
Revised version: originally published in Proceedings of the 5th International
Conference on Software Quality, Austin, Texas, 23 to 26 October 1995.

Toward the Design Quality Evaluation
of Object-Oriented Software Systems

Fernando Brito e Abreu (INESC/ISEG)
Miguel Goulão, Rita Esteves (INESC/IST)

INESC, Rua Alves Redol, 9, Apartado 13069, 1000 Lisboa, PORTUGAL
(phone: +351-1-3100226 / fax: +351-1-525843 / email: fba@inesc.pt)

ABSTRACT

This paper presents some advances towards the quanti-
tative evaluation of design attributes of object-oriented
software systems. We believe that these attributes can
express the quality of internal structure, thus being
strongly correlated with quality characteristics like ana-
lyzability, changeability, stability and testabilility, which
are important to software developers and maintainers.
An OO design metrics set is reviewed, along with its
rationale. An experiment for collection and analysis of
those metrics is described and several suppositions
regarding the design are evaluated. A considerable number
of class taxonomies written in the C++ language were used
as a sample. A tool to collect those metrics was built and
used for that purpose. Statistical analysis was performed to
evaluate the collected data. Results show that some design
heuristics can be derived and used to help guide the design
process. It was also clear that a number of follow-up
topics deserve further research.

1. INTRODUCTION

The backbone of any software system is its design. It is the
skeleton where the flesh (code) will be supported. A
defective skeleton will not allow harmonious growth and
will not easily accommodate change without amputations
or cumbersome prothesis with all kinds of side effects.
Because requirements analysis is most times incomplete,
we must be able to build software designs which are easily
understandable, alterable, testable and preferably stable
(with small propagation of modifications). The Object-
Oriented (OO) paradigm includes a set of mechanisms1

such as inheritance, encapsulation, polymorphism and
message-passing that are believed to allow the cons-
truction of designs where those features are enforced.
However, a designer must be able to use those mecha-
nisms in a “convenient” way. Long before the OO lan-
guages became widespread, it was possible to build soft-
ware with an OO “flavor”, using conventional 3rd
generation languages. Conversely, by simply using an OO

1 - Some of those are a natural evolution of concepts and constructs

present in structured programming and founded on abstract data type

theory.

language that supports those mechanisms we are not
automatically favored with an increase in software quality
and development productivity, because its effective use
relies on the designer’s ability. Being a “creative” activity,
where multiple alternatives are often available for the
same partition of the system being modeled, design would
greatly benefit if some heuristics could help choose the
way. Design metrics are being used for this purpose.

Several research works in the OO design metrics arena
were produced in recent years [Dumke95, Sellers95,
Campanai94, Cant94, Chidamber94, Hopkins94,
Abreu93]. However, there is a lack of experimental vali-
dation. Worse than that, there is scarce information on
how the proposed metrics should be used. Facing the
available metrics literature, software practitioners are
often left with the unpleasant feeling that “not everything
that counts can be counted, and not everything that can be
counted counts”2. A better scenario can be found on the
field of OO reuse metrics, where experimental studies like
[Melo95, Lewis91] are shedding some light.

An earlier paper [Abreu94] proposed the MOOD3 set of
metrics. These metrics allow the use of the main mecha-
nisms of the Object-Oriented paradigm to be evaluated
and are reviewed here. They are supposed to help establish
comparisons and derive conclusions among heterogeneous
systems (different size, complexity, application domain
and/or OO implementation language), thus allowing
cumulative knowledge to be achieved. Although the
language heterogeneity is not yet addressed in this paper,
an experiment is described where the sample (OO systems
from which the MOOD metrics were collected) is a good
representation of all the other differences.

This paper is organized as follows: the next section intro-
duces the main goals and strategy of the current research
work from which this paper originated. Section 3 includes
the detailed review of the MOOD set along with its
rationale. A simple case study in C++ is used to illustrate
the basic concepts. The following section describes an
experiment of systematic collection of the MOOD metrics,

2 - Albert Einstein
3 - Metrics for Object Oriented Design

including the tool used, the target sample and the results
achieved. Section 5 discusses the experimental results and
proposes some design heuristics based on the MOOD set.
Some new research directions emerging from this study
are mentioned in section 6. The final section presents a
retrospective overview.

2. RESEARCH GOALS AND STRATEGY

2.1 Main goals

The research being carried out in this area by the Software
Engineering Group at INESC4 in cooperation with the
Lisbon Technical University has two main goals:

Goal 1 - Improve the OO design process to achieve
better maintainability

Maintenance is (and will surely continue to be) the major
resource waster in the whole software life-cycle. Main-
tainability can be evaluated through several quality sub-
characteristics like analyzability, changeability, stability
and testabilility [ISO9126]. Object-orientation is believed
to reduce the referred effort waste, if its basic mechanisms
are used conveniently. We believe and expect to prove
that, at the system level, there are patterns for the extent of
use of encapsulation, inheritance, polymorphism or
cooperation among classes which are closely correlated
with those quality characteristics. By finding those pat-
terns, through thorough experimental validation, we do not
expect to identify a good design when we see one, but
rather to say that a certain design is more maintainable
than another. This is particularly useful for inexperienced
designers, often faced with a combinatorial explosion of
arbitrary design decisions.

Goal 2 - Improve the OO estimation process to achieve
better resource allocation

Producing effort and schedule estimates for OO software
development requires evaluating the size and complexity
of the system to be built. The percentage that is going to
be built from scratch and the percent that is going to be
reused with minor or major adaptations (from existing
component libraries) must also be evaluated, along with
corresponding efforts. Selecting and adapting components,
for instance, may demand considerable effort. A complete
model for OO projects resource estimation that
accommodates these concerns is our other goal.

2.2 Strategy

The strategy toward the stated goals can be expressed in a
stepwise way. Some steps can be “climbed” concurrently.

4 - A private Portuguese non-profit R&D organization

Steps for Goal 1:
i) MOOD metrics set proposal (first introduced in

[Abreu94]);
ii) practical validation of the underlying rationale of the

proposed set, by means of a comparative evaluation of
several “supposed-to-be-well-designed” OO systems
(partly included in this paper);

iii) construction and public distribution of a tool for
automatic collection of MOOD metrics from OO lan-
guages source code (scheduled for this summer); sup-
port for industrial and academic wide experimentation5

and statistical validation of results;
iv) theoretical validation of the MOOD metrics (using

Measurement Theory);
v) MOOD set refinement based on iii) and iv) results

(MOOD V2 proposal);
vi) embedding MOOD V2 metrics on a OO CASE tool;
vii) assessment of correlation between MOOD metrics and

maintainability sub-characteristics.

Steps for Goal 2:
i) proposal of a generic OO software system complexity

metric (under way);
ii) theoretical validation of the complexity metric (using a

set of desiderata defined in [Weyuker88]);
iii) develop a model for the effect of reuse in productivity,

validated with published reports data;
iv) proposal of a resource estimation model6;
v) construction and public distribution of a tool to support

the estimation process, based on the proposed ap-
proach;

vi) public validation of the model with real-world OO
projects;

vii) model calibration and refinement.

3. THE MOOD METRICS SET

3.1 Introduction

The MOOD (Metrics for Object Oriented Design) set
includes7 the following metrics:
• Method Hiding Factor (MHF)
• Attribute Hiding Factor (AHF)
• Method Inheritance Factor (MIF)
• Attribute Inheritance Factor (AIF)
• Polymorphism Factor (PF)
• Coupling Factor (CF)

5 - Potential MOODKIT users will be asked to disclose the metrics

collected with it (anonymity of origin will be guaranteed on request),

thus helping to enlarge the data set and calibrating the heuristics.

Suggestions for tool improvement will be welcome..
6 - To be named MOORED (Model for Object Oriented Resource

Estimation Determination)
7 - Although not the complete V1 set (which also includes the Clustering

and Reuse Factors), these were the ones found relevant within the scope

of this paper.

Each of those metrics refers to a basic structural mecha-
nism of the object-oriented paradigm as encapsulation
(MHF and AHF), inheritance (MIF and AIF), polymor-
phism (PF) and message-passing (CF) and are expressed
as quotients. The numerator represents the actual use of
one of those mechanisms for a given design. The de-
nominator, acting as a normalizer, represents the hypo-
thetical maximum achievable use for the same mechanism
on the same design (i.e. considering the same number of
classes and inheritance relations). As a consequence, these
metrics:

1. are expressed as percentages, ranging from 0% (no
use) to 100% (maximum use);

2. are dimensionless, which avoids the often misleading,
subjective or "artificial" units that pervaded the metrics
literature with its often “esoteric” flavor.

Being formally defined, the MOOD metrics avoid sub-
jectivity of measurement and thus allow replicability. In
other words, different people at different times or places
can yield the same values when measuring the same sys-
tems.
These metrics are also expected to be system size inde-
pendent. A partial demonstration of this assertion is in-
cluded below. Size independence allows inter-project
comparison, thus fostering cumulative knowledge.
The MOOD metrics definitions make no reference to
specific language constructs. However, since each lan-
guage has its own constructs that allow for implementation
of OO mechanisms in more or less detail, a binding for the
case studies language (C++) is included ahead8. Similar
bindings will be proposed for other OO languages in the
near future. A validation experiment with Eiffel [Meyer92]
is currently under way. This expected, but yet to be
proved, language independence will broaden the appli-
cability of this metric set by allowing comparison of
heterogeneous system implementations.

3.2 A supporting example

To help clarify the metrics determination process, the
following C++ code, adapted from [Young92], will be
used in next sections. It is a subset of a class taxonomy
where Application and Clock inherit from UIComponent.
This last class inherits from BasicComponent (the base
class).

class BasicComponent {

 protected:
char *_name;
Widget _w;

8 - There are still some pending issues related to how templates and

exception handling (throw, try, catch, ...) should be considered.

BasicComponent(const char *); //Constructor
 public:

virtual ~BasicComponent(); // Destructor
virtual void manage();
virtual void unmanage();
const Widget baseWidget() { return _w; }

};

class UIComponent : public BasicComponent {

 private:
static void widgetDestroyedCallback

(Widget, XtPointer, XtPointer);
 protected:

UIComponent (const char *); //Constructor

void installDestroyHandler();
virtual void widgetDestroyed();
void setDefaultResources

(const Widget , const String *);
void getResources

(const XtResourceList, const int);
 public:

virtual ~UIComponent(); // Destructor
virtual void manage();
virtual const char *const className()

{ return "UIComponent"; }
};

class Application : public UIComponent {

// Allow main and MainWindow to access protected
member functions

#if (XlibSpecificationRelease>=5)
friend void main (int, char **);

#else
friend void main (unsigned int, char **);

#endif

friend class MainWindow;

 private:
void registerWindow (MainWindow *);
void unregisterWindow (MainWindow *);

 protected:
Display *_display;
XtAppContext _appContext;

// Functions to handle Xt interface
#if (XlibSpecificationRelease>=5)
 virtual void initialize (int *, char **);
#else
 virtual void initialize(unsigned int *,char **);
#endif
virtual void handleEvents();

char *_applicationClass;
MainWindow **_windows;
int _numWindows;

 public:
Application (char *); // Constructor
virtual ~Application(); // Destructor
void manage();
void unmanage();
void iconify();
Display *display()

{ return _display; }
XtAppContext appContext()

{ return _appContext; }
const char *applicationClass()

{ return _applicationClass; }
virtual const char *const className()

{ return "Application"; }
};

class Clock : public UIComponent {

 private:
int _delta; // The time between ticks
XtIntervalId _id; // Xt Timeout identifier

virtual void timeout(); // Called every delta
virtual void speedChanged (int);

static void timeoutCallback
(XtPointer, XtIntervalId *);

static void speedChangedCallback
(Widget, XtPointer, XtPointer);

 protected:
virtual void tick()= 0;

 public:
Clock (Widget, char *,

int // Minimum speed
int); // Maximum speed

~Clock (); // Destructor

void stop(); // Stop the clock
void pulse(); // Make the clock tick once
void start(); // Start or restart the clock

virtual const char *const className()
{ return ("Clock"); }

};

3.3 Metrics definition and language bindings

3.3.1 Method Hiding Factor:

MHF
M C

M C

h ii

TC

d ii

TC= =

=

∑
∑

()

()
1

1

where:
TC = total number of classes in the system under con-
sideration
M C M C M Cd i v i h i() () ()= + =methods defined in Ci

M Cv i() = visible methods in class Ci

M Ch i() = hidden methods in class Ci

MOOD/C++ bindings
• methods - constructors, destructors, function members

(including virtual9 ones) and operator definitions
• visible methods - methods in public clause
• hidden methods - methods in private10 and protected11

clauses
Notes:
• inherited methods are not considered here;
• function members with the same identifier (“function-

name overloading”) but with different signatures
(distinct formal parameter list) are considered as dis-
tinct methods.

Examples:
• M BasicComponenth() = 1 { constructor }

• M BasicComponentv() = 4 { destructor, manage,
unmanage, baseWidget }

• M BasicComponentd() = 1 + 4 = 5

• M UIComponenth() = 6 { widgetDestroyedCall-

back, constructor, installDestroyHandler, widget-
Destroyed, setDefaultResources, getResources }

• M UIComponentv() = 3 { destructor, manage,
className }

• M UIComponentd() = 6 + 3 = 9

• M Applicationh() = 5 { main, registerWindow,

unregisterWindow, initialize, handleEvents }
• M Applicationv() = 9 { constructor, destructor,

manage, unmanage, iconify, display, appContext,
applicationClass, className }

• M Applicationd() = 5 + 9 = 14

• M Clockh() = 5 { timeout, speedChanged, timeout-

Callback, speedChangedCallback, tick }
• M Clockv() = 6 { constructor, destructor, stop, pulse,

start, className }
• M Clockd() = 5 + 6 = 11

9 - Also called deferred
10 - These methods are only reachable within the scope of the class to

which they belong (i.e. they are not even inherited by subclasses).
11 - These methods are only reachable within the scope of the class to

which they belong and their derived classes (descendants).
12 - similar to the “generics” construct in the ADA language

3.3.2 Attribute Hiding Factor :

AHF
A C

A C

h ii

TC

d ii

TC= =

=

∑
∑

()

()
1

1

where:
A C A C A Cd i v i h i() () ()= + = attributes defined in Ci

A Cv i() = visible attributes in class Ci

A Ch i() = hidden attributes in class Ci

MOOD/C++ bindings
• attributes - data members
• visible attributes - data members in public clause
• hidden attributes - data members in private13 and

protected14 clauses

Examples:
• A BasicComponenth() = 2 { _name, _w }

• A BasicComponentv() = 0

• A BasicComponentd() = 2 + 0 = 2

• A UIComponenth() = 0

• A UIComponentv() = 0

• A UIComponentd() = 0 + 0 = 0

• A Applicationh() = 5 { _display, _appContext,

_applicationClass, _windows, _numWindows }
• A Applicationv() = 0

• A Applicationd() = 5 + 0 = 5

• A Clockh() = 2 { _delta, _id }

• A Clockv() = 0

• A Clockd() = 2 + 0 = 2

3.3.3 Method Inheritance Factor:

MIF
M C

M C

i ii

TC

a ii

TC= =

=

∑
∑

()

()
1

1

where:
M C M C M Ca i d i i i() () ()= + = available methods in Ci

M C M C M Cd i n i o i() () ()= + =methods defined in Ci

13 - These attributes are only reachable within the scope of the class to

which they belong (i.e. they are not even inherited by subclasses).
14 - These attributes are only reachable within the scope of the class to

which they belong and their descendants.
15 - not included in any class

M Cn i() = new methods in Ci

M Co i() = overriding methods in Ci

M Ci i() = methods inherited in Ci

MOOD/C++ bindings
• methods defined - those declared within Ci

• new methods - those declared within Ci that do not
override inherited ones

• overriding methods - those declared within Ci that
override (redefine) inherited ones

• methods inherited - those inherited (and not overrid-

den) in Ci

• available methods - those that can be invoked in as-

sociation with Ci

Examples:
• M BasicComponentn() = 5 { constructor, destruc-

tor, manage, unmanage, baseWidget }
• M BasicComponento() = 0

• M BasicComponenti() = 0

• M BasicComponentd() = 5 + 0 = 5

• M BasicComponenta() = 5 + 0 = 5

• M UIComponentn() = 8 { widgetDestroyedCall-

back, constructor, installDestroyHandler, widget-
Destroyed, setDefaultResources, getResources,
destructor, className }

• M UIComponento() = 1 { manage }

• M UIComponenti() = 4 { BasicComponent,
~BasicComponent, unmanage, baseWidget }

• M UIComponentd() = 8 + 1 = 9

• M UIComponenta() = 9 + 4 = 13

• M Applicationn() = 11 { main, registerWindow,

unregisterWindow, initialize, handleEvents, cons-
tructor, destructor, iconify, display, appContext, ap-
plicationClass }

• M Applicationo() = 3 { manage, unmanage, class-
Name }

• M Applicationi() = 9 { BasicComponent,
~BasicComponent, baseWidget, UIComponent, install-
DestroyHandler, widgetDestroyed, setDefault-
Resources, getResources, ~UIComponent }

• M Applicationd() = 11 + 3 = 14

• M Applicationa() = 14 + 9 = 23

• M Clockn() = 10 { timeout, speedChanged, timeout-

Callback, speedChangedCallback, tick, constructor,
destructor, stop, pulse, start }

• M Clocko() = 1 { className }

• M Clocki() = 11 { BasicComponent,
~BasicComponent, unmanage, baseWidget, UICom-

ponent, installDestroyHandler, widgetDestroyed, set-
DefaultResources, getResources, ~UIComponent,
manage }

• M Clockd() = 10 + 1 = 11

• M Clocka() = 11 + 11 = 22

3.3.4 Attribute Inheritance Factor :

AIF
A C

A C

i ii

TC

a ii

TC= =

=

∑
∑

()

()
1

1

where:
A C A C A Ca i d i i i() () ()= + = attributes available in Ci

A C A C A Cd i n i o i() () ()= + = attributes defined in Ci

A Cn i()= new attributes in class Ci

A Co i()= overriding attributes in class Ci

A Ci i()= attributes inherited in class Ci

MOOD/C++ bindings
• attributes defined - those declared within Ci

• new attributes defined - those declared within Ci that
do not override inherited ones

• overriding attributes - those declared within Ci that
override (redefine) inherited ones

• attributes inherited - those inherited (and not overrid-

den) in Ci

• available attributes - those that can be manipulated in

association with Ci

Examples:
• A BasicComponentn() = 2 { _name, _w }

• A BasicComponento() = 0

• A BasicComponenti() = 0

• A BasicComponentd() = 2 + 0 = 2

• A BasicComponenta() = 2 + 0 = 2

• A UIComponentn() = 0

• A UIComponento() = 0

• A UIComponenti() = 2 { _name, _w }

• A UIComponentd() = 0 + 0 = 0

• A UIComponenta() = 0 + 2 = 2

• A Applicationn() = 5 { _display, _appContext,

_applicationClass, _windows, _numWindows }
• A Applicationo() = 0

• A Applicationi() = 2 { _name, _w }

• A Applicationd() = 5 + 0 = 5

• A Applicationa() = 5 + 2 = 7

• A Clockn() = 2 { _delta, _id }

• A Clocko() = 0

• A Clocki() = 2 { _name, _w }

• A Clockd() = 2 + 0 = 2

• A Clocka() = 2 + 2 = 4

3.3.5 Polymorphism Factor:

PF
M C

M C DC C

o ii

TC

n i ii

TC=
×

=

=

∑
∑

()

() ()
1

1

where:
M Co i() = overriding methods in class Ci

M Cn i() = new methods in class Ci

DC Ci() = number of descendants of class Ci (derived

classes)

The numerator represents the actual number of possible
different polymorphic situations. Indeed, a given message
sent to class Ci can be bound (statically or dynamically)

to a named method implementation, which can have as
many shapes (“morphos” in ancient greek) as the number
of times this same method is overridden (in Ci descen-

dants).
The denominator represents the maximum number of
possible distinct polymorphic situations for class Ci . This

would be the case where all new methods defined in Ci

would be overridden in all its derived classes.

Note: this metric definition was somewhat modified, when
compared with its initial proposal [Abreu94]; this was a
result of our better understanding, due to the experimental
validation described in this paper.

Examples:
• M BasicComponento() = 0

• M BasicComponentn() = 5 { constructor, destruc-
tor, manage, unmanage, baseWidget }

• DC BasicComponent() = 3 { UIComponent, Ap-
plication, Clock }

• M UIComponento() = 1 { manage }

• M UIComponentn() = 8 { widgetDestroyedCall-
back, constructor, installDestroyHandler, widget-
Destroyed, setDefaultResources, getResources,
destructor, className }

• DC UIComponent() = 2 { Application, Clock }

• M Applicationo() = 3 { manage, unmanage, class-

Name }
• M Applicationn() = 11 { main, registerWindow,

unregisterWindow, initialize, handleEvents, cons-

tructor, destructor, iconify, display, appContext,
applicationClass }

• DC Application() = 0

• M Clocko() = 1 { className }

• M Clockn() = 10 { timeout, speedChanged, timeout-
Callback, speedChangedCallback, tick, constructor,
destructor, stop, pulse, start }

• DC Clock() = 0

3.3.6 Coupling Factor:

COF
is client C C

TC TC DC C

i jj

TC

i

TC

ii

TC=
− − ×

==

=

∑∑
∑

_ (,)

()

11

2

1
2

where:

TC TC2 − = maximum number of couplings in a system
with TC classes

2
1

×
=∑ DC Cii

TC
() = maximum number of couplings due

to inheritance

is client C C
iff

C C C C

C C

otherwise
c s

c s c s

c s_ (,) ()=
⇒ ∧ ≠

∧¬ →
1

0
The client-server relation (C Cc s⇒) means that

Cc (client class) contains at least one reference to a feature

(method or attribute) of class Cs(supplier class).

C Cc s→ represents an inheritance relation (Cc inherit-

ing from Cs). Because we want to evaluate non-inheri-

tance coupling, Cc and Cs should not be tied by any

inheritance relationship (direct or indirect). The numerator
then represents the actual number of couplings not im-
putable to inheritance. The denominator stands for the
maximum possible number of non-inheritance couplings
in a system with TC classes.

Note: this metric definition was also refined, when com-
pared with its initial proposal [Abreu94].

MOOD/C++ bindings
Client-server relations can have several shapes:
• regular message passing - a given class invokes

another class interface function member;
• “forced” message passing - a given class invokes any

type (visible or hidden) of function member from
another class by means of a friend clause;

• object allocation and deallocation - a class invokes
another class constructor or destructor;

• reference (in the client class) to a server class as an
attribute or within a method formal parameter list -

these references are due to semantic associations16

among classes;

Example:
• UIComponent is client of class MainWindow

4. A FIELD TRIAL

4.1 The Tool

MOODKIT, a simplified tool for metrics extraction from
source code, was developed and tested with the sample
described in the next section. Version 1.1 supports the
collection on C++ code of all MOOD metrics mentioned
in this paper. It was built using ANSI C and scripts with
standard UNIX commands (awk, grep, find, etc).
It is worth mentioning that the first attempt to collect the
MOOD metrics (on the MFC library, described ahead)
was done manually. It took an effort of about two
man.weeks (two persons during a full week) and it became
clear that the collection process is really a repetitive, tedi-
ous, boring, time-consuming and expensive task for
humans! By using MOODKIT, the effort to do the same
job was cut to a half man.day, something around 5% of the
manual collection effort.

4.2 The Sample

The population to be modeled is not the whole set of
software systems built using the OO paradigm. Instead, we
want a representation of a population of “well designed”
ones. We believe that the chosen set meets this goal, either
because their elements have been in the public domain or
commercial use for some time (with a great number of
users trying them and suggesting upgrades) or because
they were made by trustworthy teams with proven
experience from academia and/or industry.

The sample measured with MOODKIT V1.1 was a col-
lection of class libraries written in the C++ programming
language. For each of those libraries a small synopsis is
included below.

• Microsoft Foundation Classes (MFC)
 Origin: Microsoft Corporation
 Brief description: application framework designed for use

in developing applications for Microsoft Windows;
works in concert with the entire Microsoft Visual C++
development system, including the Visual WorkBench,
AppStudio, AppWizard and ClassWizard; includes
general-purpose classes for time, date, data-structures
and file I/O, architectural classes to support
commands, documents, views, printing and help, high
level abstractions including toolbars, status bars, edit
views, form views, print previews, scrolling views and

16 - with a given arity (1:1, 1:n or n:m)

splitter windows and supports standard OLE user-
interfaces and shared DLLs.

• GNU glib++ (GNU)
 Origin: Free Software Foundation / Cygnus Support
 Brief description: part of GNU’s public domain pro-

gramming environment; contains general purpose
classes for manipulating strings, lists, files, etc.

• ET++ library (ET++)
 Origin: UBILAB / Union des Banques Suisses

(Switzerland)
 Brief description: homogeneous library integrating user

interfacing building blocks, basic data structures and
support for object input/output with high level
application framework components; it uses the termi-
nology of Smalltalk-80 collection libraries.

• NewMat library (NMAT)
 Origin: Robert B. Davies (robert.davies@vuw.ac.nz -

Victoria University - New Zealand)
 Brief description: package intended for scientists and

engineers who need to manipulate a variety of types of
matrices using standard matrix operations; emphasis is
on the kind of operations needed in statistical calcu-
lations such as least squares, linear equation solving
and eigenvalues.

• MotifApp library (MOTIF)
 Origin: Douglas A. Young [Young92]
 Brief description: public domain library providing a set of

C++ classes on top of OSF/MOTIF for manipulation
of menus, dialogs, windows and other widgets; it
allows to use the OSF/MOTIF library in a OO style.
Because its main creation purpose was academic
(example included in a book), it is the smallest library
and perhaps the least used (and reengineered) in “real-

life” of all included in the sample. It is likely to gene-
rate some outliers.

For a better perspective over the sample, Table 1 includes
some size metrics for each library. Rows refer to the total
number of declared classes, total number of declared
methods, total number of declared attributes (data mem-
bers) and the total number of lines of code.

MFC GNU ET++ NMat Motif TOTAL
Classes 128 84 262 86 35 595
Methods 3080 1478 4812 848 199 10417
Attrib. 608 151 980 125 76 1940
LOC 74895 15960 55022 12795 4884 163556

Table 1 - Some indicators of sample size

4.3 The Results

Table 2 and figure 1 summarize the results obtained
through application of MOODKIT on the above sample.
Even though the size of the sample is not as large as we
would have liked, we consider it sufficiently meaningful
for the purpose of the remaining study. The statistical
analysis included in the next sections is expected to par-
tially corroborate this assumption.

MFC GNU ET++ NMat Motif
MHF 24,6% 13,3% 9,6% 11,1% 39,2%
AHF 68,4% 84,1% 69,4% 76,8% 100,0%
MIF 83,2% 63,1% 83,9% 73,1% 64,3%
AIF 59,6% 62,6% 51,8% 56,6% 50,3%
COF 9,0% 2,8% 7,7% 27,1% 7,6%
PF 2,7% 3,5% 4,5% 12,2% 9,8%

Table 2 - Resulting metrics for the sample

MHF AHF MIF AIF COF PF
0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

MHF AHF MIF AIF COF PF

MFC

GNU

ET++

NMat

Motif

Figure 1 - MOOD metrics

5. DISCUSSION

5.1 Which shape for design heuristics?

The MOOD metric set enables expression of some recom-
mendations for designers. This section explains the cor-
responding rationale. We will pick an Electronic Engi-
neering analogy for representing our design heuristics. Let
it be called “the filters metaphor”.

Theoretically, a high-pass filter is not expected to affect
signal frequencies above a certain value (the cutoff fre-
quency). Below that value, the filter acts as a hindrance for
frequency. By analogy, a high-pass heuristic is the one
that suggests that there is a lower limit for a given metric.
Going below that limit is a hindrance to resulting software
quality. For those who do not like thresholds, we may say
that the analogy is even more perfect, if we realize that
“real” filters do not have them. Indeed their shape is not a
step but a curve with a bigger slope at the cutoff zone.
Resulting software quality characteristics are also
expected to be strongly attenuated (or increased,
depending on the direction) as we approach the cutoff
values. The reasoning for a band-pass heuristic is similar,
except that we have two cutoff zones (a lower and an
higher one).

AHF and MHF are a measure of the use of the information
hiding concept that is supported by the encapsulation
mechanism. Information hiding allows, among other
things, to: (i) cope with complexity by looking at complex
components such as “black boxes”, (ii) reduce "side-ef-
fects" provoked by implementation refinement, (iii) sup-
port a top-down approach, (iv) test and integrate systems
incrementally.

For attributes (AHF) we want this mechanism to be used
as much as possible. Ideally17 all attributes would be hid-
den, thus being only accessed by the corresponding class
methods. Very low values for AHF should trigger the
designers’ attention. The corresponding design heuristic
shape is that of a high-pass filter.

The number of visible methods is a measure of the class
functionality. Increasing the overall functionality will then
reduce MHF. However, for implementing that func-
tionality we must adopt a top-down approach, where the
abstract interface (visible methods) should only be the tip
of the iceberg. In other words, the implementation of the
classes interface should be a stepwise decomposition
process, where more and more details are added. This
decomposition will use hidden methods, thus getting the
above mentioned information-hiding benefits and favoring
a MHF increase. This apparent contradiction is reconciled
if we consider MHF to have values within an interval. A

17 - Such is the case in the Motif library.

very low MHF would then indicate an insufficiently
abstracted implementation. Conversely, a high MHF
would indicate very little functionality. The design
heuristic shape for MHF is then the one of a band-pass
filter.

MIF and AIF are measures of inheritance. This is a
mechanism for expressing similarity among classes that
allows the portrayal of generalization and specialization
relations and a simplification of the definition of inheriting
classes, by means of reuse. At first sight we might be
tempted to think that inheritance should be used exten-
sively. However, the composition of several inheritance
relations builds a directed acyclic graph (inheritance
hierarchy tree), whose depth and width make understand-
ability and testability quickly fade away. A band-pass
filter shape seems appropriate for the corresponding heu-
ristics.

The COF metric is a measure of coupling between classes.
Coupling can be due to message-passing among class
instances (dynamic coupling) or to semantic association
links (static coupling). It has been noted [Meyer88] that it
is desirable that classes communicate with as few others as
possible and even then, that they exchange as little
information as possible. Coupling relations increase
complexity, reduce encapsulation and potential reuse, and
limit understandability and maintainability. Thus, it seems
that we should avoid it as much as possible. Very high
values of COF should be avoided by designers. However,
for a given application, classes must cooperate somehow
to deliver some kind of functionality. Therefore, COF is
expected to be lower bounded. Accordingly, the design
heuristic shape will be the one of a band-pass filter.

Resulting polymorphism potential is measured through the
PF metric. Polymorphism arises from inheritance and its
use has pros and cons. Allowing binding (usually at run
time) of a common message call to one of several classes
(in the same hierarchy) is supposed to reduce complexity
and to allow refinement of the class hierarchy without
side-effects. On the other hand, if we need to debug such a
hierarchy, by tracing the control flow, this same
polymorphism will make the job harder18. We can then
state that polymorphism ought to be bounded within a
certain range. Naturally, a band-pass filter is the cor-
responding shape for the respective design heuristic.

As a conclusion we may say that the design heuristics can
exhibit two shapes: high-pass (HP) and band-pass (BP),
depending on the metric considered, as shown in the next
table.

18 - This is particularly true if we compare this situation with the

procedural counterpart, where for a similar functionality we usually have

a series of decision statements for triggering the required operation.

Minimum Mean Maximum Shape
MHF 10,4% 19,6% 28,7% BP
AHF 70,2% 79,7% 89,3% HP
MIF 66,2% 73,5% 80,8% BP
AIF 52,4% 56,2% 60,0% BP

COF 3,9% 10,8% 17,7% BP
PF 3,5% 6,5% 9,6% BP

Table 3 - 90% Confidence interval for the sample

5.2 Confidence intervals

The confidence interval is a range on either side of the
mean. If the sample has a considerable size (which is not
yet the case), we can say with a particular level of confi-
dence (90% in this case) that all the population metric
values will lie in the specified intervals. Being more spe-
cific, if we assume that:
a) the population has a normal distribution
b) the sample is a good representative of the population
then the probability that further randomly sampled metrics
lie inside the corresponding intervals is 90%. The
accuracy of the intervals (i.e. their range reduction) is
proportional to the square root of the sample size. We can
then expect to disclose more accurate ranges and/or a
bigger confidence (e.g. 95%) depending on our sample
growth.

The first hypothesis (normal distribution) is a usual
starting point for statistical analysis. Again, with a bigger
sample, we may find that another type of distribution is a
better representative. The second hypothesis (sample re-
presentativeness) has already been agreed upon in section
4.

Table 3 represents the 90% confidence interval for the
sample mean of each MOOD metric. Taking into account
the considerations made regarding the heuristics shape
made in the previous section, we can take as initial
thresholds for triggering the designer attention, the values
in the shaded zones. For instance, if the Coupling Factor
exceeds 17,7% the designer could be warned somehow
(supposing that he is using a design tool with embedded
metrics capture). He would then realize that his design lies
outside the “normal” boundaries of good practice and that
the consequences may be the ones already referred.
Besides this outlier identification, the MOOD metrics can
also help decide among alternative design implementations
by helping to rank them.

5.3 Size independence

In this section we will analyze the hypothesis formulated
about the size independence of each MOOD metric. For
that purpose we correlated each of the sizes included in
Table 1, with the corresponding values of each metric (in
Table 2). The resulting correlations follow:

Classes Methods Attrib. LOC
MHF -0,59 -0,48 -0,37 -0,19
AHF -0,74 -0,79 -0,74 -0,81
MIF 0,79 0,84 0,88 0,89
AIF -0,19 -0,05 -0,21 0,14

COF -0,14 -0,28 -0,25 -0,21
PF -0,47 -0,66 -0,58 -0,70

Table 4 - Correlation of MOOD with some size metrics

Examining Table 4 we can find that all metrics except
AHF and MIF (shaded zone) are fairly size independent as
they show low correlations19 with all size metrics. These
anomalies might indicate one of two possibilities:

a) AHF and MIF are ill-defined as to what constitutes the
desired size-independence;

b) the sample is somehow biased due to its small size;

We believe that hypothesis b) is more likely to be true,
mainly because AHF and MIF have similar definitions to
MHF and AIF, respectively, which show no significant
correlation with any measure of size. Therefore, AHF and
MIF size-dependence can not be conclusive until a bigger
sample is available and analyzed. As our sample grows,
we will wait until the correlations stabilize and then infer a
more definite conclusion.

5.4 Statistical independence

Each MOOD metric should quantify a distinct feature of
an OO system. To achieve this goal they need to be inde-
pendent from each other. Besides, we think it is possible to
interpret MOOD metrics as probabilities20 in the sense
that they quantify the presence or absence of a certain
feature. This kind of interpretation allows the application
of statistical theory to the MOOD metrics. If their statis-
tical independent is proven, they can be combined (e.g.
multiplied) so that the result can still be interpreted as a
probability. With these reasons in mind, we evaluated the
correlation among the sample value series for the defined
metrics. Table 4 summarizes the results achieved.

MHF AHF MIF AIF COF PF
MHF 0,68 -0,34 -0,38 -0,28 0,17
AHF -0,87 -0,31 -0,20 0,46
MIF -0,13 0,15 -0,35
AIF -0,09 -0,46
COF 0,75
PF

Table 5 - Correlation among the MOOD metrics

19 - Considering a 70% threshold, which seems appropriate.
20 - A similar approach was used in the ESPRIT REBOOT project

[Stalhane92].

Considering Table 5 we can conclude that most metric
pairs (except the two shaded) exhibit a low correlation
value.
The COF-PF correlation is due to the COF value for the
NewMat library (27,1%) which is clearly an outlier. If its
value was, for instance, equal to the other 4 libraries COF
average (6,8%), then the COF-PF correlation would be
0,11!
Such an easy explanation for the AHF-MIF correlation
was not found. We believe it is a coincidental situation,
again stemming from a small sample size21.

6. FUTURE WORK

6.1 MOODKIT evolution and CASE tools

A beta-test version (V1.2) of the MOODKIT tool, that will
support the collection, storage and analysis of the MOOD
metrics on C++ source code, is under construction and will
soon be disclosed for public domain.
A completely reengineered version 2 is being designed. Its
core (metrics definition dictionary, metrics storage, hu-
man-machine interface) will be based on a language
independent central repository with storage, retrieval and
graphical capabilities. It will use specific “stubs”22 for
metrics capture from distinct OO language source code.
An Eiffel stub is being built and a Smalltalk one is also
planned for the coming year. MOOD bindings for those
languages will also be published in following papers.

There is an increasing interest from OO CASE tool makers
in design metrics. Output from the ROSE tool23, for
instance, is being used at Rational [Fay94] to derive
object-oriented metrics. Following this trend we are cur-
rently working with OBLOG Software24, to extend their
OBLOG CASE tool (supporting the OBLOG - OBject
LOGic method [Sernadas91] with design metrics and
heuristics based on MOOD.

6.2 Experimental validation

Using MOODKIT V1.0, we started an extensive evalua-
tion of available systems (C++ class libraries) and tried to
derive and refine some design heuristics based on the
results (metrics) obtained. The public availability of a next
version of this toolkit, will allow people either from
industry or academia to replicate the experiment herein
described with other OO systems. The increase of the
sample size will allow us to divide it in percentiles, discard

21 - Note that these metrics (AHF and MIF) are the same that have

shown anomalies on the previous section.
22 - Based on language parsers
23 - supporting the Booch method
24 - A private Portuguese R&D company owned by Espírito Santo Bank

outliers and achieve better confidence intervals. The
refined heuristics will again be published.

As already mentioned, we also expect to prove that the
MOOD metrics are fairly implementation language inde-
pendent. Size independence and statistical independence
among metrics will also be further and further assessed by
means of correlation analysis.

6.3 Analysis metrics

Metrics should be collected and used to identify possible
flaws as early as possible in the life-cycle, before too
much work is spent based on them. It is a well known fact
that the effort of correcting and recovering from those
defects increases non-linearly with elapsed project pro-
gress since they were committed. Looking at the analysis
instead of design would then be a step forward towards
cost-effectiveness. The object-oriented paradigm is sup-
posed, at least theoretically, to allow a seamless analysis-
design-coding transition. Many analysis and design
methods have emerged [Champeaux92] in the past few
years, with their own diagrammatic representations of
differently named abstractions representing not-so-dif-
ferent basic concepts. This plethora gave birth to tools,
such as ParadigmPlus or ObjectMaker25, supporting
multiple analysis and design methods. These tools map the
information extracted from the distinct diagrams used by
those different methods into a common repository, thus
allowing diagrammatic conversions. Therefore, despite the
apparent diversity of OO analysis models, we think it is
possible to define a common set of metrics for analysis, a
“natural” evolution of the MOOD set.

7. FINAL OVERVIEW

The adoption of the Object-Oriented paradigm is expected
to help produce better and cheaper software. The main
structural mechanisms of this paradigm, namely, inheri-
tance, encapsulation, information hiding or polymor-
phism, are the keys to foster reuse and achieve easier
maintainability. However, the use of language constructs
that support those mechanisms can be more or less in-
tensive, depending mostly on the designer ability. We can
then expect rather different quality products to emerge, as
well as different productivity gains. Advances in quality
and productivity need to be correlated with the use of
those constructs. We then need to evaluate this use
quantitatively to guide OO design. A validation experi-
ment of a metric set named MOOD, suited for this purpose
was presented in this paper. This set allows comparison of
different systems or different implementations of the same
system. Some design heuristics based on a filter metaphor
were introduced. Their automatic attainment was achieved

25 - [Darscht94] reports the intention to build an OO metrics collection

prototype integrated with this tool.

and discussed on a sample of C++ libraries. It is hoped
that those heuristics will be of some help to novice
designers.

Object-orientation is not “the” silver bullet [Brooks86],
but it seems to be the best bullet available today to face the
pervasive software crisis. Keeping on the evolution track
means we must be able to quantify our improvements.
Metrics will help us to achieve this goal.

REFERENCES

[Abreu93] Abreu, F. Brito and Carapuça, Rogério,
"Candidate Metrics for Object-Oriented Software within a
Taxonomy Framework", Proceedings of AQUIS'93
(Achieving QUality In Software), Venice, Italy, October
1993; selected for reprint in the Journal of Systems and
Software, Vol. 23 (1), pp. 87-96, July 1994.

[Abreu94] Abreu, F. Brito and Carapuça R.,
"Object-Oriented Software Engineering: Measuring and
Controlling the Development Process", Proceedings of the
4th International Conference on Software Quality, ASQC,
McLean, VA, USA, October 1994.

[Brooks86] Brooks, Frederick P. Jr., "Essence and
Accidents of Software Engineering", Proceedings of In-
formation Processing 86, H.-J. Kugler (ed.), Elsevier
Science Publishers B. V. (North Holland), IFIP 86, also
published in IEEE Computer, April 1987.

[Campanai94] Campanai M. and Nesi P., "Supporting
O-O Design with Metrics", Proceedings of TOOLS
Europe'94, France, 1994.

[Cant94]S.N. Cant, B. Henderson-Sellers, and D.R.
Jeffery, "Application of cognitive complexity metrics to
object-oriented programs", Journal of Object-Oriented
Programming, pp. 52-63, July-August 1994.

[Champeaux92] Champeaux, Dennis De and Faure,
Penelope, "A Comparative Study of Object-Oriented
Analysis Methods", Journal of Object-Oriented Pro-
gramming, vol. 4, n. 10, pp. 21-33, March / April 1992.

[Chidamber94] Chidamber S. and Kemerer C., "A
metrics suite for object oriented design", IEEE Transac-
tions on Software Engineering, vol. 20, n. 6, pp. 476-493,
June 1994.

[Darscht94] Darscht, Pablo, “Assessing Objects
Along the Development Process” (submission 2), Work-
shop on Pragmatic and Theoretical Directions in Object-
Oriented Software Metrics, OOPSLA’94, Portland, USA,
October 1994.

[Dumke95] Dumke, Reiner R., "A Measurement
Framework for Object-Oriented Software Development",
submitted to Annals of Software Engineering,Vol.1, 1995

[Fay94] Fay, Bill and Hamilton, Jim and Ohnjec,
Viktor, “Position/Experience Report” (submission 3),
Workshop on Pragmatic and Theoretical Directions in
Object-Oriented Software Metrics, OOPSLA’94, Portland,
USA, October 1994.

[Hopkins94] Hopkins, Trevor P., "Complexity me-
trics for quality assessment of object-oriented design",
SQM´94, Edinburgh, July 1994, proceedings published as
Software Quality Management II, vol. 2: Building Quality
into Software, pp. 467-481, Computational Mechanics
Press, 1994.

[ISO9126] ISO/IEC 9126, Information Technology
- Software Product Evaluation - Quality Characteristics
and Guidelines for their use, 1991.

[Lewis91] Lewis, John A. and Henry, Sallie M. and
Kafura, Dennis G. : "An Empirical Study of the Object-
Oriented Paradigm and Software Reuse" Proc. of ACM
SIGPLAN Annual Conference on Object-Oriented
Programming Systems, Languages, and Applications
(OOPSLA'91), pp. 184-196, 1991.

[Melo95] Melo Walcélio L., Briand Lionel and
Basili Victor R., “Measuring the Impact of Reuse on
Quality and Productivity in Object-Oriented Systems”,
Technical Report CS-TR-3395, University of Maryland,
Dep. of Computer Science, January 1995.

[Meyer88] Meyer B., Object-oriented Software
Construction, Prentice-Hall International, 1988.

[Meyer92] Meyer B., Eiffel: The Language, Pren-
tice Hall International, 1992.

[Stalhane92] Stalhane T. and Coscolluela A., "Final
Report on Metrics", Deliverable D1.4.B1, ESPRIT Project
5327 (REBOOT), February 1992.

[Sellers95] Henderson-Sellers, B., "Identifying
internal and external characteristics of classes likely to be
useful as structural complexity metrics”, Proceedings of
1994 Intern. Conf. on Object Oriented Information
Systems OOIS'94, London, December 1994, Springer-
Verlag, pp.227-230, London, 1995.

[Sernadas91] Sernadas, C. and Fiadeiro, J., “Towards
Object-Oriented Conceptual Modelling”, Data and
Knowledge Engineering, vol.6, n.6, pp.479-508, 1991.

[Weyuker88] Weyuker E., "Evaluating Software Com-
plexity Metrics", IEEE TSE, vol.14, n.9, pp. 1357-1365,
September 1988.

[Young92] Young, D.A., Object-Oriented Program-
ming with C++ and OSF/MOTIF, Prentice-Hall, 1992

