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Abstract

This paper describes the results of a study where the
impact of Object-Oriented design on software quality
characteristics is experimentally evaluated. A suite of
metrics for OO design, called MOOD, was adopted to
measure the use of OO design mechanisms. Data
collected on the development of eight small-sized infor-
mation management systems based on identical
requirements were used to assess the referred impact.
Data obtained in this experiment show how OO design
mechanisms such as inheritance, polymorphism,
information hiding and coupling, can influence quality
characteristics like reliability or maintainability. Some
predictive models based on OO design metrics are also
presented.

1. Introduction

The contribution of metrics to the overall objective
of software quality is understood and fully recognized
by the software engineering community in general
[24,27] and particularly emphasized by the software
quality community [11,13].  Several standards like
[15,16,17,18] were produced where their need is
endorsed.

Process and product metrics can help both
managing activities, such as scheduling, costing,
staffing and controlling, and engineering activities such
as analysing, designing, coding, documenting and
testing.

One of the most influencing factors of software
systems quality, where metrics can play an important
role, is the structure of software design. The analysis-
to-design transition is an activity where a skeleton for a
computable implementation supporting the defined
system requirements is defined. This transition often
offers several degrees of liberty. Decisions on best
alternatives are usually fuzzy and mostly based on
expert judgment. In other words, cumulative
knowledge plays a very important part in the design
phase. Novice designers are therefore exposed to a
myriad of design decisions that surely affect the final

outcome. The intensive use of patterns, frameworks
and other reusable components is expected to ease this
problem, but current practice does not include yet their
widespread adoption.

Being able to predict some software quality charac-
teristics based on the design, is one of our great
motivations. This ability will allow the designing
process to be guided, for instance, by means of
heuristics. One well-known heuristic for object-
oriented design is expressed by the Law of Demeter
[20]. This “law” restricts the message sending structure
of methods in order to organize and reduce
dependencies between classes. The authors say “ ... We
believe that the Law of Demeter promotes maintain-
ability and comprehensibility, but to prove this in
absolute terms would require a large experiment with a
statistical evaluation. ... ”. Unfortunately, to the extent
of our knowledge, this has yet to be done.

Since the early days of computer science many
approaches to quantify the internal structure of
procedural software systems have emerged [31]. Some
of those “traditional” metrics can still be used with the
object-oriented paradigm, especially at the method
level [2].  However, the need to quantify the distinctive
features of this paradigm gave birth, in recent years, to
new metric sets. Most of those sets have yet to be
experimentally validated. This validation step usually
consists of correlation studies between internal (design)
and external (quality) attributes. A brief review of some
known validation efforts follows.

The MOOSE metrics, a set of OO design metrics
[9], were validated using the same project data as those
in this paper [7]. Besides discussing the metrics'
advantages and drawbacks, the authors claim that
several of them appear to be adequate for predicting
class failure-proneness during the early phases of the
life-cycle. Nevertheless, some critics on the MOOSE
metrics’ imprecise and ambiguous definition (lack of
language bindings) were raised [10].

In [19] the authors used an extension of the MOOSE
set to build a regression model that is said to be
adequate for predicting changeability (effort of



correcting or enhancing classes). This model was
validated with data from two systems built with an
object-oriented dialect of Ada.

A metric derived from the design information
captured in class definitions, for measuring the number
and strength of the object interactions, was proposed in
[1]. The authors claim the metric’s usefulness for
predicting experts' design preferences. To validate this
allegation they used 9 sets of distinct design
alternatives and compared the evaluations suggested by
both the proposed metric and a panel of object-oriented
design experts. They found out that the preferred
alternatives were coincident in 80% of the cases.

Module and system level metrics for information
hiding are described in [25]. A validation experiment
based on a system with approximately one million lines
of Ada1 code is described. Results showed that those
metrics were able to “discriminate between packages
that are, or are not, likely to undergo significant
changes”. On the other hand, the authors recognize that
the same experiment showed no linear correlation
between their information-hiding metric and change.

Although the above review is not exhaustive, there is
an obvious lack of conclusive studies in this field and
further research is required.

The main goal of this paper is to evaluate the impact
of OO design on software quality characteristics such
as defect density and rework  by means of experimental
validation. In order to measure the OO design charac-
teristics, a suite of metrics called MOOD [3] was
adopted. Motivations behind the MOOD set definition
include:

(1) coverage of basic structural mechanisms of the
object-oriented paradigm such as encapsulation,
inheritance, polymorphism and message-passing;

(2) formal definition to avoid subjectivity of
measurement and thus allow replicability;

(3) size independence to allow inter-project
comparison, thus fostering cumulative knowledge;

(4) language independence to broaden the appli-
cability of this metric set by allowing comparison of
heterogeneous system implementations.

The outline of this paper is the following: section 2
presents the MOOD metrics suite for OO design;
section 3 describes an experiment where process and
product metrics were collected; section 4 includes
statistical analyses on the collected data, discusses the
use of the adopted metrics set and proposes and
validates software quality predictive models; finally,
section 5 concludes the paper by presenting lessons
learned and future work.

                                                          
1 According to [29] Ada may be considered as object-based but not
object-oriented because its objects (packages) do not have a class
(type).

2. Suite of metrics for object-oriented
design

2.1. Introduction

The MOOD (Metrics for Object Oriented Design)
set includes the following metrics:

•  Method Hiding Factor (MHF)
•  Attribute Hiding Factor (AHF)
•  Method Inheritance Factor (MIF)
•  Attribute Inheritance Factor (AIF)
•  Polymorphism Factor (POF)
•  Coupling Factor (COF)

Each of these metrics refers to a basic structural
mechanism of the object-oriented paradigm as
encapsulation (MHF and AHF), inheritance (MIF and
AIF), polymorphism (POF) and message-passing
(COF). The MOOD metrics definitions make no
reference to specific language constructs. However,
since each language has its own constructs that allow
for implementation of OO mechanisms in more or less
detail, we need a mapping of concepts and
terminology, hereafter called binding, between MOOD
and the adopted language.

2.2. Metrics definitions and language bindings

This section contains an overview of the MOOD
metrics along with abstracted bindings for two OO lan-
guages, C++ [28] and Eiffel [23]. Fully detailed
bindings for C++ and Eiffel can be found in [4] and
[5], respectively. Readers familiarized with MOOD
metrics can skip to section 3.

2.2.1. Method Hiding Factor:
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The MHF numerator is the sum of the invisibilities
of all methods defined in all classes. The invisibility of
a method is the percentage of the total classes from
which this method is not visible.

The MHF denominator is the total number of
methods defined in the system under consideration.



MOOD C++ Eiffel
TC total classes total number of classes same as for C++

methods constructors; destructors; function
members2; operator definitions

class features with implementation (do clause) or without it
(deferred clause); external functions; constants with once
clause

Md(Ci) methods defined
(not inherited)

all methods declared in the class
including virtual (deferred) ones

all methods declared in the class, even if declared obsolete;

V(Mmi) visibility -  % of the
total classes from
which the method
Mmi is visible

= 1 for methods in public clauses;
= 0 for those in private clauses;
= DC(Ci)/(TC-1) for methods in pro-
tected clauses
note: DC(Ci)= descendants of Ci

= 1 by omission or if ANY is mentioned;
= DC(Ci)/(TC-1) if NONE or empty brackets { } are
mentioned;
else3= #{descendants of Ci ∪   classes within brackets {...}
and their descendants ∪   exports4 } / (TC-1)

                                                          
2 Function members with the same identifier (“function-name overloading”) but distinct signatures (formal parameter list) are counted as distinct
methods.
3 “# “ is the cardinality operator (set size). The Visibility is the cardinality of a union of  sets so that repetitions are eliminated.
4 Classes specified in the “export” clause of feature Mmi in descendants of class Ci.

2.2.2. Attribute Hiding Factor :
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The AHF numerator is the sum of the invisibilities
of all attributes defined in all classes. The invisibility of
an attribute is the percentage of the total classes from
which this attribute is not visible.

The AHF denominator is the total number of
attributes defined in the system under consideration.

MOOD C++ Eiffel
Ad(Ci) attributes defined

(not inherited)
data members class features without implementation; simple typed

constants (integer, boolean, character)
V(Ami) visibility -  % of the

total classes from
which Ami is visible

= 1 for attributes in public clauses;
= 0 for attributes in private clause;
= DC(Ci)/(TC-1) for attributes in pro-
tected clauses
note: DC(Ci)= descendants of Ci;

= 1 by omission or if ANY is mentioned;
= DC(Ci)/(TC-1) if NONE or empty brackets { } are
mentioned;
else=#{descendants of Ci ∪  classes within brackets {...}
and their descendants ∪   exports } / (TC-1)

2.2.3. Method Inheritance Factor:
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The MIF numerator is the sum of inherited methods
in all classes of the system under consideration.

The MIF denominator is the total number of
available methods (locally defined plus inherited) for
all classes.

MOOD C++ Eiffel
Ma(Ci) available methods function members that can be invoked in

association with Ci

features that can be invoked in association with Ci

Md(Ci) methods defined function members declared within Ci features declared within Ci

Mi(Ci) inherited methods function members inherited (and not
overridden) in Ci

features inherited in Ci and not in redefine or
undefine clauses



2.2.4. Attribute Inheritance Factor :
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The AIF numerator is the sum of inherited attributes
in all classes of the system under consideration.

The AIF denominator is the total number of
available attributes (locally defined plus inherited) for
all classes.

MOOD C++ Eiffel
Aa(Ci) available attributes data members that can be invoked associated with Ci similar to Ma(Ci)
Ad(Ci) attributes defined data members declared within Ci similar to Md(Ci)
Ai(Ci) inherited attributes data members inherited (and not overridden) in Ci similar to Mi(Ci)

2.2.5. Polymorphism Factor:
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The POF numerator represents the actual number of
possible different polymorphic situations. Indeed, a

given message sent to class Ci can be bound, statically
or dynamically, to a named method implementation.
The latter can have as many shapes (“morphos” in
ancient Greek) as the number of times this same
method is overridden (in Ci descendants).

The POF denominator represents the maximum
number of possible distinct polymorphic situations for
class Ci. This would be the case where all new methods
defined in Ci would be overridden in all of their
derived classes.

MOOD C++ Eiffel
DC(Ci) descendants count number of classes descending from Ci number of classes descending from Ci

Mn(Ci) new methods function members declared within Ci that
do not override inherited ones

features declared within Ci that do not override
inherited ones

Mo(Ci) overriding methods function members declared within Ci that
override (redefine) inherited ones

features in redefine and undefine clauses;
deferred features which were inherited and
implemented in Ci

2.2.6. Coupling Factor:

[ ]
COF

is client C C

TC TC

i jj

TC

i

TC

=
−

== ∑∑ _ ( , )
11

2

where

is client C C
iff C C C C

otherwisec s
c s c s

_ ( , ) =
⇒ ∧ ≠




1

0

The COF denominator stands for the maximum
possible number of couplings in a system with TC
classes.

The client-supplier relation (represented by Cc ⇒
Cs) means that Cc (client class) contains at least one
non-inheritance reference to a feature (method or
attribute) of class Cs (supplier class). The COF numera-
tor then represents the actual number of couplings not
imputable to inheritance.

Client-supplier relations can have several shapes:

Client-Supplier shapes C++ Eiffel
regular message passing call to the interface of a function

member in another class;
call (in the client class) to a feature (in the supplier class)

“forced” message passing call to a visible or hidden function
member in another class by means of
a friend clause;

does not apply

object allocation and deal-
location

call to class constructor or destruc-
tor;

call to features in creation clause; there is no explicit deal-
location (Eiffel has automatic garbage collection)

semantic associations among
classes with a certain arity
(e.g. 1:1, 1:n or n:m);

reference to a supplier class as a data
member or as a formal parameter in
a function member interface

reference to a supplier class as a formal parameter in a fea-
ture interface; formal parameter of a generic class; refer-
ence to a supplier class as a local typed feature



3. Controlled Data Collection Experiment

The impact of OO design on software quality will be
evaluated in this paper, by examining the degree to
which MOOD metrics allow to predict defect density (a
reliability measure) and normalized rework (corrective
maintenance effort, a maintainability measure). Data
gathered in a controlled experiment performed at the
University of Maryland [21] were used. Section 3.1
provides further details about this experiment and
section 3.2 describes the product and process measures
that were collected in it.

3.1 Description of the experiment

The population under study was a graduate and
senior level class offered by the Department of
Computer Science at the University of Maryland,
between September and December 1994. All students
had some experience with C or C++ programming and
relational databases.

The students were randomly grouped into teams.
Each team developed a medium-size management
information system that supported the rental/return
process of a hypothetical video rental business and
maintained customer and video databases.

The development process was performed according
to a sequential software engineering life-cycle model
derived from the Waterfall model. This model includes
the following phases: Analysis, Design,
Implementation, Testing, and Repair. By the end of
each phase a document was delivered: requirements
specification, design document, code, defect report and
modified code, respectively. Requirements
specification and design documents were reviewed by
an expert in order to verify if they matched the system
requirements. Defects found in these two first phases
were reported to the students. This ensured that the
implementation began with a correct OO analysis /
design.

The testing phase was accomplished by an
independent group composed of experienced software
professionals. This group tested all systems according
to similar test plans and using functional testing
techniques. This procedure avoided the common
situation where many defects are “informally” fixed
(not reported), when testing is performed by the
developers themselves.

During the repair phase, the students were asked to
correct their systems based on the defects found by the
independent test group.

The development environment and technology used
were consistent with current practice in industry and
academia. Sun Sparc stations were used as imple-
mentation platforms. OMT [26], an OO Analysis and
Design method, was used during the analysis and
design phases. The C++ programming language, the
GNU software development environment and

OSF/MOTIF were used during the implementation.
The following libraries were provided to the students:

• MotifApp - this public domain library [30] provides
a set of C++ classes on top of OSF/MOTIF for
manipulation of windows,  dialogs, menus, etc. The
MotifApp library provides a way to use the
OSF/Motif library in an OO programming/design
style.

• GNU library - this library is a public domain library
provided in the GNU C++ programming environ-
ment. It contains functions for manipulation of
strings, files, lists, etc.

• C++ database library - this library provides a C++
implementation of multi-indexed B-Trees.

Libraries’ source code and complete documentation
were made available as well as a hundred small
programs exemplifying how to use OSF/Motif widgets.
A domain specific application library was also
provided, in order to make the experiment more
representative of the “real world”. This library
implemented the graphical user interface for insertion
and removal of customers and was implemented in
such a way that the main resources of the OSF/Motif
and MotifApp libraries were used. Because the use of
libraries was not mandatory, each design team adopted
different reuse options.

3.2. Collected data

In this experiment both product and process data
were gathered. Only the relevant data that helped the
MOOD metrics validation process will be described
here. For further details about how these data were
gathered and validated see [21].

3.2.1. Product design data

MOODKIT, a tool to extract MOOD metrics from
C++ or Eiffel source code was built and is being
maintained at INESC. MOODKIT V2 runs on a UNIX
platform with Motif interface and is distributed freely
for those who want to share the collected data.
MOODKIT V1.3 (an older version) was used in this
experiment to analyze the 8 projects. Table 1 shows the
MOOD metrics for each project as well as other
descriptive statistics (mean and standard deviation).

Project MHF AHF MIF AIF POF COF
1 15.5% 67.4% 47.8% 18.8% 11.9% 3.9%
2 0.0% 0.0% 23.1% 18.8% 0.0% 15.9%
3 36.4% 95.7% 38.2% 22.4% 6.0% 2.3%
4 3.6% 93.9% 10.8% 0.0% 0.0% 3.9%
5 15.1% 50.9% 53.0% 44.8% 1.3% 6.1%
6 22.4% 74.4% 46.6% 26.1% 7.4% 6.2%
7 24.9% 97.7% 41.5% 34.1% 6.9% 2.8%
8 0.0% 98.7% 0.0% 0.0% 0.0% 22.4%

Mean 14.7% 72.3% 32.6% 20.6% 4.2% 8.0%
Std. Dev. 13.0% 33.9% 19.2% 15.4% 4.5% 7.3%

Table 1: MOOD metrics for each project



3.2.2. Process data

Using standard terminology [14] we say that errors
are inaccuracies in the human thinking process
committed while trying to understand given
information, solving problems or using methods and
tools. These errors cause the introduction of defects,
also known as “faults” or “bugs”, in the software
deliverables such as documents or source code. In this
experiment, defects were detected by white-box testing
and reported in appropriate forms. Failures are
concrete manifestations of defects within the software.
These were exposed in this experiment by black-box
testing. Notice that one defect may cause different
failures, although distinct defects may cause similar
failures.

To collect rework effort, expressed by man.hours
spent on correcting defects found, other forms were
filled out by the developers.

Table 2 shows the project ID, project size [SLOC]
(Source Lines Of Code), defect density [defects found /
KSLOC], failure density [detected failures / KSLOC],
and normalized rework [man.hours / KSLOC], along
with some descriptive statistics, for all projects
considered in the experiment.

Defect Failure Normalized

Project Size Density Density Rework

1 13981 1.72 3.08 3.65

2 5068 6.51 8.29 14.01

3 9735 4.31 4.52 9.45

4 8543 3.86 4.80 8.43

5 8173 3.18 8.20 7.22

6 6368 3.93 4.40 8.01

7 6571 2.28 2.43 4.72

8 5068 8.68 14.80 18.35

Mean 7938 4.29 6.31 9.23

Std. Dev. 2951 2.28 4.04 4.84

Table 2: Process metrics for each project

4. The Impact of OO Design Properties

4.1. Clarifying the scope

The software quality community is a strong believer
that the organization of the software process is the main
driver of achieved quality [6,13]. Since we entirely
agree with this premise, all teams in the experiment
repeatedly adopted the same well-defined development
process as described in section 3.1. We could then
extirpate this discriminative factor (type of process
used) from our controlled experiment. Furthermore,
since all projects in the experiment were based in the
same universe of discourse (a video rental business),
they were good representatives of distinct design
alternatives, whose effect on quality we wanted to
quantify. Thus we believe that quantitative differences

in achieved software quality characteristics are exactly
due to the corresponding design options.

One of the most important design options is the
degree of incorporation of available library
components. This is often referred as external reuse as
opposed to internal reuse (reuse through inheritance)
[8]. Reusable components tend to be better designed
than ordinary program code, either because their
conception is more careful, or because its repeated use
brings out quickly any flaws in its design or
implementation. Therefore the amount of reuse is
expected to produce a positive impact on overall
system design and, consequently, in resulting software
quality characteristics [21]. The projects analysed in
this paper had different degrees of reuse adoption. The
analysis of how the reuse strategies brought about
distinct design properties is beyond the scope of this
paper.

Next section includes an attempt to explain the
individual impact of the design properties, represented
by each MOOD metric, on the recorded software
quality measures. Section 4.3 introduces and validates
some linear regression models that allow to predict the
cumulative impact of all MOOD metrics on resulting
software quality characteristics.

4.2. Individual impact

The MOOD metrics are believed to quantify
independent aspects of the design and therefore their
effect on quality can be assessed individually. To
provide some evidence about the relationship between
OO design and software project quality, the
correlations between the MOOD metrics and the
quality measures of defect density (DD), failure density
(FD) and normalized rework (NR) were determined.
The resulting coefficients of correlation are shown in
Table 3.

MHF AHF MIF AIF POF COF
DD -0.565 -0.127 -0.781 -0.558 -0.683 0.914
FD -0.629 -0.126 -0.635 -0.373 -0.691 0.913
NR -0.569 -0.143 -0.780 -0.549 -0.707 0.907

Table 3: Pearson r correlation
coefficients of MOOD and quality
measures

Based on the data provided in Table 3, the following
conclusions can be drawn:

•  Methods Hiding Factor (MHF) has a moderate
negative correlation with defect density (defect and
failure densities) and rework. This means that once
MHF increases, the defect density and the effort
spent to fix defects will be expected to decrease. As
expected, the procedural abstraction that supports
the top-down development approach is an
appropriate technique to increase software quality.
In fact, class implementation should be a stepwise



process, where more and more details (hidden
methods) are added. Therefore, the stepwise top-
down implementation favors a MHF increase along
with the mentioned quality benefits.

•  Attributes Hiding Factor (AHF) did not show any
significant correlation. This was a bit of a surprise
because it was expected that data encapsulation
would have a bigger impact on software quality5. In
fact, information hiding, supported by encapsu-
lation mechanisms, allows to cope with complexity
by turning complex components in “black boxes”,
thus reducing "side-effects". Ideally, all attributes
would be hidden and only accessed by the
corresponding class methods (AHF=100%).

•  Methods Inheritance Factor (MIF) has a moderate
negative correlation with failure density and a high
negative correlation with both defect density and
normalized rework measure. This means that once
MIF increases the defect density and the effort
spent to fix defects will be expected to decrease.
These results show how inheritance, one of the most
controversial concepts in OO design, appears to be
an appropriate technique to reduce defect density
and rework, when used sparingly. Very high values
of MIF (above the 70% to 80% range [4]) are
believed to reverse this beneficial effect, but this
assumption still lacks experimental validation6.

•  Attributes Inheritance Factor (AIF) has a low
negative correlation with failure density and a
moderate negative correlation with both defect
density and normalized rework measure. For now
this result does not allow any strongly supported
conclusions to be drawn. Next section will bring
new insights on the impact of AIF.

•  Polymorphism Factor (POF) has a moderate to high
negative correlation with defect and failure
densities as well as with rework. This means that an
appropriate use of polymorphism in OO project
designs should decrease the defect density as well
as rework. However, very high values of POF (well
above 10%, which is not the case in this sample) are
expected to reduce these benefits. In fact, to
understand and debug a highly polymorphical
hierarchy, for instance by tracing the control flow,
will be much harder than the procedural
counterpart, where for a similar functionality we
usually have a series of decision statements for trig-
gering the required operation.

•  Coupling Factor (COF) has a very high positive
correlation with all quality measures. Therefore, as
coupling among classes increases, the defect
density and normalized rework are also expected to
increase. This result shows that coupling in
software systems has a strong negative impact on

                                                          
5 The cumulative impact of MOOD metrics, to be discussed in next
section, will show a more elucidative impact of AHF.
6 Increased depth and width of the inheritance hierarchy trees make
understandability and testability fade away. However, as seen in
Table 1, MIF values were very low in most projects.

software quality and therefore should be kept to the
minimum required during design. It is desirable that
classes communicate with as few others as possible
[22] because coupling relations increase
complexity, reduce encapsulation and potential
reuse, and limit understandability and maintain-
ability.

4.3. Cumulative impact and prediction

4.3.1. Model hypothesis

Predictive models can be developed to quantify the
impact of OO design on software quality. In our case
study we want to explain how some variables such as
defect density (DD), failure density (FD) and
normalized rework effort (NR) depend upon the
MOOD metrics.

Assuming that each MOOD metric is not redundant,
or by other words, has some additional information
content not embodied in the other metrics, then it
cannot be expressed as a linear function of the others.
This implies the absence of exact multicollinearity.

Under these conditions we can state the hypothesis
that the following multiple regression models are valid:

DD =  µDD + αMHF.MHF + αAHF.AHF + αMIF.MIF +
αAIF.AIF + αPOF.POF + αCOF.COF + εDD

FD =  µFD + βMHF.MHF + βAHF.AHF + βMIF.MIF +
βAIF.AIF + βPOF.POF + βCOF.COF + εFD

NR =  µNR + ϒMHF.MHF + ϒAHF.AHF + ϒMIF.MIF +
ϒAIF.AIF + ϒPOF.POF + ϒCOF.COF + εNR

The MOOD metrics are the independent variables in
these models, also called explanatory variables,
regressor variables or, more simply, regressors. DD,
FD and NR are called the dependent or outcome
variables.

The α, β and ϒ  parameters are called response
coefficients. They quantify the change in the outcome
variable produced by a unit increase in the
corresponding explanatory variable, when all other
independent variables are held constant. For instance,
αMIF is the change in defect density when the MIF
metric is increased in one unit (e.g. 1% increase) and
all other MOOD variables are held constant. In other
words, αMIF is the response of defect density to a
change in MIF. The magnitude of the response
coefficients denotes the extent of changes due to the
corresponding metric by itself. They can be represented
as partial derivatives:

αMHF=
∂

∂
DD

MHF βMHF=
∂

∂
FD

MHF ϒMHF=
∂

∂
NR

MHF

αAHF=
∂

∂
DD

AHF βAHF=
∂

∂
FD

AHF ϒAHF=
∂

∂
NR

AHF

αMIF=
∂
∂

DD

MIF βMIF=
∂
∂

FD

MIF ϒMIF=
∂

∂
NR

MIF



αAIF=
∂
∂

DD

AIF βAIF=
∂
∂

FD

AIF ϒAIF=
∂
∂

NR

AIF

αPOF=
∂
∂

DD

POF βPOF=
∂

∂
FD

POF ϒPOF=
∂

∂
NR

POF

αCOF=
∂

∂
DD

COF βCOF=
∂

∂
FD

COF ϒCOF=
∂

∂
NR

COF

The µ parameters are called intercept parameters.
The strict mathematical interpretation is the value of
the outcome variable when all explanatory variables are
zero. Since the situation where all MOOD metrics are
zero is unrealistic, our models are not supposed to be a
good approximation of reality in that zone.

In a real sample, such as the one introduced in this
paper, all the observations of the independent and
dependent variables will not coincide exactly with the
linear relationships expressed in the previous
equations. Therefore we need to add random error
terms (εDD ,εFD or εNR ). We assume that these errors
have equal probabilities of being either positive or
negative. Over a large sample of observations they will
average out to zero. Thus the expected or mean values
for the errors will be:

E[εDD] = E[εFD] = E[εNR] = 0

We also assume that some errors are not more likely
to be bigger than others. Thus all observations will
have the same (unknown) finite variances given by:

var(εDD) = E[ε2
DD] = σ2

DD

var(εFD) = E[ε2
FD] =σ2

DD

var(εNR) = E[ε2
NR] =σ2

NR

Under the previous suppositions we can assume that
the errors are normally distributed with zero mean and
σ2 variance:

εDD  ~ N( 0, σ2
DD )

εFD  ~ N( 0, σ2
FD )

εNR  ~ N( 0, σ2
NR )

Since the observations of the outcome variables
depend on the corresponding random error term, then
the dependent variables can be viewed as random
variables whose statistical properties follow those of
the errors:

DD ~ N( µDD + αMHF.MHF + αAHF.AHF + αMIF.MIF +
αAIF.AIF + αPOF.POF + αCOF.COF , σ2

DD  )

FD ~ N( µFD  + βMHF.MHF + βAHF.AHF + βMIF.MIF  +
βAIF.AIF + βPOF.POF + βCOF.COF , σ2

FD  )

NR ~ N( µNR + ϒMHF.MHF + ϒAHF.AHF + ϒMIF.MIF  +
ϒAIF.AIF + ϒPOF.POF + ϒCOF.COF , σ2

NR  )

Under the suppositions about the statistical distribu-
tions of DD, FD and NR we get the following
estimators:

DD
∧

= µDD + αMHF.MHF + αAHF.AHF + αMIF.MIF+
αAIF.AIF + αPOF.POF+ αCOF.COF

FD
∧

 = µFD + βMHF.MHF + βAHF.AHF + βMIF.MIF +
βAIF.AIF + βPOF.POF + βCOF.COF

NR
∧

=  µNR + ϒMHF.MHF + ϒAHF.AHF + ϒMIF.MIF +
ϒAIF.AIF + ϒPOF.POF+ ϒCOF.COF

Based on the available data sample we calculated
the µ,α, β and ϒ  parameters represented in Table 4.

αααα ββββ ϒϒϒϒ
MHF 10.958 0.743 23.770
AHF -0.649 5.065 -1.574
MIF 2.194 25.557 5.664
AIF -7.564 -14.753 -16.941
POF -24.194 -68.134 -57.937
COF 29.959 65.354 62.070

µµµµ 2.643 -5.088 6.011

Table 4: Response coefficients
and intercept parameters

4.3.2. Model misspecification

The specification of a multiple regression model
brings with it uncertainty concerning whether we have
chosen the correct set of regressors. We can either
over- or underspecify its number. Overspecifying
means we have included irrelevant regressors
(extraneous variables) that have no influence on the
outcomes for the dependant variable. Underspecifying
means we have omitted relevant attributes that do
influence the dependant variable. The misspecifications
in the regressors set are called variable specification
errors. There is a bias-variance trade-off due to these
errors. If we overspecify, our models will be inefficient
since the achieved variance for the least square
estimator will be greater. If we underspecify, the least
square estimators will have minimum variance but will
be biased.

We will use the tolerance statistic to verify how
much each MOOD metric contributes to our models.
The tolerance for an explanatory variable is the
proportion of its variance not accounted for by other
independent variables in the equation. Lower tolerance
means fewer information contributions to the
regression model. The sample tolerances for MOOD
are included in Table 5.

DD FD NR
MHF 24.02% 24.0% 24.02%
AHF 36.98% 37.0% 36.98%
MIF 3.17% 3.2% 3.17%
AIF 6.81% 6.8% 6.81%
POF 15.07% 15.1% 15.07%
COF 26.65% 26.6% 26.65%

Table 5: Tolerances for MOOD metrics



From Table 5 we conclude that AHF and COF are
bigger contributors, while MIF and AIF have lower
influence. However, even the latter metrics have a
sufficient impact on the model not to be considered as
extraneous. Furthermore, we get unbiased estimators at
the risk of a slightly greater variance.

4.3.3. Model validation

The validity of our models depends on: (i) evidence
about the linearity assumption, (ii) how well they fit the
sample and (iii) their predictive ability beyond the
sample. For that purpose we calculated the statistics
included in Table 6.

DD FD NR
Multiple R 99.909% 98.326% 99.998%
R Square 99.818% 96.680% 99.996%

Adjusted R Square 98.728% 76.763% 99.969%

Table 6: R Statistics

Multiple R is the correlation coefficient between the
observed and predicted values of the dependent
variable. As seen in Table 6 the three models show an
almost perfect linear relationship between the
dependent variables and the independent variables
(MOOD metrics). This validates the linearity
assumption in which the models were based.

The square of the multiple R, R Squared, which is
also called coefficient of determination, is a measure of
the proportion of variation in the dependent variable
that is explained by variation in the explanatory
variables. This coefficient is a measure of how well the
estimated regression fits the data, usually called
goodness of fit. Table 6 shows a very good fit for all
models. Thus we deduct that the three models allow to
calculate DD, FD or NR with minor errors within the
sampled universe. As an example, using the estimator
equations with the coefficients extracted from Table 4
and the corresponding MOOD metrics from Table 1,
we get:

system 3:

DD
∧

=4.38 defects / KSLOC (+1.4% of the actual
value7)

system 5:

FD
∧

=7.68 failures / KSLOC (-6.3% of the actual
value)

system 7:

RE
∧

= 4.73 man.hours / KSLOC (+0.2% of actual
value)
                                                          
7 included in Table 2.

The applicability of a predictive model bears on its
ability to explain as fully as possible the variation of
the outcome variables based on the corresponding
explanatory variables beyond the sample data. A model
estimated from a sample, fits the sample better than it
will fit the population. The sample R squared thus
tends to overestimate the goodness of fit of the model
in the population. Thus we used the Adjusted R Square
that is an estimate of how well the model will fit the
population. Adjusted R squared corrects the optimistic
bias of the sample R squared by taking sample size and
the number of regressors into account. We then expect
that our models will be able to produce estimates where
only around 1.27% of the defect density, 23.24% of the
failure density and 0.03% of the normalized rework
effort will be left unexplained. These percentages, that
correspond to 1 - Adjusted R Squared, are due to the
variation in error terms or to the variation in other
missing variables that implicitly form part of the error
terms.

5. Conclusions and further work

This paper presented the results of an experiment
where the impact of object-oriented design on resulting
software quality attributes (defect density and rework)
was empirically evaluated. The MOOD set of metrics
was adopted in order to measure the characteristics of
OO design. The results achieved so far allow us to infer
that, in fact, the design alternatives may have a strong
influence on resulting quality. Quantifying this
influence can help to train novice designers by means
of heuristics [4] embedded in design tools. Being able
to predict the resulting reliability and maintainability is
very important to project managers during the resource
allocation (planning) process.

This work is a small step toward the understanding
of how software designs affect resulting quality.
Further validation experiments with a larger sample of
projects is expected to be carried out. A replication of
this experiment with a sample of C++ and Ada9X
large-scale projects developed at the Software
Engineering Laboratory (NASA Goddard Space
Center) is expected to be done in the near future. The
impact on other quality attributes such as efficiency,
portability, usability and functionality must also be
assessed. The public availability of a tool to collect the
adopted design metrics is expected to foster further
experiments throughout the academic and industrial
communities.

Among our priorities is the definition of MOOD
bindings for Smalltalk and Ada9X in order to conduct
new experiments and assess whether adopted languages
affect quality characteristics differently.

We also intend to launch a research line on the com-
plexity of design patterns [12]. These seem to be a
natural road to the “promised reuse-land”. Substantial



increases in quality and productivity are expected if
software developers really start using these new
“bricks”. The adoption of patterns greatly depends on
their understandability, smooth integration (lack of side
effects), functionality and reliability. All of these
characteristics must be quantitatively evaluated in order
to define acceptance criteria and compare different
pattern implementations for similar functionalities.
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