference on Web
Information Systems Engineering (WISE’03), 2003.
[16] E. Bonabeau and C. Meyer, "Swarm intelligence: A whole new way to
think about business," Harvard Business Review, 2001.
[17] A. Desai, "Adaptive complex enterprises, Communications of the
ACM, 2005.
[18] G. Hamel, "O Futuro da Gestão," 2008.
[19] I. Nonaka and G. v. Krogh, "Perspective---Tacit Knowledge and
Knowledge Conversion: Controversy and Advancement in Organizational
Knowledge Creation Theory," Organization science, 2009.

[20] J. Surowiecki, A sabedoria das Multidões Como Inteligencia colectiva
transforma a economia e a sociedade, 1ª ed.: Lua de Papel, 2007.
[21] M. Iansiti and R. Levien, "The keystone advantage,"
harvardbusiness.org, 2004.
[22] M. Schneider and M. Somers, "Organizations as complex adaptive
systems: Implications of Complexity Theory for leadership research," The
Leadership Quarterly, pp. 351-365, 2006.
[23] J. Sutherland and W. J. van den Heuvel, "Enterprise application
integration and complex adaptive systems," portal.acm.org, 2002.
[24] K. J. Dooley, "A Complex Adaptive Systems Model of Organization
Change," Nonlinear Dynamics, Psychology, and Life Sciences, 1997.
[25] K. J. Dooley, T. L. Johnson, and D. H. Bush, "TQM, chaos and
complexity," Human Systems Management, 1995.
[26] J. Holland, "Studying Complex Adaptive Systems," Journal of
Systems Science and Complexity, 2006.
[27] J. H. Holland, "Adaptation in natural and artificial systems,"
mitpress.mit.edu, 1992.
[28] M. Mitchell, Complexity - A guided Tour: Oxford University Press,
2009.
[29] K. Popper, "Three worlds," bengin.net, 1979.
[30] S. N. Dorogovtsev and J. F. F. Mendes, "Evolution of networks,"
Advances in Physics, 2002.
[31] S. N. Dorogovtsev and J. F. F. Mendes, "Evolution of Networks -
From biological nets to the internet and www," Oxford University Press,
2010.
[32] S. N. Dorogovtsev, A. V. Goltsev, and J. F. F. Mendes, "Critical
phenomena in complex networks," Reviews of Modern Physics, 2008.
[33] M. Newman, Networks: An Introduction: Oxford University Press,
Inc., 2010.
[34] M. E. J. Newman, "The structure and function of complex networks,"
SIAM review, 2003.
[35] J. A. Zachman, "The Zachman Framework," ‚ Institute for Framework
Advancement. Available ,, 2007.
[36] J. Zachman, "Enterprise architecture and legacy systems, getting
beyond the "legacy"," 2004.
[37] J. A. Zachman, "A framework for information systems architecture,"
IBM Systems Journal, 1999.
[38] A. Gerber, P. Kotze, and V. d. Merwe‚A, "Towards the formalisation
of the TOGAF Content Metamodel using ontologies," ICEIS, 2010.
[39] S. Leist and G. Zellner, "Evaluation of current architecture
frameworks," ACM symposium on Applied computing, Dijon, France,
2006.
[40] M. R. De Villiers, "Three approaches as pillars for interpretive
Information Systems research: development research, action research and
grounded theory," SAICSIT, 2005.
[41] M. C. Gonzalez and A.-L. Barabasi, "Complex networks: From data to
models," Nat Phys, 2007.
[42] P. Mell and T. Grance, "The NIST Definition of Cloud Computing,"
NIST, 2009.
[43] Research Project: http://www.i2s.pt/i2ssite/Projectos/isofin.asp
[44] NIST, www.nist.gov/itl/cloud/upload/cloud-def-v15.pdf
[45] Nuno Ferreira, Nuno Santos, Ricardo J. Machado, Dragan Gasevic.
Derivation of Process-Oriented Logical Architectures: An Elicitation
Approach for Cloud Design. PROFES, 2012.
[46] Ricardo J. Machado, João M. Fernandes. Heterogeneous Information
Systems Integration: Organizations and Methodologies. Markku Oivo,
Seija Komi-Sirviö (Eds.), Product Focused Software Process Improvement,
LNCS Springer-Verlag.

370

